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The role of the different helical components of the magnetic and velocity fields
in the inverse spectral transfer of magnetic helicity is investigated through Fourier
shell-to-shell transfer analysis. Magnetic helicity transfer analysis is performed on
chosen data from direct numerical simulations of homogeneous isothermal compressible
magnetohydrodynamic turbulence, subject to both a large-scale mechanical forcing and
a small-scale helical electromotive driving. The root mean square Mach number of the
hydrodynamic turbulent steady state taken as initial condition varies from 0.1 to about
11. Three physical phenomena can be distinguished in the general picture of the spectral
transfer of magnetic helicity towards larger spatial scales: local inverse transfer (LIT),
non-local inverse transfer (NLIT) and local direct transfer (LDT). A shell decomposition
allows these three phenomena to be associated with clearly distinct velocity scales: the
LDT is driven by large-scale velocity shear and associated with a direct magnetic energy
cascade; the NLIT is mediated by small-scale velocity fluctuations which couple small-
and large-scale magnetic structures; and the LIT by the intermediate spatial scales of the
velocity field. The helical decomposition shows that like-signed helical interactions and
interactions with the compressive velocity field are predominant. The latter has a high
impact on the LDT and on the NLIT, but plays no role for the LIT. The locality and
relative strength of the different helical contributions are mainly determined by the triad
helical geometric factor, derived here in the compressible case.

Key words: MHD turbulence, compressible turbulence, turbulence simulation

1. Introduction

In three-dimensional turbulent hydrodynamic systems, the kinetic energy cascades to ever
smaller scales through the breakup of eddies into smaller ones, which are successively
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subject to this process as well. As such, turbulence continuously transforms large-scale
coherence into smaller-scale structures which are eventually dissipated by viscous effects.
Contrary to this intuition, turbulence in three-dimensional magnetohydrodynamics (MHD)
inherently generates large-scale magnetic structure as well. One fundamental mechanism
that is relevant in this perspective is the inverse spectral transfer (from large to small
wavenumbers) of an ideal quadratic invariant, the magnetic helicity HM = 〈a · b〉, with
a the magnetic vector potential, b = ∇ × a the magnetic field and 〈·〉 denoting the volume
average. In astrophysical systems, where the MHD single-fluid approximation is often a
satisfactory approximation for the description of nonlinear dynamics of ionised gases on
large scales, the resistivity is typically very low so that rotational motion leads naturally
to helical magnetic fields (Alfvén 1942). Magnetic helicity dynamics are thought to play
a crucial role in solar flares and coronal mass ejections (Low 1994; Kumar & Rust 1996),
while the solar wind is also associated with magnetic helicity transport (Bieber, Evenson
& Matthaeus 1987; Berger 1999). In fusion experiments, such as the reversed-field-pinch,
the injection of magnetic helicity may improve plasma confinement (Escande et al. 2000;
Marrelli et al. 2021). Moreover, magnetic helicity conservation plays, for example, a
very important role in dynamo processes (Brandenburg 2001; Vishniac & Cho 2001;
Brandenburg & Lazarian 2013).

The inverse transfer of magnetic helicity was first suggested by absolute-equilibrium
statistical models (Frisch et al. 1975) and successively has been verified by numerical
experiments (Pouquet, Frisch & Léorat 1976; Pouquet & Patterson 1978; Meneguzzi,
Frisch & Pouquet 1981; Balsara & Pouquet 1999; Brandenburg 2001; Christensson,
Hindmarsh & Brandenburg 2001; Alexakis, Mininni & Pouquet 2006; Malapaka 2009;
Müller, Malapaka & Busse 2012; Stepanov, Frick & Mizeva 2015; Linkmann & Dallas
2016; Linkmann et al. 2017). In the present work, the terminology ‘inverse transfer’ is
preferred to ‘inverse cascade’, since the word ‘cascade’ is usually associated with a local
transfer in Fourier space, involving fluctuations characterised by wavenumbers k, p and
q with similar moduli. As shown here and in previous research by shell-to-shell transfer
analysis (Alexakis et al. 2006), both local and non-local aspects are present in this inverse
spectral transport. Furthermore, using a decomposition of the fields along eigenvectors
of the curl operator (‘helical decomposition’), it has been shown that the inverse transfer
of magnetic helicity in a wavevector triad, k + p + q = 0, is stronger and more non-local
when the three interacting magnetic and velocity helical modes have the same helical sign
(Linkmann et al. 2017).

The above-mentioned studies (Alexakis et al. 2006; Linkmann et al. 2017) have been
performed in the incompressible case. This approximation, which is usually chosen for
the sake of simplicity, is, however, of limited applicability for many natural and mainly
astrophysical flows, which often are highly supersonic. For example, the root mean square
(r.m.s.) turbulent Mach number varies typically between 0.1 and 10 in the interstellar
medium (Elmegreen & Scalo 2004, § 4.2). In the present work, both the shell-to-shell
transfer analysis and the helical decomposition are combined to study the inverse transfer
of magnetic helicity in compressible isothermal ideal MHD turbulence. The aim is to
disentangle the role of the different helical components of the magnetic and velocity
fields by analysing data from direct numerical simulations of large-scale mechanically
driven turbulence, with either a purely solenoidal or purely compressive forcing, and
Mach numbers ranging from 0.1 to about 11. In these flows, small-scale helical magnetic
fluctuations are injected.

The numerical experiments considered are described in § 2. The energetic exchanges
in isothermal MHD are depicted in § 3, with an emphasis on the main differences with
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the incompressible case. Then, §§ 4 and 5 describe the analytical tools used, namely the
shell-to-shell transfer analysis and the helical decomposition, respectively. The results are
reported in § 6, while § 7 summarises the findings and gives some concluding remarks.

2. Numerical experiments

The numerical data are generated by solving the isothermal compressible ideal single-fluid
MHD equations, in the presence of both a mechanical and an electromotive driving. They
read, in conservative form,

∂tρ = −∇ · (ρv), (2.1)

∂t(ρv) = −∇ · (ρvvT + (ρc2
s + 1

2 |b|2)I − bbT) + ρf V , (2.2)

∂tb = ∇ × (v × b) + f M, (2.3)

∇ · b = 0, (2.4)

where ρ is the mass density, v the velocity and b the magnetic field. The 3 × 3 identity
matrix is denoted by I . In the isothermal case, the sound speed cs is constant, giving
the (thermal) pressure p = ρc2

s . Energetically, this simple thermodynamic approximation
introduces a new reservoir of specific potential energy, u = c2

s ln(ρ/ρ0) (with a reference
density ρ0), which couples via velocity field dilatation and density fluctuations with the
kinetic energy. Kinetic and magnetic energy are linked via incompressible transverse shear
Alfvénic fluctuations and via magnetic pressure generated by longitudinal magnetosonic
fluctuations (see § 3). This physical approximation can thus be regarded as the structurally
next step when going beyond the simplifying assumption of strict incompressibility.

The driving terms f V and f M inject kinetic energy at large scales and small-scale
magnetic helical fluctuations, respectively, and are described below. The equations are
solved using a fourth-order shock-capturing finite-volume solver, which makes use of
the constrained-transport approach to ensure the solenoidality of the magnetic field. It is
described in detail in Verma et al. (2019) and Teissier (2020). The main reconstruction
method used is a fourth-order central weighted essentially non-oscillatory (CWENO)
method (Levy, Puppo & Russo 1999), with a passage through point values in order to
keep fourth-order accuracy (McCorquodale & Colella 2011; Buchmüller & Helzel 2014).
The Riemann problems at the cell interfaces are solved using the Rusanov approximation
(Rusanov 1961), and a multidimensional version of the same is used for the line-integrated
electric field in the constrained-transport framework (Balsara 2010), which inherently
maintains the solenoidality of the magnetic field up to machine precision (Evans & Hawley
1988). The time stepping is done through a strong stability-preserving Runge–Kutta
(SSPRK) method, namely the one described by pseudocode 3 in Ketcheson (2008),
with a time step limited by the Courant–Friedrichs–Lewy criterion with a Courant
number CCFL = 1.5. In order to prevent the appearance of negative mass densities as
a result of numerical inaccuracies at strong discontinuities and shocks prevalent in
high-Mach-number flows, a local reduction of the scheme’s order is used in the vicinity
of discontinuities, a technique often referred to as ‘flattening’ or ‘fallback approach’
(Colella & Woodward 1984; Balsara 2012; Núñez-de la Rosa & Munz 2016). The increased
accuracy of this higher-order numerical model permits one to obtain results comparable to
a standard second-order-accurate numerical model at a significantly reduced resolution of
the numerical grid (Verma et al. 2019).

The numerical experiments are performed as follows. Hydrodynamic turbulent steady
states are first generated from a fluid at rest (b = v = 0, ρ = ρ0 = 1) in 5123 cubic
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simulation boxes of size L = 1 with triply periodic boundary conditions by injecting
large-scale kinetic energy through an acceleration field f V . The isothermal sound speed is
cs = 0.1. The mechanical driving is carried out similarly to the experiments in Federrath
et al. (2010) and Federrath (2013). It is governed by an Ornstein–Uhlenbeck process, which
injects either purely solenoidal or purely compressive energy at the wavenumber shells 1 ≤
K ≤ 2 (with the shell K ∈ N defined by the wavevectors k such that K ≤ |k|/κ < K + 1,
with κ = 2π/L the smallest wavenumber in the system). The energy injection rate εK

inj
governs the turbulent r.m.s. Mach number M of the statistical steady state obtained when
numerical dissipation balances the injected energy. The forcing autocorrelation time is
roughly the turbulent turnover time tT = L/(2csM). The weak mean velocity field that
appears as a result of the forcing is removed at each iteration. When the steady state is
reached, a delta-correlated electromotive driving f M is switched on at a particular instant,
which injects fully positive helical magnetic fluctuations at small scales K ∈ [48, 52] with
a defined magnetic energy injection rate εM

inj. This means that only one sign of magnetic
helicity is injected (i.e. the electromotive forcing is only along one helical eigenvector,
see § 5), so that, at each wavevector k where the driving injects both magnetic energy
EM

k,inj and magnetic helicity HM
k,inj, the so-called ‘realisability condition’ is saturated,

HM
k,inj = 2EM

k,inj/|k|, and one can estimate the global magnetic helicity injection rate

through εH
M

inj = (2εM
injhf )/(2πKM

f /L), with hf = +1 the helical fraction of the injected
fluctuations and KM

f = 50 the shell around which magnetic helicity is injected. As a
consequence, only one sign of magnetic helicity (the positive one) dominates the system
at all scales. This simplification allows one to limit the complexity of the present study to a
practical level. The mechanical (large-scale) and the electromotive (small-scale) drivings
are done at different spatial scales in order to observe the effects of compressibility. Indeed,
these enter the magnetic helicity dynamics via a term ∼ ∇ · v, so that if both the kinetic
and magnetic fields are driven at small scales (cf. Müller et al. 2012), the velocity field at
larger scales would be solely excited by an inverse transfer of the magnetic field and hence
far too weak to have observable effects.

In the present paper, shell-to-shell helical analysis of the least and most compressible
runs presented in Teissier & Müller (2021) are considered, which are labelled by
‘M01s4’, ‘M11s’, ‘M1c’ and ‘M8c’. An outline of that work is given at the beginning
of § 6. The number in the label stands for the approximate r.m.s. Mach number during
the hydrodynamic turbulent steady state, which is M ≈ 0.116, 11.1, 0.797 and 7.87,
respectively, and the letter for the forcing type, either purely solenoidal or compressive.
The magnetic-to-kinetic energy injection rate εM

inj/ε
K
inj is taken as unity for all the runs

except the M01s4 one, for which εM
inj/ε

K
inj = 4, a value that has been observed to result in

faster relaxation of spectral dynamics as compared to unity.

3. Isothermal energetics

In compressible isothermal MHD, energy can be stored in three reservoirs: as kinetic
energy EK = 1

2ρ|v|2, as magnetic energy EM = 1
2 |b|2 and as potential energy, in the

form of density fluctuations Eρ = ρc2
s ln(ρ/ρ0), with ρ0 the mean density in the system

(Kritsuk, Wagner & Norman 2013). Their time evolution and the energetic exchanges
between them are described in the following.
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Starting with the ideal induction equation (2.3), without the forcing term ∂tb =
−(v · ∇)b + (b · ∇)v − b(∇ · v), the magnetic energy is governed by

∂tEM = −b · (v · ∇)b︸ ︷︷ ︸
B1

+ b · (b · ∇)v︸ ︷︷ ︸
B2

−|b|2∇ · v. (3.1)

The terms B1 and B2 can be reformulated as

B1 = −b · (v · ∇)b = −∇ · (1
2 |b|2v) + 1

2 |b|2∇ · v, (3.2)

B2 = b · (b · ∇)v = ∇ · ((v · b)b) − v · (b · ∇)b. (3.3)

Plugging these terms into (3.1) leads to

∂tEM = −∇ · (1
2 |b|2v − (v · b)b) − v · (b · ∇)b − 1

2 |b|2∇ · v. (3.4)

As compared with the incompressible case, the only new term is −1
2 |b|2∇ · v. The

conservative first term on the right-hand side of (3.4) corresponds to energetic transfers
inside the magnetic energy reservoir, whereas the two remaining ones, −v · (b · ∇)b
and −1

2 |b|2∇ · v, correspond to conversion of energy between the magnetic and kinetic
energy reservoirs, through magnetic tension and magnetic pressure, respectively. Their
counterparts appear in the kinetic energy equation, as shown below.

Using the time evolution of the mass density and the velocity field,

∂tρ = −∇ · (ρv), (3.5)

∂tv = −(v · ∇)v + 1
ρ
∇ ·

(
bbT −

(
ρc2

s + 1
2 |b|2

)
I
)

, (3.6)

yields the time evolution of the kinetic energy:

∂tEK = ρv · ∂tv + 1
2 |v|2∂tρ, (3.7)

= −ρv · (v · ∇)v︸ ︷︷ ︸
V1

+v · (b · ∇)b −1
2v · ∇(|b|2)︸ ︷︷ ︸

V2

−v · ∇(ρc2
s )︸ ︷︷ ︸

V3

+1
2 |v|2∂tρ. (3.8)

The terms Vi can be reformulated as

V1 = −ρv · (v · ∇)v = −∇ · (1
2ρ|v|2v) − 1

2 |v|2∂tρ. (3.9)

V2 = −1
2v · ∇(|b|2) = −∇ · (1

2 |b|2v) + 1
2 |b|2∇ · v, (3.10)

V3 = −v · ∇(ρc2
s ) = −∇ · (ρc2

s v) + ρc2
s ∇ · v. (3.11)

Plugging them into (3.8), one obtains

∂tEK = −∇ · (1
2ρ|v|2v + p∗v) + v · (b · ∇)b + 1

2 |b|2∇ · v + ρc2
s ∇ · v, (3.12)

with p∗ = ρc2
s + 1

2 |b|2 the sum of thermal and magnetic pressure. In this equation (3.12),
the same −v · (b · ∇)b and −1

2 |b|2∇ · v terms as in (3.4) appear as well, but with
an opposite sign, confirming that they correspond to energetic exchanges between the
magnetic and kinetic energy reservoirs. Compared to incompressible MHD, where energy
conversion can only take place through magnetic stretching i.e. shear Alfvén fluctuations,
isothermal MHD allows energetic conversion through two additional channels: kinetic
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↔ magnetic through magnetic pressure (fast and slow magnetosonic fluctuations) and
kinetic ↔ potential through the velocity field’s dilatational part ∇ · v, i.e. work done
by the interaction of the velocity field with thermal pressure. Indeed, the last term on
the right-hand side of (3.12) can be found with an opposite sign in the potential energy
Eρ = ρc2

s ln(ρ/ρ0) time evolution:

∂tEρ = c2
s ((∂tρ) ln(ρ/ρ0) + ρ∂tρ/ρ), (3.13)

= c2
s − ∇ · (ρv)(1 + ln(ρ/ρ0)), (3.14)

= −∇ · (Eρv) − ρc2
s ∇ · v. (3.15)

To summarize, the energy conversion terms between reservoirs can be underlined by
performing a volume average of (3.4), (3.12) and (3.15) over a closed or triply-periodic
domain:

∂t〈EK〉 = 〈v · (b · ∇)b〉 + 〈1
2 |b|2∇ · v〉 + 〈ρc2

s ∇ · v〉, (3.16)

∂t〈EM〉 = −〈v · (b · ∇)b〉 − 〈1
2 |b|2∇ · v〉, (3.17)

∂t〈Eρ〉 = −〈ρc2
s ∇ · v〉. (3.18)

Conservative cross-scale nonlinear fluxes for each energy reservoir are present as well in
the form of divergence terms in (3.4), (3.12) and (3.15).

In summary, the influence of isothermal compressibility has two dynamic consequences:
(i) the emergence of a potential energy reservoir that is linked with kinetic energy via
the interaction of thermal pressure and the velocity field; and (ii) the emergence of
magnetosonic waves, which, in addition to inherently incompressible shear Alfvén waves
(with perturbations orthogonal in Fourier space to the plane spanned by the wavevector
and the large-scale magnetic field), open a second channel of kinetic ↔ magnetic
energy conversion via the interaction of velocity and magnetic pressure. In addition, the
compressive velocity component may also modify the magnetic tension exchange. All
these effects have in common that they appear as dependences on the velocity dilatation.

This brief overview of isothermal MHD energy dynamics is given to aid the subsequent
interpretation of magnetic helicity transfer, which is the main focus of the present work.

4. Shell-to-shell transfers

The formalism used in the incompressible case in Alexakis et al. (2006) for magnetic
helicity and energetic shell-to-shell transfers is reviewed and extended here for
compressible MHD. For a field f , the field obtained by keeping only the wavenumbers
in a certain shell K ∈ N, defined by the wavevectors k such that K ≤ |k|/κ < K + 1 (with
κ = 2π/L the smallest wavenumber in the system) is labelled by f K .

In the absence of forcing and of dissipative effects, HM
K = 〈aK · bK〉, the magnetic

helicity present in shell K is governed by (Alexakis et al. 2006; Plunian, Stepanov &
Verma 2019)

∂tHM
K =

∑
Q

T HM
(Q, K) =

∑
Q

2〈bK · (v × bQ)〉, (4.1)

where T HM
(Q, K) corresponds to the transfer rate of magnetic helicity from shell Q to

shell K. This transfer function, derived in the incompressible case, remains valid without
formal modification in compressible MHD because of the magnetic field solenoidality.
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However, as outlined in § 3, isothermal compressibility changes the energetic dynamics of
the MHD system fundamentally and impacts the nonlinear transfer of magnetic helicity
via compressible modifications of velocity and the magnetic field. The interpretation as
a transfer rate of magnetic helicity between shells is justified through the antisymmetric
property T HM

(Q, K) = −T HM
(K, Q), and because magnetic helicity is a purely magnetic

ideal invariant. Hence, the velocity field cannot exchange helicity with the magnetic field
and plays only a mediating role for transfers of magnetic helicity between two magnetic
modes. The situation regarding energetic transfers is more subtle and left for future work,
as outlined below. Please note that in Alexakis et al. (2006) the inverse convention is
used, with Th(Q, K) the transfer of magnetic helicity received by shell Q from shell K.
The magnetic helicity is also defined there as HM = 1

2

∫
a · b dV so that a factor 2 is not

present in the transfer rates. The velocity field can also be decomposed in shells, yielding
the transfer function

T HM
(Q, P, K) = 2〈bK · (vP × bQ)〉, (4.2)

which represents the transfer of magnetic helicity from shell Q to shell K mediated by
the velocity field at shell P. Summing the function of three variables T HM

(Q, P, K) along
Q allows one to quantify the importance of the mediating velocity field with respect to
magnetic helicity transfers to shell K as a function of the scale P:

MHM
(P, K) =

∑
Q

T HM
(Q, P, K). (4.3)

In this work, the indices K and Q always correspond to magnetic field shells, whereas the
index P always corresponds to the velocity field.

Following § 3, a shell decomposition allows one to derive the time evolution of EM
K =

〈1
2 |bK |2〉, the magnetic energy contained in shell K,

∂tEM
K =

∑
Q,P

T E
b→b(Q, P, K) +

∑
Q,P

(
T E

v−→
T

b(P, Q, K) + T E
v−→

P
b(P, Q, K)

)
, (4.4)

with the transfer functions

T E
b→b(Q, P, K) = 〈−bK · (vP · ∇)bQ − 1

2(bK · bQ)∇ · vP〉, (4.5)

T E
v−→

T
b(P, Q, K) = 〈bK · (bQ · ∇)vP〉, (4.6)

T E
v−→

P
b(P, Q, K) = 〈−1

2 (bK · bQ)∇ · vP〉. (4.7)

The T E
b→b term represents transfers inside the magnetic energy reservoir, and the other

two between magnetic and kinetic energy reservoirs through magnetic tension (T E
v−→

T
b) and

magnetic pressure (T E
v−→

P
b). They have, respectively, the following counterpart for kinetic

energy exchanges:

T E
b−→

T
v(K, Q, P) = 〈vP · (bQ · ∇)bK〉, (4.8)

T E
b−→

P
v(K, Q, P) = 〈−1

2vP · ∇(bK · bQ)〉. (4.9)

These transfer functions have appropriate antisymmetries so that they could be
interpreted as transfers of energy between fields and shells. Indeed, for magnetic
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↔ magnetic transfers, T E
b→b(Q, P, K) = −T E

b→b(K, P, Q), and for kinetic ↔ magnetic
transfers T E

b−→
T

v(K, Q, P) = −T E
v−→

T
b(P, Q, K) for magnetic stretching, and similarly for

the magnetic pressure contribution T E
v−→

P
b. However, as pointed out in Aluie (2017), by

using a coarse-graining approach, magnetic stretching does not result in a cross-scale
conversion term between magnetic and kinetic energy reservoirs in incompressible MHD.
It has been shown that the Lorentz force has two simultaneous effects: a local-in-scale
energy conversion between both reservoirs, and a transfer across scales inside each of the
reservoirs. In other words, even though T E

b−→
T

v(K, Q, P) = −T E
v−→

T
b(P, Q, K) shows the

total effect of the magnetic stretching term, the energy is in fact transferred from vP to
bP in a Fourier-local fashion, and, simultaneously, magnetic ↔ magnetic and kinetic ↔
kinetic transfers across scales occur. How to split these contributions in incompressible
MHD is described in that reference.

In compressible MHD, the situation is more complex, since, in addition to these two
effects, which need to be considered separately, transfers across scales could occur directly
through the coupling with the mass density field, which is now included in the kinetic
energy field. Moreover, the energy contained at a certain length scale lP ∼ 1/P is not∫ 1

2 |vP|2 any longer, but may be defined in several ways: using
∫ 1

2 (ραv)P · (ρ1−αv)P for
any α ∈ [0, 1/2], typical choices being α = 0 or α = 1/2 (Graham, Cameron & Schüssler
2010; Aluie 2013; Grete et al. 2017). Given this level of additional complexity regarding
energetic transfers, we restrict the scope of this paper to shell-to-shell magnetic helicity
transfers, where only the velocity field, without the density, enters into play.

Some insight into the impact of the physics underlying energetic exchanges on the
magnetic helicity shell-to-shell transport can be determined by noticing that

∂tHM
K = 2〈bK · ∂ta〉, (4.10)

= 2〈bK · rot−1(∂tb)〉, (4.11)

= 2〈bK · rot−1(−(v · ∇)b + (b · ∇)v − b∇ · v)〉, (4.12)

where rot−1( f ) returns the solenoidal field g whose curl is the solenoidal part of field f
(defined as ĝk = ik × f̂ k/k2 in Fourier space). The first equality is obtained through the
divergence theorem and the fact that 〈 f K · gQ〉 = 0 for any two fields when K /= Q since
they have no wavenumber in common. Motivated by the different energetic transfer terms
(relations (4.5) and (4.6)), this leads to the decomposition T HM

(Q, K) = UHM

b→b(Q, K) +
UHM

v−→
T

b(Q, K) + UHM

v−→
P

b(Q, K) with

UHM

b→b(Q, K) = 2〈bK · rot−1((−v · ∇)bQ − 1
2 bQ∇ · v)〉, (4.13)

UHM

v−→
T

b(Q, K) = 2〈bK · rot−1((bQ · ∇)v)〉, (4.14)

UHM

v−→
P

b(Q, K) = 2〈bK · rot−1(−1
2 bQ∇ · v)〉. (4.15)

Contrary to their sum, the UHM

b→b(Q, K), UHM

v−→
T

b(Q, K) and UHM

v−→
P

b(Q, K) functions on

their own cannot be interpreted as magnetic helicity shell-to-shell transfers, since they
are not antisymmetric. However, they still shed some light on the impact of magnetic
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↔ magnetic energy transfers and kinetic ↔ magnetic energy transfers due to magnetic
tension and pressure on the magnetic helicity dynamics, as described in § 6.4.

5. Helical transfers

The helical decomposition is based on the diagonalisation of the curl operator in Fourier
space f̂ → ik × f̂ , which possesses the eigenvalues (0, +k, −k) (with k = |k|) associated,

respectively, with the unitary eigenvectors ĥ
0
k = k/k and (Waleffe 1992; Brandenburg &

Subramanian 2005)

ĥ
±
k = 1√

2

k × (k × ê) ∓ ik(k × ê)

k2
√

1 − (k · ê/k)2
, (5.1)

with ê an arbitrary vector of unitary length non-parallel to k. This decomposition can
be viewed as an extension of the Helmholtz decomposition in a solenoidal (orthogonal
to k) and a compressive (parallel to k) part. The plane orthogonal to k is spanned by
(ĥ

+
k , ĥ

−
k ) so that the solenoidal modes are further decomposed into circularly polarised

waves with opposite polarity, corresponding in configuration space to flow lines forming

either a right-handed or a left-handed helix. Thus, the (ĥ
0
k, ĥ

+
k , ĥ

−
k ) eigenvectors form

an orthonormal basis in Fourier space. The study of helical mode interactions allows
one to find possibilities for inverse transfer dynamics in three-dimensional hydrodynamic
turbulence, in the absence of rotation or confinement (quasi-two-dimensional flow)
(Waleffe 1992; Biferale, Musacchio & Toschi 2012), which may be relevant for turbulence
models in large-eddy simulations (Alexakis 2017). Extensions to the MHD case seem
promising to clarify the intertwined dynamics of magnetic and kinetic helicities, for
example analytically (Linkmann et al. 2016, 2017), through direct numerical simulations
(Linkmann et al. 2017; Linkmann & Dallas 2017) and shell models (Lessinnes, Plunian &
Carati 2009; Rathmann & Ditlevsen 2019) – see Alexakis & Biferale (2018) for a review.

Using the helical decomposition, the velocity and magnetic fields read (Lessinnes et al.
2009)

b =
∑

k

∑
sk

bsk
k ĥ

sk
k eik·x, (5.2)

v =
∑

p

∑
sp

v
sp
p ĥ

sp
p eip·x, (5.3)

with sk ∈ {+, −} corresponding to the positively and negatively helical modes and sp ∈
{+, −, 0} corresponding to both helical modes and the compressive mode along k. Since

the magnetic field is solenoidal, it cannot have components along ĥ
0
k.

Plugging the helical decomposition (5.2) and (5.3) into (2.3) in the absence of forcing
leads to (Lessinnes et al. 2009; Linkmann et al. 2016, 2017)

∂tb
sk
k = skk

∑
k+p+q=0

∑
sp,sq

v
sp∗
p b

sq∗
q g

sk,sp,sq
k,p,q , (5.4)

with g
sk,sp,sq
k,p,q a geometric factor depending on the triad shape and the helical components

considered. Its modulus G
sk,sp,sq
k,p,q can be viewed as a weight of the respective helical

triad interaction. With regard to a given wavenumber k = |k|, the geometric factor maps
a weight to every possible shape of a nonlinear interaction triangle formed by the
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corresponding wavevectors k + p + q = 0. This shape is uniquely determined by k and
the leg ratios p/k and q/k. The weight signature on the strip defined by the triad condition
in the ( p/k, q/k) plane (see § 6.3) gives an indication of the level of spectral locality
of the most dominant interactions distinguishing the different helical contributions. As
shown in § 6, it is interesting to observe that the nonlinear transfer of magnetic helicity
comprises three clearly separable interaction families. Those are (i) a local direct transfer
linked with a direct magnetic energy cascade due to the advective flux of magnetic helicity
(transfer contribution UHM

b→b, see relation (4.13)), and (ii) a local inverse transfer due to
advection and predominantly shear Alfvénic magnetic tension effects. (iii) Pronounced
nonlocal inverse transfer, the hallmark of inverse magnetic helicity dynamics, is generated
through the small-scale velocity field, coupling the small- and large-scale magnetic fields
through advective flux, magnetic stretching and magnetic pressure. More details are given
in § 6.4.

The geometric factor has been derived in Waleffe (1992) for triads in the incompressible
hydrodynamic case. Since the magnetic field is solenoidal, these derivations remain
formally valid in incompressible MHD as noted in Lessinnes et al. (2009). In the same
way, they remain valid in compressible MHD when one considers only solenoidal velocity
modes sp ∈ {+, −}, which leads to (Waleffe 1992)

G
sk,sp∈{+,−},sq
k,p,q = |skk + spp + sqq|

√
2k2p2 + 2p2q2 + 2q2k2 − k4 − p4 − q4

2kpq
. (5.5)

These derivations are repeated in Appendix A and remain valid in compressible MHD
when considering only solenoidal modes sk, sp, sq ∈ {+, −}. The only difference that
appears in this case is that the velocity field can have compressive components (sp = 0).
An extension of these derivations for compressible flows is also presented in Appendix A,
leading for sp = 0, sk = S and sq = ±S to

G
sk=S,sp=0,sq=±S
k,p,q = |(q ∓ k)( p2 − k2 − q2 ∓ 2qk)|

2kpq
. (5.6)

The shell-to-shell transfer approach described in § 4 can be extended to helically
decomposed shell-to-shell transfers. The magnetic field is projected in Fourier space on

the helical eigenvectors ĥ
+
k and ĥ

−
k and then transformed into configuration space, giving

b+ and b−, respectively. In the same way, the velocity field is decomposed in v+, v− and

v0, with v0 its compressive part (obtained through a projection along ĥ
0
k in Fourier space).

The magnetic helicity transfer function (relation (4.2)) is then extended to

T HM
(Q, P, K) =

∑
sK∈{+,−}

∑
sP∈{+,0,−}

∑
sQ∈{+,−}

T HM

sKsPsQ
, (5.7)

with 12 different helical contributions

T HM

sKsPsQ
(Q, P, K) = 2〈bsK

K · (v
sP
P × bsQ

Q )〉. (5.8)

The six helical transfer functions for which sK = sQ can be interpreted as antisymmetric
magnetic helicity transfers between shells T HM

sKsPsK
(Q, P, K) = −T HM

sKsPsK
(K, P, Q). These

terms are labelled +++, +−+, +0+, −+−, −−− and −0− in the following, where
the first letter corresponds to sK , the second to sP and the third to sQ. However, the terms
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where sK /= sQ, labelled henceforth as ‘heterochiral’ are not antisymmetric on their own
but need to be considered in pairs, as in Alexakis (2017): the three ‘symmetrised’ terms
T HM

SsPS = T HM

+sP− + T HM

−sP+ verify the antisymmetric property and can thus be interpreted as
magnetic helicity transfers between shells. They are noted similarly S+S, S−S and S0S.

Even though the triad helical geometric factor G
sk,sp,sq
k,p,q is strictly speaking only valid for

single triad interactions, one can expect the helically decomposed shell-to-shell transfers to
be weighted essentially by the same geometric factor, especially for K, P, Q large enough.

In order to relate more easily to physical quantities, the Fourier spectra shown in the
present work are normalised by the isothermal sound speed squared, i.e. the specific kinetic
energy spectrum is EV

K = 〈|vK |2〉/(2c2
s ), the magnetic energy EM

K = 〈|bK |2〉/(2ρ0c2
s ) with

ρ0 = 1 the mean density in the system, since b has the same dimension as
√

ρv

and similarly HM
K = 〈aK · bK〉/(ρ0c2

s ). Projecting the Fourier coefficients on the helical
eigenvectors, one can obtain the spectral repartition of energy among the helical modes.
For example, the positive helical specific kinetic energy is EV,+

K = 〈|v+
K |2〉/(2c2

s ) and
similarly for the negative helical specific kinetic energy EV,− and its compressive part
EV,0.

6. Results

The helically decomposed shell-to-shell transfer functions are considered for the least and
most compressible runs M01s4, M11s, M1c and M8c at the respective instant in time
where the magnetic helicity integral scale IHM = L(

∫
K K−1HM dK)/(

∫
K HM dK) ≈ L/10.

Even though magnetic helicity is not sign-definite, since only one helical sign is injected,
positive magnetic helicity dominates the system at all scales so that considering its integral
scale is meaningful. This instant is chosen so that scaling laws are considered while the
spectral pollution caused by finite-size effects remains negligible, as shown through the
spectra displayed in figure 1.

Spectral scaling laws of different hydrodynamic (such as kinetic energy, kinetic helicity
and density spectra) and magnetic quantities have been explored in Teissier & Müller
(2021), as well as their dependence on the mechanical forcing type and the Mach
number over a range M ∼ 0.1–10. Only a brief summary is outlined here for the sake
of completeness. As compared to the incompressible case (Malapaka 2009; Müller et al.
2012), the absolute value of the magnetic helicity and energy spectral scaling exponents
tend to be lower for higher compressibility. The forcing type (purely solenoidal or purely
compressive) has more impact on the dynamics than the r.m.s. Mach number of the flow:
for the solenoidally driven M11s run, the deviations are smaller than for a compressively
driven run with an r.m.s. Mach number of the order 3. A dynamical balance, interpreted as
an equilibrium between shearing and twisting effects (Mininni & Pouquet 2009; Graham,
Mininni & Pouquet 2011; Müller et al. 2012), has been extended in supersonic turbulence,
using an appropriate change of variables. In particular, considering the Alfvén velocity
b/

√
ρ in place of the magnetic field allows one to find a universal behaviour in the scaling

exponents over a wide range of compressibility, from subsonic M ∼ 0.1 to supersonic
M ∼ 10.

In the following, only the most compressible M8c run is analysed in greater detail,
because it is an extreme and clear realisation of similar inverse transfer dynamics,
which have been observed in previous research only at lower Mach numbers or in
the incompressible case (Balsara & Pouquet 1999; Brandenburg 2001; Christensson
et al. 2001; Müller et al. 2012). A short comparison with the other runs is made
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Figure 1. Magnetic helicity HM , magnetic energy EM and specific kinetic energy EV spectra (decomposed
into solenoidal EV,sol = EV,+ + EV,− and compressive EV,0 parts such that EV = EV,sol + EV,0) for the M8c
run at an instant when IHM ≈ L/10.
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T HM 
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K

Figure 2. (a) Magnetic helicity transfer rates from shell Q to shell K for the M8c run, at an instant when
IHM ≈ L/10. (b) Sketch of these transfer rates explicitly showing the non-local inverse transfer (NLIT), the
local transfer (LIT) and the local direct transfer (LDT).

in § 6.5. The plots are in units of the (estimated) magnetic helicity injection rate, εH
M

inj =
(2εM

injhf )/(2πKM
f /L), with hf = 1 the helical fraction of the injected fluctuations and

KM
f = 50 the shell around which magnetic helicity is injected. Other instants in time and

discussions about possible transients are made in § 6.6.
Figure 2(a) shows the general aspect of the shell-to-shell magnetic helicity transfers

T HM
(Q, K) for the M8c run. As expected, figure 2 is antisymmetric about the main

diagonal. A positive value (yellow/bright colour) above the diagonal means a positive
transfer from shell Q < K to shell K, that is, a direct transfer, whereas a negative value
(blue/dark colour) above the diagonal means an inverse transfer, and vice versa for the
values below the diagonal. The farther from the diagonal, the more distant the shells
K and Q are, which indicates the transfers’ level of locality. Since a linear binning of
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the shells is chosen here, care has to be taken when interpreting the figures, since such
a binning may lead to an overestimation of the transfers’ non-locality (Aluie & Eyink
2010; Aluie 2017; Grete et al. 2017). A linear binning is chosen here in order to see
better the different features, since a logarithmic binning would leave only few shells.
For visualisation purposes also, the colour bar extremes are smaller than the extremes
of the transfer functions. The aim of the two-dimensional plots is indeed to present a
qualitative behaviour regarding the strength, direction and locality of the transfers. Cuts
along one direction are shown when a more quantitative aspect needs to be underlined.
Three phenomena can thus be distinguished in the general picture of a magnetic helicity
inverse transfer as sketched in figure 2(b): a local inverse transfer (LIT; corresponding to
the ‘wings’ in the lower left corner close to the diagonal), a non-local inverse transfer
(NLIT; corresponding to the horizontal and vertical rectangles) and a local direct transfer
(LDT; along the diagonal). Test simulations have shown that the NLIT stripes at the
electromotive forcing scale are not artefacts due to interactions between the mechanical
and electromotive drivings but are indeed present because of small-scale magnetic helicity
excess, whether the forcing terms are switched on or not.

The main aim of the next subsections is to shed some light on their respective origin.

6.1. Role of the mediating velocity field at different scales
Figure 3 shows that each of the LDT, LIT and NLIT feature can be associated with
different velocity scales. The function MHM

(P, K) (equation (4.3)), which quantifies
the importance of the mediating velocity field at shell P with respect to transfers of
magnetic helicity to shell K, allows three different regions along the P-axis to be delimited
(figure 3a). The small-scale velocity field (defined as 30 ≤ P) transfers magnetic helicity
from the electromotive driving scale to significantly larger scales, and hence corresponds
to the NLIT. This process can be interpreted as the spectrally non-local merging of
small-scale magnetic fluctuations with a magnetic structure of much larger size. The
intermediate-scale velocity field (defined as 4 ≤ P < 30) transports magnetic helicity
from shells 5 � K � 25 to larger scales that are quite close spectrally (within a factor
2). This allows the interpretation of merging like-sized magnetic fluctuations and hence
corresponds to the LIT. Finally, the large-scale velocity field (1 ≤ P < 4), with alternating
signs along the K-axis, is associated with the LDT. Along the same line of interpretation,
the LDT would correspond to the effect of the direct cascade of kinetic and magnetic
energy, i.e. the destruction of magnetic structures by advective shear exerted by the velocity
field, as confirmed in § 6.4. The separation of transfer dynamics in Fourier space is
confirmed on figure 3(b–d), where the sums of T HM

(Q, P, K) for P corresponding to
the three above-mentioned velocity scales are plotted.

6.2. Helical components
Since only magnetic helicity of one sign is injected by the electromotive forcing,
the dominant transfer terms are expected to be those involving the positively helical
magnetic field, labelled +X+ in § 5, with X ∈ {+, −, 0} corresponding, respectively,
to the positively (‘like-signed’ in the context of dominant positive magnetic helicity)
and negatively (‘opposite-signed’) helical parts of the velocity field and its compressive
part. These terms hence allow one to assess the role of the velocity field’s helical
components, as well as the role of its compressive part. Figure 4 shows the shell-integrated
fluxes ΠHM

sKsPsQ
(K) = ∑

P,Q
∑K

K0=0 T HM

sKsPsQ
(Q, P, K0) for the M8c run at an instant when
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Figure 3. Role of the mediating velocity field, for run M8c at an instant when IHM ≈ L/10. (a) Sum of
T HM

(Q, P, K) along Q. (b–d) Sum of T HM
(Q, P, K) along P for different velocity field shells, showing that

the three features are associated with mediation at different scales.

IHM ≈ L/10, as well as the successive sums of the dominant terms, in this order: +++,
+0+, S0S and +−+ (figure 4d). An approximate plateau behaviour is observed. Section
6.6 discusses the dominant helical contributions at other instants. The +++ and +0+
terms alone account for about 75 % of the inverse transfer. The plots being normalised
by the magnetic helicity injection rate, a value of 1 for K < 48 would mean that all
the injected magnetic helicity is transferred to larger scales. This gives a rough idea of
the numerical dissipation in the system: for the considered runs, about 50 %–70 % of the
injected magnetic helicity is transferred to scales larger than the electromotive driving
scale, where its conservation improves the larger the scale; see Teissier & Müller (2021)
for further details.

For the M8c run, both dominant +++ and +0+ terms, mediated by the like-signed
helical velocity field and its compressive part, respectively, contribute to the NLIT in a
similar way, but their contributions to the LDT and the LIT differ significantly (figure 5).
The +0+ term takes the leading role in the LDT, but does not essentially contribute to the
LIT. A more quantitative view of these aspects is available through figure 6, where cuts of
figure 5 along different K = K0 are shown.
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Figure 4. (a–c) The nine helically decomposed fluxes of magnetic helicity, compared to the total flux (in
black), showing which ones are dominant, for the M8c run at an instant when IHM ≈ L/10. The plots are
normalised by the magnetic helicity injection rate. The insets are zooms close to the horizontal ΠHM = 0. (d)

Comparison of successive sums of dominant terms.

10

20

30

40

50

60

10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

×εHM
inj

K

Q

T HM
+++ (Q, K)

Q

T HM
(Q, K)

+0+

Q

T HM
(Q, K) − T HM − T HM

+++  +0+

−4.00 × 10−2 −1.33 × 10−2 1.33 × 10−2 4.00 × 10−2

(a) (b) (c)

Figure 5. Contributions from the +++ and +0+ terms to the magnetic helicity transfer rates for the M8c
run, at an instant when IHM ≈ L/10. Their sum is close to the total transfer function from figure 2 and the
remaining contributions come mostly from the terms shown in figure 7.
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Figure 6. Cuts from the two-dimensional plots of figure 5 for K0 ∈ {10, 30, 50}. The horizontal dotted line
corresponds to y = 0 and the vertical one to Q = K0.
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Figure 7. Contributions from the +−+, −0− and S0S terms to the magnetic helicity transfer rates for the
M8c run, at an instant when IHM ≈ L/10.

The other helical contributions are relatively small (figure 5c). The three biggest
remaining contributions, corresponding to the +−+, −0− and S0S terms, are displayed in
figure 7. The +−+ term, mediated by the opposite-signed helical velocity field, presents
a small contribution to the LIT and the LDT (please note that the colour bar extremes are
a factor 10 smaller than those of figure 5), and a minor contribution to the NLIT. The −0−
term corresponds to a local direct transfer of negative magnetic helicity, mediated by the
compressive velocity field, which results in a local inverse transfer of magnetic helicity.
The heterochiral S0S term exhibits a more exotic shape. Its analysis is more complex
since it is the sum of two terms corresponding to different geometric helical triad factors.
Although its contribution is not negligible, it is still relatively small and hence not analysed
in more detail here. The remaining −−−, −+−, S+S and S−S helical contributions are
an order of magnitude smaller as compared to the +−+, −0− and S0S terms and are not
shown here.

To summarise, for the M8c run and concentrating on the homochiral terms, the LIT is
almost exclusively mediated by the solenoidal part of the velocity field (+++ and +−+
terms), with a significantly greater importance of the like-signed (+++) helical part.
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Figure 8. (a–c) Triad helical geometric factor’s modulus for the +++, +0+ and +−+ terms, respectively
(see relations (5.5) and (5.6)). (d) Sketch showing to which regions the NLIT (non-local inverse transfer), the
LIT (local inverse transfer) and the LDT (local direct transfer) correspond.

The velocity field’s compressive part (+0+ term) takes the leading role in the LDT,
even though its solenoidal part contributes to it to a smaller extent. As for the NLIT, it
is essentially mediated by both the like-signed velocity helical field and its compressive
part, while the role of the opposite-signed helical velocity field is comparatively very
small. The compressive part of the velocity field, which is not present in incompressible
turbulence, hence enhances the direct magnetic energy cascade through shearing effects
and the nonlocal merging of small-scale magnetic structures to structures of much larger
size.

6.3. Interpretation through the geometric factor
The results from § 6.2 regarding the role of the +++, +−+ and +0+ terms can
be explained through the moduli G+++, G+−+ and G+0+ of the respective helical
geometric triad factors (relations (5.5) and (5.6)), displayed in figure 8, in which panel (d)
summarises the results from § 6.1. The LDT that is associated with the large-scale velocity
field corresponds to p 
 k ≈ q, whereas the LIT, associated with the intermediate-scale
velocity field, corresponds to p ≈ k ≈ q. The NLIT is mediated by the small-scale velocity
field, that is, k 
 p ≈ q and q 
 p ≈ k.

Comparison of the geometric factors’ moduli has led to the predictions that the +++
transfers, mediated by the velocity field of like-signed helicity, are both more efficient and
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more non-local than the +−+ ones, where the mediating field has an opposite-signed
helicity in the incompressible case (Linkmann et al. 2017). The same idea is used here,
extending these results in compressible MHD and allowing the determination of the
relative importance of the +++, +−+ and +0+ terms for the three NLIT, LIT and LDT
features.

(1) In the region k ≈ p ≈ q corresponding to the LIT, the G+++ term is biggest, with
a maximum at 3

√
3/2 ≈ 2.6 for k = p = q, whereas G+−+ < G+++ by a factor of

about 3 and G+0+ vanishes in this region. This explains why the LIT is mediated
by the like-signed helical velocity field (+++ term) and to a lesser extent by the
opposite-signed helical velocity field (+−+), but is essentially absent from the +0+
term, corresponding to a mediation by the compressive velocity field.

(2) In the region corresponding to the NLIT, both G+++ and G+0+ are high, which
explains why the like-signed helical velocity field and its compressive part play
an important role for this feature. However, for k ≈ q, G+0+ is vanishing, which
explains why the NLIT is more non-local for the compressive velocity field as
compared to the like-signed helical one – see figure 6(c), where the inverse transfer
for the +0+ term is visible only for shells K ≤ 30 whereas it is visible for all shells
K ≤ 50 for the +++ one. As for G+−+, it is vanishing in this region so that the role
of the opposite-signed helical velocity field is small for this feature.

(3) Finally, all three terms have a non-vanishing geometric factor at low p,
corresponding to the large-scale velocity field. This is why they all contribute to the
LDT. The reason why the compressive velocity field plays the leading role for this
feature cannot be explained solely by the fact that more energy is associated with
it, as compared to the positively or negatively helical components (see figure 9d).
Indeed, for the M11s run (see § 6.5), the contributions of the +++ and +0+
terms to the LDT have similar amplitudes, even though significantly more energy
is contained in the positively helical velocity field for this run (figure 9b). The +0+
term is favoured geometrically because (i) on the q = p + k and q = −p + k lines,
G+0+ = 2, whereas G+++ = G+−+ = 0 and (ii) the q = k horizontal line, where
G+++ and G+−+ are high at low p, does not play a role for shell-to-shell transfers
between shells K and Q since T HM

(K, K) = 0. However, as shown in § 6.5, even
though the +0+ term is favoured geometrically, it can play a less important role
depending on the energy repartition among the helical velocity components.

The analysis above assumed that the helically decomposed shell-to-shell transfer rates
T HM

sKsPsQ
(Q, P, K) have a similar shape as the single triad geometric factors’ one, which is

of course not guaranteed. The magnetic helicity at a wavevector k can be written HM
k =

(1/k)(|b̂+
k |2 − |b̂−

k |2), with b̂
±
k = b̂

±
k ĥ

±
k the helically decomposed magnetic field, whose

time evolution is governed by

∂tHM
k = 1

k
(2 Re(b̂

+
k

∗
∂tb̂

+
k + b̂

−
k

∗
∂tb̂

−
k )), (6.1)

where Re(z) denotes the real part of the complex number z. Hence, according to relation
(5.4), the magnetic helicity transfers depend, apart from the phase information and the
geometric factor, on the moduli of the interacting helical modes in the triads. In order
to isolate the geometric factors’ role, slices at particular K0 of the different helical
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Figure 9. Repartition of the specific kinetic energy in the helical components for all the extreme runs, at an
instant when IHM ≈ L/10.

components T HM

sKsPsQ
(Q, P, K0) normalised by the typical interacting fields’ moduli are

considered:

NHM

sKsPsQ
(Q, P, K0) =

T HM

sKsPsQ
(Q, P, K0)

2
√

2EM,sK
K0

EV,sP
P EM,sQ

Q

, (6.2)

with EM,sQ
Q the power spectrum of the magnetic field sQ-helical part (obtained by

projecting b̂ on the (ĥ
sq
q ) helical eigenvectors in Fourier space) and similarly for the other

two energetic contributions. An average of all the K ∈ [5, 50] slices of NHM

sKsPsQ
(Q, P, K)

in one plot is shown in figure 10. This plot has been obtained by normalising, resizing
and merging the 46 slices present in this wavenumber shell range, through the procedure
described in Appendix B.

The geometric triad factors’ shape is very well reflected in figure 10 for the +++, +−+
and +0+ terms. In this figure, the blue/yellow corner at small P/K corresponds to the
LDT: it is negative for Q/K > 1 and positive for Q/K < 1, which means that magnetic
helicity is transferred from larger to smaller scales, whereas the reversal of colours at
higher P/K corresponds to inverse transfers (LIT and NLIT).

This illustrates why the geometric triad factor moduli govern the role and relative
importance of the dominant helical contributions with respect to shell-to-shell magnetic
helicity transfers.
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Figure 10. Average of the 46 slices of NHM

sK sPsQ
(Q, P, K0) for K0 ∈ [5, 50], obtained through the procedure

described in Appendix B. Each plot is normalised by its own maximum absolute value.
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Figure 11. Decomposition of the magnetic helicity transfer rate from shell Q to shell K (panel (a), which is
the same as figure 2) in different contributions: (b) associated with B ↔ B exchanges, (c) associated with
V ↔ B exchanges, the latter being the sum of (d) contributions through the magnetic tension and (e) through
the magnetic pressure.
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Figure 12. (a–c) Magnetic helicity transfer rates between the shells Q and K and their greatest helical
contributions for the M11s run at an instant in time when IHM ≈ L/10. (d) Cuts of panels (a–c) at K0 = 30.
The transfers are expressed in units of the magnetic helicity injection rate εHM

inj .

6.4. Energetic transfers
Using the decomposition of the magnetic helicity transfer function in contributions related
to energetic transfers (relations (4.13)–(4.15), plotted in figure 11) allows one to see that the
LDT is essentially associated with a direct cascade of magnetic energy within the magnetic
energy reservoir (hereafter labelled as B ↔ B exchanges). This magnetic energy cascade is
due to the advective flux of magnetic helicity and magnetic pressure. On the contrary, the
LIT and the NLIT are associated with both B ↔ B and V ↔ B exchanges (where V ↔ B
represents the effects of transfers between the magnetic and kinetic energy reservoirs). As
expected from the analysis in § 6.2, the LIT is mostly associated with V ↔ B transfers
due to magnetic tension (shear Alfvénic effects), which dominate over the B ↔ B ones.
The NLIT is caused by all three mechanisms (advection, magnetic tension and magnetic
pressure) and linked with both B ↔ B and V ↔ B transfers.

6.5. Other runs
The other runs, M01s4, M11s and M1c, are also considered at an instant when IHM ≈
L/10. Even though the compressibility of these runs extends over a wide range, they exhibit
a lot of common properties with the M8c run: the same three features (LDT, LIT and
NLIT) are present and mediated by the velocity field at the same scales. The LDT is always
mostly associated with B ↔ B exchanges, whereas the LIT and NLIT are associated with
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Figure 13. (a–c) Magnetic helicity transfer rates between the shells Q and K and their greatest helical
contributions for the M1c run at an instant when IHM ≈ L/10. Please note that the extremes of the colour
bar of panel (b) are an order of magnitude lower as compared to panels (a) and (c). (d–f ) Cuts of panels (a–c)
at K0 = 10, K0 = 30 and K0 = 50, respectively. The transfers are expressed in units of the magnetic helicity
injection rate εHM

inj .

both B ↔ B and V ↔ B exchanges. The differences observed are essentially quantitative
and concern the different helical contributions’ importance. They can be explained through
the energy repartition in the velocity field’s helical components, given in figure 9.

For the M11s run (figure 12), both the velocity field’s compressive and like-signed
helical parts contribute in equal proportions to the LDT, contrary to the situation for the
M8c run. For this run, indeed, the positively helical velocity field entails significantly
more energy EV,+ than its compressive part EV,0 at large scales. This confirms that the
compressive velocity field is indeed geometrically favoured for the LDT.

The other extreme happens for the M1c run, for which the EV,0/EV,+ ratio is very large
at large scales and small at small scales. As a consequence, the LDT has a very large
magnitude as compared to the NLIT and the LIT (figure 13(a–c), where the colour bar
extremes in panel (b) are an order of magnitude smaller) and the +0+ term does not
contribute much to the NLIT (figure 13c, f ).

Lastly, the LDT is carried by both helical components of the velocity field for the
subsonic M01s4 run (figure 14), since there is only a negligible amount of energy in
the compressive velocity field. For this run, both +++ and +−+ terms have the same
importance with respect to the LDT because similar amounts of energy are present in
the positively and negatively helical parts of the velocity field and the magnitudes of
the geometric factors G+++ and G+−+ (see relation (5.5)) have very close values for
p 
 k ≈ q.

6.6. Discussion: other instants in time and transient effects
The results presented in this work are based on a single snapshot, taken at an instant
in time when the magnetic helicity peak is still relatively far from the largest available
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Figure 14. (a–c) Magnetic helicity transfer rates from shell Q to shell K for the M01s4 run at an instant when
IHM ≈ L/10, as well as the biggest helical contributions. (d) Cuts of panels (a–c) at K0 = 30. The transfers
are expressed in units of the magnetic helicity injection rate εHM

inj .

scales (IHM ≈ L/10) so as to avoid finite-size effects. Figure 15 shows the transfers and
fluxes at different instants in time for the M8c run and can be compared directly with
figure 4. At a later instant in time, when IHM ≈ L/6, the main instant considered for
the study of spectral scaling laws in Teissier & Müller (2021), the general behaviour
looks qualitatively very similar. At a clearly earlier instant in time, IHM ≈ L/40, when
no approximate plateau behaviour is observed and no large-scale structure has emerged
yet, the transfers are significantly different. Even though non-local transfers are already
present, local transfers are dominant, in agreement with Alexakis et al. (2006) and
Linkmann & Dallas (2016), where non-local transfers from the electromotive forcing
directly to the largest energy-containing scales only appear at later times. It can be noted
in passing that the heterochiral S0S term plays a negligible role at such an early instant,
and becomes important only later.

The finite size of the numerical system in combination with the deliberately chosen lack
of large-scale dissipation to avoid artefacts in the nonlinear flux measurements does not
allow us to obtain a standard statistically stationary turbulent state. Ensemble averaging,
an alternative ansatz, would be numerically too costly for the present isothermal system.
Therefore, lurking dangers to avoid are the dependence of our measurements on the chosen
point in time and on the initial conditions. The presence of the inherently non-local
dynamics of turbulent magnetic fields makes the latter aspect relevant for almost any
kind of MHD simulation or experiment. Indeed, considerations in Teissier & Müller
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Figure 15. (a) Time evolution of the magnetic helicity transfer Fourier spectra
∑

P,Q T HM
(Q, P, K) for the

M8c run; five snapshots equally spaced in time between instants when IHM ≈ L/40 and IHM ≈ L/6. (b, c)
Magnetic helicity transfer spectra at the extreme instants of panel (a) and some important helical contributions.
(d–f ) Same as (a–c) but with the magnetic helicity fluxes ΠHM

(K) = ∑K
K0=0 T HM

(K).

(2021), from which the extreme runs are considered in the present work, show that
the observed spectral scaling laws strongly depend on the choice of the initial frame
for compressively driven runs with turbulent Mach numbers close to 5, labelled M5cA
and M5cB. This is an indication that the snapshots considered could still be in a transient
phase.

Nevertheless, the main results exposed in that work, the dynamical balance between
shearing and stretching and the scaling laws of appropriately chosen quantities (e.g.
considering the Alfvén velocity in place of the magnetic field), have been shown to be
valid over a wider range of compressibility, to be roughly constant as the systems are
evolved in time, and to be independent of the chosen initial conditions (runs M5cA and
M5cB). They have furthermore been confirmed at higher resolutions.

Single snapshot data are considered in the present work, too. However, the qualitatively
very similar behaviour of the flows over a wide range of compressibility (extending
from Mach 0.1 solenoidally driven close to Mach 8 compressively driven) as well as the
explanation of the results through the geometric helical factor and the energy contents in
the helical modes are strong arguments that hint at the robustness of the presented main
results of this work when considering the cautionary remarks above.

7. Conclusion

The helically decomposed shell-to-shell analysis reveals the presence of three distinct
phenomena occurring in the global picture of the inverse transfer of magnetic helicity
and sheds some light on their origin. Since one sign of magnetic helicity dominates the
system at all scales, the role of the different helical components of the velocity field as
well as that of its compressive part can be distinguished. The analysis has been performed
on particular states taken from direct numerical simulations of magnetic helicity inverse
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transfer in compressible isothermal MHD flows (Teissier & Müller 2021). The range of
Mach numbers varies from subsonic to r.m.s. Mach numbers of the order of 10, with
either a purely solenoidal or compressive mechanical large-scale forcing. The results are
consistent with previous research done in the incompressible case regarding the transfer’s
direction and locality (Alexakis et al. 2006) and relative strength and locality of triad
interactions involving the like-signed and opposite-signed helical part of the velocity field
(Linkmann et al. 2017).

For all the runs considered, a local inverse transfer (LIT), a non-local inverse transfer
(NLIT) and a local direct transfer (LDT) are observed:

(i) The LIT is caused predominantly by magnetic stretching involving the solenoidal
velocity field at intermediate scales, i.e. shear Alfvénic fluctuations. The like-signed
helical velocity field plays the dominant role here. It is associated with both magnetic
↔ magnetic (B ↔ B) and kinetic ↔ magnetic (V ↔ B) energetic exchanges.

(ii) The leading role in the NLIT is taken by the small-scale velocity field, through both
the like-signed helical velocity field and its compressive part.

(iii) Finally, the LDT is caused by the large-scale velocity field. It is essentially associated
with a direct cascade of kinetic and magnetic energy. The compressive part of the
velocity field is geometrically favoured for the LDT even though both velocity helical
components, which have geometrically a similar importance, can take the leading
role depending on the specific kinetic energy repartition among the helical and
compressive modes.

Thus the velocity field’s compressive part, which is not present in the incompressible
case, plays an important role in the LDT and the NLIT, which affects the magnetic helicity
scaling properties (Teissier & Müller 2021).

The locality and strength of these phenomena can be explained surprisingly well by the
geometric triad helical factors (Waleffe 1992), which have been extended for compressible
MHD.

Since magnetic helicity is not sign-definite, in astrophysical systems of interest,
magnetic helical components of mixed signs are expected to be present. In this context,
the heterochiral terms (labelled S+S, S−S and S0S) may play a greater role, even though
they are more difficult to interpret (Teissier 2020). In particular, in the present work, even
though magnetic helicity of one sign dominates the system, the heterochiral term S0S
associated with the compressive velocity field plays a relatively small but not negligible
role at high compressibility, in contrast to the other S+S and S−S heterochiral terms. This
would deserve further studies. Nevertheless, the study presented here, which focuses on
the dominant homochiral terms, provides insights that should help the interpretation of
future results in more general cases.
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k
p

q

µk

µp

µq

αp

αq

αk

λ

Figure 16. Definition of the notation for the derivations of the geometric triad factor. Redrawn from Waleffe
(1992).

Appendix A. Geometric factor derivation

The geometric factor appearing in relation (5.4) has been derived in Waleffe (1992) in
the incompressible case. The derivations are reviewed here, keeping the same notation as
shown in figure 16. The helical eigenvectors ĥ

sk
k , ĥ

sp
p and ĥ

sq
q are expressed for each triad

in a well-chosen basis:
ĥ

sm
m = eismφm(λ+ ismµm), (A1)

with m ∈ {k, p, q}, φm a certain angle and λ and µm the unitary vectors:

λ = k × p
|k × p| = p × q

|p × q| = q × k
|q × k| , (A2)

µm = m × λ
|m| . (A3)

In the incompressible case (sk, sp, sq ∈ {+, −}), this gives after some algebra the
geometric triad factor (Waleffe 1992):

g
sk,sp,sq
k,p,q = (ĥ

sp∗
p × ĥ

sq∗
q ) · ĥ

sk∗
k , (A4)

= −e−i(skφk+spφp+sqφq)skspsq(sk sin(αk) + sp sin(αp) + sq sin(αq)), (A5)

= e−iφs
skspsq(skk + spp + sqq)

√
2k2p2 + 2p2q2 + 2q2k2 − k4 − p4 − q4

2kpq
,

(A6)

with φs = (skφk + spφp + sqφq). The last equality is obtained by using the law of sines
and Heron’s formula.

In the compressible case, when sp = 0, sk = S ∈ {+, −}, sq = ±S, the geometric
factor becomes

g
sk=S,0,sq=±S
k,p,q =

(
p
p

× ĥ
sq∗
q

)
· ĥ

sk∗
k , (A7)

= Sie−Si(φk±φq)(cos(αq) ∓ cos(αk)), (A8)

= Sie−Si(φk±φq)
(q ∓ k)( p2 − k2 − q2 ∓ 2qk)

2kpq
, (A9)

where the last equality is obtained using the cosine rule cos(αk) = (kp2 + kq2 − k3)/2kpq.
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(b)(a) (c)

Figure 17. Illustration of the algorithm generating figure 10. (a) Three slices being merged. (b) After resizing
so that their angles coincide. (c) The final merged picture. The sum of the red and blue bands from the top
and middle pictures gives the purple band, which is normalised by a factor 2, since only two of the three slices
contributed to it. The smaller orange square is normalised by a factor 3 since it comes from all three slices.

Appendix B. Technical details: merging transfer functions’ slices

Figure 10 is obtained by merging the NHM

sKsPsQ
(Q, P, K) slices (relation (6.2)) for K ∈

[5, 50] through the following procedure (see figure 17):

(1) Each slice is considered as a ‘picture’ and is resized so that the angles P = K and
Q = K arrive at the same location for each of them. The slices are normalised by the
maximum of their respective absolute value so that they all have the same weight in
the final merged picture. Only the slices starting K = 5 are considered since low-K
slices are more imprecisely resized, causing square-like artefacts.

(2) For each (P, Q) coordinate, the sum of all resized pictures is considered, leading to
their superposition, the new ‘picture’ S.

(3) Each (P, Q) coordinate in the S picture is normalised by the number of pictures that
contributed to it (it differs for each point since all resized pictures occupy a different
domain; see figure 17).

(4) The obtained S is finally normalised by its maximum absolute value.
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