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In this paper, we present the results of using a frequency-stepped continuous-wave radar system to estimate the position of
overlapping and electrically good conductive plates. We especially focus on polarimetric scattering effects caused by the step of
a lap joint, which is a common welding-geometry. To model the step’s contribution to the overall scattered signal, we use a
two-dimensional combined field integral equation (CFIE) approach. For demonstrating its practical applicability, the
implemented scattering model is verified by measurements. To emphasize the improvements of position estimation by
using a CFIE approach, the outcomes of the model are compared to a commonly used point scattering model. Finally, the
numerical signal is utilized to precisely estimate the position of the lap joint.
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I . I N T R O D U C T I O N

In automated welding applications the exact position of the
welding-geometry is required. Therefore, the aim is to detect
unexpected variations in the position of the welding-geometry
and consequently enhance the quality of the welding process.
Typically, this task is accomplished using optical sensors.
Unfortunately, these sensors are very expensive and they are
sensitive to environmental stress, caused by fume, dust, and
pollution. In contrast, radar sensors are hardly affected by
the aforementioned influences.

In this contribution we used mm-wave radars for estimat-
ing the position of the welding-geometry’s edges. In this
paper, we use lap joint geometries with various step thick-
nesses made out of aluminum, as depicted in Fig. 1. In this
work, the capabilities for precise position estimation are
explored and additionally the main difficulties of the
concept are addressed.

The idea is to use local polarimetric effects, which occur at
spatial discontinuities in perfect conducting surfaces, as for
instance, at edges or, in our case, at the step of a lap joint geo-
metry. Michaeli [1] already characterized these effects for
wedge geometries and presented an equivalent current
model to describe their scattering behavior. In the first

attempt, we used a point scatterer for position estimation,
since the influence of polarimetric scattering is limited to
the vicinity of the step. Unfortunately, it turned out that
the point model does not provide the required accuracy for
precise position estimation. Therefore, a better approach
than the point scatterer has to be used. Different methods
such as geometrical optics or physical optics [2] represent
approximate forms of the scattering behavior of a target. In
our case, a more accurate expression, which can additionally
describe diffraction effects, is desired. Non-approximate
forms are for example integral equation (IE) methods. The
incident field on the target geometry induces a current
density which is responsible for the scattering behavior. IE
techniques cast the solution for the induced current density
in the form of an integral. The unknown current density,
which is a sum of the physical optics current density and a
fringe wave current density [3, 4], is part of the integral.
Numerical techniques such as the method of moments
(MoM) can be used to solve the current density. The MoM
was first introduced by Harrington in 1967 [5]. The link
between the scattered field and the surface current density is
called impedance matrix and depends on the shape of the
target geometry and the calculated frequency only.
Calculations of an IE method such as the electric field integral
equation (EFIE) or magnetic field integral equation (MFIE)
lead to huge equation systems. Thus, even small scaled three-
dimensional objects, with expansions of a few wavelengths,
can cause high memory costs and long calculation times.
For this reason approximation techniques for the IE
methods, such as the fast multipole method (FMM), devel-
oped by Rokhlin in 1990 [6] or hybrid approaches, as
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described by Bouché [7], can be used. Another way of redu-
cing the computational and memory effort is to reduce the
geometry to two dimensions and calculate the scattering par-
ameter at only one frequency, which was done in this paper.
Therefore, we have to check if a model based on these assump-
tions is precise enough to describe the scattering behavior of
the geometry.

To calculate the scattering behavior of the lap joint, we used
a combined field integral equation (CFIE) [8, 9] approach,
which is a linear combination of the EFIE and MFIE. To
verify the models based on the CFIE and a point scatterer,
we conducted measurements using a frequency-stepped
continuous-wave (FSCW) radar, operating at a center frequency
of 27.5 GHz. The FSCW system is built up by a vector network
analyzer (VNA) and two pyramidal horn antennas, which are
arranged to cover orthogonal polarization planes.

The paper is organized as follows. First, we introduce the
system’s geometry, being used for the description of the scat-
tering properties and for conducting measurement. Based on
this, Section III describes the modeling of the scattering par-
ameters of the lap joint with respect to the position xK, the
step height t, and the position of the radar system rA. In
Section IV, the modeled scattering behavior is validated with
different measurements. Finally, Section V gives a possible
signal processing approach based on CFIE calculations to esti-
mate the position of the lap joint. In addition, position esti-
mation results for measurement scenarios with different step
heights t are presented.

I I . M E A S U R E M E N T S C E N A R I O

A) Geometrical description
A schematic diagram of our measurement scenario is depicted
in Fig. 1. The welding head, that is part of the system in indus-
trial applications, is in addition shown in the figure, but was
not placed in the measurements. It is assumed that the
plates are perfectly conducting. This is a reasonable assump-
tion for metals such as aluminum or steel. The upper border
of the bottom plate is located in the xy-plane at z ¼ 0, and
the upper face of the top plate is located at z ¼ t. The step,
at position xK, is aligned with the y-axis. At first it is
assumed that the plates of the lap joint are large compared

to the extension of the antenna footprints in the plane of
the objects. Hence, only a single, straight step is illuminated
by the antenna system and all other edges can be neglected.
The position xK of the step is the primary point of interest.
To gain spatial resolution the concept of a synthetic aperture
radar (SAR) is used. The SAR principle requires a relative
movement between the radar and the targets. This movement
can cause long measurement times. This disadvantage can be
overcome by replacing the synthetic aperture by an array of
transmitting and receiving elements in future investigations.
The antenna array requires a calibration in amplitude and
phase among all array elements. This is because the SAR
uses a single antenna system and no calibration has to be
accomplished. The position of the antenna system’s center is
described by the vector rA(ux) ¼ [ux, 0, zA]T, where ux speci-
fies the radar’s location along the one-dimensional aperture
and zA denotes the height of the antenna system. The vector
rAc
¼ [0, 0, zA]T refers to the center of the synthetic aperture.

B) Concept overview
The antennas A1 and A2 depicted in Fig. 1 form the antenna
system of the measurement scenario. For calculation of the
CFIE-based model, the antenna system is placed at a position
along the synthetic aperture. Subsequently the incident fields
on the geometry, caused by the antennas are calculated. The
CFIE technique gives us the induced current densities along
the geometry by using the MoM. This calculation is performed
for a single frequency. The current densities and the incident
fields are used to calculate the scattering parameters (see
Section III) for the actual aperture position. The computation
of the scattering parameters is important to compare the CFIE
approach with measurement data. After that the antenna
system is moved to the next aperture position and the calcu-
lation is repeated. For the simulation and the measurement
an equidistant aperture grid is used. The calculated impedance
matrix depends on the shape of the geometry and the fre-
quency only. Hence, there is no need to calculate it for every
possible aperture point again, since the geometry and the fre-
quency remain unchanged. Only the new incident fields are
required to recalculate the surface current density for the
next position.

I I I . N U M E R I C A L M O D E L

The model is split into two different parts. The first one deals
with the field source, namely the antenna system. The second
part focuses on the scattering behavior of the target, especially
the polarimetric effects caused by the step. To minimize the
computational costs, the three-dimensional problem is
reduced to two dimensions. This is made possible by assuming
that the geometry along the y-axis remains unchanged. In
addition, the scattering behavior of the lap joint is calculated
at the center frequency of the FSCW radar system
(27.5 GHz) only. Both constraints make the computed data
manageable for real-time applications in digital signal
processors.

A) Antenna model
The antenna system is built up by two pyramidal horn anten-
nas [10]. These antennas are radiating a linearly polarized

Fig. 1. The pictured two-dimensional geometry is used to describe the
simulation model and the measurement setup.
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field, which is important to cover orthogonal polarization
planes and detect polarimetric effects caused by the lap
joint. In addition, linear polarization is important to isolate
different polarized signals directly in the measurements.

For the evaluation a two-dimensional model of the field
source is required. In the simulator, the radiation character-
istics of the horn antennas are reproduced by electric and
magnetic line currents placed in the aperture L0. The use of
both line currents gives the possibility to rotate the polariz-
ation of the transmitted field with respect to the step’s orien-
tation. For the entire calculation the line currents are aligned
with the y-axis. Hence, Ie ¼ [0, Ie,y, 0]T and Im ¼ [0, Im,y, 0]T

are directed in the y-direction. The two-dimensional
radiation patterns are adapted to coincide with those of
the horn antennas in the xz-plane. The electromagnetic
field of a single electric line source element can be calculated
by

Ey = −Ie,y
vcm

4
H(2)

0 kcR( ), HC = −jIe,y
kc

4
H(2)

1 kcR( ) (1)

and

EC = jIm,y
kc

4
H(2)

1 kcR( ), Hy = −Im,y
vc1

4
H(2)

0 kcR( ) (2)

for a single magnetic line source [2]. The circumferential angle
around the sources is denoted by C, vc ¼ 2p fc specifies the
angular frequency, kc = 2pfc/c0 denotes the wavenumber at
the center frequency, m stands for the permeability, and e

for the permittivity of the medium. The distance between
the line source and the point of observation is termed R.
The functions H0

(2) and H1
(2) refer to the Hankel function

of the second kind of order zero and one, respectively. The
incident field emitted by the two-dimensional antenna is
given by a superposition of Na line current elements (In our
simulations we chose Na ¼ 12.). This yields to
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∑Na−1
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cos
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2

Na
p

⎛
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for the electric and

EC =
∑Na−1

i=0

jIm,y
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i − Na − 1
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p

⎛
⎜⎝
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Hy =
∑Na−1

i=0

−jIm,y
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i − Na − 1
2

Na
p

⎛
⎜⎝

⎞
⎟⎠e−jfi H(2)

0 kcRi( ), (6)

for the magnetic line currents placed in the antenna aperture.
With the variation of the electric and magnetic line current
amplitudes Ie,y ¼ I0 sin (wAn

) and Im,y = I0
					
m/1

√
cos wAn

( )
the polarization of the two-dimensional antennas, can be
rotated around the z-axis. The variable wAn

is the angle of
rotation of the nth antenna. The variable wi refers to a phase
variation, which depends on geometrical dimensions of the
horn antenna and the position of the line current element in
the antenna aperture as defined in [11].

To cover orthogonal polarization planes in the
simulation, two antennas with different polarization
angles of 908 have to be used. In the next part the scatter-
ing behavior of the lap joint caused by the incident
field emitted by the two-dimensional antennas is
described.

B) Calculation of the target’s scattering
behavior
A VNA can only measure the scattering parameters of the
device under test. Hence, we have to calculate the scattering
matrix of the lap joint geometry to compare the CFIE
approach to a measurement. The different elements of the
simulated scattering matrix

Skl(ux) �
∫

S
−Ei

k · JS
l Ei

l , H i
l

( )( )
dS (7)

[12] can be derived by using the reciprocity theorem at the
center frequency of the radar system. To calculate the
matrix entries Skl(ux), the antennas act as transmitter and/or
receiver. In (7), Ek

i refers to the incident field at the surface
S of the lap joint geometry caused by the kth receiving
antenna. The induced electric surface current density
Jl

S (El
i, Hl

i) is a function of the incident fields caused by the
lth antenna. The incident fields and the surface current
density are functions of the radar’s position. As a conse-
quence, the scattering matrix is also a function of ux.

The calculation of Jl
S is realized by using the CFIE, which is

solved numerically by the MoM [5]. For the MoM calculation
the lap joint is split into patches with a length of lc/64 at the
step and lc/16 elsewhere. The variable lc refers to the wave-
length at the center frequency. The additional use of rectangu-
lar subdomain basis functions eases the evaluation of all
occurring integrals, compared to other kinds of basis
functions.

C) Rotation of the antenna system over the
lap joint
In this section, we analyze the influences on the co-polarized
(S11, S22) and cross-polarized (S12, S21) scattering parameters
for different rotation angles of the antenna system wAs per-
taining to the lap joint’s orientation. In addition, we point
out the ideal rotation angle of the antenna system for the
measurements. Figure 2 depicts the rotation angle of the
antenna system and the rotation angles of the antennas. For
the simulation the center of the antenna system is placed
over the lap joint step xK at an altitude of zA ¼ 0.11 m. In
addition, the difference in the polarization angles of the anten-
nas is set to 908 as depicted in Fig. 2. For the simulation a lap
joint with a step thickness of t ¼ 10 mm is chosen. Besides
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that, the simulation is performed at a single frequency namely
the center frequency. As discussed in Section II the lap joint
step is aligned with the y-axis. Now the antennas are rotated
around the z-axis.

In the two-dimensional simulation, this geometrical
rotation can be done mathematically by rotating the polar-
ization of the emitted electromagnetic field of each
antenna. During the simulation, the polarization angle of
the antenna system wAS is varied from 08 to 1808
(see Fig. 2). Since we have a polarization difference
between the two antennas, this implicates a rotation
angle wAl

¼ 08 to 1808 for the first and wA2
¼ 2908 to

908 for the second antenna. The resulting magnitudes of
the scattering matrix are depicted in Fig. 3. The main
finding of this simulation is that the cross-polarized
scattering parameter has its maximum magnitude value
at wAS ¼ 458 + n 908 for n ¼ {0, 1, 2, 3}. In contrast,
the curve shape’s maximum of the co-polarized part is
+ 458 shifted compared to the cross-polarized one. The
variation in the co-polarized scattering parameters is
mainly caused by the thickness of the lap joint. Since
we use local polarimetric effects caused by the lap

joint, rotation angles of wAS ¼ 458 and wAS ¼ 1358 are
the ideal choices for continuous simulations and
measurements.

I V . V A L I D A T I O N O F T H E
S C A T T E R I N G B E H A V I O R

To verify the presented signal model, measurements accord-
ing to Fig. 1 were conducted. In the measurement we need
to gain slant range resolution to separate the lap joint from
other targets and annoyances like multi path reflections.
This is made possible by performing a frequency sweep
from 26.5 to 28.5 GHz with the VNA. This frequency range
is chosen because of hardware availability. In contrast to the
slant range resolution the cross range resolution is mainly
dependent on the synthetic aperture of the system. In contrast
to the measurements the CFIE approach is calculated for two
dimensions and evaluated at the center frequency only. Hence,
additional signal processing tasks have to be conducted before
the simulated and measured data can be compared. The com-
parison between the measurements and the CFIE data is
important to analyze the properties of the model reproducing
the measured signal.

For the measurements the antennas A1 and A2 were con-
nected to port one and two of the VNA, respectively. The scat-
tering matrix was measured for different antenna positions and
frequencies. The main diagonal elements correspond to mono-
static and co-polarized measurements, and the off-diagonal
entries can be interpreted as cross-polarized transmissions
from one pyramidal horn antenna to the other, because they
are orientated to cover orthogonal polarization planes.

A) Measurements
To conduct measurements, the antenna system is placed at a
distance of zA ¼ 0.11 m above the lap joint. The dimensions
of the bottom and the top plates are 0.3 × 0.3 m2 and
0.15 × 0.3 m2, respectively. From measurement to
measurement different top plate thicknesses according to
t ¼ {2, 4, 6, 8, 10, 12} mm are used. The lap joint position is
set to xK ¼ 213.4 mm. The properties of the antenna
system, the FSCW radar, and the chosen SAR parameters
are summarized in Table 1.

Fig. 3. Simulated scattering parameters for different antenna rotation angles.

Fig. 2. The sketch shows different angles of the antennas and the antenna
system.

Table 1. Measurement setup, FSCW, and SAR parameters

Antenna system
Antenna gain G ≈15 dBi
Position of the antenna system rA [ux, 0, 0.11]T m
Polarization angle antenna 1 wA1

458
Polarization angle antenna 2 wA2

2458

FSCW (VNA) parameters
Transmit power Pt 22 dBm
Resolution bandwidth BRBW 10 kHz
Start frequency fstart 26.5 GHz
Stop frequency fstop 28.5 GHz
Number of frequency points N 201

SAR parameters
Synthetic aperture length Lx 0.1 m
Spatial sampling interval Dux 2 mm
Number of spatial points Mx 50

412 jochen o. schrattenecker et al.

https://doi.org/10.1017/S1759078713000329 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078713000329


The SAR is realized by moving the antenna system along a
one-dimensional path as depicted in Fig. 1. At equidistant grid
points, measurements have been conducted with the FSCW
radar. After finishing the measurement, a two-dimensional
data set Xkl(kr, ux) depending on the antenna positions ux

and the wavenumbers kr = 2pf /c0 at the measured frequen-
cies f, are available. To reduce the data to one dimension, a
signal processing work flow, as depicted in Fig. 4, is per-
formed. The reference plane for all VNA measurements is
the connector of the horn antennas. When performing
measurements it is more convenient to use the aperture
plane as reference (as it is done for the simulations).
Therefore, the electrical length of the antenna can be inter-
preted as an additional phase shift between the measure-
ment and the simulation reference plain. The phase shift
of the horn antenna can be split into two parts. The first
one is caused by the rectangular waveguide of the horn.
The second part is defined by the widening of the horn’s
throat, which can be interpreted as a widening rectangular
waveguide. This phase is calculated as described in [13].
The measured data are corrected with respect to this shift
for the transmitting and receiving antennas. After that,
the frequency-dependent scattering parameters are inverse
Fourier transformed for calculating the range profiles of
the measured scene. With the range profiles the range
value r̂max is calculated according to Fig. 4. Owing to the
SAR concept, the distance between the radar and
the target rises during the measurements. In the chosen
setup (see Table 1) this range variation had an insubstantial
influence and is neglected. Hence, the measured signal
is only evaluated at r̂max , which corresponds to the
range containing the dominant reflection of the lap
joint. The evaluation at a single bin reduces the two-
dimensional measured data to a one-dimensional signal
X12,1D(ux) = X12(r, ux)|r=r̂max

depending on ux at the center
frequency fc.

Figure 5 depicts the range profile of the measured data and
the calculated range r̂max . The phase of X12,1D (ux) only
depends on the center frequency and the target’s position
related to the antenna system. This can be derived by calculat-
ing the range profile of a single point target sp (kr, rA(ux)),

which yields

Sp(r, ux) =
∫kc+kB

2

kc−kB
2

Apw2
A rA(ux), rp
( )

e−j2kr rp−rA(ux)| |︸������������������︷︷������������������︸
sp kr ,rA(ux)( )

e−j2kr r d2kr

= Apw2
A rA(ux), rp
( )

kBsinc
kB

2
(r − rp − rA(ux)

∣∣ ∣∣)
( )

× ejkc(r− rp−rA(ux)| |). (8)

The signal sp (kr, rA(ux)) depends on the wavenumber kr as
well as the aperture position rA (ux). The variable c0

describes the propagation velocity of the electromagnetic
wave. In (8), Ap refers to the complex amplitude of the
point target, placed at rp, and w2

A accounts for the radiation
characteristic of the antennas. After calculating the inverse
Fourier transform with the integration limits kc + kB/2,
where kB = 2pB/c0 refers to the wavenumber of the sweep
bandwidth B, we get the range profile of the point target.
The phase of the outcome in (8) only depends on the pos-
ition of the target and the center wavenumber kc. For the
position estimation of the lap joint in Section V we use
X12,1D(ux). Therefore, it is adequate to calculate the CFIE
approach at the center frequency. The signal X12,1D (ux) is
compared to the simulation results of the CFIE. The real
parts of the measurement signals for thicknesses t ¼
10 mm and t ¼ 2 mm and the numerical model calibrated
to the amplitude of the measured signal are plotted in
Fig. 6. As depicted in Fig. 6, the numerical simulations
and the measurements for different thicknesses are in
good agreement. This leads to the conclusion that the
main scattering effects of the geometry are preserved
within the two-dimensional simulation.

V . E D G E E S T I M A T I O N W I T H T H E
N U M E R I C A L M O D E L

The numerical and a point target model are used to estimate
the lap joint position. We introduce two types of models
for the CFIE approach. For both, it is assumed that the

Fig. 4. Block schematic of the signal processing tasks to get a one-dimensional
data set from the measurement data.

Fig. 5. Magnitude of the measured parameter X12 (ux, r) normalized to its
maximum. In addition, we depict the range bin r̂max .
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thickness of the top plate t is known. Therefore, only the position
of the lap joint has to be estimated from the measurements.

A) Basic modeling
The SAR measurements are available on an equidistant grid at
the positions

ux = mxDux mx = −Mx

2
, − Mx

2
+ 1, . . . ,

Mx

2
− 1, (9)

where Dux denotes the spatial sampling interval and
Mx denotes the number of spatial samples. In addition, it
is assumed that the measurements are corrupted with
complex, additive, white Gaussian noise w � CN(0, s2).
Therefore, the data for the position estimation

X12,1D[mx] = AejfA S12[mx] + w[mx], (10)

consists of a sum of the deterministic signal S12[mx] and the
stochastic part w[mx]. The estimation algorithm is based
on a least squares approach. For the estimation we identify
u ¼ xK as the non-linear and Ã ¼ AejfA as the linear par-
ameter. This approach is known from the literature [14, 15]
as the principle of separable least squares. The variable Ã is
used to calibrate the amplitude of the model to the measure-
ments. The vector

H(u) = S12 −Mx

2

[ ]
, S12 −Mx

2
+ 1

[ ]
, . . . , S12

Mx

2
− 1

[ ][ ]T

(11)

can be defined and only depends on the non-linear parameter
u ¼ xK. The vector of the data set X12,1D is defined by

X12,1D = X12,1D −Mx

2

[ ]
,

[

X12,1D −Mx

2
+ 1

[ ]
, . . . , X12,1D

Mx

2
− 1

[ ]]T

. (12)

Now we can write the cost function in vector form

J Ã, u
( )

= X12,1D − H(u)Ã
( )H

X12,1D − H(u)Ã
( )

, (13)

which has to be minimized to find the linear and the non-
linear parameters. It can be found in the literature [14, 15]
that minimizing J(Ã, u) is equal to maximizing

J ′(u) = XH
12,1DH(u) HH(u)H(u)

( )−1
HH(u)X12,1D. (14)

After substituting H(u) and X12,1D in (14) we get the esti-
mator of the lap joint position

x̂K = arg max
xK

∑Mx
2 −1

mx=−Mx
2

X∗
12,1D[mx]S12[mx]

∑Mx
2 −1

mx=−Mx
2

X12,1D[mx]S∗12[mx]

∑Mx
2 −1

mx=−Mx
2

S∗12[mx]S12[mx]

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(15)

where the ·̂( ) denotes x̂K as an estimated parameter. For the
estimation a reference signal is calculated for the known
step thickness t with the numerical model described in
Section III. The maximization of the cost function (15) and
therefore the estimation of the lap joint position can be calcu-
lated efficiently in the spectral domain by using the shift prop-
erty of the Fourier transform. This reduces the computational
effort, because the model must be calculated using the CFIE
only once. A grid-search algorithm in combination with the
Nelder–Mead simplex algorithm [16] is used to maximize
J′(u).

Figure 7 shows the calculated cost function J′(u) for a point
target model J ′p,t(x̂K ) and the numerical model J ′s,t(x̂K ) for lap
joint targets with t ¼ 10 mm and t ¼ 2 mm. The functions
were normalized to the maximum of J ′s,t=10(x̂K ). The peaks’
positions depict the estimated positions x̂K of the lap joint.

Fig. 6. Real part of the measured parameter X12, 1D(ux) and the enhanced
numerical model as described in Section V (B) for a one-dimensional
aperture along ux and different thicknesses t ¼ 10 mm and t ¼ 2 mm.

Fig. 7. Cost functions of the numerical and the point target model for the step
heights t ¼10 mm and t ¼ 2 mm.
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B) Enhanced modeling
During the measurement the gained cross-polarized data is in
general corrupted by additional co-polarized parts. These
parts are caused by improper alignment of the antennas’ polar-
ization planes (wAl

, wA2
) and the limited isolation of the anten-

nas between the two polarization planes. In addition, the
co-polarized receive power is much higher than the cross-
polarized one. To enhance the accuracy of the signal model
reproducing the measurements these parts must be taken into
account. Therefore, the measured data is expanded with a frac-
tion of the co-polarized scattering parameter, which leads to

X12,1D[mx] = AejfA S12[mx] + BejfB X11,1D,u0/2[mx] + w[mx].

(16)

The complex amplitude BejfB is used to scale the co-polarized
part. The variable X11,1D,u0/2

[mx] refers to the measured
co-polarized scattering parameter of the first antenna. Since
the center of reference for the bistatic scattering parameters is
between the two antennas, the monostatic scattering parameter
is shifted about u0/2 related to Fig. 1 to induce X11,1D,u0/2

[mx].
Figure 8 shows the real part of the monostatic scattering par-
ameters of antenna A1, antenna A2, and the shifted one for a
lap joint with t ¼ 10 mm. It is also possible to use the simulated
parameter S11 [mx] to include non-ideal coupling. Therefore, we
have to mention that the co-polarized scattering parameter is
sensitive to antenna alignment and meanderings in the lap
joint geometry like dents or a tilting of the plates. In contrast
to using X11,1D,u0/2

[mx] these unknown influences are also to
be estimated when using S11 [mx].

The position estimation is calculated by inserting

H(u) =

S12 −Mx

2

[ ]
, S12 −Mx

2
+ 1

[ ]
, . . . , S12

Mx

2
− 1

[ ]

X11,1D,u0/2 −Mx

2

[ ]
, X11,1D,u0/2 −Mx

2
+ 1

[ ]
, . . . ,

X11,1D,u0/2
Mx

2
− 1

[ ]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

(17)

into (14) and maximizing the cost function, respectively.

To prove the achievement of this modeling compared to
the basic one, Fig. 9 depicts the errors

FBas(ux)

=
< ÂejfA S12,x̂K (ux)
{ }

− < X12,1D(ux)
{ }

max < X12,1D(ux)
{ }( ) 100%

(18)

and

FEnh(ux)=

< ÂejfA S12,x̂K (ux)+B̂ejfB X11,1D,u0/2(ux)
{ }

−< X12,1D(ux)
{ }

max < X12,1D(ux)
{ }( ) 100%

(19)

for the basic and the enhanced model for a lap joint with a step
thickness t ¼ 10 mm. The figure illustrates, that the deviation
among the enhanced model and the measurements is much
smaller compared to the basic model. This leads to the con-
clusion, that the corrupting co-polarized parts make an
important contribution to the measured data and have to be
taken into account to enhance the accuracy of modeling.

The position estimation results of the three analyzed
methods (point, basic, and enhanced modeling) for various
lap joint thicknesses are summarized in Fig. 10. The outcomes
for simulations with the CFIE and measurements with the
VNA are depicted. The shown results lead to the conclusion
that the estimations realized with the CFIE signal are, in con-
trast to the point signal, independent of the lap joint’s height.
Therefore, the point target is not exact enough to describe the
scattering behavior of the step as precisely as the CFIE
approach. The deviation between the true value and the esti-
mated position is less than half a millimeter for the numerical
model for different lap joint thicknesses. Therefore, the two-
dimensional CFIE is a better approach to describe the scatter-
ing behavior of the step and estimating its position. As a
limitation of the CFIE approach we assume, that for small
thicknesses t the CFIE approach causes numerical instabilities,
since we suggest, that the CFIE and the point target results
should agree for small t. Therefore, future investigations

Fig. 8. Real part of the co-polarized and the shifted measurement data.
Fig. 9. Real part’s relative error related to its maximum between the models
and the measurement results.
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have to be conducted on the CFIE simulation tool to verify
this behavior. Figure 11 shows the relative magnitude of
S12,t(ux) for different thicknesses normalized to the
maximum of S11,t¼10(ux). For these simulations the lap joint
is placed at xK ¼ 0 mm. The shape of the geometry shifts
the peak of S12,t (ux) and increases the maximum of the
received magnitude depending on the ratio between the wave-
length and the step’s height. This property can be taken as an
advantage by facing the antennas toward the step, which will
increase the received power. The figure additionally shows the
difference in the magnitude from the monostatic and the
polarimetric channel. Owing to the monostatic’s high magni-
tude, in contrast to the polarimetric one, crosstalk effects
corrupt the polarimetric signal as already discussed in
Section B). Therefore, sufficient isolation between the two
antennas is required to separate the measured signals.
Despite this disadvantage, the polarimetric effects are
chosen for position estimation considerations, because they
mainly appear in close vicinity to the step of the lap joint in
contrast to monostatic scattering.

V I . C O N C L U S I O N

We have demonstrated the capabilities of a mm-wave radar
system for precise position estimation of lap joints by using
polarimetric scattering effects and the concept of a synthetic
aperture. For this estimation the efficiency of a point scatterer
in comparison to a model based on a CFIE approach is exam-
ined. The consideration of additional co-polarized parts in the
signal reduces deviation between the measurements and the
CFIE model. To reduce the computational costs, the CFIE is
calculated for two dimensions and at the center frequency
only. In this contribution we highlight that these assumptions
have an insubstantial influence on the simulation results.
Finally, the study leads to the conclusion, that the robust
mm-wave radar systems are well suited to seam tracking
tasks in welding applications.
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