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Abstract We prove that an integral Jacobson radical ring is always nil, which extends a well-known
result from algebras over fields to rings. As a consequence we show that if every element x of a ring R

is a zero of some polynomial px with integer coefficients, such that px(1) = 1, then R is a nil ring. With
these results we are able to give new characterizations of the upper nilradical of a ring and a new class
of rings that satisfy the Köthe conjecture: namely, the integral rings.
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1. Introduction

Let R be an associative ring or algebra. Every nilpotent element of R is quasi-regular
and algebraic. In addition, the quasi-inverse of a nilpotent element is a value of some
polynomial at this element. In the first part of this paper we will be interested in the
connections between three notions: nilpotency, algebraicity and quasi-regularity. In par-
ticular, we will investigate how close algebraic elements are to being nilpotent and how
close quasi-regular elements are to being nilpotent. We are motivated by the following
two questions.

(Q1) Algebraic rings and algebras are usually thought of as nice and well behaved.
For example, an algebraic algebra over a field, which has no zero divisors, is a division
algebra. On the other hand, nil rings and algebras, which are of course algebraic, are
hard to deal with since their structure is rather erratic. It is thus natural to ask: what
makes the nil rings and algebras behave so poorly among all the algebraic ones?

The answer for algebras over fields is well known: namely, they are Jacobson radical.
We generalize this to rings (and more generally to algebras over Jacobson rings) in
two different ways: first, we show that nil rings are precisely those that are integral and
Jacobson radical (see Theorem 3.11); and second, we show that the only condition needed
for an algebraic ring to be nil is that its elements are zeros of polynomials p with p(1) = 1
(see Theorem 3.14).
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(Q2) Can nilpotent elements be characterized by the property ‘quasi-inverse of a is a
value of some polynomial at a’?

It is somewhat obvious that element-by-element this will not be possible, however we
are able to characterize the upper nilradical in this way (see Corollary 3.15).

One of the most important problems concerning nil rings is the Köthe conjecture.
In 1930 Köthe conjectured that if a ring has no non-zero nil ideals, then it has no non-
zero nil one-sided ideals. The question of whether this is true is still open. There are
many statements that are equivalent to the Köthe conjecture and many classes of rings
and algebras that are known to satisfy the Köthe conjecture (see [3,5,6] for an overview).
We give yet another class of such rings: namely, the integral rings (see Corollary 3.17).

In the second part of the paper we investigate the structure of certain sets of elements
of rings and algebras. In particular, we show that a subgroup of the group of quasi-regular
elements (equipped with quasi-multiplication) is closed for ring addition if and only if it
is closed for ring multiplication. This gives us some information on the structure of the
set of all elements of a ring that are zeros of polynomials p with p(1) = 1.

2. Preliminaries

Throughout this paper we are dealing with associative rings and algebras, possibly non-
unital and non-commutative. Given a ring or algebra (R, +, ·), we define an operation ◦
on R, called quasi-multiplication, by

a ◦ b = a + b − ab.

It is easy to see that (R, ◦) is a monoid with identity element 0. An element a ∈ R

is called quasi-regular if it is invertible in (R, ◦), i.e. if there exists a′ ∈ R such that
a ◦ a′ = a′ ◦ a = 0. In this case we say that a′ is the quasi-inverse of a. If R is unital,
then this is equivalent to 1 − a being invertible in (R, ·) with inverse 1 − a′. In fact,
the map f : (R, ◦) → (R, ·) given by x �→ 1 − x is a monoid homomorphism, since
1 − a ◦ b = (1 − a)(1 − b). The set of all quasi-regular elements of R will be denoted
by Q(R). Clearly, (Q(R), ◦) is a group, since this is just the group of invertible elements
of the monoid (R, ◦). For every a ∈ Q(R) and every n ∈ Z, the nth power of a in (Q(R), ◦)
will be denoted by a(n) to distinguish it from an, the nth power of a in (R, ·). In particular,
a(0) = 0 and a(−1) is the quasi-inverse of a. If R is unital, then 1 − a(−1) = (1 − a)−1.
A subset S ⊆ R is called quasi-regular if S ⊆ Q(R). The Jacobson radical of R is the
largest quasi-regular ideal of R and will be denoted by J(R).

The set of all nilpotent elements in R will be denoted by N(R). Every nilpotent element
is quasi-regular, so N(R) ⊆ Q(R). In fact, if xn = 0, then −x − x2 − · · · − xn−1 is the
quasi-inverse of x. A subset S ⊆ R is called nil if S ⊆ N(R). The upper nilradical of R

is the largest nil ideal of R and will be denoted by Nil∗(R). If R is commutative, then
Nil∗(R) = N(R).

The lower nilradical of R (also called the prime radical) is the intersection of all prime
ideals of R and will be denoted by Nil∗(R). It can also be characterized as the lower
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radical determined by the class of all nilpotent rings (see [2] for details). For any ring R

we have Nil∗(R) ⊆ Nil∗(R) ⊆ J(R).
Let K be a commutative unital ring and let R be a K-algebra, possibly non-

commutative and non-unital. An element a ∈ R is algebraic over K if there exists a
non-zero polynomial p ∈ K[x] such that p(0) = 0 and p(a) = 0. If, in addition, p can
be chosen monic (i.e. the leading coefficient of p is equal to 1), then a is called integral
over K. The condition p(0) = 0 is necessary only because R may be non-unital, and then
only polynomials with zero constant term can be evaluated at elements of R. The set of
all algebraic elements of R will be denoted by AK(R); the set of all integral elements of
R will be denoted by IK(R). A K-algebra R is algebraic (respectively integral) over K

if every element of R is algebraic (respectively integral) over K. Note the special case of
the above definitions when R is just a ring, in which case we consider it as an algebra
over K = Z. In this case we will also write A(R) = AZ(R) and I(R) = IZ(R). Clearly,
every nilpotent element of R is integral, so N(R) ⊆ IK(R) ⊆ AK(R). If F is a field, then
IF (R) = AF (R).

3. π-algebraic rings and algebras

Throughout this section K will always denote a commutative unital ring, F a field and R

an algebra over K or F , unless specified otherwise. The two questions from the introduc-
tion motivate the following definition, which will play a crucial role in our considerations.

Definition 3.1. An element a of a K-algebra R is π-algebraic (over K) if there exists
a polynomial p ∈ K[x] such that p(0) = 0, p(1) = 1 and p(a) = 0. In this case we will
also say that a is π-algebraic with polynomial p. A subset S ⊆ R is π-algebraic if every
element in S is π-algebraic. The set of all π-algebraic elements of a K-algebra R will
be denoted by πK(R).

When R is just a ring, we consider it as an algebra over K = Z and write π(R) = πZ(R).
The crucial condition in this definition is the condition p(1) = 1. The condition p(0) = 0 is
there simply because R may be non-unital and then only polynomials with zero constant
term can be evaluated at an element of R.

We first present some basic properties of π-algebraic elements along with some
examples.

Lemma 3.2. If R is a K-algebra, then N(R) ⊆ πK(R) ⊆ AK(R) ∩ Q(R). If R is
an F -algebra, then N(R) ⊆ πF (R) = AF (R) ∩ Q(R). The quasi-inverse of a π-algebraic
element a of R is a value of some polynomial at a.

Proof. Clearly, every nilpotent element is π-algebraic and every π-algebraic element
is algebraic. Suppose a ∈ R is π-algebraic with a polynomial p. Then P (x) = 1 − (1 −
p(x))/(1 − x) is again a polynomial with P (0) = 0 (and suitable coefficients). Hence
we may define a′ = P (a). Since x ◦ P (x) = x + P (x) − xP (x) = p(x), we have a ◦ a′ = 0.
Similarly, we get a′ ◦ a = 0. Hence a′ is the quasi-inverse of a. Now suppose R is an
F -algebra and a is an element of AF (R)∩Q(R). Let r ∈ F [x] be the minimal polynomial
of a. Suppose r(1) = 0. Then r(x) = (1 − x)q(x) = q(x) − xq(x) for some polynomial
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q ∈ F [x] of degree less than that of r. It follows that 0 = r(a) − a′r(a) = q(a) − aq(a) −
a′q(a) + a′aq(a) = q(a) − (a′ ◦ a)q(a) = q(a), which is a contradiction since r was the
minimal polynomial for a. Thus r(1) is an invertible element of F and hence the element
a is π-algebraic with the polynomial p(x) = r(1)−1r(x). �

We shall see in the examples that the inclusion πK(R) ⊆ AK(R)∩Q(R) may be strict.

Lemma 3.3. If R is a unital K-algebra, then 2 − πK(R) ⊆ πK(R). In particular,
0, 2 ∈ πK(R) and 1 /∈ πK(R). If R is a unital F -algebra, then 2 − πF (R) ⊆ πF (R).
In addition, F\{1} ⊆ πF (R) and 1 /∈ πF (R).

Proof. If a is π-algebraic with a polynomial p, then 2 − a is π-algebraic with the
polynomial q(x) = p(2−x)x. We always have 0 ∈ πK(R), hence 2 ∈ πK(R). The identity
element is never π-algebraic since it is not quasi-regular. If R is a unital F -algebra and
λ �= 1 is a scalar, then λ is π-algebraic with the polynomial p(x) = (1−λ)−1(x−λ)x. �

Next we give a few examples.

Example 3.4. For a finite ring R, π(R) = Q(R) and J(R) = Nil∗(R). To verify the
first part observe that (Q(R), ◦) is a finite group, say of order n. So for every a ∈ Q(R)
we have a(n) = 0, hence every a ∈ Q(R) is π-algebraic with the polynomial p(x) = x(n) =
1 − (1 − x)n. The second part is well known and it also follows from the first part and
Theorem 3.14.

Example 3.5. For any field F , πF (F ) = F\{1} = Q(F ) by Lemmas 3.2 and 3.3. In
particular, πQ(Q) = Q\{1} = Q(Q). On the other hand, we have π(Q) = {1 + 1/n : n ∈
Z\{0}}. Indeed, if n is a non-zero integer, then 1 + 1/n is π-algebraic over Z with the
polynomial s(x) = (1−n(x−1))x. Conversely, suppose a/b ∈ Q, with a and b coprime, is
π-algebraic with a polynomial p ∈ Z[x] of degree d. Then q(x) = bdp(x/b) is a polynomial
with integer coefficients. Hence a− b divides q(a)−q(b) = bdp(a/b)− bdp(1) = −bd. Since
a and b are coprime, this is only possible if a − b = ±1 (any prime that would divide
a − b would divide b and hence a). Thus a/b = 1 ± 1/b as needed. Obviously, A(Q) = Q,
so the inclusion π(Q) ⊆ A(Q) ∩ Q(Q) from Lemma 3.2 is strict here.

Example 3.6. Let F ⊆ E be fields and let Mn(E) be the ring of n × n matrices over
E. Denote by σ(X) the spectrum of X ∈ Mn(E). Then

N(Mn(E)) = {X ∈ Mn(E) : σ(X) = {0}},

πF (Mn(E)) = {X ∈ Mn(E) : σ(X) ⊆ F̄\{1}},

Q(Mn(E)) = {X ∈ Mn(E) : σ(X) ⊆ Ē\{1}},

where F̄ ⊆ Ē are algebraic closures of F and E. By means of Jordan canonical form
it is easy to see that a matrix X is nilpotent if and only if σ(X) = {0}. Moreover, X is
quasi-regular if and only if 1 − X is invertible, i.e. X has no eigenvalue equal to 1. So in
view of Lemma 3.2, to verify the above, we only need to prove that

AF (Mn(E)) = {X ∈ Mn(E) : σ(X) ⊆ F̄}.
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If A ∈ Mn(E) is algebraic over F , it clearly has eigenvalues in F̄ . So suppose A ∈ Mn(E)
has eigenvalues λ1, λ2, . . . , λn ∈ F̄ . For every i = 1, 2, . . . , n, let pi be the minimal
polynomial of λi over F . Then the minimal polynomial mA of A over E divides P (x) =∏n

i=1 pi(x), hence P (A) = 0. Since P has coefficients in F , A is algebraic over F .

Next we exhibit a connection between π-algebraic and integral elements.

Remark 3.7. As above, let R be a K-algebra. For a polynomial p ∈ K[x] define
p̂(x) = (x − 1)deg pp(x/(x − 1)), which is again a polynomial in K[x]. Notice that p̂(1)
equals the leading coefficient of p and the leading coefficient of p̂ equals p(1) (the sum of
all coefficients of p) if p(1) �= 0. In addition, p̂(0) = 0 if and only if p(0) = 0.

We may assume that R is unital, otherwise we just adjoin a unit to R. Let a be a quasi-
regular element. Then the inverse of 1 − a is 1 − a(−1), so the term x/(x − 1) evaluated
at a equals −a(1 − a(−1)) = −a + aa(−1) = a(−1). Thus p̂(a) = (a − 1)deg pp(a(−1)) and
p̂(a(−1)) = (a(−1) −1)deg pp(a). This shows that p̂(a) = 0 if and only if p(a(−1)) = 0, since
1 − a is invertible. Similarly, p̂(a(−1)) = 0 if and only if p(a) = 0.

Proposition 3.8. Let R be a K-algebra. For any a ∈ R the following conditions are
equivalent:

(i) a is π-algebraic;

(ii) a is quasi-regular and a(−1) is integral; and

(iii) a is quasi-regular and a(−1) is a value of some polynomial at a.

Proof. The equivalence of (i) and (ii) is a direct consequence of Remark 3.7. It follows
from Lemma 3.2 that (i) implies (iii). Moreover, if a(−1) = P (a), where P is a polynomial
in K[x], then a + P (a) − aP (a) = 0, so a is π-algebraic with the polynomial (x + P (x) −
xP (x))x. �

In particular, Proposition 3.8 implies the following (compare with Lemma 3.2).

Corollary 3.9. πK(R) = (Q(R) ∩ IK(R))(−1).

By Lemma 3.2 an algebra over a field F is π-algebraic if and only if it is algebraic
and Jacobson radical. So the following proposition is just a restatement of a well-known
fact that any algebraic Jacobson radical F -algebra is nil (see, for example, [7, p. 144]).
In fact, every algebraic element in the Jacobson radical of an F -algebra is nilpotent and
its nilindex is equal to its degree.

Proposition 3.10. Every π-algebraic F -algebra is nil.

We now extend this result to algebras over Jacobson rings. Recall that a commutative
unital ring K is a Jacobson ring (or a Hilbert ring) if every prime ideal of K is an inter-
section of maximal ideals of K. Examples of Jacobson rings are fields and polynomial
rings over fields in finitely many commutative variables. In addition, any principal ideal
domain with infinitely many irreducible elements is also a Jacobson ring. In particular,
the ring of integers Z is a Jacobson ring.
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Theorem 3.11. If K is a Jacobson ring, then every integral Jacobson radical K-
algebra is nil.

Proof. Let R be an integral Jacobson radical K-algebra and let a ∈ R. Consider R

as a subalgebra of some unital K-algebra R1. Let K[a] be a unital subalgebra of R1

generated by a. Since K is a Jacobson ring and K[a] is a finitely generated (commutative
unital) K-algebra, K[a] is a Jacobson ring by a version of Hilbert’s Nullstellensatz [1,
Theorem 4.19]. Hence J(K[a]) = Nil∗(K[a]) is a nil ideal. It suffices to prove that a ∈
J(K[a]). Take any r ∈ K[a]. Since ar is an element of R, it is quasi-regular in R and
its quasi-inverse (ar)(−1) ∈ R is integral. By Proposition 3.8, (ar)(−1) is a value of some
polynomial at ar. But ar is a value of some polynomial at a, hence (ar)(−1) ∈ K[a],
i.e. ar is quasi-regular in K[a]. Since r was arbitrary, we conclude that a ∈ J(K[a]). �

Remark 3.12. Without the assumption that the ring K is Jacobson, Theorem 3.11
fails. In fact, let P be a prime ideal of K that is not an intersection of maximal ideals.
Then J(K/P ) is a non-zero K-algebra. In addition, it is Jacobson radical and integral
because an element k+P ∈ J(K/P ) is integral over K with the polynomial x2−kx. Since
K is commutative and P is a prime ideal, the algebra K/P has no non-zero nilpotent
elements, hence J(K/P ) is not nil.

The assumption that the algebra is integral in Theorem 3.11 is also crucial. A merely
algebraic Jacobson radical algebra over a Jacobson ring need not be nil.

Example 3.13. Consider R = {2m/(2n − 1) : m, n ∈ Z} as a subring of rational
numbers. The quasi-inverse of 2m/(2n − 1) is 2m/(2m − 2n + 1), which is again an
element of R. So R is a Jacobson radical ring algebraic over Z, but it is not nil.

As a direct consequence of Theorem 3.11 and Proposition 3.8 we get the following.

Theorem 3.14. If K is a Jacobson ring, then every π-algebraic K-algebra is nil.

This answers question (Q1) in two ways: the property that distinguishes nil rings
and algebras from all other algebraic ones is firstly that they are integral and Jacobson
radical, and secondly that the polynomials ensuring algebraicity in the nil case have the
sum of their coefficients equal to 1. It is perhaps interesting that this rather large family
of polynomials with the sum of coefficients equal to 1 produces the same effect as the
rather restrictive family {x, x2, x3, x4, . . . }.

Observe that in an algebraic division F -algebra only the identity is not π-algebraic
(since all other elements are quasi-regular). So if only one element in an algebra is not
π-algebraic, then the algebra may be very nice instead of nil.

The next corollary addresses question (Q2), giving new characterizations of the upper
nilradical of a ring in the process. We formulate it only for rings, though it is valid for
all algebras over Jacobson rings.
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Corollary 3.15. For a ring R the following hold:

(i) Nil∗(R) is the largest π-algebraic ideal of R;

(ii) Nil∗(R) is the largest integral quasi-regular ideal of R; and

(iii) Nil∗(R) is the largest quasi-regular ideal of R such that the quasi-inverse of each
element is a value of some polynomial at this element.

Proof. If I is an ideal of R satisfying any of the above conditions, then I is π-algebraic
by Proposition 3.8 and thus nil by Theorem 3.14. Hence Nil∗(R) is the largest such
ideal. �

Corollary 3.16. If R is an integral ring, then J(R) = Nil∗(R).

A ring R is said to satisfy the Köthe conjecture if every nil one-sided ideal of R

is contained in a nil two-sided ideal of R (see [9]). If J(R) = Nil∗(R) for a ring R, then R

satisfies the Köthe conjecture since J(R) contains every nil one-sided ideal. Corollary 3.16
thus implies the following.

Corollary 3.17. Every integral ring satisfies the Köthe conjecture.

In what follows we will exhibit an even stronger connection between π-algebraic and
nilpotent elements than that given by Theorem 3.14 if the ring K satisfies certain prop-
erties given by the following definition.

Definition 3.18. We shall say that a principal ideal domain (PID) K is exceptional
if there is no non-constant polynomial p ∈ K[x] such that p(k) would be invertible in K

for all k ∈ K.

Exceptional PIDs are quite common, here are some examples.

Proposition 3.19.

(i) A field is an exceptional PID if and only if it is algebraically closed.

(ii) The ring of integers Z and the ring of Gaussian integers Z[i] are exceptional PIDs.

(iii) For any field F the polynomial ring F [x] is an exceptional PID.

(iv) If K is an exceptional PID and S ⊆ K is a multiplicatively closed subset multi-
plicatively generated by a finite number of elements, then the localization S−1K

is an exceptional PID.

Proof. Claim (i) is clear.

(ii) Let p be a polynomial in Z[x] such that p(k) is invertible for all k ∈ Z. Since there
are only finitely many invertible elements in Z, there exist an invertible element u ∈ Z

such that p(k) = u for infinitely many k ∈ Z. But then the polynomial p(x) − u has
infinitely many zeros, so it must be zero. Hence p is a constant polynomial. The same
proof works for Z[i].
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(iii) Let F be a field and let P (y) be a non-constant polynomial in (F [x])[y]. Write
P (y) = p0(x)+p1(x)y+ · · ·+pn(x)yn, where pn(x) �= 0 and n � 1. Define di = deg pi and
d = max{di : i = 0, 1, 2, . . . , n}, where the degree of the zero polynomial is equal to −∞.
Let p(x) = xd+1. The degree of pi(x)(p(x))i is equal to di + i(d + 1). Since dn, d �= −∞,
we have dn + n(d + 1) � n(d + 1) > d + (n − 1)(d + 1) � di + i(d + 1) for all i < n. This
implies that the degree of P (p(x)) is equal to dn + n(d + 1) � 1, and hence P (p(x)) is
not invertible in F [x].

(iv) A localization of a PID is again a PID. Factor each generator of S into irreducible
factors and let S′ ⊆ K be a multiplicatively closed subset multiplicatively generated by
all the irreducible elements appearing in these factorizations. Since the localizations of
K at S and S′ are isomorphic, we may assume that S = S′, i.e. S is generated by a finite
number of irreducible elements. Now suppose p(x) ∈ S−1K[x] is a polynomial such that
p(k̂) is invertible in S−1K for all k̂ ∈ S−1K. Take any s ∈ S such that the coefficients of
sp(x) are elements of K. Let t be the product of all irreducible elements in S. Observe
that the coefficients of the polynomial sp(sp(0)tx) are elements of K and are all divisible
by sp(0) ∈ K. Hence,

P (x) =
s

sp(0)
p(sp(0)tx) =

1
p(0)

p(sp(0)tx)

is a polynomial with coefficients in K. Now take any k ∈ K. By the assumption, p(0)
and p(sp(0)tk) = p(0)P (k) are invertible in S−1K, and hence so is P (k). But P (k) ∈ K,
so the only irreducible elements that may divide P (k) are those that lie in S. However,
any such irreducible element divides t, and hence it divides all coefficients of P except
P (0) = 1, so it cannot divide P (k). This shows that P (k) is invertible in K. Since K is
an exceptional PID, P (x), and consequently p(x), must be constant polynomials. �

In a PID every non-zero prime ideal is maximal, so a PID is a Jacobson ring if and
only if 0 is an intersection of maximal ideals, i.e. the Jacobson radical is 0.

Proposition 3.20. If K is an exceptional PID, then J(K) = 0, i.e. K is a Jacob-
son ring. In particular, if K is not a field, then K has infinitely many non-associated
irreducible elements.

Proof. Let K be an exceptional PID. Suppose J(K) �= 0 and take 0 �= a ∈ J(K).
Since K is commutative and unital, this implies that 1 − ak is invertible in K for every
k ∈ K. But then the polynomial p(x) = 1−ax contradicts the definition of an exceptional
PID. Hence J(K) = 0. Since K is commutative and unital, J(K) is just the intersection
of all maximal ideals of K. If K is not a field, then the maximal ideals of K are the
principal ideals generated by the irreducible elements. If there are only finitely many
such ideals, then their intersection is non-zero. �

The converse of Proposition 3.20 does not hold. There exist PIDs that are Jacobson
rings but are not exceptional. The simplest example is given by any field that is not
algebraically closed; however, fields are rather extremal among all PID, since they have
no irreducible elements. Hence, we give an example which is not a field.
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Example 3.21. Let S ⊆ Z be a multiplicatively closed subset multiplicatively gener-
ated by all primes p with p = 2 or p ≡ 1 (mod 4), and let K = S−1Z be the localization
of Z at S. Then K has infinitely many non-associated irreducible elements, represented
by the primes p with p ≡ 3 (mod 4), hence J(K) = 0 and K is a Jacobson ring. Now
let p(x) = x2 + 1. To see that K is not exceptional, we will show that p(k) is invert-
ible in K for all k ∈ K. For k = m/n ∈ K we have p(k) = (m2 + n2)/n2. To see
that this is invertible in K we need to show that any prime dividing m2 + n2 is con-
tained in S. Suppose p is a prime with p ≡ 3 (mod 4) that divides m2 + n2. Then
m2 ≡ −n2 (mod p). Since n ∈ S, this implies that both m and n are coprime to p. Hence
we have 1 ≡ mp−1 ≡ (m2)(p−1)/2 ≡ (−n2)(p−1)/2 ≡ (−1)(p−1)/2np−1 ≡ (−1)(p−1)/2 ≡ −1
(mod p). This is a contradiction since p �= 2, which finishes the proof.

Theorem 3.14 implies that if the subalgebra generated by an element a is π-algebraic,
then a is a nilpotent element. The next proposition, which was our main motivation for
the introduction of exceptional PIDs, considers the situation when only the submodule
generated by a is assumed to be π-algebraic. It thus gives a stronger connection between
π-algebraic and nilpotent elements for algebras over exceptional PIDs.

Lemma 3.22. For any π-algebraic element r of an algebra R over a principal ideal
domain K, there exist a non-zero polynomial f ∈ K[x] and a non-zero element c ∈ K

such that f(1) = 1, cf(r) = 0 and f divides any polynomial of K[x] that annihilates r.

Proof. For a non-zero polynomial f ∈ K[x], let δ(f) denote the greatest common
divisor of all coefficients of f . Let r be π-algebraic with a polynomial h ∈ K[x]. Choose a
non-zero polynomial p ∈ K[x] of minimal degree such that p(r) = 0 and let c = δ(p) and
f(x) = p(x)/c ∈ K[x]. Then cf(r) = 0 and δ(f) = 1. Suppose P ∈ K[x] is a polynomial
with P (r) = 0. By the division algorithm there exists 0 �= m ∈ K and polynomials
s, t ∈ K[x] with deg t < deg f = deg p such that mP (x) = s(x)f(x) + t(x) (divide
in F [x], where F is the field of fractions of K, and multiply by a common denominator
of all fractions). Multiplying by c we get cmP (x) = cs(x)f(x)+ ct(x) = s(x)p(x)+ ct(x).
The minimality of p now implies ct(x) = 0, hence t(x) = 0 and mP (x) = s(x)f(x).
By Gauss’s lemma this implies δ(s) = mδ(P ) up to association, so m divides δ(s). Thus
the polynomial s(x)/m has coefficients in K and P (x) = (s(x)/m)f(x), i.e. f divides
P . In particular, f divides h, so there is a polynomial S such that h(x) = S(x)f(x).
Evaluating at 1 we get 1 = S(1)f(1), so f(1) is invertible in K. We may assume that
f(1) = 1, otherwise we just multiply f by f(1)−1 = S(1). �

Proposition 3.23. Let K be an exceptional principal ideal domain and let R be a
K-algebra. If a is an element of R such that Ka ⊆ πK(R), then there exists 0 �= k ∈ K

such that ka is nilpotent. In particular, if R has no K-torsion, then a is nilpotent.

Proof. By Lemma 3.22, for any k ∈ K there exists 0 �= ck ∈ K and 0 �= fk ∈ K[x]
such that fk(1) = 1, ckfk(ka) = 0 and fk divides any polynomial of K[x] that
annihilates ka. Let k �= 0. Then f1 divides ckfk(kx), since ckfk(kx) annihilates a.
Similarly, c1k

deg f1f1(x/k) is a polynomial in K[x] that annihilates ka, so fk divides
c1k

deg f1f1(x/k). This, in particular, implies that all these polynomials have the same
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degree, so there exists dk ∈ K such that c1k
deg f1f1(x/k) = dkfk(x). We have fk(1) = 1,

hence δ(fk) = 1. Consequently, c1δ(kdeg f1f1(x/k)) = dk up to association. If k is coprime
to the leading coefficient of f1, then δ(kdeg f1f1(x/k)) = 1 since δ(f1) = 1. For such k

we have c1 = dk up to association, hence c1 divides dk and uk = dk/c1 is invertible.
In addition, kdeg f1f1(x/k) = ukfk(x). Evaluating at 1, we get kdeg f1f1(1/k) = uk.
Now p(x) = xdeg f1f1(1/x) is a polynomial in K[x] with p(0) equal to the leading
coefficient of f1. Hence, we have proved above that p(k) is invertible for every k �= 0
coprime to p(0). If we define t(x) = p(p(0)x − 1) ∈ K[x], then t(k) is invertible for
all k ∈ K (p(0)k − 1 = 0 means that p(0) is invertible). Since K is exceptional, it
follows that t is a constant polynomial and so is p. Hence, there exists u ∈ K such
that f1(1/x) = u/xdeg f1 , i.e. f1(x) = uxdeg f1 . Consequently, c1uadeg f1 = 0 and c1ua is
nilpotent. Clearly, c1u �= 0. �

Remark 3.24. We shall later need a slightly modified version of Proposition 3.23
with K = Z. Observe that the conclusion still holds if we assume only that Na ⊆ π(R)
instead of Za ⊆ π(R). Indeed, one just has to replace the polynomial t(x) = p(p(0)x− 1)
in the proof with the polynomial t̂(x) = p((p(0)x − 1)2).

Remark 3.25. Without the assumption that K is exceptional, Proposition 3.23 fails.
To see this, choose a non-constant polynomial p ∈ K[x] such that p(k) is invertible in K

for all k ∈ K. Let F be the algebraic closure of the field of fractions of K. Clearly, F is a
K-algebra. Since polynomial p is non-constant, the polynomial P (x) = xdeg pp(1/x) ∈
K[x] has a non-zero root a ∈ F . Clearly, ka is not nilpotent for any 0 �= k ∈ K. We
want to show that Ka ⊆ πK(F ). The zero element is always π-algebraic, so take any
0 �= k ∈ K. Observe that deg P = deg p, because p(0) is invertible. Hence Q(x) =
kdeg pP (x/k) ∈ K[x]. Since Q(1) = p(k) is invertible in K, the element ka is π-algebraic
over K with the polynomial Q(1)−1Q(x)x ∈ K[x].

Recall that an algebra R is called nil of bounded index less than or equal to n if an = 0
for all a ∈ R. R is called nil of bounded index if there exists an integer n such that R is
nil of bounded index less than or equal to n. Similarly, we will say that a K-algebra R

is π-algebraic of bounded degree less than or equal to n (respectively integral of bounded
degree less than or equal to n) if every element of R is π-algebraic (respectively integral)
over K with some polynomial of degree less than or equal to n. R is π-algebraic of bounded
degree (respectively integral of bounded degree) if there exists an integer n such that R is
π-algebraic of bounded degree less than or equal to n (respectively integral of bounded
degree less than or equal to n).

It follows from the proof of Proposition 3.8 that an algebra is π-algebraic of bounded
degree less than or equal to n if and only if it is Jacobson radical and integral of bounded
degree less than or equal to n. Theorem 3.14 raises the following natural question. If an
algebra R over a Jacobson ring K is π-algebraic of bounded degree, is it nil of bounded
index? The answer is positive for algebras with no K-torsion.

Corollary 3.26. Let K be a Jacobson ring. If R is a π-algebraic K-algebra of bound
degree less than or equal to n with no K-torsion, then R is nil of bounded index less
than or equal to n.
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Proof. Let R be a π-algebraic K-algebra of bounded degree less than or equal to n

with no K-torsion. By the remark above, R is integral of bounded degree less than or
equal to n, and by Theorem 3.14, R is nil. Take any a ∈ R. Let p ∈ K[x] be a monic
polynomial of degree less than or equal to n, such that p(a) = 0, and let m be the
smallest integer such that am = 0. Suppose m > n. Write p in the form p(x) = t(x)xk,
where t(0) �= 0 and k � n < m. Multiplying the equality 0 = t(a)ak by am−k−1, we
get 0 = t(a)am−1 = t(0)am−1, because am = 0. Since R has no K-torsion, this implies
am−1 = 0, which is in contradiction with the choice of m. Thus m � n as needed. �

Perhaps surprisingly, the answer for general algebras over Jacobson rings is negative,
as the following example shows.

Example 3.27. Let K be a Jacobson PID, which is not a field. Then K has infinitely
many non-associated irreducible elements. Choose a countable set of non-associated irre-
ducible elements {p1, p2, p3, . . . } and let R =

⊕∞
i=1 piK/pi

iK. Clearly, R is nil, but not
of bounded index. Let a = (ai)i be an element of R. By the Chinese remainder theorem
there is an element k ∈ K such that k ≡ ai (mod pi

i) for all i with ai �= 0. Thus a is a zero
of the monic polynomial x2 − kx. This shows that R is integral of bounded degree less
than or equal to 2, and hence it is also π-algebraic of bounded degree less than or equal
to 2.

Nevertheless, the following holds for arbitrary algebras over Jacobson rings.

Proposition 3.28. Let K be a Jacobson ring. If R is a π-algebraic K-algebra of
bounded degree, then Nil∗(R) = R. In particular, R is locally nilpotent.

Proof. Suppose P is a prime ideal of R. We want to apply Corollary 3.26 to R/P .
K-algebra R/P is again π-algebraic of bounded degree. Let I = {k ∈ K : k(R/P ) = 0}.
Clearly, I is an ideal of K and R/P becomes a K/I-algebra if we define (k + I)(r +P ) =
k(r + P ) = kr + P . Observe that R/P is π-algebraic of bounded degree also over K/I.
In addition, R/P has no K/I-torsion. Indeed, if (k + I)(r + P ) = 0 for some k ∈ K

and r ∈ R with r + P �= 0, then J = {x + P ∈ R/P : k(x + P ) = 0} is a non-zero
ideal of R/P . But k(R/P ) · J = 0 and R/P is a prime K-algebra, so k(R/P ) = 0,
i.e. k + I = 0 in K/I as needed. K/I is again a Jacobson ring, hence Corollary 3.26
implies that R/P is nil of bounded index. Thus, by a result of Levitzki [4, Theorem 4],
we have Nil∗(R/P ) = R/P , but on the other hand, Nil∗(R/P ) = 0 since P is a prime
ideal. So P = R, which shows that Nil∗(R) = R. �

4. The structure of π(R)

In this section we investigate the structure of the set of all π-algebraic elements of an
algebra. We restrict ourselves to algebras over fields and to rings. Throughout the section,
F will always denote a field and R an F -algebra or a ring.

Recall that (Q(R), ◦) is a group and, by Lemma 3.2, we have N(R) ⊆ π(R) ⊆ Q(R).
It is thus natural to ask under what conditions N(R) and π(R) are subgroups of Q(R)
and, more generally, what can be said about the structure of π(R). In general, π(R)
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will not be closed under ◦. We give a concrete example later (see Example 4.5), but the
reason for this is that the integral elements of R do not have any structure in general
(they do not form a subring). However, if R is commutative, then π(R) will be closed
under ◦. From here on Q(R) will always be considered as a group with the operation ◦.

If R is unital, then r ◦ x ◦ r(−1) = (1 − r)x(1 − r(−1)) for all x ∈ R and r ∈ Q(R).
Hence, the map x �→ r ◦ x ◦ r(−1) is an automorphism of R. Moreover, if R is non-unital,
then we can adjoin a unit to R. Thus, we have the following.

Lemma 4.1. For a quasi-regular element r ∈ R the map x �→ r ◦ x ◦ r(−1) is an
automorphism of R.

Proposition 4.2.

(i) If R is an F -algebra, then N(R) and πF (R) are closed under conjugation and quasi-
inversion. If R is commutative, then N(R) and πF (R) are subgroups of Q(R).

(ii) If R is a ring, then N(R) and π(R) are closed under conjugation. Moreover, N(R)
is closed under quasi-inversion. If R is commutative, then N(R) and π(R) are a
subgroup and a submonoid of Q(R), respectively.

Proof. (i) Take any a ∈ R, r ∈ Q(R) and p ∈ F [x]. Then r ◦ p(a) ◦ r(−1) =
p(r ◦ a ◦ r(−1)), by Lemma 4.1, so N(R) and πF (R) are closed under conjugation. Closure
under quasi-inversion follows at once from the discussion in § 2 and from Lemma 3.2. If
R is commutative, then N(R) and AF (R) are subalgebras of R and, consequently, are
closed under ◦. By Lemma 3.2, πF (R) is closed under ◦ as well.

(ii) We need to prove only the last claim because the rest of the proof runs as before.
Suppose that R is commutative. Then I(R) is a subring of R, whence I(R) is closed
under ◦. Moreover, it follows from Corollary 3.9 that π(R)(−1) = I(R) ∩ Q(R), so π(R)
is closed under ◦. �

Remark 4.3. For a ring R the set π(R) need not be closed under inversion. For
example, the quasi-inverse of 1 + 1

2 ∈ π(Q) is 1 + 2 and is not contained in π(Q). In fact,
we know that π(R)(−1) = I(R) ∩ Q(R).

For a subset S of Q(R) let 〈S〉 denote the subsemigroup of Q(R) generated by S. Then
an immediate consequence of Proposition 4.2 is the following.

Corollary 4.4. 〈N(R)〉, 〈πF (R)〉, 〈π(R) ∪ π(R)(−1)〉 and 〈π(R) ∩ π(R)(−1)〉 are nor-
mal subgroups of Q(R).

Example 4.5. Let F be an algebraically closed field and let E = F (x) be the field
of rational functions over F . By Example 3.6, πF (M2(E)) consists of matrices with
eigenvalues in F\{1}. Take matrices

A =

[
0 x

0 0

]
and B =

[
0 0
1 0

]
,
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which both lie in πF (M2(E)), since they are nilpotent (see Lemma 3.2). Then

A ◦ B =

[
−x x

1 0

]

does not have eigenvalues in F , since its trace is −x /∈ F . So πF (M2(E)) is not closed
under ◦.

Example 4.6. From Example 3.5 it is easy to calculate that 〈π(Q) ∪ π(Q)(−1)〉 =
Q(Q) = Q\{1} and 〈π(Q) ∩ π(Q)(−1)〉 = {0, 2}.

Example 4.7. Recall that a complex matrix A is called unipotent if I −A is nilpotent,
where I denotes the identity matrix. In [8] it was shown that a complex matrix is a finite
product of unipotent matrices if and only if it has determinant 1. This shows that

〈N(Mn(C))〉 = {A ∈ Mn(C) : det(I − A) = 1},

which is a proper subgroup of

πC(Mn(C)) = Q(Mn(C)) = {A ∈ Mn(C) : det(I − A) �= 0}.

Next we investigate what can be said about addition. Direct verification shows that
for all quasi-regular element x and y of any ring we have xy = x ◦ (x(−1) + y(−1)) ◦ y,
x + y = x ◦ (x(−1)y(−1)) ◦ y and −x = (2x(−1)) ◦ x. Thus, we obtain the following.

Theorem 4.8. Let R be a ring. For any subgroup S of Q(R) the following are equiv-
alent:

(i) S is closed under addition;

(ii) S is closed under multiplication; and

(iii) S is a subring of R.

As a corollary to Theorem 4.8 we have the following.

Corollary 4.9. Let F be a field of characteristic 0 and let R be a commutative
F -algebra. If πF (R) is closed under addition, then πF (R) = N(R).

Proof. Since R is commutative, πF (R) is a subgroup of Q(R) by Proposition 4.2.
If πF (R) is closed under addition, then it is a subring of R by Theorem 4.8. Let a ∈ R be
π-algebraic with a polynomial p and let λ be a non-zero scalar. Since F is of characteristic
0, there exists a positive integer n such that nλ−1 is not a zero of p. Hence n−1λa

is π-algebraic with the polynomial p(nλ−1)−1p(nλ−1x). Since πF (R) is closed under
addition and λa is a multiple of n−1λa, λa is π-algebraic as well. So πF (R) is in fact a
subalgebra of R. Thus πF (R) is nil by Proposition 3.10 and πF (R) = N(R) follows. �

The next proposition shows that the conclusion of Corollary 4.9 remains true for rings.
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Proposition 4.10. Let R be a commutative ring. If π(R) is closed under addition,
then π(R) = N(R).

Proof. First we show that π(R) is also closed under negation. If a is π-algebraic, then
Na ⊆ π(R) since π(R) is closed under addition. By Proposition 3.23 and Remark 3.24
there exists a non-zero integer n such that na is nilpotent. Thus −|n|a is nilpotent and
hence π-algebraic. So −a = −|n|a + (|n| − 1)a is π-algebraic as well, since (|n| − 1)a is a
non-negative multiple of a. The commutativity of R implies that π(R) is closed under ◦
by Proposition 4.2. Since xy = x + y − x ◦ y, π(R) is closed under multiplication as well.
So π(R) is a π-algebraic subring of R, and hence it is nil by Theorem 3.14. �

We are now left with the case of algebras over fields of prime characteristic. We were
not able to obtain an analogue of Corollary 4.9 for arbitrary fields of prime characteristic,
but only for algebraic extensions of prime fields.

Corollary 4.11. Let p be a prime number, let F be an algebraic field extension of
the prime field Z/pZ, and let R be a commutative F -algebra. If πF (R) is closed under
addition, then πF (R) = N(R).

Proof. Since F is algebraic over Z/pZ, we have AF (R) = AZ/pZ(R), so πF (R) =
πZ/pZ(R) by Lemma 3.2. Now let a ∈ R be π-algebraic over Z/pZ with a polynomial
f̂ and let f be a polynomial with integer coefficients that represents f̂ . Since f̂(1) = 1,
there exists an integer k such that f(1) = kp + 1. If we set F (x) = f(x) − kpx, then
F (0) = 0, F (1) = 1 and F (a) = 0, since pa = 0. So a is π algebraic over Z. Hence
πZ/pZ(R) ⊆ π(R) and clearly π(R) ⊆ πZ/pZ(R). This implies that πF (R) = π(R) and
so πF (R) = N(R) by Proposition 4.10. �

This was one extremal situation, when every π-algebraic element is in fact nilpotent.
The other extremal situation would be when there are no nilpotent elements, but many
π-algebraic ones. As we have mentioned before, in an algebraic division algebra there
are no non-zero nilpotent elements although all elements except the unit are π-algebraic.
Next we investigate when something similar happens in general algebras. The question
is whether πF (R) ∪ {1} will form a division subring of a unital F -algebra R. When R

is just a ring, we can ask a similar question; however, it seems more natural to consider
the set 〈π(R) ∪ π(R)(−1)〉 ∪ (Z · 1) in this case, since the elements in (Z ·1)\{1} need not
be automatically contained in 〈π(R) ∪ π(R)(−1)〉. In certain situations though, they are.

In the proof of Theorem 4.14 we will need the following auxiliary proposition, which
may be of independent interest. We formulate it slightly more generally than needed
for the proof of the theorem. Recall that an integral domain K is called a factorization
domain (also an atomic domain) if every non-zero non-unit of K can be written as a
finite product of irreducible elements.

https://doi.org/10.1017/S0013091516000353 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000353


Nilpotent, algebraic and quasi-regular elements 767

Proposition 4.12. Let R be a unital ring and let K be a commutative subring of
R with 1 ∈ K such that R\K ⊆ R−1. If K is a factorization domain, then one of the
following holds:

(i) R = K;

(ii) R is a local ring with maximal ideal M ⊆ K and K is a local ring with maximal
ideal M ;

(iii) R is a division ring.

Proof. Suppose that R �= K and that R is not a division ring. Then there exist
r ∈ R\K ⊆ R−1 and 0 �= a ∈ K\R−1. Since K is a factorization domain, we may assume
that the element a is irreducible. We will prove that K−1 = K ∩ R−1. Let x be an
arbitrary element of K that is invertible in R and set y = x−1a. Then y is not invertible
in R, since a is not. But R\K ⊆ R−1, so y ∈ K. Thus a = xy is a factorization of a in K.
Since a was irreducible and y is not invertible, x must be invertible in K, as needed. Now
let M be the set of all elements of K that are not invertible in K. Since R\K ⊆ R−1,
M is also the set of all non-invertible elements of R. If x ∈ M and k ∈ K, then xk is
not invertible in K, otherwise x would be invertible due to the commutativity of K. So
MK ⊆ M . If x, y ∈ M , then by the above x and y are not invertible in R. By the choice
of r this implies that xr and yr are not invertible in R, so xr, yr ∈ K. Thus (x−y)r ∈ K.
But x − y ∈ K and r /∈ K, hence x − y cannot be invertible in K, so x − y ∈ M . This
proves that M in an ideal in K, so K is local with maximal ideal M . Now let x ∈ M and
s ∈ R, so by the above x is not invertible in R. If s ∈ K, then sx, xs ∈ M by what we
have just proved. If s /∈ K, then s is invertible in R. So sx and xs are not invertible in R,
hence sx, xs ∈ M . This shows that M is also an ideal of R and R is local with maximal
ideal M . �

Remark 4.13. There exist examples where case (ii) of Proposition 4.12 occurs in a
non-trivial way and K is not the maximal ideal of R. Take, for example, R = E[[x]] and
K = F +E[[x]]x ⊆ R, where F � E are fields. Every non-zero non-unit in K is contained
in E[[x]]x and factors as xng(x) for some non-negative integer n and some g(x) of the
form α1x + α2x

2 + α3x
3 + · · · with α1 �= 0.

Theorem 4.14. Let R be a unital ring of characteristic 0. For any subgroup S of Q(R)
with {0, 2} � S the following are equivalent:

(i) S ∪ Z is closed under addition;

(ii) S ∪ {1} is a division subring of R.

Proof. Clearly, (ii) implies (i), since in this case S ∪ {1} = S ∪ Z. So assume (i)
holds. First we show that S ∪ Z is a subring. If x ∈ S ∪ Z, then 2 ◦ x = 2 − x ∈ S ∪ Z,
since 2 ∈ S ∩ Z. So if x ∈ S ∪ Z, then −x = 2 − (2 + x) ∈ S ∪ Z by (i). Thus S ∪ Z

is closed under negation. S and Z are both closed under ◦. If x ∈ S and n ∈ Z, then
x ◦ n = n ◦ x = n + x − nx ∈ S ∪ Z, since nx is a multiple of x or −x and S ∪ Z
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is closed under addition. So S ∪ Z is closed under ◦ and also under multiplication since
xy = x + y − x ◦ y. This shows that S ∪ Z is a subring of R. Now, every element in
S is quasi-regular with quasi-inverse in S, thus every element in 1 − S is invertible in
S ∪ Z. Since S ∪ Z is a subring, we have 1 − (S\Z) = S\Z. So every element in S\Z

is invertible in S ∪ Z. By Proposition 4.12, either S ⊆ Z or S ∪ Z is a division ring.
Suppose S ⊆ Z. Then the quasi-inverse of every element in S ⊆ Z lies again in S ⊆ Z,
so S ⊆ Q(Z) = {0, 2}, which contradicts our assumption. Therefore, S ∪ Z is a division
ring. It remains to prove that Z\{1} ⊆ S. Let n ∈ Z\{1}. If n = 0 or n = 2, then n ∈ S

by assumption. So suppose n �= 0, 2. Since S ∪ Z is a division ring, 1 − n is invertible in
S ∪ Z. Since 1 − n �= ±1, the fact that the characteristic of R is 0 implies (1 − n)−1 /∈ Z,
i.e. 1 − (1 − n)−1 ∈ S. Consequently, n = (1 − (1 − n)−1)(−1) ∈ S, since S is a subgroup
of Q(R). �

Theorem 4.15. Let R be a unital ring of prime characteristic p. For any subgroup S

of Q(R) the following are equivalent:

(i) S ∪ Z/pZ is closed under addition;

(ii) S ∪ Z/pZ is a division subring of R.

Proof. In this case S ∪ Z/pZ is automatically closed under negation, since −x =
(p − 1)x is a multiple of x. The proof is now the same as that of Theorem 4.14 except
for the case S ⊆ Z/pZ, but in this case S ∪ Z/pZ = Z/pZ is automatically a division
ring. �

Corollary 4.16. Let F be a field and let R be a unital commutative F -algebra. If
πF (R) ∪ {1} is closed under addition, then it is a field that is a subring of R.

Proof. This follows directly from Proposition 4.2 and Theorems 4.14 and 4.15, since
(Z · 1)\{1} ⊆ πF (R) by Lemma 3.3. �

Corollary 4.17. Let R be a unital commutative ring of prime or 0 characteristic with
π(R) �= {0, 2}. If π(R) ◦ π(R)(−1) ∪ (Z · 1) is closed under addition, then it is a field that
is a subring of R.

Proof. The commutativity of R implies 〈π(R) ∪ π(R)(−1)〉 = π(R) ◦ π(R)(−1) by
Proposition 4.2. Since 2 ∈ π(R), the result follows from Theorems 4.14 and 4.15. �
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