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Dynamics of viscous grounding lines
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(Received 19 September 2008; revised 28 October 2009; accepted 29 October 2009)

We have used viscous fluids in simple laboratory experiments to explore the dynamics
of grounding lines between marine ice sheets and the freely floating ice shelves into
which they develop. We model the ice sheets as shear-dominated gravity currents,
and the ice shelves as extensional gravity currents having zero shear to leading order.
We consider the flow of viscous fluid down an inclined plane into a dense inviscid
‘ocean’. A fixed flux of fluid is supplied at the top of the plane, which is at ‘sea
level’. The fluid forms a gravity current flowing down and attached to the plane
for some distance before detaching to form a freely floating extensional current. We
have derived a mathematical model of the flow that incorporates a new dynamic
boundary condition for the position of the grounding line, where the gravity current
loses contact with the solid base. The grounding line initially advances and eventually
reaches a steady position. Good agreement between our theoretical predictions and
experimental measurements and observations gives confidence in the fundamental
assumptions of our model.

1. Introduction
Global warming is predicted to cause a rise in sea level of a few tens of centimetres

over the next 100 years mostly in consequence of thermal expansion of the oceans and
also as a result of melting inland glaciers and ice sheets (IPCC report 2007). However,
the potential for much greater increases in sea level resides in the massive ice sheets of
Greenland and Antarctica. Continental ice sheets, those with an inland terminus, are
controlled by a balance between snowfall at high elevation and melting downstream.
In contrast, melting plays a minor role in the mass balance of many marine ice sheets,
which terminate in the ocean and exhibit a balance between snowfall inland and
calving of icebergs into the ocean. The ice sheets of West Antarctica, for example,
sit on bed rock that is one to two kilometres below sea level. They thin as they flow
towards the ocean and eventually detach from the bed rock to form freely floating
ice shelves. The locus of detachment is called the grounding line.

The ice sheets spread slowly under their own weight and, on long length scales
and over long periods of time, flow in a manner that can be successfully modelled
using continuum fluid dynamics. Typically, ice sheets are modelled using a shallow-
ice approximation and Glen’s flow law (Paterson 1994): in other words, as gravity
currents with non-Newtonian (power law) rheology. While in contact with bed rock,
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the flow of an ice sheet is resisted by shear stresses, both internal and at its base,
where it can be lubricated by melt water and/or glacial till (water-saturated silt and
clay). However, beyond the grounding line, the ice shelf, as the sheet has become,
is characterized by a weak internal straining flow, with negligible tangential stress
exerted upon it by the air above it or the ocean beneath.

The rheology of the fluid forming the sheet and shelf primarily alters the vertical
velocity profiles within them but is of secondary importance to the depth-averaged
quantities we are interested in here. Therefore, for clarity of exposition and for ease
of experimental quantification, we confine this study to Newtonian fluids.

The leading-order shallow-ice equations have a different character in shelf and sheet,
and there is a significant challenge in matching them across the grounding line, which
is a free boundary whose evolution must also be determined. For example, Weertman
(1974) argued on the basis of perfectly plastic ice that the ice thickness should be
approximately continuous across the grounding line and that the tensile stress should
also balance. Most recently, Schoof (2007) has used a condition of continuity of
the depth-averaged longitudinal stress across the grounding line in a non-Newtonian,
viscous shallow-ice model to calculate steady solutions and determine their asymptotic
characteristics in certain limits. Alternatively, Wilchinsky & Chugunov (2000) had
suggested that the shelf should leave the grounding line tangentially to the bed.
The local flow in the transition region around the grounding line has been explored
numerically by Nowicki & Wingham (2008), who solved a two-dimensional free-
boundary problem using the Stokes equations. Their results suggested that perhaps
the second derivative of the thickness of the shelf is zero at the grounding line but
they were not able to obtain a unique steady solution unless the sheet was allowed to
slip at its base.

There is as yet no consensus on how to model grounding lines appropriately and
no basis on which to assess the alternative hypotheses that have been proposed.
To this end, we have designed and performed some simple laboratory experiments,
using Newtonian fluids, that encapsulate the fundamental fluid-mechanical properties
of flow across a grounding line between a shear-dominated sheet and a strain-
dominated shelf. We have concurrently developed a Newtonian theory of sheet–shelf
evolution through a grounding line and compared the predictions of this theory with
our experimental results.

Many previous theoretical and numerical studies investigated steady states, and
Vieli & Payne (2005) suggested that there had been no reliable model of grounding-
line migration. Schoof’s model (Schoof 2007) is implicitly time-dependent, while our
model makes the time-dependent evolution of the grounding line explicit, in the
manner of a Stefan condition for the free (moving) boundary between the sheet and
shelf. It can therefore be used straightforwardly to explore the dynamical stability of
grounding lines (cf. Wilchinsky 2001).

The setting for this paper is illustrated by figure 1 and supplementary movie 1
available at journals.cambridge.org/flm, taken from one of our experiments, which
show a sheet of viscous fluid (golden syrup) flowing down a rigid slope into a dense
ocean of aqueous potassium carbonate solution. At some position along the slope
(the grounding line), the syrup floats off to form a flowing shelf. The grounding line
migrates along the slope as the experiment proceeds but eventually reaches a fixed
position. Our aim is to characterize this evolution and to predict it quantitatively.

In § 2 we present our theoretical development, deriving in particular a dynamical
equation for the evolution of the grounding line. The system of governing equations
and boundary conditions form a type of Stefan problem, which we solve for a
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Sheet Shelf

Grounding line

Ocean

x

Figure 1. A photograph of one of our experiments. Syrup is supplied at a constant rate into
a reservoir at the left, which overflows onto an inclined plane to form a sheet. Some way down
the slope, at the grounding line, the sheet detaches to form a shelf floating freely on a dense
ocean of potassium carbonate solution.

z

x

h(x, t)

ρ

ρw

–b(x)
–b(x, t)

xG(t)

xN (t)Sheet Shelf

q0

Figure 2. Schematic diagram of the flow of viscous fluid down a plane at z = −b(x) = −αx.
Beyond the grounding line, the viscous fluid forming the shelf occupies the region
−b(x, t) <z <h(x, t).

few special cases in § 3. The experimental set-up is detailed in § 4, and our results
are described in § 5. The experimental results and their relation to the theoretical
predictions are discussed in § 6, where we illustrate the roles played by sidewall
stresses induced by the finite lateral extent of our experimental tank and by the rise
in ‘sea level’ caused by the introduction of additional fluid to the tank. Our findings
are summarized in the concluding § 7.

2. Theoretical development
In this section, we develop a theory for a Newtonian viscous gravity current flowing

down a slope as a sheet into a denser inviscid fluid to form a freely floating shelf. The
geometry to be considered is illustrated in figure 2. Fluid of dynamic viscosity μ and
density ρ is introduced at the top of a rigid slope z = −b(x, t), where z = 0 (sea level)
is the position of the interface between an ambient inviscid fluid of density ρw and
the air of negligible density above it, and x measures the horizontal distance from the
top of the slope. Figure 2 shows the specific example to be studied in detail in § 3, in
which b = αx, for constant bed slope α.

The fluid that is introduced forms a grounded, shear-dominated sheet, with an
upper free surface at y = h(x, t) and a total thickness H (x, t) =h(x, t) + b(x, t) in
the region 0 � x <xG(t), where xG(t) denotes the position of the grounding line.
In x >xG(t) the flow is assumed to form a freely floating shelf with an upper free
surface at z = h(x, t) and a total thickness H (x, t) = [ρw/(ρw − ρ)]h(x, t) determined
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by Archimedes principle. The assumptions inherent in the thin-film approximation
are invalid in the vicinity of the grounding line, but we relate properties of the sheet
and shelf across it and seek to confirm experimentally the predictions thus made. Put
another way, although there is a lot of structure to the flow in the vicinity of the
grounding line, the region of adjustment between sheet and shelf is modelled here as
an infinitesimal interface, which is consistent with the thin-film analysis employed.

We present the analysis in three sections: the shelf, whose evolution is determined
entirely by the history of conditions at the grounding line; the sheet, which is modelled
as a viscous gravity current with a free boundary at x = xG(t); and the grounding
line, whose evolution is governed by dynamical balances across it.

2.1. The shelf

The freely floating viscous gravity current (shelf) in xG(t) < x < xN (t) is assumed to
be in local hydrostatic equilibrium so that

ρH = ρw(H − h) or h = H (ρw − ρ)/ρw. (2.1)

We assume that the fluids (air above and water below) bounding the shelf exert
no tangential stress on it. Therefore, to leading order in lubrication theory, the
horizontal velocity u(x, t) is independent of depth, and has superimposed on it a pure
straining flow with principal axes along the direction of flow (horizontal stretching)
and perpendicular to the direction of flow (vertical thinning).

The balance of vertical forces on an element of fluid in the shelf gives

∂σzz

∂z
= ρg, (2.2)

where σij are the components of the stress tensor. Equation (2.2) is readily integrated
to give

σzz = −p0 − ρg(h − z), (2.3)

where p0 is atmospheric pressure, applied at z = h. Henceforward, we set p0 = 0. Given
that, for a Newtonian fluid, σzz ≡ −p + 2μ∂w/∂z, (2.3) shows that the pressure

p = ρg(h − z) + 2μ
∂w

∂z
(2.4)

has a contribution from viscous compression as well as the usual hydrostatic
contribution that dominates thin-film flows with shear. The local continuity equation
∇ · u = 0 allows us to rewrite the pressure as

p = ρg(h − z) − 2μ
∂u

∂x
. (2.5)

Therefore, the horizontal normal stress (longitudinal stress)

σxx ≡ −p + 2μ
∂u

∂x
= −ρg(h − z) + 4μ

∂u

∂x
. (2.6)

The depth-integrated longitudinal stress gives the horizontal force per unit width on
a vertical cross-section of the flow as

N ≡
∫ h

−b

σxx dz = −1

2
ρgH 2 + 4μH

∂u

∂x
, (2.7)

where b = H − h = Hρ/ρw is the depth of the shelf below sea level.
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Sea level

Air

Ocean

N (x) N (x + Δx)

b (x)

ρwgb (–Δb)Δb

Δx

Figure 3. The horizontal forces on a section of shelf. The difference in depth-integrated
longitudinal stress is balanced by the hydrostatic pressure from the underlying ocean, so
N (x + Δx) − N (x) − ρwgb(x)(−Δb) = 0. Equation (2.8) is obtained by dividing this equation
by Δx and taking the limit as Δx → 0.

The overall horizontal force balance on a section of shelf fluid is described by

∂N

∂x
+ ρwgb

∂b

∂x
= 0 (2.8)

(see figure 3), which can be rearranged to give the extensional flow equation

4μ

H

∂

∂x

(
H

∂u

∂x

)
= ρg

∂h

∂x
= ρg′ ∂H

∂x
, (2.9)

where the reduced gravity g′ = g(ρw − ρ)/ρw . This equation (or equivalently (2.8)) is
readily integrated to give

∂u

∂x
=

g′

8ν
H, (2.10)

where ν = μ/ρ is the kinematic viscosity of the current and in which the constant
of integration has been chosen so that the vertically integrated longitudinal stress at
the end of the shelf balances the integrated hydrostatic pressure in the water column
adjacent to it. This latter condition is expressed by

N = −1

2
ρwgb2, (x = xN (t)), (2.11)

where xN (t) is the position of the end of the shelf.
Equation (2.10) can be further integrated to give

u(x, t) =
qG(t)

HG(t)
+

g′

8ν

∫ x

xG(t)

H (ξ, t) dξ, (2.12)

where qG(t) and HG(t) are respectively the volume flux arriving at the grounding line
and the thickness of the shelf at the grounding line. The integral in (2.12) is simply
the volume of the shelf between the grounding line and the horizontal location x,
and can be rewritten as a time integral of the volume flux q∗

G(t) = qG − HGẋG of fluid
crossing the grounding line into the shelf. Therefore

u(t, tG) =
∂x

∂t

∣∣∣
tG

=
qG(t)

HG(t)
+

g′

8ν

∫ t

tG

q∗
G(τ ) dτ, (2.13)
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where we have switched to a Lagrangian description of the flow with u(t, tG)
representing the velocity at time t of the fluid at location x(t, tG) that left the
grounding line at time tG. A final integration of (2.13) gives

x(t, tG) = xG(tG) +

∫ t

tG

qG(τ )

HG(τ )
dτ +

g′

8ν

∫ t

tG

∫ τ

tG

q∗
G(τ ′) dτ ′ dτ. (2.14)

The double integral on the right-hand side of (2.14) can be integrated once, having
switched the order of integration, to give

x(t, tG) = xG(tG) +

∫ t

tG

qG(τ )

HG(τ )
dτ +

g′

8ν

∫ t

tG

(t − τ )q∗
G(τ ) dτ. (2.15)

The thickness of the shelf is determined from the equation of mass conservation

∂H

∂t
+

∂

∂x
(Hu) = 0, (2.16)

which can be written in Lagrangian form as

∂H

∂t

∣∣∣
tG

=
∂H

∂t
+ u

∂H

∂x
= −H

∂u

∂x
. (2.17)

The right-hand side of (2.17) can be evaluated using (2.10), and the resulting equation
integrated to yield

1

H (t, tG)
− 1

HG(tG)
=

g′

8ν
(t − tG). (2.18)

Equations (2.15) and (2.18) describe the thickness of the shelf H (x, t) parametrically,
with parameter tG.

As a simple concrete example, if the grounding line has a fixed position x = x0,
at which it is supplied by a constant flux q∗

G = qG = q0 and has a constant thickness
HG = H0 then

x = x0 +
q0

H0

(t − t0) +
g′q0

16ν
(t − t0)

2, (2.19)

1

H
− 1

H0

=
g′

8ν
(t − t0) (2.20)

from which H (x, t) can be determined as

H = H0

[
1 + g′H 2

0 (x − x0)/4νq0

]−1/2
. (2.21)

Note that, in this example, H (x, t) is independent of time and simply occupies the
envelope described by (2.21) in the range

x0 � x � xN (t) =
q0

H0

t +
g′q0

16ν
t2, (2.22)

where xN (t) has been determined from (2.19) with t0 = 0. The asymptotic solution at
large times and large values of x, viz H ∼ (g′x/νq0)

−1/2 in 0 � x � xN (t) ∼ (g′q0/16ν)t2,
is a similarity solution of (2.9) and (2.16), which can be determined from a scaling
analysis. It shows, in conjunction with (2.21), that the shelf loses knowledge of
conditions at the grounding line, other than the flux of fluid across it, at a distance
νq0/g

′H 2
0 from the grounding line.

Note from (2.15) and (2.18) that the structure and extent of the shelf are known
entirely in terms of the time history of the thickness of the current at the grounding
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line HG(t) and the volume flux qG(t). Note also that the volume flux across the
grounding line only determines the evolution of the shelf and does not determine
the evolution of the grounding line (Schoof 2007), provided that a shelf exists (see the
discussion around (2.35) below).

2.2. The sheet

For later use, we formulate equations here for the general case in which the base of
the sheet is at position z = −b(x, t). The grounded sheet, which we assume to satisfy
no slip at its base, forms a classical viscous gravity current (Huppert 1982, 2000) with
a parabolic velocity profile and a depth-integrated volume flux

q = −gH 3

3ν

∂h

∂x
. (2.23)

This expression can be substituted into the continuity equation

∂H

∂t
+

∂q

∂x
= 0 (2.24)

to form the nonlinear diffusion equation

∂h

∂t
=

g

3ν

∂

∂x

[
(h + b)3

∂h

∂x

]
− ∂b

∂t
(2.25)

for the thickness of the sheet. This is subject to the boundary conditions

−g(h + b)3

3ν

∂h

∂x

∣∣∣
x=0

= q0, (2.26a)

h(xG, t) =
ρw − ρ

ρ
b(xG, t). (2.26b)

The first of these conditions reflects the imposed constant volume flux q = q0 at x = 0.
The second condition reflects the flotation condition (2.1), which is first attained (as
x increases) at x = xG.

Mathematically, the two boundary conditions (2.26a, b) would be sufficient for
the second-order diffusion equation (2.25) on a fixed domain. However, a further,
independent condition is required in order to determine the position of the free
boundary x = xG(t).

2.3. The grounding line

An assumption incorporated into the modelling of viscous ice sheets and shelves by
Schoof (2007) is that the depth-integrated longitudinal stress should balance on the
two sides of the grounding line. This reflects the arguments put forward by Weertman
(1974) for continuity of tensile stress in a perfectly plastic model. A numerical
calculation of the fully two-dimensional flow in the neighbourhood of a Newtonian,
viscous grounding line has been made by Nowicki & Wingham (2008), and used to
determine local characteristics of the flow. However, no conclusion was made relating
to conditions that should apply to a depth-integrated model such as the shallow-ice
model or the lubrication theory developed here. We follow the principle adopted
by Schoof (2007) and derive a condition based on the continuity of longitudinal
stress.
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In general, from (2.6), the depth-integrated longitudinal stress is

N ≡
∫ h

−b

σxx dz,

= −1

2
ρgH 2 + 4μ

∫ h

−b

∂u

∂x
dz,

= −1

2
ρgH 2 + 4μ

[
∂q

∂x
− u(h)

∂h

∂x
− u(−b)

∂b

∂x

]
. (2.27)

In the sheet, in which there is a leading-order parabolic shear flow

u = − g

2ν

∂h

∂x
(z + b) [2H − (z + b)] , (2.28)

the depth-integrated longitudinal stress is

N = −1

2
ρgH 2 + 4μ

[
∂q

∂x
+

g

2ν
H 2

(
∂h

∂x

)2
]

. (2.29)

In the shelf, in which there is uniform flow to leading order, the longitudinal stress
is given by (2.7). Therefore, with the simple hypothesis that H and N are both
continuous across the grounding line,[

∂q

∂x
+

g

2ν
H 2

(
∂h

∂x

)2
]

sheet

=

[
H

∂u

∂x

]
shelf

. (2.30)

Strictly, the left-hand side of (2.30) applies a sufficient distance upstream of the
grounding line and the right-hand side applies a sufficient distance downstream of the
grounding line for lubrication theory to apply in sheet and shelf respectively. There
can therefore, in principle, be jumps in H and N across the interface between sheet
and shelf, which in reality is an extended region but is treated here as a singular
surface.

The right-hand side of (2.30) can be evaluated as g′H 2/8ν using (2.10). To evaluate
the left-hand side, we differentiate the flotation condition (2.26b) with respect to time,
noting that xG = xG(t), which gives

ẋG

∂h

∂x
+

∂h

∂t
=

ρw − ρ

ρ

(
ẋG

∂b

∂x
+

∂b

∂t

)
, (x = xG(t)). (2.31)

This can be rearranged using the continuity equation to give(
ρw − ρ

ρ

∂b

∂x
− ∂h

∂x

)
ẋG +

ρw

ρ

∂b

∂t
=

∂H

∂t
= −∂q

∂x
, (x = xG(t)). (2.32)

Finally we combine this with (2.30) to obtain,(
ρw − ρ

ρ

∂b

∂x
− ∂h

∂x

)
ẋG =

g

2ν
H 2

(
∂h

∂x

)2

− g′

8ν
H 2 − ρw

ρ

∂b

∂t
, (x = xG(t)). (2.33)

This is a general equation governing the one-dimentional propagation of a Newtonian,
viscous grounding line when the flow from the sheet crosses it into a shelf. For the
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particular fixed geometry shown in figure 2, we can rewrite it as(
α

ρw

ρ

g′

g
− ∂h

∂x

)
ẋG =

g′

8ν
H 2

[
4g

g′

(
∂h

∂x

)2

− 1

]
, (x = xG(t)). (2.34)

If the surface slope of the sheet at the grounding line is large (for example, at early
times in the example studied in § 3) then (2.34) predicts that HẋG ∼ −(gH 3/2ν)∂h/∂x,
which is greater than the flux of fluid q = −(gH 3/3ν)∂h/∂x that can be supplied by
the sheet. In that case, the fluid from the sheet simply adds to the end of the grounded
sheet, without forming a shelf, and the front of the sheet is determined kinematically
by

ẋG =
qG

HG

= −gH 2

3ν

∂h

∂x
, (x = xG(t)) (2.35)

because the ocean provides insufficient normal stress to balance that in the sheet. This
is the propagating front condition for a spreading viscous gravity current.

Equations (2.25), (2.26) and (2.34) or (2.35) together form a type of Stefan problem.
The explicit evolution equation (2.34) will allow dynamical questions, for example
relating to stability of grounding lines, to be addressed straightforwardly.

3. Some theoretical results
The full system of equations governing the viscous sheet illustrated in figure 2

comprises (2.25), (2.26), (2.33) and (2.35). We consider the particular case in which
b(x, t) = αx is independent of time and make these equations dimensionless by writing

h = BCĥ, x = 2BC4x̂, q0t = 2B2C5 t̂ , (3.1)

where B = (6νq0/g)1/3 and C = (g/g′)1/6. This gives, dropping hats,

∂h

∂t
=

∂

∂x

[
(h + Ax)3

∂h

∂x

]
, (3.2)

h3 ∂h

∂x
= −1 (x = 0), (3.3)

h = εxG (x = xG), (3.4)

ẋG = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3

2
(h + Ax)2

[(
∂h

∂x

)2

− 1

] / (
ε − ∂h

∂x

)

− (h + Ax)2
∂h

∂x

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(x = xG), (3.5)

where

A = 2α

(
g′

g

)−1/2

and ε = 2α

(
g′

g

)1/2
ρw

ρ
. (3.6)

Note that the bed slope α should be small for lubrication theory to be valid, and
that g′/g is also small. Therefore ε is typically a small parameter, which can safely be
set to zero in the model. The dimensionless bed slope A is also small in most natural
settings, but for generality we allow it to be order unity throughout our discussions
and make no further approximations. Given the particular geometry in this section,
A must be strictly positive in order for there to be any ocean. However, A can be
made arbitrarily small if it is desired to study that limit.
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Figure 4. Steady scaled solutions for the viscous sheet on (a) a shallow slope with A = 0.2
and (b) a steep slope with A = 5. The value of ε is zero in both cases. The solid line below each
graph indicates the position of the rigid slope, which continues in the x direction. The position
of the grounding line is shown by a vertical dashed line in each case. Note the different vertical
and horizontal scales used in the two figures.

3.1. Steady solution

The equations and boundary conditions above admit a steady solution (ẋG =0) in
which

(h + Ax)3
∂h

∂x
= −1, (3.7)

h = εxG (x = xG), (3.8)

∂h

∂x
= −1 (x = xG). (3.9)

It is straightforward to combine these to determine the steady position of the
grounding line

xG = (A + ε)−1, (3.10)

where the full depth of the current HG = 1.
When A= 1, there is a simple solution with H ≡ 1, so that

h = 1 − x in 0 � x � (1 + ε)−1, (3.11)

For other values of A, the steady solution can be found straightforwardly, if
laboriously, in the implicit form

a4(x − xG) = a(H − 1) +
1

3
ln

(
aH − 1

a − 1

)
− 1

6
ln

(
a2H 2 + aH + 1

a2 + a + 1

)

−
[
tan−1 2√

3

(
aH +

1

2

)
− tan−1 2√

3

(
a +

1

2

)]/√
3, (3.12)

where a = A1/3.
It is perhaps more straightforward these days simply to integrate (3.7)–(3.9)

numerically using standard packages. This was done to produce the graphs in figure 4.
We see that the character of the solution is different for shallow slopes (A< 1), shown
in figure 4(a), and for steep slopes (A> 1), shown in figure 4(b). In both cases
the surface of the current runs roughly parallel to the slope initially. Over steep
slopes, such as those used in the experiments reported later in § 4, the slope of the
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current reduces as the current nears the ocean, while the current thickens towards the
grounding line. In contrast, over shallow slopes, the surface of the current dips steeply
and the current thins rapidly towards the grounding line. This latter behaviour seems
analogous to the situations analysed by Schoof (2007), who exploited asymptotically
(as A → 0) the fact that over shallow slopes the sheet is mostly much thicker than at
the grounding line.

3.2. Approximate solution for early time

As an indication of the characteristic behaviour of the system at early times and to
initialize our numerical solutions, given below, we analyse the case when ε = 0 in the
limit t 	 1. We introduce a scaled (similarity) variable ξ = x/t4/5, write

h = t1/5f (ξ, t) (3.13)

and rewrite (3.2) as

tft +
1

5
f − 4

5
ξf ′ =

[(
f + Aξt3/5

)3
f ′

]′
, (3.14)

where subscript t denotes differentiation with respect to dimensionless time and
primes denote differentiation with respect to ξ . The boundary conditions (3.3)–(3.5)
become

f 3f ′ = −1 (ξ = 0), (3.15)

f = 0 (ξ = ξG), (3.16)

f ′ = −4

5

t−6/5

A2ξG

. (ξ = ξG), (3.17)

where ξG is defined by

xG = ξGt4/5. (3.18)

Note that at early times the surface slope −f ′ is large, the front of the sheet is
controlled kinematically and no shelf forms.

To leading order in t 	 1, (3.14) with boundary conditions (3.15) and (3.16) are
those describing a viscous gravity current on a horizontal plane fed by a constant
volume flux (Huppert 1982), which has a similarity solution depending only on ξ .
However, the front condition (3.17) is different from that case and requires that there
be a finite slope to the gravity current at the grounding line ξ = ξG.

Nevertheless, the time derivative in (3.14) can be neglected to leading order and the
resulting equation integrated once to give

−
∫ ξG

ξ

f (ξ ′) dξ ′ − 4

5
ξf =

(
f + Aξt3/5

)3
f ′ + qG(t), (3.19)

where qG(t) is the dimensionless volume flux at the grounding line. Given that f =0
at the grounding line, from (3.16), we can use this equation with (3.17) to show that

qG(t) ∼ 4

5
Aξ 2

Gt3/5. (3.20)

The leading-order shape of the sheet near the grounding line at early times can be
found in a form reminiscent of strained coordinates, in which the singularity of the
nonlinear equation (3.14) is moved to a position ξ = ξG + δ(t). It is found by setting
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Figure 5. Numerically calculated evolution of the dimensionless sheet–shelf system using
parameter values A = 3 and ε =0. From left to right, the profiles correspond to dimensionless
times 0.05, 0.1, 0.25, 0.5, 1.0 and 2.0.

ξ = ξG in the coefficients of (3.19) and integrating to obtain

f ∼
(

12

5
ξG

)1/3 [
(ξG + δ − ξ )1/3 − δ1/3

]
, (3.21)

where

δ ∼
(

5

12

)
A3ξ 2

Gt9/5. (3.22)

At a fixed small time t > 0, (3.14) with ft = 0 can be integrated numerically from
ξ = ξG backwards to ξ = 0, starting from conditions (3.16) and (3.17) and using ξG as
a shooting parameter to meet the boundary condition (3.15). However, we can find
ξG approximately (see Huppert 1982) by applying the integral constraint on the total
volume, ∫ xG

0

h(x, t) dx = qt, (3.23)

expressed non-dimensionally by ∫ ξG

0

f (ξ ) dξ = 1, (3.24)

to the leading-order front solution (3.21). This gives

ξG ≈
(

5

12

)1/5 (
4

3

)3/5

≈ 0.997. (3.25)

3.3. Numerical solution

As an illustration of the temporal evolution of the ice sheet and shelf, we have
integrated (3.2) numerically using boundary conditions (3.3)–(3.5). This was done by
mapping the domain [0, xG(t)] onto [0, 1] and using finite differences on a uniform
grid in the mapped domain (see Acton, Huppert & Worster 2001, for example),
starting from the asymptotic solution (3.13) evaluated using (3.21). This determines
the evolution of the sheet. Subsequently, simple quadrature was used to evaluate
(2.15) for the position of Lagrangian points within the shelf, and (2.18) was used to
evaluate the corresponding shelf thicknesses.

Some results are plotted in figure 5. The early transient shows the migration of
the grounding line and the evolution of the profile of the sheet from the small-time
asymptotic shape, which is typical of viscous gravity currents on a horizontal plane,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

09
99

31
19

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112009993119


Dynamics of viscous grounding lines 375
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0.3

0.4

xG

t

Figure 6. The dimensionless position of the grounding line as a function of time with
parameter values A = 3 and ε = 0.1. The solid curve shows the numerical solution, the dashed
curve shows the small-time asymptotic solution, and the dotted line shows the analytically
determined steady position of the grounding line.

towards the steady shape similar to that shown in figure 4(b). Note that there is
no shelf initially. The subsequent profiles show the continuing development of the
shelf after the grounding line has reached a steady position. The general shape of
the shelf is similar to that observed in experiments (figure 1). This overall shape is a
consequence of the history of the flux through the grounding line.

Figure 6 shows the position of the grounding line as a function of time, which
evolves from the early proportionality to t4/5 towards a constant value.

Some further illustrative numerical calculations are described in the discussion
section below.

4. Experimental system
Our experiments were carried out in a Perspex tank 15 cm wide by 100 cm long

by 10 cm deep, illustrated schematically in figure 7. There were two distinct sets of
experiments. In the first six, experiments a–f, glycerine was used to model the ice,
whereas in the last four, experiments A–D, golden syrup was used. Golden syrup has
a much higher viscosity than glycerine and produced thicker currents and a more
two-dimensional flow.

Both glycerine and golden syrup have high densities (1.26 g cm−3 and 1.44 g cm−3

respectively), and a denser ‘ocean’ was required to ensure that the shelf floated. A
saline solution using common salt (NaCl) could not achieve this and so potassium
carbonate (K2CO3) solutions with densities up to ρw � 1.5 g cm−3 were used to model
the sea water. The value of g′ could be varied independently of the viscosity of the
input fluid ν by changing the concentration (hence the density) of the potassium
carbonate solution. The viscosity of the glycerine was altered by dilution with water.
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100 cm

10 cm

Potassium carbonate solution

θ

d

Golden syrup

Reservoir

L

Figure 7. The set-up used in experiments A–D. Golden syrup is supplied at a constant rate
to the reservoir at the left and spills onto a rigid slope and into a dense solution of potassium
carbonate.

A Perspex ramp was secured towards one end of the tank. Its angle could be
adjusted between experiments. Before each experiment, the tank was filled with
aqueous K2CO3 solution. In the second set of experiments the distance along the
ramp above the water line was always less than 2 cm. Having only a very short length
of ramp above the water line helped keep the front uniform and this keeps the system
close to the ideal theoretical situation described in the previous section.

The release mechanism differed between the two series, with the second arrangement
achieving a far more two-dimensional flow. For experiments a–f there was a small
reservoir behind the ramp filled with glycerine from a cylindrical tube fitted to a
measuring cylinder. In contrast, for experiments A–D we used a large reservoir
between the top of the ramp and the back end of the tank, filled with golden syrup
before the start of each experiment. This is the arrangement shown in figure 7. Above
this reservoir a tank was suspended from which golden syrup was released at the
start of an experiment through a thin slot of width 13 cm (i.e. just narrower than the
tank) and length 1 cm.

A constant head of glycerine or golden syrup was maintained in the supply chamber
throughout each experiment to effect a constant flux. The flux rate q0 was adjusted
between experiments by altering the head height. Marks were made every 0.5 cm
along the top of the main tank and along the ramp, and a side-view camera was
used to record the experiments. The evolution of the grounding line was measured
by examining the video recordings later. In each experiment, constant parameters of
input flux q0, bed slope α, reduced gravity g′, and kinematic viscosity ν were chosen.
The values used are listed in table 1. A typical experiment is shown in movie 1.

5. Results
The position of the grounding line, measured as distance down the ramp, is shown

as a function of time for each of the ten experiments in figure 8. From this figure
we see that the grounding line reached an almost steady position in each case apart
from experiment C, which used a small value of θ = 5◦, and a steady position was not
reached until well after 100 s, when the shelf had also reached the end of the tank.
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Experiment g′ (cm s−2) q0 (cm2 s−1) α ν (cm2 s−1)

a 62.8 0.105 0.25 8.3
b 156.9 0.210 0.25 8.3
c 179.5 0.420 0.25 8.3
d 179.5 0.420 0.0875 8.3
e 179.5 0.420 0.25 1.0
f 32.4 0.105 0.25 9.4
A 32.9 0.464 0.27 380
B 32.9 0.464 0.27 380
C 32.9 0.464 0.0105 380
D 32.9 0.464 0.78 380

Table 1. Values used for the input parameters in each experiment.
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Figure 8. The downslope position of the grounding line, indicated by d in figure 7, as a
function of time for each of the experiments.

These measurements are only accurate to roughly half a centimetre, partly because
of variations across the width of the tank and partly because it is sometimes unclear
from the observations whether the viscous fluid is over-riding the fluid it is displacing
or whether it is actually detaching to form a shelf. There were indications in some
experiments (most noticeably experiment D) that the current ‘lifted off’ at some point,
perhaps associated with the transition between kinematic and dynamic control of the
front of the sheet described between (2.34) and (2.35), and that the grounding line
then appeared to recede slightly.

Our theoretical prediction for the steady position of the grounding line, given in
dimensionless form as (A + ε)−1 in (3.10), is

xG =
1

α

ρ

ρw

(
g

g′

)1/6 (
6νq0

g

)1/3

. (5.1)
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Figure 9. A comparison between the maximum location of the grounding line measured in
our experiments and our theoretical predictions. The arrow on the data point for experiment
C indicates that the grounding line in this experiment was still advancing.

A comparison between this prediction and our experimental results is shown in
figure 9. We see that though the grounding line reached a position broadly consistent
with our theoretical predictions, it consistently settled some 2 cm further along the
slope than predicted, apart from in experiment C, in which the grounding line may
not have reached its steady position before the experiment ceased. Note that there
are no adjustable parameters in the theoretical prediction, which is clearly giving the
right magnitude of variation of grounding-line position as the external parameters
varied by more than two orders of magnitude. Some reasons for the discrepancy
between theory and experiment are discussed in the following section.

6. Discussion
There are two significant ways in which our experiments differ from the ideal

situation we have analysed theoretically. Firstly, as syrup is introduced it displaces
some of the water, and the water line (sea level) rises. Secondly, the theoretical
model is purely two-dimensional, whereas the shelf in the experiments is influenced
by viscous shear stresses exerted by the sidewalls of the tank. We have used our
numerical model to assess these effects as follows.

It is straightforward to account for the rise in sea level by writing

b(x, t) = αx +

[
q0t −

∫ xN (t)

0

h(x, t) dx

]/
L, (6.1)

where L is the horizontal distance from the top of the ramp to the other end of the
tank from the reservoir. This expression can be differentiated with respect to time
and rearranged to show that

∂b

∂t
=

ρ

ρw

qG(t)

L − xG(t)
, (6.2)
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0.2xG
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0 0.2 0.4 0.6
t

0.8 1.0

Figure 10. Simulations incorporating the effects of sea-level rise and sidewall stresses in a
finite tank. For reference, the solid curve reproduces the ideal calculation from figure 5.
The dot–dash curve shows the results of including sea-level rise, while the short-dashed curve
shows the effect of sidewall stress with no sea level rise, calculated with k = 50. The long-dashed
curve shows the combined effects of sea-level rise and sidewall stress with k = 50. The other
parameters are the same as those used in figure 5, with dimensionless values of L = 4.5 and
W = 0.75.

so that

b(x, t) = αx +
ρ

ρw

∫ t

0

qG(τ )

L − xG(τ )
dτ. (6.3)

These expressions are used to modify (2.25), (2.26) and (2.33), which we integrated
in dimensionless form to produce the dot–dash curve in figure 10. We see that the
rise in sea level causes the grounding line eventually to recede and to fall short of the
previously calculated steady position.

A proper treatment of the effects of the sidewalls of the tank would involve an
analysis of the three-dimensional behaviour of the shelf. However, the overall effect
is to provide an additional normal stress to the sheet at the grounding line, which we
model here by replacing (2.7) with

N = −1

2
ρgH 2 + 4μH

∂u

∂x
− kμ

uG

W

Ashelf

W
, (6.4)

where uG = qG/HG is the mean velocity of the fluid in the shelf at the grounding line,

Ashelf =

∫ xN

xG

H (x, t) dx (6.5)

is the cross-sectional area of the shelf in contact with the sidewalls of the tank, W is
the width of the tank and k is a dimensionless constant. In other words, we add a
stress proportional to a characteristic horizontal shear in the shelf and to the area of
viscous contact.

The effect of the additional stress from the sidewalls, without the effect of sea-level
rise, is to allow the grounding line to advance indefinitely, so long as the sidewalls
themselves extend indefinitely. However, as shown in figure 10, the combination of
the additional stress and the rising sea level in a finite tank is to cause a levelling
out and eventual recession of the grounding line, in accord with our experimental
observations. These calculations indicate that the discrepancies between theory and
experiment shown in figure 9 may well be accountable by the effects we have just
described, though clearly more work is needed to confirm this.
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7. Conclusions
We have shown that important characteristics of the dynamics of marine ice sheets

can be modelled using fluid-mechanical laboratory experiments involving simple fluids.
Our preliminary experiments show the migration of the grounding line between a
grounded sheet and freely floating shelf towards a steady position, confirming the
stability of the grounding line on a down slope both with respect to lateral variations
and to its overall position.

We have developed and solved a simple model of a Newtonian viscous sheet–shelf
system. A particular feature of our model is an explicit evolution equation for the
position of the grounding line, which allows the temporal evolution of the whole
system to be calculated straightforwardly as a free-boundary problem. This approach
has similarities to the Stefan problems that have been well studied in the context of
solidification, for example.

Comparisons between our theoretical predictions and experimental results indicate
that our model embodies the correct dependences on the physical parameters of the
system but highlight the roles played in the experiments by the rise in sea level caused
by the addition of fluid to the tank and by horizontal viscous stresses acting on the
shelf exerted by the sidewalls. These important aspects are the subject of our ongoing
research.
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and to Richard Katz and Luke Rajah for providing independent checks on some of
our computations. The research of HEH is partially supported by a Royal Society
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Supplementary movies are available at journals.cambridge.org/flm.
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