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Abstract

Background. Major depressive disorder (MDD) is associated with high risk of suicide.
Conventional neuroimaging works showed abnormalities of static brain activity and connect-
ivity in MDD with suicidal ideation (SI). However, little is known regarding alterations of
brain dynamics. More broadly, it remains unclear whether temporal dynamics of the brain
activity could predict the prognosis of SI.
Methods. We included MDD patients (n = 48) with and without SI and age-, gender-, and
education-matched healthy controls (n = 30) who underwent resting-state functional magnetic
resonance imaging. We first assessed dynamic amplitude of low-frequency fluctuation
(dALFF) – a proxy for intrinsic brain activity (iBA) – using sliding-window analysis.
Furthermore, the temporal variability (dynamics) of iBA was quantified as the variance of
dALFF over time. In addition, the prediction of the severity of SI from temporal variability
was conducted using a general linear model.
Results. Compared with MDD without SI, the SI group showed decreased brain dynamics
(less temporal variability) in the dorsal anterior cingulate cortex, the left orbital frontal cortex,
the left inferior temporal gyrus, and the left hippocampus. Importantly, these temporal vari-
abilities could be used to predict the severity of SI (r = 0.43, p = 0.03), whereas static ALFF
could not in the current data set.
Conclusions. These findings suggest that alterations of temporal variability in regions
involved in executive and emotional processing are associated with SI in MDD patients.
This novel predictive model using the dynamics of iBA could be useful in developing neuro-
markers for clinical applications.

Introduction

Patients with major depressive disorder (MDD) have higher risk of suicide compared with the
general population (Angst et al., 2002). Although suicidal ideation (SI) may be distinct from
suicidal attempt and behavior (Klonsky and May, 2014), it is a strong indicator of suicide
attempt within the first year after SI onset (Nock et al., 2008). It is crucial to elucidate the
biological underpinnings of SI in MDD patients.

Biologically, suicidal individuals exhibit genetic and serotonergic differences compared with
healthy controls (HCs) and major depression (Joiner et al., 2005). Clinically, SI differs from
other depression symptoms (such as insomnia, sad mood, fatigue, and concentration problems)
in important dimensions with regard to risk factors and impact on impairments (for instance, SI
patients exhibits high pessimism for future, whereas fatigue most impacts on home manage-
ment) (O’Connor and Nock, 2014; Fried and Nesse, 2015). Moreover, MDD patients with SI
are harder to treat and more likely to relapse than those without SI during continuation treat-
ment (Szanto et al., 2003). However, few studies have specially concentrated on the different
intrinsic brain activity (iBA) or/and connectivity patterns between MDD patients with and with-
out SI (Myung et al., 2016; Chase et al., 2017; Du et al., 2017; Kim et al., 2017b).

Previous studies in depressed patients linked SI and suicidal attempt to impulsive behavior
and dysfunctional executive and emotional processing (Westheide et al., 2008; O’Connor and
Nock, 2014; Myung et al., 2016; Johnston et al., 2017). Notably, executive function and emo-
tional processing involve brain areas such as the orbitofrontal cortex, anterior cingulate cortex,
dorsolateral prefrontal cortex, and temporal pole gyrus (Rogers et al., 2004; Olson et al., 2007).
Compared with MDD patients without SI, SI patients showed reduced fronto-limbic (Du et al.,
2017) and orbitofrontal-thalamic functional connectivity (Kim et al., 2017b) and fronto-
subcortical white matter connectivity (Myung et al., 2016). Convergent findings suggest the
presence of structural and functional magnetic resonance imaging (fMRI) abnormalities in
MDD patients with SI (Myung et al., 2016; Du et al., 2017; Kim et al., 2017b). However,
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these studies relied on the assumption of the ‘static’ of the brain
and did not investigate the dynamic brain alterations over time
in SI patients. More recently, studies have focused on investigating
dynamic functional connectivity or networks, which can provide
information on the variability in the strength or spatial dynamic
organization of the brain (Bassett and Sporns, 2017). Despite the
dynamics of inter-regional functional connectivity in resting state
are successfully applied in many psychiatric and neurological dis-
eases, such as major depression (Kaiser et al., 2016), schizophre-
nia (Damaraju et al., 2014), epilepsy (Liao et al., 2014b; Li et al.,
2018), and Parkinson’s disease (Kim et al., 2017a), knowledge
about the dynamics of local brain activity is still limited. This
local iBA is supposed to be a reflection of mental activity
(Raichle and Snyder, 2007), which may cause high time-varying
iBA (Fu et al., 2017). In this study, we regard time-varying iBA
as a potential way to deepen our understanding of SI in depressed
patients.

One approach to measure time-varying iBA is to quantify the
temporal variability of the amplitude of iBA (Tagliazucchi et al.,
2014; Tomasi et al., 2016; Fu et al., 2017; Yan et al., 2017). The
iBA amplitude provides strong temporal information (Zang
et al., 2007). Conventional studies on iBA amplitude assume
that brain activity is stationarity over a whole resting-state fMRI
scan, while recent investigations of brain activity have taken fluc-
tuation over time into account (Allen et al., 2014), which can be
quantified by measuring the temporal variability in the iBA amp-
litude among voxels. One study on temporal dynamics of iBA
investigated the relationship between functional connectivity
density and temporal variability of iBA (Tomasi et al., 2016).
By investigating the temporal variability of the iBA amplitude
in MDD patients with SI, we expect to delineate the brain regions
or neural systems related to SI, which can be used as targets in
subsequent treatments, and to gain a more thorough understand-
ing of the brain’s biological details.

In the current work, to characterize the temporal variability of
iBA in MDD patients with SI, we employ a dynamic amplitude of
low-frequency fluctuation (dALFF) on resting-state fMRI. We
sought to determine (i) whether MDD patients with SI show dif-
ferent patterns in temporal variability compared with MDD
patients without SI; and (ii) whether these altered temporal vari-
ability of dALFF would provide a neuromarker to predict the
severity of SI (Woo et al., 2017).

Materials and methods

Subjects

This study was approved by the Local Medical Ethics Committee
of the First Affiliated Hospital of Chongqing Medical University.
Written informed consent was obtained from all subjects. A total
of 51 drug-naïve MDD patients including MDD with SI (SI
group, n = 30) and without SI (NSI group, n = 21) with single
depressive episode were recruited. MDD was diagnosed using
the Structured Clinical Interview for Diagnostic and Statistical
Manual of Mental Disorders (SCID-I/P, Chinese version), with
a cut-off score ⩾16 on the 17-item Hamilton Depression Rating
Scale (HAMD). Patients were excluded if they had neurological
or other psychiatric disorders, history of substance dependence,
alcohol, cocaine or other drugs abuse, neurological MRI abnor-
malities, or any metal or electronic implants.

In addition, the age-, educational level-, gender-matched HCs
(n = 30) with no mood disorder or neurologic disorders were

recruited. Additionally, HCs were interviewed to confirm that
there was no history of psychiatric illness among their first-degree
relatives. The exclusion criteria also required that subjects have no
history of substance, drug, or alcohol dependence. Three MDD
patients (two SI patients, one NSI patient) were excluded due to
excessive head movements during the scan. Consequently, 48
patients (SI group, n = 28; NSI group, n = 20) and 30 HCs were
included in the final analyses.

Assessment of depression and SI

At enrollment of this study, all MDD patients were assessed for
depression severity and SI severity. Depression severity was eval-
uated using the 17-item HAMD scale. SI severity was measured
by the Scale for Suicide Ideation – Chinese Version (SSI-CV)
(Li et al., 2010), which was subsequently verified for satisfactory
reliability and validity in evaluating the SI of depressed patients
(Wang et al., 2012). SSI-CV is a 19-item clinical research instru-
ment designed to quantify the intensity of current conscious sui-
cidal intent. The scoring range of each item was 0–2 points (total
range 0–38). Items 4 and 5 were used to estimate the current sui-
cidal thoughts (Marzuk et al., 2005). A score of 0 on either item
indicates subjects without SI, while a score above 0 indicates cur-
rent suicidal thoughts (Marzuk et al., 2005). The SI group subse-
quently completed the remaining 14 items on current suicidal
thoughts, which was not required for the NSI and HC groups.
There was no strict cut-off point for SSI score (Cochrane-Brink
et al., 2000). Higher scores indicate more severe SI.

Data acquisition

Imaging data were acquired using an echo-planar imaging
sequence on 3.0 Tesla GE Medical systems at the First Affiliated
Hospital of Chongqing Medical University. During the MRI
scan, all subjects were instructed to keep their head still and
their eyes closed without falling asleep and do not think of any-
thing in particular. Resting-state fMRI was obtained using the fol-
lowing parameters: repetition time (TR), 2000 ms; echo time,
30 ms; flip angle, 90 degrees; field of view, 240 mm × 240 mm;
matrix, 64 × 64; voxel size, 3.75 mm × 3.75 mm × 5 mm; 33 axial
slices without slice gap. A total of 240 TRs were collected for
each subject.

Data preprocessing

Data preprocessing was performed using the Data Processing &
Analysis for Brain Imaging (DPABI, v2.3, www.rfmri.org/dpabi)
and SPM12 toolkits (www.fil.ion.ucl.ac.uk/spm/software/spm12).
The first 10 volumes were excluded, and the remaining functional
images were corrected for slice timing and realignment. Head
motion exceeded 2.5 mm translation or 2.5° rotation were
excluded from subsequent analyses. The mean frame displace-
ment (FD) was calculated for each subject according to a previ-
ously published formula (Power et al., 2012). The functional
images were further normalized to a standard template
(Montreal Neurological Institute) and re-sampled to 3 mm ×
3 mm × 3 mm3. After normalization, several spurious variances,
including 24 head motion parameters (Friston 24-parameter
model) (Friston et al., 1996), cerebrospinal fluid signals, and
white matter signals, were regressed out by multiple linear regres-
sion analysis. For a precise head motion correction, the para-
meters from scrubbing data were also regressed out. The bad
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points were identified by a threshold of FD (>0.5 mm) as well as
one-forward and two-back neighbors (Power et al., 2012). Then
each bad point was modeled as a separate regressor in the regres-
sion models. Functional images were spatially smoothed with an
8 mm full-width half-maximum isotropic Gaussian kernel.
Subsequently, linear trends were removed from time courses.
Temporal band-pass filtering was performed between 0.01 and
0.10 Hz. Because of the necessary contiguous time points in
ALFF analysis, we did not carry out scrubbing, which altered
the temporal structure of the data (Yan et al., 2013). While we
used the mean FD as a covariate in group-level analysis to reduce
motion-related artifact in the fMRI signal.

Dynamic ALFF computation

The dynamic ALFF was computed using a sliding window
approach via DynamicBC (v1.1, www.restfmri.net/forum/
DynamicBC) (Liao et al., 2014a). Window length is an important
parameter in resting-state dynamics computation. According to
previous studies, the minimum window length should be no
less than 1/fmin, because shorter window lengths may increase
the risk of introducing spurious fluctuations in the observed
dynamic ALFF (Leonardi and Van De Ville, 2015). fmin was
defined as the minimum frequency of time series. Based on
this, the optimal window length of 50 TRs (100 s) was selected
to compute the temporal variability of ALFF, because a longer
window length may hinder the description of the temporal vari-
ability dynamics of ALFF. The time series was comprised of
230 TRs (460 s), and the window was shifted by five TRs (10 s).
The full-length time series was then divided into 37 windows
for each participant. For each sliding window, the ALFF map
was obtained. The ALFF of each voxel was divided by the global
mean ALFF value to normalize the global effects. To study the
temporal variability of the amplitude of iBA, we computed the
variance of dALFF maps across sliding-window dynamics. See
Fig. 1a for analysis steps.

Statistical analysis

Demographic and clinical characteristics were evaluated among
three groups. Differences in age and education were analyzed
with one-way analysis of variance (ANOVA); χ2 test was used
for gender. Illness duration and HAMD score were compared
between the SI and NSI groups by Mann–Whitney U test and
two-sample t test, respectively.

To determine group-level temporal variability of ALFF, we
used DPABI toolkit (v2.3, www.rfmri.org/dpabi) (Yan et al.,
2016) to perform one-sample t test for temporal variability of
ALFF within-group comparisons (within the gray matter mask)
for each group. Two-sample t test analysis was performed to
investigate the group differences of temporal variability of ALFF
between the SI and NSI groups. Age, gender, educational level,
mean FD, and HAMD score were used as covariates. However,
liberalizing the statistical threshold can dramatically increase the
family-wise error rate (FWER), as recently demonstrated system-
atically for widely used statistical methods (Eklund et al., 2016).
Considering the trade-off between ALFF reproducibility and
FWER (Chen et al., 2018), we set the statistical significance
level at PFWER < 0.05 under permutation test (PT, 5000 times per-
mutations) using in Permutation Analysis of Linear Models
(Winkler et al., 2016) implemented in DPABI. Combination of
PT-based cluster size inference and height threshold with p <

0.01 as the cluster-forming threshold and the cluster extent
threshold at k > 25 voxels. Post hoc comparisons (SI v. HCs and
NSI v. HCs) were then performed with a two-sample t test.
Bonferroni-corrected for two planned comparisons was used for
multiple comparisons.

SSI symptom prediction

To investigate the relationship between altered temporal variabil-
ity of ALFF and symptom severity measured by the SSI, we pre-
dicted the SSI score for each patient in the SI group using a
general linear model according to the previous work (Finn
et al., 2015; Shen et al., 2017). We used altered temporal variabil-
ity of ALFF values in the SI group (compared with the NSI group)
as features. We applied a leave-one-out cross-validation (LOOCV)
to produce a robust and reliable model. This method is the most
popular choice and unbiased strategy (Finn et al., 2015; Shen
et al., 2017). In each LOOCV, we selected one subject’s data as
a test set, and the remaining subjects’ data were used as a train
set so that this subject’s SSI score was predicted based on the
building prediction model. Finally, we used the Pearson’s correl-
ation to determine whether predicted SSI score is correlated with
the observed SSI score in patients with SI. To improve the stan-
dards correlation analysis, we identified outliers by bootstrapping
the Mahalanobis distance Ds for each observation from the bivari-
ate mean and excluded all points with an average Ds of 6 or
greater (Schwarzkopf et al., 2012). If the statistical significance
level of p < 0.05, we then considered that the altered temporal
variability of ALFF could predict SSI and vice versa.

In addition, to determine whether dALFF values would pro-
vide a neuromarker to predict the severity of SI than static
ALFF, we also employed a LOOCV procedure in SSI symptom
prediction by static ALFF values.

Validation analysis

To validate our findings of temporal variability of dALFF, we car-
ried out auxiliary analyses. In addition to the window length of 50
TRs (100 s), two additional window lengths [30 TRs (60 s) and 80
TRs (160 s)] were considered to validate the main results.

In addition, the head motion would potentially affect the brain
dynamics (Hutchison et al., 2013). We did not perform the pro-
duce for scrubbing bad time points identified as image frames
because of the necessary contiguous time points in ALFF analysis.
However, the mean FD did not differ between two groups [T(46) =
0.80, p = 0.43]. In addition, the mean FD was considered as a cov-
ariate in group-level analysis for correcting motion-related artifact.
After we obtained the main results, we additionally performed cor-
relation analysis between head motion parameters (mean FD) and
dALFF variance values from group difference regions across subject
to further preclude the impact of motion in our results.

Results

Clinical and demographic characteristics

No differences in age (one-way ANOVA, p = 0.27), education
(one-way ANOVA, p = 0.83), gender (χ2 test, p = 0.26), and
head motion (one-way ANOVA, p = 0.54) were found among
the three groups. A significant difference was found in HAMD
score (two-sample t test, p = 0.002) (Table 1). The range of SSI
score in the SI group was 9–24.
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Temporal variability of ALFF differences between the SI and
NSI groups

Temporal variability of ALFF was quantified at each voxel for the
SI and NSI groups (Fig. 1b, c). The variance of the dALFF dis-
played a non-uniform spatial distribution across the brain. The
largest temporal variability of dALFF was located in the
heteromodal association cortex, including the bilateral prefrontal
lobes, the temporal–parietal junction, and the posteromedial cor-
tex. The lowest variability was located in limbic cortices. Brain
regions showing a moderate level of variability were anchored
to the primary sensory and visual cortices, as well as upstream
and downstream of the unimodal cortices.

According to two-sample t tests, we found that the temporal
ALFF variability in the right dorsal anterior cingulate cortex
(dACC), the left inferior temporal gyrus (ITG), the hippocam-
pus/parahippocampus gyrus (HIP/ParaHIP), and the orbital
frontal cortex (OFC) was significantly different between the

SI and NSI groups. Post hoc tests revealed that patients with SI
showed decreased temporal ALFF variability in the OFC, left
ITG compared with HCs, and patients with NSI showed increased
temporal ALFF variability in the dACC and left HIP/ParaHIP
compared with HCs (Fig. 2 and Table 2). These results were pre-
sented on inflated surface maps by BrainNet Viewer (v1.8, www.
nitrc.org/projects/bnv) (Xia et al., 2013).

To determine whether dynamic ALFF and static ALFF provide
overlapping or complementary information, we also computed the
static ALFF patterns using full-length time series (Zang et al.,
2007). The group differences between the SI and NSI groups of
static ALFF patterns are shown in online Supplementary Fig. S1.

SSI score prediction from temporal variability of ALFF

We found that dALFF values could predict the severity of SI (r = 0.43,
p= 0.03),while staticALFF values could not (r = 0.20, p= 0.31) (Fig. 3).

Fig. 1. Illustration of analysis steps and temporal variability of dALFF pattern. (a) The preprocessed full-length BOLD fMRI time series was segmented into several
sliding windows (50 TRs). For each sliding window, the FFT-based ALFF measure was computed for each voxel for the whole brain. The ALFF was defined as the
average square root of the activity in the low-frequency band (0.01–0.10 Hz). The ALFF value of each voxel was standardized by dividing the full-brain mean ALFF
value. The sliding window was systematically shifted by five TRs and the corresponding ALFF was computed. This process was performed until the entire data
length was covered. The temporal variability of the dALFF was defined as the variance of dALFF maps across the sliding windows. The pattern of temporal vari-
ability of the dALFF of the SI (b) and NSI group (c). The temporal variability of dALFF was averaged at each voxel across all subjects in each group. Low and high
variances of dALFF are shown in red and yellow colors, respectively.
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Validation results

The analysis of the data using different sliding-window lengths
supported our main results (online Supplementary Fig. S2).
There are no significant correlations between motion parameters
and variance of dALFF in abnormal brain regions (all p > 0.05)
(online Supplementary Fig. S3).

Discussion

We demonstrated a novel way, temporal variability of amplitude
of low-frequency fluctuations, to explore brain dynamics on

MDD with and without SI. Specifically, the SI group exhibited
decreased brain dynamics (less temporal variability of dALFF)
in the dACC, left OFC, ITG and HIP/ParaHIP compared with
the NSI group. More broadly, the altered temporal ALFF variabil-
ity values in these regions could predict the severity of SI.

Brain dynamics would reflect the aspects of neural system
functional capacity (Kucyi et al., 2017) and serve as a novel
physiological neuromarker of various neurological and psychiatric
diseases (Damaraju et al., 2014; Liao et al., 2014b; Kaiser et al.,
2016; Kim et al., 2017a; Li et al., 2018). Although the presence
and severity of MDD is associated with abnormal dynamics of
inter-regional functional connectivity (Kaiser et al., 2016), the

Table 1. Participant demographic and clinical information

Demographics SI NSI HCs Statistical Evaluation

Group size (n) 28 20 30 N.A. N.A.

Handedness (left/right) 0/28 0/20 0/30 N.A. N.A.

Gender (male/female) 7/21 4/16 12/18 χ2 = 2.73 p = 0.26

Age (years) 32.5 ± 9.9 37.1 ± 10.6 35.7 ± 10.2 F(2,75) = 1.33 p = 0.27

Education (years) 13.3 ± 2.6 13.3 ± 2.4 12.9 ± 3.2 F(2,75) = 0.19 p = 0.83

Illness duration (months) 16.6 ± 20.0 19.2 ± 20.0 N.A. U = 272.0 p = 0.87

HAMD score 26.0 ± 4.0 22.2 ± 3.8 2.77 ± 1.3 t(46) = 3.38
a p = 0.002

SSI score 15.9 ± 4.4 0 ± 0 0 ± 0 N.A. N.A.

Mean FD 0.09 ± 0.04 0.10 ± 0.06 0.10 ± 0.05 F(2,75) = 0.63 p = 0.54

SI, major depression disorder patients with suicidal ideation; NSI, major depression disorder patients without suicidal ideation; HCs, healthy controls; HAMD, 17-item Hamilton Depression
Scale; SSI, 19-item Scale for Suicide Ideation. FD, framewise-displacement; p, between-group or among-group test p value; t(df), between-group t statistic and degrees of freedom; F(dfn, dfd),
one-way ANOVA and degrees of freedom numerator and degrees of freedom denominator; N.A., not available.
Values are mean ± S.D.
aT-value was calculated between the SI and NSI groups.

Fig. 2. Group differences of temporal variability of the dALFF. Temporal variability of the dALFF between the SI and NSI groups was identified using two-sample t
tests. The statistical significance level was set PFWER < 0.05 under permutation test-based corrections. The inset box-and-whisker plot indicates the planned post-
hoc analysis between SI and HCs, and between NSI and HCs using two-sample t tests. *Denotes p < 0.05, uncorrected. **Denotes p < 0.05 Bonferroni correction with
two times planned comparisons, respectively. HCs, healthy controls; NSI, major depressive disorder without suicidal ideation; SI, major depressive disorder with
suicidal ideation.
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dynamics of local brain activity itself remains unknown. In con-
trast to the inter-regional functional connectivity, fluctuations of
local brain activity can also be captured using first-order statistics,
that is, with time-resolved analysis of instantaneous activity pat-
terns (Fu et al., 2017). The current work expands the dynamics
of brain connectivity in depressed patients, and deconstruct the
time-varying patterns of iBA in depressed patients with and with-
out SI.

Both OFC and dACC are involved in executive function and
emotional processing (Rogers et al., 2004; Schoenbaum et al.,
2006; Frodl et al., 2010), which are implicated in MDD with SI
or suicidal attempt (Marzuk et al., 2005; Westheide et al., 2008;
Pan et al., 2013; Myung et al., 2016). One important aspect of
the OFC in executive function is to incorporate emotional salience
(e.g. reward and punishment) into decision-making (Mesulam,
2002; Rogers et al., 2004). The current finding of the OFC is con-
sistent with the previous studies, suggesting that the OFC abnor-
malities are related to suicidal behavior in MDD (Monkul et al.,
2007; Jia et al., 2014). The OFC also has a critical role in modu-
lating impulsivity (Matsuo et al., 2009). Impulsivity, one of factors
related to personality and individual differences affecting cogni-
tive and emotion, is associated with SI, suicidal attempt, and sui-
cide deaths (O’Connor and Nock, 2014). Therefore, we speculate
that decreased dALFF in the OFC may lead to abnormal executive
function and emotional processing related to MDD with SI.

We found another considerable decreased dALFF in the
dACC. The dACC plays an important role in executive function
(Bush et al., 2000; Rogers et al., 2004; Frodl et al., 2010;
Lieberman and Eisenberger, 2015) in MDD with SI. The dACC
is interconnected with prefrontal cortex, parietal cortex, and
motor system, playing a central role in processing top-down acti-
vation (Posner and DiGirolamo, 1998; Zhou et al., 2017).
Top-down mental processes are needed in executive functions
(Diamond, 2013). Aberrant brain distinct connectivity and local

activity in the dACC may disturb the balance of the default-mode
network, resulting in abnormal emotional regulation (Pannekoek
et al., 2014; Zhou et al., 2017). Furthermore, abnormal brain
structure and function in the dACC were related to parasuicidal
behavior and SI (Whittle et al., 2009; Marchand et al., 2012;
Chase et al., 2017). We thus suggest that decreased dALFF activity
in the dACC may underlie the phenomenon of abnormal execu-
tive function and emotional processing in MDD with SI.

For MDD without SI, previous studies have found altered
brain local activity in both dorsal and ventral ACC (Davidson
et al., 2002; Mayberg, 2003; Liu et al., 2014; Zhou et al., 2017).
In line with previous works, we found increased dALFF in the
dACC in MDD without SI compared with HCs. The dACC con-
tributes to online performance monitoring by detecting errors
and modifies attention bias based on conflict paradigms (Carter
et al., 1998; Kerns et al., 2004; Liu et al., 2014). Therefore, we indi-
cate that increased ALFF in the dACC may disturb error detection
and cognitive control in MDD without SI.

The HIP participants in autographical memory and emotional
regulation (Bremner et al., 2004; Viard et al., 2007), which are
associated with MDD with/without SI and suicidal attempt
(Bremner et al., 2004; O’Connor and Nock, 2014; Wang et al.,
2015; Johnston et al., 2017). We observed decreased dALFF in
the left HIP in MDD with SI relative to the NSI group. The
dALFF is a mean of capturing brain instantaneous activity pat-
terns based on high time-resolved (Fu et al., 2017). The brain
instantaneous activity, excessive variability (increased temporal
variance), or excessive stability (decreased temporal variance)
(Christoff et al., 2016) may occur at different times standing as
causes of altered cognitive functions and particular pathological
state (Preti et al., 2017). Therefore, we speculate that decreased
dALFF in the left HIP may underlie the phenomenon of disable
to recall specific memories and failure to solve emotional problem
in the SI group compared with the NSI group. In addition, we

Table 2. Decreased dALFF regions in the SI group compared with the NSI group

Brain region Brodmann area
MNI coordinates

(x, y, z)
Cluster size
(voxels) Statistical value

Left inferior temporal gyrus 20 (−57, −18, −27) 46 −3.70

Left orbitofrontal gyrus 11 (−24, 36, −21) 29 −3.00

Dorsal anterior cingulate cortex 24/32 (3, 30, 15) 60 −2.85

Left hippocampus 34 (−33, −18, −18) 31 −2.85

MNI, Montreal Neurological Institute.
Statistical value was computed by the equation: statistical value =−log10( p)·sign(t).

Fig. 3. Temporal variability of the dALFF predicts the
severity of SI. (a) The results of dynamic ALFF as fea-
tures to predict the severity of SI (r = 0.43, p = 0.03). (b)
The results of static ALFF as features to predict the
severity of SI (r = 0.20, p = 0.31). Filled circles were
included in this correlation analysis, while open circles
were excluded. Solid lines and dashed lines represented
the best-fitted line and 95% confidence interval of the
Pearson’s correlation analysis, respectively. ALFF, ampli-
tude of low-frequency fluctuation; SSI, Scale for Suicide
Ideation.
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found increased dALFF in the left HIP in the NSI group com-
pared with HCs. This finding is consistent with the previous
studies demonstrating that MDD exhibits hypoactivation in the
HIP in response to positive social stimuli compared with HCs
(Fu et al., 2007; Sheline et al., 2009).

We observed that the SI groups showed increased dALFF in
the left ITG compared with the NSI group. The ITG is involved
in a putative output system, which regulates visceral functions
connected with emotions (van Tol et al., 2014). Abnormalities
in the ITG may cause emotional disturbances, which not only
relate to MDD but also influence SI in MDD patients.
Moreover, the ITG showed decreased regional cerebral blood
flow and it was considered as one of the top 10 regions to predict
suicide in depressed suicidal patients compared with depressed
non-suicidal patients (Willeumier et al., 2011). In this respect,
impairment in the temporal cortex was not only related to
MDD but also associated with the risk of SI in MDD patients.
Our study suggests that the ITG may play an important role in
detecting NSI development and the risk of SI in MDD patients.

More importantly, the temporal variability of dALFF would
predict the severity of SI using. Although several previous studies
have found a correlation between neuroimaging features and clin-
ical variables about SI in MDD (Ballard et al., 2015; Pu et al.,
2015; Myung et al., 2016), we are not aware of any study that
has reported employing dynamic values to predict the severity
of SI. Interestingly, we found that dALFF values could successfully
predict the severity of SI in the SI group while static ALFF values
could not, suggesting that dALFF values may be a more powerful
predicted neuromarker in the current sample. However, we did
not underestimate the key role of static ALFF in disease prediction
modal. In the future work, combining the dynamic ALFF and sta-
tic ALFF (Fu et al., 2017), even dynamic local brain activity and
remote inter-regional connectivity (Rashid et al., 2016) would
build better models of brain function and dysfunction.

Limitations and further considerations

Several issues need to be considered. First, although the group size
is relatively small, the power analysis showed a large effect size,
suggesting the generalizability of our findings to a large sample
size. Second, we selected the window size according to the filter
bandwidth (0.01–0.10 Hz) utilized in a previous study, which
recommended that the minimum window length should be no
less than 1/fmin (1/0.01 = 100 s) (Liao et al., 2014b). Similarly,
albeit less reliable, results from the utilization of different sliding
window lengths suggest that the findings of the present study are
less influenced by this factor. Third, generalizability of brain pre-
dictive models is important (Woo et al., 2017). The current model
using the dynamics of brain activity should be generalized to new
individuals and across different centers in future studies. In add-
ition, LOOCV is unbiased but typically has more variance in pre-
diction error than K-fold (i.e. 10-fold) cross-validation (Kohavi,
1995). However, the K-fold cross-validation can be critical and
depends on sample size and effect size in the prediction model
(Shen et al., 2017). Considering the small sample size here, we
choose the LOOCV for the prediction model. Finally, although
we did not perform the produce for scrubbing bad time points,
the mean FD was considered as a covariate in statistical analysis
and did not correlate with dALFF variance and preclude the
impact of motion in our results.

In summary, compared with MDD without SI, the SI group
showed decreased brain dynamics (less temporal variability) in

the dACC, the OFC, the left ITG, and the left HIP. Our findings
suggest that abnormal executive and emotional processing related
to MDD with SI. More broadly, these dALFF abnormalities could
predict the severity of SI while static ALFF abnormalities could
not, indicating the first evidence of changes of brain dynamics
in SI. Our findings suggest that this novel predictive model
using iBA dynamics could be useful to develop neuromarkers
for clinical applications.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291718001502.
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