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Abstract

Objective: To develop a physiological data-driven model for early identification of impending
cardiac arrest in neonates and infants with cardiac disease hospitalised in the cardiovascular
ICU. Methods: We performed a single-institution retrospective cohort study (11 January
2013–16 September 2015) of patients ≤1 year old with cardiac disease who were hospitalised
in the cardiovascular ICU at a tertiary care children’s hospital. Demographics and diagnostic
codes of cardiac arrest were obtained via the electronic health record. Diagnosis of cardiac arrest
was validated by expert clinician review. Minute-to-minute physiological monitoring data were
recorded via bedside monitors. A generalized linear model was used to compute a minute by
minute risk score. Training and test data sets both included data from patients who did and
did not develop cardiac arrest. An optimal risk-score threshold was derived based on the model’s
discriminatory capacity for impending arrest versus non-arrest. Model performance measures
included sensitivity, specificity, accuracy, likelihood ratios, and post-test probability of arrest.
Results: The final model consisting of multiple clinical parameters was able to identify impending
cardiac arrest at least 2 hours prior to the event with an overall accuracy of 75% (sensitivity= 61%,
specificity= 80%) and observed an increase in probability of detection of cardiac arrest from a
pre-test probability of 9.6% to a post-test probability of 21.2%. Conclusions: Our findings dem-
onstrate that a predictive model using physiologic monitoring data in neonates and infants with
cardiac disease hospitalised in the paediatric cardiovascular ICU can identify impending cardiac
arrest on average 17 hours prior to arrest.

Sudden cardiac arrest is one of the leading causes of death among children in the United States of
America.1 CHD and chromosomal abnormalities account for approximately 20% of sudden
deaths among neonates and infants (≤1 year old) and for nearly 5% among older children
(1–18 years of age).2 Epidemiologic studies have also indicated that cardiac arrest is associated
with lower survival rates in neonates and infants than in children and adolescents, with rates of
survival to hospital discharge less than 15% in several studies.3–6 Cases of in-hospital arrest have
a three-fold higher chance of survival than out-of-hospital cases (24 versus 8.4%).7,8 The
enhanced survival of in-hospital cases demonstrates the importance of timely medical interven-
tions by the in-hospital caregivers. The ability for clinicians to reliably identify patients with
increased risk of cardiac arrest could be augmented by supplementing their clinical training,
expertise, and experience with continuously generated, validated risk scores for impending car-
diac arrest using physiologic monitoring data from bedside monitors. Neonates and infants with
cardiac disease are at risk of sudden cardiac arrest, yet models for early identification of impend-
ing cardiac arrest in such children have neither been derived nor validated to date.

Several prognostic scores for mortality or severe morbidity in critically ill children have been
introduced in recent years (e.g., PRISM-3,9,10 PIM-2,11 C-CHEWS,12,13 PICSIM14), some of
which have demonstrated reliability specifically in those with cardiac disease; however, these
scores are non-specific for the cause of mortality, and hence a pre-emptive approach for
risk-stratified intervention using these scores has not been realised. Furthermore, children with
CHD who have undergone cardiothoracic surgery represent unique challenges regarding early
warning systems, given a broad spectrum of cardiac structural abnormalities and physiologies.
For this reason, the STAT Mortality categorisation has been specifically validated and used in
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critically ill children with CHD undergoing cardiac surgery,15 but
again, is limited in regard to identifying actionable aetiologies for
morality risk.

In contrast to platforms like Bedmaster™ and Etiometry® (the
latter of which provides, e.g., a validated early-warning tool for
shock16), none of the aforementioned prognostic scores formortality
in critically ill children provides real-time analytics using continu-
ously acquired physiologic monitoring data (e.g., minute-to-minute
or higher frequency vital sign measures and/or waveforms). Neither
Bedmaster™ nor Etiometry® offers a validated early-warning tool for
impending cardiac arrest.

Accordingly, the objective of this study was to derive a statistical
model using continuous physiological monitoring data for early
identification of impending cardiac arrest in neonates and infants
with cardiac disease hospitalised in the paediatric cardio-
vascular ICU.

Materials and methods

Study design, patients, and clinical data collection

We conducted a retrospective cohort study of neonates and infants
hospitalised in the paediatric cardiovascular ICU at Johns Hopkins
All Children’s Hospital (JHACH, St. Petersburg, FL) between 1
November 2013 and 16 September 2015. The study was approved
by the Johns Hopkins All Children’s Hospital Institutional
Review Board (IRB), and waiver of informed consent was granted.
Physiologic monitoring data, including minute-to-minute sampled
vital signs andwaveform data, were collected from bedsidemonitors
and stored into a Philips Research Data Export server in an auto-
mated manner. Collection of data was followed by patient de-iden-
tification with the help of the Philips Research Data Export Toolkit.
De-identified physiologic monitoring data were then linked with
corresponding de-identified administrative encounter data obtained
from the hospital enterprise data warehouse. Finally, the integrated
data were locally stored into Microsoft SQL and PostgreSQL data-
base tables on the Integration server. Patient demographic informa-
tion was collected from electronic health records. Cases of cardiac
arrest were identified among the study population via a query of cor-
responding International Classification of Diseases discharge diag-
nostic codes performed by the Johns Hopkins All Children’s
Hospital Health Informatics core, utilising the institution’s elec-
tronic health record-derived enterprise data warehouse. Cardiac
arrest cases were validated by expert clinician (J.P.J.) review of elec-
tronic health records. J.P.J manually adjudicated all cases of cardiac
arrest to confirm that these cases were consistent with the
following definition of cardiac arrest used by The Society of
Thoracic Surgeons Congenital Heart Surgery Database: “A cardiac
arrest is the cessation of effective cardiac mechanical function”.

Physiological monitoring data collection and preprocessing

Minute-to-minute physiological monitoring data on heart rate,
respiratory rate, blood pressure, and oxygen saturation, as well
as waveform data from dual-lead electrocardiograms, were
recorded via Philips bedside monitors and transmitted and stored
onto a secure server. The most commonly available physiological
monitor-derived variables across the entire data set were utilised in
the study; these included heart rate, respiratory rate, oxygen satu-
ration (SpO2), and premature ventricular contraction rate per
minute. The full list of variables evaluated in the model, including
heart rate variability – low frequency power, heart rate variability –
high frequency power, ratio of heart rate variabilities of high to low

frequency power, etc., and their definitions and calculations are
shown in Table 1. Of note, respiratory rate data were corrected
for age and gender based on established age- and gender-
dependent normative values17 (RR-corr). Heart rate was normal-
ised with respect to age17 (HR-corr). All numeric data were
checked for missing values. Only four patients with cardiac arrest
and four control patients had more than 20 minutes of missing
data from the training and test data.Missing values of physiological
variables were replaced using nearest neighbour interpolation for
all patients in the training and test data. To ensure that interpola-
tion did not contribute bias to study results, sensitivity analyses
examined models with listwise deletion as well as interpolation
for missing data less than 10 minutes. This sensitivity analysis
included comparison of sensitivity, specificity, and accuracy with
respect to two other models which included listwise deletion of all
missing data and interpolation of missing data less than 10
minutes. Outliers were identified in minute-to-minute heart rate
as measurements that exceeded three standard deviations from
the mean computed over a centred 30-minute window. Runs of
consecutive outlier data points rarely lasted more than 3 minutes.
We substituted outlier values by linear interpolation for all occur-
rences less than 3minutes. Sustained occurrences of data exceeding
the three standard deviations threshold were not considered out-
liers and left unchanged. All preprocessing steps involving outlier
removal, feature vector computation, statistical modelling, and
analysis were performed using MATLAB R2016a.18

Waveform data (i.e., high-frequency data acquired at 125 Hz)
from two-lead electrocardiograms (ECG) were also available for
use in the study. R waves were annotated in the waveform of
the electrocardiogram using a modified version of an algorithm
based on morphological digital filtering – the highest scoring heart
beat detection algorithm by Pangerc and colleagues19 of the 2014
Physionet challenge.19,20 In order to perform robust estimation of
heart rate and heart rate variability, the algorithm was modified to
detect and eliminate pacer spikes and to localise peaks of the
R wave from either one or two electrocardiogram (ECG) leads
(details in Appendix A). ECG R–R intervals were calculated from
the lead signals, and the power spectral density of the ECG R–R
intervals was then computed in different frequency bands to gen-
erate frequency-domain heart rate variability measures.

Statistical risk model

A generalized linear model21–24 for a Bernoulli distribution was
used to estimate the probability of cardiac arrest at each time point.
Assumptions and formulae underlying the generalized linear
model are provided in Appendix B. Our data set consisted of 22
cardiac arrest and 206 control patients who were less than 1 year
old and, therefore, the pre-test probability of cardiac arrest in our
data set was 9.6%. Lack of sufficient data recorded prior to a cardiac
arrest event led to exclusion of 6 of the 22 cardiac arrest patients
below 1 year old. The model was trained and evaluated on 16 car-
diac arrest cases and 48 gender- and age-matched controls (1:3),
with 11 cardiac arrest cases and 33 controls in the training set
and 5 cardiac arrest cases and 15 controls in the test set. In order
to estimate the standard error and confidence intervals for the esti-
mated model, we bootstrapped (60 iterations) across a random
selection of patients from both groups. An equal number of time
points were used from each patient in the training and test sets for
performance analysis. Initial analysis was performed on a 1:1 case
to control ratio of age and gender-matched patients; but, due to an
imbalance in the available amount of cardiac arrest versus
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non-cardiac arrest patients and to reduce the false positive detec-
tion rate, our final analysis was performed on 1:3 case to controls
ratio (16 cardiac arrest and 48 non-cardiac arrest patients), yield-
ing a significant improvement in specificity and overall accuracy.

Model features were evaluated from physiological measure-
ments or other derived terms as described and defined in
Table 1. Themagnitude of eachmodel weight was used to indicate
the relative impact of that feature on the risk score. A particular
feature is correlated to increased risk of cardiac arrest if the sign of
its model weight is positive. Training performance was tested for
window sizes varying from 1 to 7 hours prior to a cardiac arrest
event (Fig 1). In the training set, we selected the time window that
had highest classification accuracy as the optimal training win-
dow length. Since the model must learn to distinguish between
the two types of patients during the training stage, the training
time points for cardiac arrest patients during periods of low risk
made it harder to distinguish them from non-cardiac arrest
patients. As expected, Figure 1 shows that the training accuracy
decreased monotonically with increasing length of training time
window. In order to overcome model over-fitting errors posed by
a 1-hour training window, our optimal training window was
chosen to be 2 hours. Receiver operating characteristics (ROC)
curves were plotted for each iteration on the training set, and
the corresponding optimal threshold value of risk score was
obtained as the point on the receiver operating characteristics
curve closest to the point where false positive rate is zero and
the true positive rate is one.25–27

The optimal threshold obtained from each iteration on the
training set was used to analyse the results on the corresponding
test set. Specifically, one model trained in each bootstrap iteration
was used to estimate the time-varying probability of cardiac arrest
for each iteration; and then, the optimal threshold obtained from
the receiver operating characteristics curve was used to evaluate the
performance in each iteration. Figure B1 in Appendix B provides

an example of time-varying risk score in which the patient transi-
tions to a state of high risk of cardiac arrest when the risk score
exceeds the optimal threshold. The performance of these boot-
strapped models was evaluated by comparing various statistical
performance metrics: sensitivity, specificity, accuracy, likelihood
ratios, and change from pre-test to post-test probability of arrest
derived from the confusion matrix26,27 for both training and test
data sets (definitions in Appendix C). Finally, the probability of
cardiac arrest was computed across all patient data in the test
set for every bootstrap iteration over 2-hour contiguous time win-
dows. Additionally, risk scores were then computed on the remain-
ing non-cardiac arrest patients who were not included in either
training or test sets, in order to ensure overall performance on
the entire data set.

Results

All models studied in the sensitivity analysis to study robustness of
the model to interpolation of missing data demonstrated results
with similar levels of sensitivity, specificity, and accuracy. These
additional models demonstrate assurance that interpolation meth-
ods employed herein were appropriate and did not have a signifi-
cant impact on the model parameters (Table 2).

Figure 1 demonstrates that the classification accuracy of the
training sets decreased with increasing training time window
length. Model features identified with the highest weights and con-
sistently low p-values (<0.05) with regard to associated cardiac
arrest are shown in Figure 2. These model features were comprised
of heart rate, HR-corr, respiratory rate, RR-corr, SpO2, premature
ventricular contraction rate, age, gender, heart rate variability – low
frequency power, heart rate variability – high frequency power,
ratio of heart rate variabilities of high to low frequency
power, and rLF. The feature with greatest weight in the model
(i.e., strongest association with risk of arrest) was heart rate

Table 1. List of all model features and their definition.

Feature Definition

Age Patient age on date of admission to cardiovascular ICU

Gender Male/female

Heart rate Heart rate (per minute), as extracted from ECG waveforms

HR-corr Heart rate, corrected for age (HR – μHR)/σHR where μHR and σHR are mean and standard
deviation of heart rate in a given age group17

Respiratory rate Respiratory rate (per minute)

RR-corr Age and gender-corrected respiratory rate (RR – μRR)/σRR, where μRR and σRR are mean
and standard deviation in respiratory rate in given age group and gender17

Heart rate variability Standard deviation of normal R–R intervals in ECG over 5-minute overlapping windows

SpO2 Blood oxygen saturation (%)

Premature ventricular contraction rate Premature ventricular contraction rate (per minute)

HRV-VLF Power in very low frequency band (0.0033–0.04 Hz) of ECG R–R interval power spectrum

Heart rate variability – low frequency power Power in low frequency band (0.04–0.15 Hz) of ECG R–R interval power spectrum

Heart rate variability – high frequency power Power in high frequency band (0.15–0.4 Hz) of ECG R–R interval power spectrum

Ratio of heart rate variabilities of high to low frequency power Log10(Ratio of HRV-LF to HRV-HF)

rVLF (maximum(HRV-VLF) – minimum(HRV-VLF)) in 21-minute sliding windows

rLF (maximum(HRV-LF) – minimum(HRV-LF)) in 21-minute sliding windows

rHF (maximum(HRV-HF) – minimum(HRV-HF)) in 21-minute sliding windows
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variability – low frequency power, with reduced heart rate variabil-
ity indicating increasing risk.

With regard to model performance, Figure 3 shows the receiver
operating characteristics curves for the training and test data sets.
Area under the ROC curve (AUC) (C-index) was 0.91 in the training
set and 0.75 in the test set. In the test set, sensitivity, specificity, and
overall classification accuracy were 60.6, 74.1, and 70.8%, respec-
tively. The entire data set (excluding patients with less than 2 hours
of available data) included a larger number of non-cardiac arrest
patients, as all of the cardiac arrest patients were already included
in training or test sets. Evaluation of our method’s performance
on the entire data set resulted in an overall specificity of 80.2%
and accuracy of 75.4%, with no change in sensitivity. In addition,
mean positive and negative likelihood ratios were 2.6 and 0.53.
Given this mean positive likelihood ratio, and a pre-test probability
(overall prevalence in the original cohort) of cardiac arrest of 9.6%,
the mean post-test probability of cardiac arrest using the model is
21.2%. Furthermore, given the aforementioned mean negative like-
lihood ratio and pre-test probability of 90.4% of no cardiac arrest,
the post-test probability of remaining arrest-free using the model
is 94.7%.

The average time from observed high risk scores above thresh-
old to a recorded event of cardiac arrest was 17 hours with standard
deviation of 7.5 hours across all the 16 cardiac arrest patients.
Figure 4 shows the time-evolving risk scores over a 24-hour period
prior to time of reported cardiac arrest for two patients who expe-
rienced cardiac arrest. The red lines in these plots represent the
respective threshold for detecting transition to high risk of cardiac
arrest.

Discussion

The model reported here demonstrates the ability to predict
whether a neonate or infant with CHD hospitalised in the paedi-
atric cardiovascular ICU has transitioned to a state of high risk for
impending cardiac arrest using minute by minute physiological
time series data. Our derived model achieved a mean sensitivity
of 60.6%, specificity of 80.2%, and accuracy of 75.4% on the entire
data set comprising all patients with at least 2 hours of available
data. The likelihood ratio was 2.6 for a positive test and the positive
post-test probability was 21.2%, while the prevalence of cardiac
arrest among patients < 1 year old admitted to the paediatric
cardiovascular ICU is 9.6% in our data set.

We observed that the amount of time that a patient is in a high-
risk state can vary widely across patients (compare Fig 4a and b).
Figure 4a shows an example of a cardiac arrest patient whose risk
score was elevated almost 20 hours prior to the time of cardiac
arrest, whereas the cardiac arrest patient in Figure 4b entered
high-risk state only approximately 5 hours prior to arrest.
Meanwhile, a few cardiac arrest patients did not exhibit a mono-
tonically increasing risk score with time, and risk scores for these
patients sometimes exhibited a brief period of reduced risk, with
risk then increasing before the event. Understanding the nature
of and factors associated with patient-specific periods of inflection
in risk score is a priority for future prospective work.

Several significant features identified in our model as markers
of high risk of impending cardiac arrest (Fig 2) have also been iden-
tified in previous studies. Higher values of age and gender normal-
ised respiratory rate and lower values of SpO2 have been shown to

Table 2. Sensitivity analysis of model with respect to missing data interpolation.

AUC Sensitivity Specificity Accuracy

Train Test Train Test Train Test Train Test

Case-1: All missing intervals interpolated 0.908 0.749 0.860 0.606 0.820 0.741 0.830 0.707

Case-2: Only missing intervals less than 10 minutes interpolated 0.905 0.745 0.858 0.603 0.820 0.739 0.829 0.707

Case-3: All missing data intervals removed with no interpolation 0.907 0.736 0.861 0.589 0.825 0.749 0.833 0.712

Figure 1. Area under the receiver operating characteristics
curve for training data sets using training timewindow dura-
tions between 1 and 7 hours. Coloured boxes represent 25th
to 75th percentiles, the solid line inside each box is median,
dashed whiskers represent the minimum and maximum
excluding the red “þ” outliers.
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be important markers of critical illness and mortality from sudden
cardiac arrest in previous studies.28,29 These findings agree with our
data documenting that the median normalised weights for the fea-
tures RESP-corr and SpO2 are 12.5 and −13.4, respectively (Fig 2).
Time domain heart rate variability measures derived from stan-
dard deviation of normal electrocardiogram R–R intervals have
been observed to have a negative correlation with probability of
poor outcome from cardiac arrest.30–36 While this finding is also
evident in our analysis, time domain heart rate variability was
found to have less predictive power than frequency domain heart
rate variability features. Our model identifies higher values of
heart rate variability – high frequency power, ratio of heart rate

variabilities of high to low frequency power, and lower values of
heart rate variability – low frequency power as the most discrimi-
native factors for identifying increased risk of cardiac arrest, and
similar observations were drawn for the low frequency and high
frequency power-based heart rate variability by several prior
investigations.37,38

In this study, we have not made any direct comparisons within
our data set to existing early warning score models such as
Paediatric Early Warning Score, Modified early Warning Score,
or Paediatric Risk of Mortality Score (PRISM-3) because the objec-
tive of these early warning score methods is to predict mortality or
general adverse events in children as opposed to providing early

Figure 2. (a) Estimated normalised risk model feature
weights (b) p-value of the estimated model weights corre-
sponding to each of the model features and “Constant”
term. Solid boxes represent the 25th to 75th percentiles,
and the lines extending from these boxes represent
minimum and maximum excluding the red “o” outliers.
Dotted black line in (b) indicates 0.05 significance level.

Figure 3. Mean and 95% confidence intervals of receiver
operating characteristics curves for training and test set.
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identification of impending cardiac arrest in neonates and infants
with CHD in the paediatric cardiovascular ICU.

Our results in this study are supported by prior findings by
Kennedy and colleagues,39,40 who derived a predictive model of
cardiac arrest in the paediatric ICU, including children of all ages
and not focused on those with underlying cardiac disease. In that
work, linear regression and decision trees attained an accuracy of
69% and 88%, respectively, for cardiac arrest in pediatric ICU
patients; this accuracy is comparable to our model’s overall accu-
racy of 75.4% for impending cardiac arrest among neonates and
infants with cardiac disease hospitalised in the pediatric cardio-
vascular ICU. A direct comparison of the model proposed by
Kennedy and colleagues cannot be performed on our data set, how-
ever, as it requires physiological features which are not present in
our data set. Future prospective work should include collection of
all relevant physiologic data by which to compare our risk score for
impending cardiac arrest with other scores like CCHEWS13 and
PICSIM14 that are designed to predict a more broadly defined
set of adverse events in pediatric cardiovascular ICUs. These pro-
spective validation studies should also seek to enhance the model’s
performance characteristics, if possible, via the addition of inform-
ative clinical and/or laboratory variables.

Given the desire to further enhance accuracy of the model, an
iterative process of model optimisation should first be undertaken
as part of the prospective validation phase. If validated in multi-
centre prospective studies, the optimised model of impending car-
diac arrest in infants with CHD should then be applied in clinical
trials designed to test net clinical benefit, using real-time bedside
monitoring devices which would provide instantaneous, minute-
to-minute risk scores and risk-threshold-based alarms in
the pediatric cardiovascular ICU. Such efforts should include the
development of a real-time visual analytics tool based on the
prospectively validated model, constructed with the aid of stream-
ing middleware architecture capable of handling data-intensive
applications. For example, this solution would employ a messaging
system (e.g., Apache Kafka), a stream processing engine
(e.g., Apache Spark) capable of fast computation of features and
respective risk scores, and a real-time web-based application
(e.g., Socket.IO) suitable for bi-directional communication
between client(s) and server(s), by which to push the risk score
from the stream engine to an informative user interface.

Limitations

There are several limitations to this work. It is possible, for example,
that the reliability of the features used in our model could be suscep-
tible to some inaccuracies in physiologic measurements captured by
the bedside monitors. As noted above, our model is also restricted to
a specific set of physiological features and, for example, does not
account for therapeutic interventions that may have occurred; a
future prospective study design will facilitate reliable capture and
analysis of such treatment-related data. Furthermore, the age-
and gender-specific normative values employed in our study for
heart rate and respiratory rate were based upon the 15th edition
of the Harriet Lane Handbook; future studies involving larger sam-
ple sizes should include sensitivity analyses across various different
sources of evidence-based normative values for these physiological
variables in infants. In addition, the number of cardiac arrest cases
limited the power of the study, although this was partially overcome
via the use of a 1:3 case:control ratio; nevertheless, a larger sample
size should be sought for the prospective validation study. Apart
from its retrospective and single-institutional design, perhaps the
most important limitation of our study is its generalisability (i.e.,
external validity); our model was specifically derived in (and there-
fore is appropriately applicable to) infants with cardiac disease hos-
pitalised in the paediatric cardiovascular ICU. Additionally, since
our model is based on a very specific patient cohort, using the same
set of model weights will likely not yield the best prediction on a dif-
ferent set of patients, and hence a future prospective multi-institu-
tional study could help generalise the model over a more diverse
patient population. Nevertheless, the methods described here are
well-suited toward investigation and derivation of time-dependent
risk models and early warning systems in other patient populations.

Conclusion

The ability to use real-time analytics and streaming physiologic
data from bedside monitors to predict adverse events can lead
to strategies of personalised precision medicine and improvements
in the delivery of critical care. In this study, we used physiologic
monitoring data in neonates and infants admitted to the cardio-
vascular ICU to derive a predictive model of impending cardiac
arrest that has favourable performance characteristics. Our current

Figure 4. Time-evolving risk scores on a 24-hour
period before reported cardiac arrest for two
cardiac arrest (CA) patients: (a) CA-sub1 (b)
CA-sub2. Red lines in the above plots represent
the respective threshold for detecting transition
to high risk of cardiac arrest.
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results demonstrate that statistical methods can be used to develop
models that can help identify impending cardiac arrest 17 hours
(on average) before the actual clinical event and clinical recogni-
tion among neonates and infants hospitalised in a cardiovascular
ICU. Challenges may be expected in translating retrospective
cardiac arrest decision support models into useful clinical tools.
Therefore, further research that includes the performance of a
clinical trial and model validation using an independent multi-
institutional prospective cohort would be necessary to help mea-
sure the clinical utility of statistical models for early recognition
of cardiac arrest in neonates and infants.
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Appendix A: Heart rate extraction

ECGwaveform data captured at 125 Hz was used to detect R waves
in ECG, and the subsequent R–R intervals were used for comput-
ing instantaneous heart rate, time domain heart rate variability,
and frequency domain heart rate variability measures. The R wave
detection was performed using an adapted version of the 2014
Physionet challenge highest scoring algorithm by Pangerc
et al.19 The 2014 Physionet challenge20 was primarily geared
towards robust multimodal heart beat detection but did not
account for removal of pacer spikes. Pacer spikes often appear like
R-wave spikes in the ECG before the ventricles depolarise. These
pacer spikes manifest in different forms based on the particular
mode of cardiac pacing. We modified the method proposed by
Pangerc et al to remove erroneously detected R waves, which
are actually pacer spikes.

In the presence of pacer spikes, the histogram of inter-beat
intervals is expected to show more than one peak in their distribu-
tion accounting for pacer spikes. If the pacer spikes are roughly
equidistant from the R waves, the inter-beat interval histogram
is more likely to be clearly bimodal with two peaks of similar

magnitudes and therefore, peaks corresponding to the smaller
inter-beat interval aremarked as pacer spikes. In the absence of two
distinct peaks in the inter-beat interval histogram, histogram of the
amplitudes of detected peaks is computed. If the amplitude histo-
gram is bimodal and the histogram peaks are of similar magni-
tudes, the peaks with larger amplitude are marked as pacer
spikes. Figure A1 presents a flow chart of the pipeline for extraction
of instantaneous heart rate from single channel ECG.

Appendix B: Generalized linear model

Generalized linear model41,42 is a generalized version of multivari-
ate regression that models a dependent variable as a random var-
iable withmean as a function of linear combination of the predictor
variables and with some random error, where the dependent var-
iable can assume any distribution from the exponential family.

Our algorithm assumes the outcome of whether a patient
undergoes cardiac arrest or not as a Bernoulli random variable
at each time point, denoted by y(t) = 1 when a certain patient is
known to have a cardiac arrest at any time after t. Furthermore,

Figure A1. Flow chart for instantaneous
heart rate detection from ECG waveform.
Here, diff() is absolute difference between
consecutive elements of an array.
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the formulaX= [x(1) x(2) : : : x(n)]Twas used to describe amatrix
of size n ×m containing a set of feature vectors at discrete time
points 1, 2, : : : , n, where the feature vector at time t is denoted
as x(t) = [x1(t) x2(t) : : : xm(t)] consisting ofm features that deter-
mine the state of the patient at time t. The set of linear weights
ŵ = [w1w2 : : : wm]T (see equation B.1) for each time t were con-
structed by maximising the log-likelihood of observing each y(t)
for t = t1 t2, : : : , tn given p tð Þ ¼ 1

1þe�x tð Þw using an iterative least
squares method.43

bw ¼ argmax
w

log

�
Pr

�
yðt1Þ; yðt2Þ; . . . ; yðtnÞ

���pðti;X;wÞ
¼ 1

1þ e�xðtiÞw ; i ¼ 1; 2; . . . ; n

��

bw ¼ argmax
w

X
n
i¼1

ðyðtiÞ logðpðti;X;wÞÞ
þ ð1� yðtiÞÞ logð1� pðti;X;wÞÞÞ B.1

Patients with cardiac arrest are expected to show high risk
scores prior to an event of cardiac arrest. An illustration of the
time-varying risk scores is shown in Figure B1.

Appendix C: Performance metrics

The performance metrics used in our analysis are sensitivity, speci-
ficity, accuracy, likelihood ratio, pre-test and post-test probability
of positive and negative tests. The confusion matrix shows the dis-
tribution of data points classified correctly or incorrectly for both
the positive and negative classes in a binary classification test (see
Fig C1). Sensitivity is the same as true positive rate and
(1-specificity) is also called false positive rate. A plot of the false
positive rate versus true positive rate for different values of thresh-
old is defined as the receiver operating characteristics curve.26 The
area under receiver operating characteristics curve, known as AUC
is frequently used as a vital metric of classification accuracy.
Likelihood ratio44 for positive test is defined as the ratio of sensi-
tivity to (1 − specificity). Positive post-test odds45 are calculated by
multiplying positive likelihood ratio and the ratio of pre-test prob-
ability to (1 − pre-test probability). Positive post-test probability45

is the ratio of positive post-test odds to (1þ positive post-test
odds). Post-test probability for the positive test as compared to
prevalence of the disease/predicted condition in a population
shows a quantitative measure of the probability of correctly
detecting a particular condition using the proposed test.

Figure B1. Example of time-varying risk scores in a patient transitioning to high risk
of cardiac arrest.

Figure C1. Confusion matrix for the proposed method where the positive class
(label = 1) represents time from cardiac arrest patients and negative class comprises
of time points from non-cardiac arrest patients.
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