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Abstract
We describe quantum circuits generating four-qubit maximally entangled states, the amount of entangle-
ment being quantified by using the absolute value of the Cayley hyperdeterminant as an entanglement
monotone. More precisely we show that this type of four-qubit entangled states can be obtained by the
action of a family of CNOT circuits on some special states of the LU orbit of the state |0000〉.
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1. Introduction
The original idea of using the hyperdeterminant to classify multipartite entanglement goes back
to Miyake (Miyake, 2003; Miyake and Wadati, 2002). The hyperdeterminant (in the sense of
Gelfand et al. 1992) is a generalization of the determinant to higher dimensions. Let |ψ〉 =∑

i0,i1,...,in−1∈{0,1} ai0i1...in−1 |i0i1 . . . in−1〉 be the state vector of an n-qubit system in the Hilbert
space H⊗n = (C2)⊗n; then, the hyperdeterminant of the format 2n, denoted in this paper by �n,
is an homogenous multivariate polynomial in the 2n variables ai0i1...in−1 , with coefficients inZ. It is
invariant (up to a sign) by permutation of the qubits and also invariant by the action of the group
SLOCC, the group of stochastic local operations assisted by classical communication, assimilated
to the Cartesian product SL(2,C)n. According to Miyake (Miyake, 2003; Miyake and Wadati,
2002), the more generic entanglement holds only for the states on which the hyperdeterminant
does not vanish and the absolute value of�n quantifies the amount of generic entanglement.

In this article, we focus on a four-qubit quantum system. In this case, the hyperdeterminant
�4 is a polynomial of degree 24 in 16 unknowns which has 2,894,276 terms and a rich geometric
structure related with the triangulations of the 4-cube (Huggins et al., 2008). Despite of its huge
size, it is still maniable and computable by several methods. Since the formula given by Schläfli
in 1852 (Gelfand et al., 1992, Chapter 14, Section 4), other methods have been developed includ-
ing an expression of �4 in terms of fundamental SLOCC invariant polynomials of lower degree
(Luque and Thibon 2003) and more recently an evaluation of�4 via neural networks (Jaffali and
Oeding 2020).

Following Miyake, we consider as Gour and Wallach (2012), that a four-qubit state with the
highest amount of generic entanglement can be defined as a state maximizing the absolute value
of�4. In the rest of the paper, we refer to this type of state as a maximum hyperdeterminant state
(sometimes abbreviated as MHS). Gour and Wallach (2012) conjectured that the state |L〉 (see
Figure 1) is the unique maximum hyperdeterminant state, up to a local unitary operation. This
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conjecture was proved in 2013 by Chen and Djokovic (2013) and the maximal value of |�4| is
1

2839 = 1
5,038,848 � 1.98× 10−7. As �4 is a SLOCC-invariant polynomial, a simple consequence of

this result is that the SLOCC orbit of |L〉 corresponds to its LU orbit (about the LU orbits and LU-
invariant polynomials of four qubits, we refer the reader to Luque et al. 2007). Another interesting
property of the state |L〉 is to be the only state (up to local unitary operations) maximizing the
average Tsallis α-entropy of entanglement, for all α > 2 (Gour and Wallach, 2010). Let us also
mention two other maximum hyperdeterminant states, which have the property of having real
coordinates (see Figure 1): |�5〉 (reported by Osterloh and Siewert 2006 and by Alsina 2017) and
|M2222〉 (reported by Jaffali 2020).

In Quantum Information and Computation, entangled states, and in particular maximally
entangled states, play the role of an important physical resource (see e.g. the introduction of Chen
and Djokovic 2013). Despite of that, to our knowledge, there is no proposal in the academic liter-
ature for quantum circuits capable of producing the state |L〉 or any other MHS. The goal of this
work is merely to fill this gap by describing a family of quantum circuits that enable the genera-
tion of maximum hyperdeterminant states. We show that a MHS can be obtained by the action
a certain type of CNOT gate circuits on a fully factorized state, namely a state of the LU orbit of
|0000〉. As a consequence of this result, one can construct quantum circuits of relatively small
depth generating the three states |L〉, |�5〉 and |M2222〉.

The paper is structured as follows. Section 2 is a reminder on quantum circuits of CNOT gates
and SWAP gates, where we introduce most of our notations and give some useful conjugation rules
between these gates. In Section 3, we present themethodology and algorithms used in our numeri-
cal approach to find circuits generating maximum hyperdeterminant states. The two next Sections
(4 and 5) are dedicated to the description of these circuits. Finally, in Section 6, we propose three
simple quantum circuits generating the states |L〉, |�5〉 and M2222, as well as an implementa-
tion of a circuit generating the state |L〉 into a quantum computer provided by the IBM quantum
experience at https://quantum-computing.ibm.com/.

This article goes along with a Python module than can be downloaded at https://github.com/
marcbataille/maximum-hyperdeterminant-states. Our module relies on the Python module
SymPy (a Computer Algebra System), allowing us to perform symbolic and exact computation.
It provides an implementation in the Python language of the different algorithms, quantum

|L〉 = 1√
3
(|u0〉 +ω |u1〉 +ω∗ |u2〉) (1)

where : ω= e
iπ
3

|u0〉 = 1
2 (|0000〉 + |0011〉 + |1100〉 + |1111〉)= |�+〉 |�+〉

|u1〉 = 1
2 (|0000〉 − |0011〉 − |1100〉 + |1111〉)= |�−〉 |�−〉

|u2〉 = 1
2 (|0101〉 + |0110〉 + |1001〉 + |1010〉)= |�+〉 |�+〉

|�±〉 = 1√
2
(|00〉 ± |11〉 ), |�±〉 = 1√

2
(|01〉 ± |10〉)

|�5〉 = 1√
6
(|0001〉 + |0010〉 + |0100〉 + |1000〉 +√2 |1111〉) (2)

|M2222〉 = 1√
8
|v1〉 +

√
6
4
|v2〉 + 1√

2
|v3〉 (3)

where: |v1〉 = 1√
6
(|0000〉 + |0101〉 − |0110〉 − |1001〉 + |1010〉 + |1111〉)

|v2〉 = 1√
2
(|0011〉 + |1100〉)

|v3〉 = 1√
8
(− |0001〉 + |0010〉 − |0100〉 + |0111〉 + |1000〉 − |1011〉 + |1101〉 − |1110〉)

Figure 1. 4-qubits states for which |�4| is maximal.
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Table 1. Classical single-qubit unitary gates

Name Symbol Matrix

Pauli-X X

[
0 1
1 0

]

Pauli-Y Y

[
0 −i
i 0

]

Pauli-Z Z

[
1 0
0 −1

]

Rotation around the x̂ axis Rx(θ) e−iθX/2 =
⎡
⎣ cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

⎤
⎦

Rotation around the ŷ axis Ry(θ) e−iθY/2 =
⎡
⎣cos θ2 − sin θ

2

sin θ
2 cos θ2

⎤
⎦

Rotation around the ẑ axis Rz(θ) e−iθZ/2 =
[
e−iθ/2 0
0 eiθ/2

]

Phase P

[
1 0
0 i

]

T-gate T

[
1 0
0 eiπ/4

]

Hadamard H
√
2
2

[
1 1
1 −1

]

gates and quantum states used in this work. As the proof of some assertions (mostly numerical
equalities) consists only of basic linear algebra and calculus, we chose to refer the reader to the
corresponding function of the module that does the job.

2. Quantum Circuits of CNOT and SWAP Gates
In this section, we introduce the main notations and conventions of the paper and we recall the
definition of some classical quantum gates (Table 1) as well as some properties of the CNOT gates
and SWAP gates often used in the rest of the article.

Let n� 1 be the number of qubits of the considered quantum register. We label each qubit
from 0 to n− 1, thus following the usual convention. For coherence, we also number the lines and
columns of a n× nmatrix from 0 to n− 1, and we consider that a permutation in the symmetric
groupSn is a bijection of {0, . . . , n− 1}.

If two normalized vectors |ψ〉 and |ψ ′〉 of the Hilbert spaceH⊗n are equal up to a global phase,
then they represent physically the same state and we write |ψ〉 � |ψ ′〉. In the same way, we write
U �U ′ for two unitary operators which are equal up to a global phase. In the design of quantum
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circuits, we use the following correspondences between the classical gates :

Rz(π)� Z, Rz(π/2)� P, Rz(−π/2)� P†, Rz(π/4)� T (4)
Ry(π)� Y , Ry(π/2)=HZ= XH, Ry(−π/2)= ZH =HX (5)

When one applies locally a single-qubit gate U to the qubit i of a n-qubit register, the
corresponding action on the n-qubit system is that of the unitary operator

Ui = I⊗ · · · ⊗ I︸ ︷︷ ︸
i times

⊗U ⊗ I⊗ · · · ⊗ I︸ ︷︷ ︸
n−i−1 times

= I⊗i ⊗U ⊗ I⊗n−i−1, (6)

where ⊗ is the Kronecker product of matrices and I the identity matrix in dimension 2. As
an example, if n= 4, H1 = I⊗H⊗ I⊗ I and H0H3 =H⊗ I⊗ I⊗H. We also use vectors of
F
n
2 as labels to indicate the set of qubits to which the single-qubit unitary U is applied. Let

v= [v0 . . . vn−1]t be a (column) vector of Fn
2, we denote by Uv the product

∏
i U

vi
i .

A CNOT gate with target on qubit i and control on qubit j is denoted by X[i j] (not to be confused
with Xi which denotes a Pauli-X gate applied on qubit i). The group generated by the CNOT gates
acting on an n-qubit quantum system is denoted by 〈CNOT〉n. Let us denote by GLn(F2) the general
linear group over F2 in dimension n. A transvection matrix [i j] (i, j= 1 . . . n− 1 and i 
= j) is the
matrix of GLn(F2) defined by [i j]= In + Eij, where In is the identity in dimension n and Eij is
the matrix with all entries equal to zero but the entry (i, j) that is equal to 1. We recall that the
transvection matrices generate the group GLn(F2) and that multiplying a matrixM to the left by a
transvection matrix [i j] is equivalent to adding the row j to the row i ofM. From these facts, one
can deduce that the group 〈CNOT〉n is isomorphic to GLn(F2), a possible isomorphism associating,
to any gate X[i j], the transvection matrix [i j] (see Bataille 2022 for more details). The order of
〈CNOT〉n is therefore equal to the order of GLn(F2) :

|〈CNOT〉n| = 2
n(n−1)

2

n∏
i=1

(2i − 1). (7)

Let A be any matrix in GLn(F2), we denote by XA the element of 〈CNOT〉n associated with A, that is
XA is the product of any sequence of CNOT gates X[i1 ji], . . . , X[ip jp] such that A can be decomposed
in the product of the transvection matrices [i1 ji], . . . , [ip jp].

The SWAP gate that exchanges qubits i and j is denoted by S(i j). Let σ be a permutation of
the symmetric group Sn. We also denote by σ the permutation matrix associated with the per-
mutation σ . Consequently, (i j) denotes the transposition of Sn that exchanges i and j as well as
the corresponding transposition matrix in GLn(F2). The permutation matrix σ is defined as the
matrix A= (aij) in GLn(F2) such that aij = 1 if and only if i= σ (j). We recall that multiplying a
matrix M to the left by a permutation matrix σ is equivalent to applying the permutation σ to
the rows ofM. In this case, each row Ri is replaced by the row Rσ−1(i). The group of permutation
matrices is a subgroup of GLn(F2) which is isomorphic to the group generated by the SWAP gates
acting on n qubits : to each SWAP gate S(i j) corresponds the transposition matrix (i j). We denote
by Sσ the product of any sequence of SWAP gates S(i1 j1), . . . , S(ip jp) such that σ = (i1 j1) . . . (ip jp).

Let τ be a transposition of Sn, it is easy to check that SτX[i j]Sτ = X[τ (i) τ (j)]. Hence, by
induction, one has for any permutation σ :

SσX[i j]S−1σ = X[σ (i) σ (j)]. (8)

Let U be a single-qubit unitary matrix and Ui the unitary corresponding to the action of U on
qubit i (Identity (6)). One has, for any permutation σ

SσUiS−1σ =Uσ (i) (9)
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and for any vector v in F
n
2

SσUvS−1σ =Uσv, (10)

where σv is the matrix product between σ and v.
The Pauli group for n qubits is the subgroup of the unitary group U(2n) generated by the Pauli

gates Xi, Yi and Zi (0� i� n− 1). Since Y = iXZ and XZ=−ZX, any element of this group can
be written uniquely in the form

iλXuZv, (11)

where u and v are two vectors of the space Fn
2 and λ ∈ {0, 1, 2, 3}. The CNOT gates normalize the

Pauli group, and it is not difficult to prove the following conjugation rules of a Pauli gate by a
CNOT gate: X[ij]ZiX[ij] = ZiZj, X[ij]ZjX[ij] = Zj, X[ij]XiX[ij] = Xi and X[ij]XjX[ij] = XiXj. These rules
can be generalized by induction as

XAXuZvX−1A = XAuZA−tv, (12)

where u and v are vectors in F
n
2 , A is a matrix in GLn(F2) and A−t a shorthand for

(
A−1

)t .
3. Methodology used in the Numerical Exploration
We address the following problem, that we have already formulated in Bataille (2022) : is it possi-
ble to generate a state maximizing |�4| by applying a CNOT gate circuit to a state of the LU orbit
of |0000〉 ?

We use the classical Z-Y decomposition of a single-qubit unitary operator in the form
eiϕRz(α)Ry(β)Rz(α′) (see e.g. Nielsen and Chuang 2011, Th. 4.1). Using this decomposition, any
fully factorized unitary operator U depends, up to a global phase, on the 12 real parameters of the
matrix

P =

⎡
⎢⎢⎢⎢⎢⎣
α0 β0 α′0
α1 β1 α′1
α2 β2 α′2
α3 β3 α′3

⎤
⎥⎥⎥⎥⎥⎦ . (13)

Let us define the unitary U(P) by

U(P)= Rz(α0)Ry(β0)Rz(α′0)⊗ Rz(α1)Ry(β1)Rz(α′1)
⊗Rz(α2)Ry(β2)Rz(α′2)⊗ Rz(α3)Ry(β3)Rz(α′3).

(14)

As a rotation around the ẑ axis applied to |0〉 is just a change of phase, it is possible to write any
state vector of the LU orbit of |0000〉 (up to a global phase), by using only two parameters for
each qubit. So, any state in the LU orbit of |0000〉 is equal (up to a global phase) to the state |P〉
defined by

|P〉 = Rz(α0)Ry(β0)⊗ Rz(α1)Ry(β1)⊗ Rz(α2)Ry(β2)⊗ Rz(α3)Ry(β3) |0000〉 . (15)

Using the definition of the rotation matrices around the ẑ and ŷ axes, one has

|P〉 = (a0 |0〉 + a1 |1〉)⊗ (b0 |0〉 + b1 |1〉)⊗ (c0 |0〉 + c1 |1〉)⊗ (d0 |0〉 + d1 |1〉), (16)
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where (a0, a1)=
(
e−iα0/2 cos β0

2
, eiα0/2 sin

β0
2

)
,

(b0, b1)=
(
e−iα1/2 cos β1

2
, eiα1/2 sin

β1
2

)
,

(c0, c1)=
(
e−iα2/2 cos β2

2
, eiα2/2 sin

β2
2

)
,

(d0, d1)=
(
e−iα3/2 cos β3

2
, eiα3/2 sin

β3
2

)
.

Any state resulting from the action of an unitary operator in 〈CNOT〉4, on a state of the LU orbit
of |0000〉 can be written (up to a global phase) in the form

XA |P〉 , (17)
where A is a matrix in GL4(F2) and P a matrix of parameters. In order to determine the states
of type XA |P〉 capable of maximizing |�4|, it is sufficient to consider the right cosets of the
subgroup of 〈CNOT〉4 generated by the SWAP gates (group 〈SWAP〉4 �S4), because |�4| is invari-
ant under permutation of the qubits, that is |�4(XA |P〉)| = |�4(XσA |P〉)| for any permutation
matrix σ . The order of the group 〈CNOT〉4 is 20,160 (see Identity (7)), so the number of right cosets
of 〈SWAP〉4 in 〈CNOT〉4 is 20,160/24= 840. For each coset, we compute a representative of minimal
length in the generators X[i j] (function right_cosets_perm_GL4 of the Python module).

The computation of �4 for a given state is performed using the algorithm proposed by Luque
and Thibon in (2003, Section IV) (function hyper_det of the Python module). After eliminating
all coset representatives XA such that |�4(XA |P〉)| vanishes for any P , we obtain a list of 333
representatives (function non_zero_HD_strings of the Python module). For each of them, we
use a randomwalk on the search space defined by the eight parameters αi and βi of |P〉 in order to
maximize the value of |�4(XA |P〉)| (function search_max_HD of the Python module). We check
that it is possible to reach the maximal value of 1

2839 for |�4| (accuracy 10−22) for only 12 coset
representatives. These cosets are described in Section 5. Finally, from the approximate values of
P computed by the random walk heuristic, we guess possible exact values for the parameters of P
and we check (by CAS) that these exact values of P satisfy the equality |�4(XA |P〉)| = 1

2839 .

4. A CNOT Circuit to Reach the Maximum of |�4|
Let i, j, k, � be distinct integers in {0, 1, 2, 3}. We define as follows M(i,j)

k , a product of CNOT gates,
and A(i,j)

k the bit matrix of GL4(F2) associated withM(i,j)
k .

M(i,j)
k = X[i j]X[j k]X[k i]X[i �]X[� j] (18)

A(i,j)
k = [i j][j k][k i][i �][� j] (19)

In this section, we show how to reach the maximum of |�4| using the operator
M(0,1)

2 = X[0 1]X[1 2]X[2 0]X[0 3]X[3 1]. (20)

The results are extended to any operator of typeM(i,j)
k in the next section. Since

A(0,1)
2 = [0 1][1 2][2 0][0 3][3 1]=

⎡
⎢⎢⎢⎢⎢⎣
0 1 1 0
1 0 1 1
1 1 1 1
0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦
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and

A(0,1)
3 = [0 1][1 3][3 0][0 2][2 1]=

⎡
⎢⎢⎢⎢⎢⎣
0 1 0 1
1 0 1 1
0 1 1 0
1 1 1 1

⎤
⎥⎥⎥⎥⎥⎦ ,

we remark that A(0,1)
3 = (0 2 3)A(0,1)

2 . Hence,

M(0,1)
3 = S(0 2 3)M(0,1)

2 , (21)

which means thatM(0,1)
3 andM(0,1)

2 represent the same coset. This coset is denoted by (0, 1).

Proposition 1. Let Pmax and P ′max be the two matrices of parameters defined by

Pmax =

⎡
⎢⎢⎢⎢⎢⎢⎣

π/2 π/2 0
π/2 π/2 0

π/4 cos−1
√
3
3 0

π/4 cos−1
√
3
3 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , P ′max =

⎡
⎢⎢⎢⎢⎢⎢⎣

π/2 π/2 0
π/2 π/2 0

3π/4 cos−1
√
3
3 0

3π/4 cos−1
√
3
3 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , (22)

then the states

|ψmax〉 =M(0,1)
2 |Pmax〉 (23)

and

|ψ ′max〉 =M(0,1)
2 |P ′max〉 (24)

maximize the absolute value of the four-qubit hyperdeterminant. One has

�4(|ψmax〉)=�4(|ψ ′max〉)=−
1

2839
, (25)

|ψmax〉 =
√
3
3
|w1〉 + 3+√3

6
ei
π
4 |w2〉 + 3−√3

6
ei
π
4 |w3〉 (26)

and

|ψ ′max〉 =
√
3
3
|w1〉 + 3+√3

6
e−i

π
4 |w2〉 + 3−√3

6
ei

3π
4 |w3〉 , (27)

where

|w1〉 = 1√
8
(|0001〉 + i |0011〉 + |0101〉 − i |0111〉

+ |1000〉 + i |1010〉 + |1100〉 − i |1110〉),
|w2〉 = 1

2
(− |0000〉 − i |0110〉 − i |1011〉 + |1101〉),

|w3〉 = 1
2
(|0010〉 + i |0100〉 − i |1001〉 + |1111〉).

Proof. The different assertions can be checked using the function
check_psi_max_is_MHS of the Python module.
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In our numerical search for matrices of parameters P such that M(0,1)
2 |P〉 maximizes �4, it

appears that all values of P computed by the random walk heuristic are related to Pmax or to P ′max
by simple operations. These operations are described by the following lemma and its corollary.
Numerical results suggest that these operations applied to the matricesPmax orP ′max are sufficient
to describe all the possible matrices P such thatM(0,1)

2 |P〉 is a MHS (Conjecture 7).

Lemma 2. Let P be a matrix of parameters and, for any k in {0, 1, 2, 3}, let us denote by
Pαk+π the matrix obtained from P by adding π to the parameter αk,
P−βk , the matrix obtained from P by taking the opposite of βk,
P−αk,βk+π , the matrix obtained from P by taking the opposite of αk and adding π to βk,
then:

|Pαk+π 〉 =−iZk |P〉 (28)
|P−βk〉 = Zk |P〉 (29)
|P−αk,βk+π 〉 =−iYk |P〉 (30)

Proof. We prove only Identity (30), the proofs of Identities (28) and (29) being similar. Without
loss of generality, we suppose that the last column of the matrix P is null and k= 0. On the one
hand:

−iY0 |P〉 = (−iY(a0 |0〉 + a1 |1〉))⊗ (b0 |0〉 + b1 |1〉)⊗ (c0 |0〉 + c1 |1〉)⊗ (d0 |0〉 + d1 |1〉)
= (−a1 |0〉 + a0 |1〉)⊗ (b0 |0〉 + b1 |1〉)⊗ (c0 |0〉 + c1 |1〉)⊗ (d0 |0〉 + d1 |1〉),

where (a0, a1)=
(
e−iα0/2 cosβ02 , e

iα0/2 sinβ02
)
. On the other hand:

|P−α0,β0+π 〉 = (a′0 |0〉 + a′1 |1〉)⊗ (b0 |0〉 + b1 |1〉)⊗ (c0 |0〉 + c1 |1〉)⊗ (d0 |0〉 + d1 |1〉),
where (a′0, a′1)=

(
e−i(−α0/2) cos β0+π2 , e−iα0/2 sin β0+π

2

)
= (−a1, a0).

Hence−iY0 |P〉 = |P−α0,β0+π 〉.

Corollary 3. Let A be a matrix in GL4(F2) and P a matrix of parameters. If |�4| is maximal for
XA |P〉, then |�4| is also maximal for XA |Pαk+π 〉, XA |P−βk〉 and XA |P−αk,βk+π 〉, for any k in
{0, 1, 2, 3}.

Proof. Suppose that |�4| is maximal for XA |P〉. Let P ′ ∈ {Pαk+π ,P−βk ,P−αk, βk+π }. From
Lemma 2 and Identity (11), there exists two vectors u and v in F

4
2 such that |P ′〉 � XuZv |P〉.

Hence, XA |P ′〉 � XAXuZv |P〉 � XAXuZvX−1A XA |P〉. So, using Identity (12), we deduce that
XA |P ′〉 � XAuZA−tvXA |P〉. Consequently, XA |P ′〉 is in the LU orbit of XA |P〉, which implies
that |�4| is maximal for the state XA |P ′〉.

Example 4. Let us apply the following sequence of operations on Pmax :
α0← α0 + π , β2←−β2, α3←−α3, β3← β3 + π .

The resulting matrix of parameters is P =

⎡
⎢⎢⎢⎢⎢⎢⎣

3π/2 π/2 0
π/2 π/2 0

π/4 − cos−1
√
3
3 0

−π/4 cos−1
√
3
3 + π 0

⎤
⎥⎥⎥⎥⎥⎥⎦ and

|P〉 = (−iZ0)Z2(−iY3) |Pmax〉 � X3Z0Z2Z3 |Pmax〉 .
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Let u= [0 0 0 1]t and v= [1 0 1 1]t . One has :

A(0,1)
2 =

⎡
⎢⎢⎢⎢⎢⎣
0 1 1 0
1 0 1 1
1 1 1 1
0 1 0 1

⎤
⎥⎥⎥⎥⎥⎦ , A(0,1)

2 u= [0 1 1 1]t

and

(
A(0,1)
2

)−t =
⎡
⎢⎢⎢⎢⎢⎣
1 0 1 0
1 1 1 1
0 1 1 1
1 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ ,

(
A(0,1)
2

)−t
v= [0 1 0 0]t .

HenceM(0,1)
2 |P〉 � X1X2X3Z1 |ψmax〉.

Remark 5. We observe that the matrices Pmax and P ′max are not related by the operations on
parameters described in Lemma 2, that is there does not exist any gate XuZv in the four-qubit
Pauli group such that |P ′max〉 � XuZv |Pmax〉. This implies that the state |ψmax〉 and the state
|ψ ′max〉 define distinct orbits by the action of the four-qubit Pauli group. Actually, from Identities
(22) and (4), one has |P ′max〉 � P2P3 |Pmax〉. Using the method described in Section 3, we com-

pute a matrix of parameters Pψ→ψ ′ =

⎡
⎢⎢⎢⎢⎢⎣
−π/2 −π/2 −π/2
π/2 π π

0 π/2 π

−π/2 −π/2 −π/2

⎤
⎥⎥⎥⎥⎥⎦ and a phase ϕ =−π3 such that

|ψ ′max〉 = eiϕU(Pψ→ψ ′) |ψmax〉. Then, using Identities (4) and (5), we obtain

|ψ ′max〉 � (PHP† ⊗ PX⊗H⊗ PHP†) |ψmax〉 . (31)

This last identity can be checked using the function check_psi_to_psi_prime of the Python
module.

Remark 6. SinceM(0,1)
3 = S(0 2 3)M(0,1)

2 , it is easy to see that the set of all matrices of parametersP
having their last column null such thatM(0,1)

3 |P〉maximizes |�4| is equal to the set of all matrices
of parameters P having their last column null such that M(0,1)

2 |P〉 maximizes |�4|. We denote
this set by PMAX(0,1).

Conjecture 7. Any matrix in PMAX(0,1) can be obtain from Pmax or from P ′max by a sequence of
the operations on parameters described by Lemma 2.

5. All CNOT Circuits to Reach the Maximum of |�4|
We generalize the results of the previous section by describing all the four-qubit CNOT circuits that
enable to produce a state maximizing |�4| when they act on the LU orbit of |0000〉.

https://doi.org/10.1017/S0960129522000305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129522000305


266 M. Bataille

Proposition 8. Let i, j, k, � be distinct integers in {0, 1, 2, 3}, then M(i,j)
k and M(i,j)

� define the same
right coset of the subgroup 〈SWAP〉4 in 〈CNOT〉4. This right coset is denoted by (i, j):

(i, j)= {SσX[i j]X[j k]X[k i]X[i �]X[� j] | σ ∈S4}. (32)

Proof. Let σ be the permutation

(
0 1 2 3
i j k �

)
. Using Identity (8), we conjugate each member of the

equalityM(0,1)
3 = S(0 2 3)M(0,1)

2 (Identity (21)) by Sσ and obtainM(i,j)
� = S(ik�)M

(i,j)
k .

Proposition 9. Let i, j, i′, j′ in {0, 1, 2, 3} such that i 
= j and i′ 
= j′. If (i, j) and (i′, j′) are distinct
couples, then (i, j) and (i′, j′) are distinct cosets.

Proof. We check that for any i, j, k, i′, j′, k′ in {0, 1, 2, 3} (i, j, k distinct and i′, j′, k′ dis-
tinct), if A(i,j)

k = σA
(i′,j′)
k′ for some permutation matrix σ , then (i, j)= (i′, j′) (function

check_distinct_cosets of the Python module).

Proposition 10. For any permutation σ , one has : Sσ (i, j)S−1σ = (σ (i), σ (j)).

Proof. Using Identity (8), one has: SσM
(i,j)
k S−1σ =M(σ (i),σ (j))

σ (k) . The result follows from
Proposition 8.

Remark 6 can be generalized to any coset (i, j), and one can define PMAX(i,j) as being the set of
all matrices P having their last column such that the stateM(i,j)

k |P〉maximizes |�4|.

Proposition 11. Let i, j be distinct integers in {0, 1, 2, 3} and σ be a permutation such that σ (0)= i
and σ (1)= j, then :

PMAX(i,j) = σPMAX(0,1). (33)

Proof. We prove that PMAX(i,j) ⊂ σPMAX(0,1), the other inclusion being similar. Let P be a
matrix of parameters in PMAX(i,j) and let |ψ〉 =M(i,j)

k |P〉. Then |ψ〉maximizes |�4| and so does
S−1σ |ψ〉. One has :

S−1σ |ψ〉 = S−1σ M(i,j)
k |P〉 = S−1σ M(i,j)

k Sσ S−1σ |P〉 =M(0,1)
k′ S−1σ |P〉 ,

where k′ ∈ {2, 3}. Moreover, S−1σ |P〉 = S−1σ U(P) |0000〉 = S−1σ U(P)Sσ |0000〉 and, by using
Identity (9), one obtains S−1σ |P〉 = |σ−1P〉, hence

S−1σ |ψ〉 =M(0,1)
k′ |σ−1P〉 .

As S−1σ |ψ〉 maximizes |�4|, then σ−1P ∈ PMAX(0,1), so P ∈ σPMAX(0,1) and we deduce that
PMAX(i,j) ⊂ σPMAX(0,1).

Our numerical results based on the use of the random walk heuristic suggest the following
conjecture.

Conjecture 12. Any four-qubit CNOT circuit capable of maximizing |�4| by acting on the LU orbit
of |0000〉 belongs to one of the 12 cosets (i, j).
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|L〉 = e−i 11π12 U(Pψ→L) |ψmax〉, where Pψ→L =

⎡
⎢⎢⎢⎢⎢⎢⎣

π π/2 −π/2
π/2 −π/2 π

0 π π

0 −π/2 π/2

⎤
⎥⎥⎥⎥⎥⎥⎦

|�5〉 = e−i 7π12 U(Pψ→�5 ) |ψmax〉, where Pψ→�5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−π/3 θ − π −3π/4
π/3 θ 3π/4

π θ 3π/4

2π/3 π − θ π/4

⎤
⎥⎥⎥⎥⎥⎥⎦

and θ = cos−1
√
3
3

|M2222〉 = ei
5π
12 U(Pψ→M2222 ) |ψmax〉, where Pψ→M2222 =

⎡
⎢⎢⎢⎢⎢⎢⎣

π/2 π/4 0

−π/2 −π/4 π/2

0 −π/2 π/4

π/2 3π/4 π

⎤
⎥⎥⎥⎥⎥⎥⎦

Figure 2. LU operators generating the states |L〉, |�5〉 and |M2222〉, from the state |ψmax〉.

Example 13. Let σ = (013). The unitary SσM(0,1)
2 acting on the state |Pmax〉 generates the state

S(013) |ψmax〉 that maximizes |�4|. This state can be produced by the unitaryM(σ (0),σ (1))
σ (2) =M(1,3)

2
acting on the state |σPmax〉, where

σPmax = σ

⎡
⎢⎢⎢⎢⎢⎢⎣

π/2 π/2 0
π/2 π/2 0

π/4 cos−1
√
3
3 0

π/4 cos−1
√
3
3 0

⎤
⎥⎥⎥⎥⎥⎥⎦=

⎡
⎢⎢⎢⎢⎢⎢⎣

π/4 cos−1
√
3
3 0

π/2 π/2 0

π/4 cos−1
√
3
3 0

π/2 π/2 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

6. Circuits Generating the States |L〉, |�5〉 and |M2222〉
Let |ψ〉 be a state in the set {|L〉 , |�5〉 , |M2222〉}. Following the Gour-Wallach conjecture (Gour
and Wallach, 2012) proved by Chen and Djokovic (2013), there exists a matrix P of parameters
and a phase ϕ such that

|ψ〉 = eiϕU(P) |ψmax〉 . (34)
In order to compute P and ϕ, one can try to solve a 16 equations non-linear system but its res-
olution seems to be out of reach of current equation solvers (we used Maple and Python SymPy
solvers). However, one can turn the problem of finding a solution of (34) into an optimization
problem thanks to this simple remark : |ψ〉 = eiϕU(P) |ψmax〉 if and only if the sum of the abso-
lute values of the 16 coordinates of |ψ〉 − eiϕU(P) |L〉 vanishes. Again, we use a random walk on a
search space of 13 parameters (the 12 parameters of P plus the phase ϕ) to minimize this sum and
obtain an approximate solution of the system (function search_LU_from_state1_to_state2
of the Python module). From this approximate solution, we guess a possible form of an exact
solution. Then, we check by CAS (using the Python module SymPy) that this form is indeed an
exact solution. The results are summarized in Figure 2. Finally, using Identities (4) and (5), and
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θ = cos−1
√

3
3

e−i 7π
12 |L〉 =

|0〉
|0〉
|0〉
|0〉

H

H

Ry(θ)

Ry(θ)

P

P

T

T

P

Z

X

P

H

H

H

Z

P †

Z

e−iπ
6 |Φ5〉 =

|0〉
|0〉
|0〉
|0〉

H

H

Ry(θ)

Ry(θ)

P

P

T

T

T

T

T

T

X

P

P

Y

Ry(θ)

Ry(θ)

Ry(θ)

Ry(−θ)

Rz(−π
3
)

Rz(
π
3
)

Z

Rz(
2π
3

)

e−i 13π
24 |M2222〉 =

|0〉
|0〉
|0〉
|0〉

H

H

Ry(θ)

Ry(θ)

P

P

T

T

P

T

Z

Ry(
π
4
)

Ry(−π
4
)

H

Ry(
3π
4

)

P

P †

Z

P

Figure 3. Quantum circuits generating the states |L〉, |�5〉 and |M2222〉 up to a global phase. For better readability, most of
the rotations around the ŷ and ẑ axes defined by thematrices of parameters arewritten using the universal single-qubit gates
H, P, T (see Identity (4)).

combining the results in Figure 2 with those of Proposition 1 , it is possible to build simple quan-
tum circuits generating the states |L〉, |�5〉 and |M2222〉. These circuits are depicted in Figure 3,
and one can check that they are correct by using the function check_circuits of the Python
module.

We implemented the circuit generating the state |L〉 in one of the quantum computers publicly
available at https://quantum-computing.ibm.com/. In those computers, full connectivity between
the qubits is not achieved and the direct connections allowed between two qubits are given by
a graph. Moreover, due to the noise in the gates, and particularly in the 2-qubit gates, it is of
crucial importance to use as few CNOT gates as possible. We chose the 5-qubit ibmq_quito com-
puter because its graph is {{1, 0}, {1, 2}, {1, 3}, {3, 4}}; hence, the gates X[0 1], X[1 2] and X[3 1] of
the CNOT subcircuit that implements the operator M(0,1)

2 = X[0 1]X[1 2]X[2 0]X[0 3]X[3 1] are already
native gates. The two other gates of the CNOT subcircuit, namely X[2 0] and X[0 3], are not native
CNOT gates and can be simulated thanks to the use of SWAP gates. Finally, the operatorM(0,1)

2 can
be implemented using only 11 native CNOT gates:

M(0,1)
2 = X[0 1]X[1 2] X[0 1]X[1 0]X[0 1]︸ ︷︷ ︸

S(0 1)

X[2 1]X[1 3] X[0 1]X[1 0]X[0 1]︸ ︷︷ ︸
S(0 1)

X[3 1]. (35)

After compilation by the IBM algorithm (the process is called transpilation on the website), the
quantum circuit implementing the state |L〉 uses 22 single-qubit native gates, 11 CNOT gates and
has a total depth of 18 (see Figure 4). However, despite of this moderate length, we observed after
measurement the apparition of a large quantity of scorias (see the bar chart in Figure 4). Indeed,
from Identity (1), one has

|L〉 = 1
2e

i π6 (|0000〉 + |1111〉)+
√
3
6 e−i π3 (|0011〉 + |0101〉 + |0110〉 + |1001〉 + |1010〉 + |1100〉),

(36)
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Figure 4. Implementation in the ibmq_quito quantum computer of a circuit generating the state |L〉. The bar chart is based
on 2000 measurements.

so, ideally, the states |0001〉 , |0010〉 , |0100〉 , |1000〉 , |0111〉 |1011〉 , |1101〉 , or |1110〉 should not
appear after measurement. The main causes of this problem are, on one hand, the measurement
errors (average readout error is about 3 percent on this device), and on the other hand, the noise
in the gates (CNOT gate average error is about 1.3 percent). This suggests that there are still sig-
nificant technological challenges to overcome before we can implement the state |L〉 in a reliable
fashion.

7. Conclusion and Perspectives
In this work, we described how a CNOT circuit acting on a factorized state can produce four-qubit
maximum hyperdeterminant states and we proposed a quantum circuit generating the state |L〉,
whose interesting properties where described by Gour and Wallach (2012) and by Chen and
Djokovic (2013). It would be interesting to know whether it is possible to generalize this result
when the number of qubits n is greater than 4. Is it still possible to reach a MHS by a CNOT
circuit acting on a factorized state? What would be in this case the generalization of the uni-
tary M(i,j)

k to higher dimensions? However, answering these questions seems to be currently out
of reach because an explicit polynomial expression of the hyperdeterminant is known only up
to 4 qubits. A first approach would be to know if a generically entangled state (i.e. a state |ψ〉
such that �n(|ψ〉) 
= 0) can be produced by a CNOT circuit acting on a factorized state in the
case of any n-qubit system. Indeed, the vanishing of �n can be tested using the following cri-
terion (Gelfand et al., 1992, p. 445): let A=

∑
0�i0,...,in−1�1

ai0...in−1x
(0)
i0 . . . x

(n−1)
in−1 be the multilinear

form associated with the n-qubit state |ψ〉 =
∑

0�i0,...,in−1�1
ai0...in−1 |i0 . . . in−1〉, then the condition

�n(|ψ〉)= 0 means that the system
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{
A= ∂A

∂x(0)0
= ∂A
∂x(0)1

= · · · = ∂A
∂x(n−1)0

= ∂A
∂x(n−1)1

= 0

}
(37)

has a solution
(
x(0)0 , x(0)1 , . . . , x(n−1)0 , x(n−1)1

)
such that

(
x(i)0 , x(i)1

)

= (0, 0) for any i= 0 . . . n− 1.

Such a solution is called non-trivial. Therefore, to show that a state |ψ〉 is generically entangled, it
is sufficient to prove that the system corresponding to |ψ〉 has no solutions apart from the trivial
solutions. We will go back to these questions in future works.
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