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ABSTRACT

Lithium cannot be determined by electron microprobe, but it may be an essential component in tourmaline-
supergroup minerals. Therefore, its estimation is important for structural formula calculation and
nomenclature. In this paper, we present a method to estimate Li content in tourmaline frommicroprobe data
based on a multiple linear-regression model, which is not reliant on a particular normalization scheme. The
results derived from this model are reasonably accurate, particularly for low-Mg tourmalines (<2 wt.%
MgO) with Li2O contents higher than ∼0.3 wt.%. Furthermore, it provides a better fitness compared with
estimations of Li assuming that Li fills any cation deficiency at the Y site.
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Introduction

TOURMALINE is a complex borosilicate and is the main
sink for boron in crustal rocks. The compositional
variability, together with its refractory character,
ubiquity, and a pronounced sensitivity to the bulk-
rock composition, make tourmaline a useful tool as a
marker of boron flux and crustal evolution, as well as
a key player in the boron cycle (London et al., 2002;
Henry and Dutrow, 2002; Slack, 2002; Leeman
and Sisson, 2002; van Hinsberg et al. 2011).
The composition of tourmaline is expressed as
XY3Z6T6O18(BO3)3V3W, where X =Na, Ca,
K, vacancies; Y = Li, Fe2+, Mg, Mn, Al, Fe3+, Cr3+,
V3+, Ti4+); Z =Al, Cr3+, V3+, Fe3+, Fe2+, Mg; V =
O2–, OH–; and W=OH–, O2–, F (Henry et al., 2011).
Lithium can be an essential constituent of tourmaline
but, together with H and Fe3+, cannot be analysed by
electron microprobe. Although boron in tourmaline

has been determined by electron microprobe, it has
not been done routinely because of the many
analytical problems involved (see McGee and
Anovitz, 2002 for an overview). In recent years, Li
data for tourmaline have been obtained by Laser
Ablation Inductively Coupled Plasma Mass
Spectrometry (LA-ICP-MS) and Secondary Ion
Mass Spectrometry (SIMS), but the electron micro-
probe is still the most commonly used analytical
technique for determining tourmaline composition. In
this method, the Li content can be approximated on a
stoichiometric basis using the expression Li (atoms
per formula unit (apfu)) = 15 – (T +Y+ Z) cations.
This requires the structural formula either to be
calculated on a 6 Si basis (Dutrow and Henry, 2000)
or to calculate Li iteratively using a fixed number of
oxygens and assuming OH+ F = 4 (Clark, 2007).
These approaches work relatively well in some cases,
but tend to underestimate and overestimate the Li
contents, respectively (see Henry et al., 2011).
Furthermore, they present serious limitations, particu-
larly if there is a lack of stoichiometry in octahedral
sites, (OH+ F)≠ 4 apfu, and the B content is not
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determined. In this paper, we present a method to
estimate Li frommicroprobe data in tourmaline based
on a multiple linear-regression model, which uses
statistically significant wt.% oxide data and does not
depend on the normalization procedure.

Procedure and results

In order to estimate Li in tourmaline from
microprobe data, 294 analyses have been taken
from the literature in which Li is measured directly
by other techniques such as SIMS, LA-ICP-MS and
others. Data sources for Li2O analyses of tourma-
lines derive from Deer et al. (1986), Jolliff et al.
(1986), Dyar et al. (1998), Federico et al. (1998),
Aurisicchio et al. (1999ab), Bloodaxe et al. (1999),
Dyar et al. (1999), Kalt et al. (2001), Ertl et al.
(2003), Pieczka and Kraczka (2004); Bosi et al.
(2005a, b) Ertl et al. (2005, 2006, 2010, 2012),
Roda-Robles et al. (2012, 2015) and Zagorsky
(2015). Overall, the relative reproducibility (< 1 s

where s = standard deviation of the mean.) and
accuracy for Li data from SIMS are estimated to be
<5% and <20%, and those from LA-ICP-MS are
<3–7% and <15%, respectively. Tourmalines with
MgO > 2.0 wt.% are presumed to have negligible
Li content due to the antipathetic behaviour of Li
and Mg (Henry et al., 2002; Tindle et al., 2002). In
fact, tourmalines with MgO > 2.0 wt.% seem not to
have more than ∼0.10 wt.% Li2O (Fig. 1), which
represents < 0.07 apfu Li in the structural formula.
Accordingly, they have been discarded from the
dataset, and 191 tourmalines are considered for the
multiple linear-regression model.
In order to calculate the Li content, a multiple

linear-regression model is used taking SiO2, TiO2,
Al2O3, Cr2O3, FeOT, MnO, MgO, ZnO, CaO,
Na2O, K2O and F as independent variables. First,

FIG. 1. MgO vs. Li2O for 294 tourmaline samples using data from the literature. Open circles correspond to those
tourmaline samples that have not been considered in this study (MgO > 2 wt.%).

FIG. 2. Adjusted R-squared coefficient (%) vs. number of
variables.

TABLE 1. Steps indicating which variable is
entered in each step and the value of the
adjusted R-squared.

Step
Variable
introduced

Variable
deleted

Adjusted
R-squared

1 FeO(Total) 0.7021

2 SiO2 0.8609
3 MnO 0.8988
4 Al2O3 0.9449
5 MgO 0.9501
6 ZnO 0.9521
7 Na2O 0.9533
8 CaO 0.9552
9 ZnO 0.9546
10 Cr2O3 0.9559
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the optimal subset of predictive variables should be
obtained. This must be combined with the principle
of parsimony which should be considered in any
statistical model, that is, to optimize the information
with the fewest number of variables. Indeed,
analysis of all possible subsets (4096) indicates
that over 4 or 5 variables the increase in the adjusted
R-squared coefficient is minimal. Supporting
evidence for a reduced number of variables is
sought on a plot of the R-squared coefficient (in %)
vs. the number of variables included in the model
(number of variables plus one as it is considered a
model with constant term) (Fig. 2). In order to

obtain the optimal subset of predictors we used a
stepwise regression procedure. This ensures we
have the variables with higher partial correlation
with Li after removal of the influence of the other
variables. Accordingly, the stepwise method iden-
tifies the next subset of regressors: FeOT, SiO2,
MnO, Al2O3,MgO, Na2O, CaO, Cr2O3 (Table 1). It
is noteworthy that the same result is obtained after
using the Akaike information criterion (AIC). The
AIC is a measure of the relative quality of statistical
models for a given set of data. Given a set of models
for the data, the AIC estimates the quality of each
model relative to the other models. Hence, the AIC

TABLE 2. Subset of variables with the standard error and limits.

Coefficient Estimate Standard error Lower limit Upper limit

Intercept 2.356 0.807 0.763 3.950
SiO2 0.124 0.013 0.098 0.151
Al2O3 –0.121 0.009 –0.141 –0.102
FeO(Total) –0.178 0.007 –0.193 –0.163

MnO –0.162 0.009 –0.181 –0.143

FIG. 3. (a) Observed Li2O vs. predicted Li2O content using a multiple regression model. (b) Predicted Li2O values with a
multiple regression model normalized to observed data. (c) Observed Li2O vs. predicted Li2O content using the equation
Li (apfu) = 15 – (T + Y + Z) cations. (d ) Observed Li2O content vs. predicted Li2O values with the equation Li (apfu) =

15 – (T + Y + Z) cations normalized to observed data.
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provides a means for model selection and, given a
set of candidate models for the data, the preferred
model is the one with the minimum AIC value.
Accordingly, the AIC rewards goodness of fit (as
assessed by the likelihood function), but it also
includes a penalty that is an increasing function of
the number of estimated parameters. The penalty
discourages overfitting (increasing the number of
parameters in the model usually improves goodness
of fit). In fact, the AIC value for the full model is
−694.52, and after removing sequentially the
variable that produces a smaller increase in AIC,
we arrive at the previous subset of predictors with
AIC = –699.77; no subsequent removal leading to
an improved AIC. It should be noted that the last
four parameters provide little information on the
dependent variable (∼1.1% of the variability of the
dependent variable). For this reason, and taking
into account the principle of parsimony, we
consider the subset {FeOT, SiO2, MnO, Al2O3}.
The results for this choice of predictor variables are
reported in Table 2, with the estimated hyperplane

Li2O ¼ 2:356þ 0:124SiO2 � 0:121Al2O3

� 0:178FeOT � 0:162MnO

which explains the behaviour of Li in a 94.49%
(adjusted R-squared = 0.9449). The plots of
observed vs. predicted values (Fig. 3a) and
predicted values normalized to observed data vs.
Li2O content (Fig. 3b) reveal that the goodness of
fit is reasonably accurate (r2 = 0.95), particularly
for Li2O contents higher than ∼0.3 wt.% (obvi-
ously, the predicted negative values should be
considered as zero). The lower and upper limits in
Table 2 determine intervals including the true value
of the average increase of the Li, where the
corresponding variable increases by one unit and
the other variables remain constant. By compari-
son, the estimation of Li from the equation Li
(apfu) = 15 – (T + Y + Z) cations (Fig. 3c, d),
assuming (OH + F) = 4, involves a lower correl-
ation (r2 = 0.79) and variations significantly higher
than those resulting from the regression model
(Fig. 3a, b). In short, this model provides a method
to calculate the Li content in tourmaline from
microprobe data with a reasonable accuracy (whole
uncertainty of 5%), particularly for low-Mg
tourmaline (< 2 wt.% MgO) and Li2O contents
higher than ∼0.3 wt.% (Fig. 1, 3b). Tourmaline
with MgO contents > 2 wt.% can be considered to
have a negligible or very low Li content (< 0.3 wt.%
Li2O).
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