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Abstract

Multi-device radio frequency power amplifiers (PAs) often exhibit strongly non-linear behav-
ior in combination with long-term memory effects, leading to an extremely challenging model
development cycle. This paper presents a new, dynamic, behavioral modeling technique, based
on a combination of the real-valued decomposed piecewise method and concepts from the
field of machine learning. The underlying theory of the proposed modeling technique is pro-
vided, along with a detailed modeling procedure. Experimental results show that the proposed
decomposed piecewise support vector regression (SVR) model leads to significant perform-
ance improvements when compared with standard SVR models for both single transistor
and multi-transistor PAs. Different model thresholds are used to test the proposed model per-
formance for both PA types. For the single-transistor PA, modeled using only one partition,
an approximately 10 dB normalized mean square error (NMSE) reduction is seen when com-
pared with the standard SVR model. For the same PA, when utilizing two partitions, the
reduction improves to 14 dB. When applied to a multi-device Doherty PA, the NMSE between
model and measurement data is —50 dB, representing more than 10 dB improvement com-
pared with the standard SVR model.

Introduction

Behavioral modeling is a well-known and popular technique often applied to radio frequency
(RF) power amplifiers (PAs) in order to establish a relationship between device input and out-
put signals, without prior knowledge of the PA internals [1]. Over the past few decades, several
methods have been proposed to analyze and describe the behavior of RF PAs [2-6].

Increasingly, stringent efficiency requirements have led to the present abundance of
advanced PA architectures, such as the envelope tracking (ET), outphasing, and multi-way/
multistage Doherty [1] techniques. These PAs consist of multiple transistors and/or building
blocks in different combinations, leading to distinctly non-linear behavior, such as, for
example, AM/AM characteristics typified by a visible (horizontal and elongated) “S” shape,
as well as strong, non-linear, memory effects, arising due to internal interactions between mul-
tiple active devices [7]. The existing modeling techniques based on the Volterra series are
facing significant challenges for such systems. The decomposed vector rotation model [8],
derived from a modified form of the canonical piecewise linear functions, shows promise as
a potential new modeling option. So far, however, the reported accuracy improvement remains
modest [9]. A similar situation applies to methods based on artificial neural networks [10].

Recently, applications of machine learning methods to RF modeling have gained popular-
ity. In [8], a time-domain version of the support vector regression (SVR) method is used to
create dynamic models for several PA prototypes, showing improved prediction when com-
pared with traditional techniques. However, when modeling the multiple device Doherty
PA, the accuracy remains insufficient. In [11], a vector decomposition technique is presented
and applied, as part of an ET PA model based on the Volterra series, with a significant
improvement in modeling efficacy reported.

In this paper, the SVR method, from the field of machine learning, is combined with
the decomposed piecewise technique, thus providing a new modeling methodology for
multi-device PAs that exhibit strongly non-linear behavior that is additionally compounded
by non-linear memory effects.

The paper is organized as follows. The basic theory of the vector decomposition technique
and the SVR modeling methodology is provided in section “Basic theory of proposed model-
ing methodology”, while in section “Model validation”, experimental validation results are
provided. Conclusions are presented in section “Conclusion”.
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Basic theory of proposed modeling methodology

In order to deal with the distinct non-linearity and memory effects
inherent in multi-device PA architectures, we first decompose the
input complex envelope signal into several subsignals, using a vector
threshold decomposition technique. Each subsignal is then processed
using the SVR method. The concept is presented in detail below.

Vector threshold decomposition

As described in [10], the PA behavior depends strongly on the
input power level. To model effectively this non-linear behavior,
we define a set of thresholds as

a = {0[1,612, '--,Ots}, 9]
where ay is the magnitude of the input envelope, the values o are
monotonically increasing, i.e. a; <@, <:::<das and S is the total
number of thresholds.

By using these threshold values, the signal space is divided into
several interval zones, and the original input signal is then decom-
posed into several subsignals, located in the corresponding inter-
val zones. For instance, the sth subsignal can be obtained from

0 for [%(n)] < as,
Xs(n) = | [1%:(n)] — as—l]ej‘P(n) for a1 <|x%(n)| < a,
[as - asfl]e]‘P(n) for |3~Cx(n)| > as.

)

where |X,(n)| returns the magnitude of the complex-valued enve-
lope %s(n), and ¢(n) is the phase of X,(n). Note that the signal
above is represented in discrete-time, where the lengths of all sub-
signals are equal to that of the original signal. For example, assume
that the input signal in the discrete-time domain has L samples, the
decomposed subsignals can then be represented by the matrix

X(1) x(1) Xsy1(1)

R X2 x%(Q2) X+1(2)

X = 5 (3)
Bl (D) Fen(L)

where every original signal sample is decomposed into S + 1 sub-
samples, represented by each row of the matrix.

Support vector regression theory

SVR, developed by Cortes and Vapnik [12], represents a promis-
ing method for solving high-dimensional optimization problems.
This method is introduced below.

Suppose that the training data are given as {x;, y;};_,, where the
column vector x; € RM denotes M real-valued input variables with
output value y; € R. As described in [9], for applications to PA
modeling, the unknown non-linear function can be expressed as

f&) =" Bik(xi, %) + b, )
i=1

where f3; are the model weights, b is a bias term, and k( - ) is the kernel
function. The kernel implemented in this paper is based on the radial
basis functions (RBFs), which depend on the training data
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independent variable x; (the dependence is captured in the coeffi-
cients f;). The RBFs are chosen over the alternative option of linear
or polynomial kernels since the former provide a larger function
space. Intuitively, the RBFs, which are based on squared exponential
functions, can act as function approximators for arbitrary analytic
functions, while kernels based on polynomial functions must neces-
sarily have vanishing derivatives beyond a fixed order. This makes the
RBF-based kernels more general, and thus RBF-based RF SVR mod-
els tend to be more accurate - see [9] for a detailed analysis.

Once the optimal hyper paramy,eters are fixed, using the grid-
search method [9], the model is trained and the final model can be
obtained. The total number of model parameters are separated into
two different sets, the first set consists of the hyper parameters, i.e.
the margin &, the regularization term C, and y; the second set con-
sists of the coefficients required to fit the non-linear functions - the
support vectors, Ngy. Thus, the total number of model parameters
for the RBF-based SVR method is given by [9]

Novr = 4+ Ngy. (5

RF PA modeling description

The objective in PA modeling is to find an explicit function that
relates the input and output signals. Due to the memory effect, the
model should not only take into consideration the present value
of the input signal, but also some of its past history, as described
below

y(n) = f(x(n), X(n — 1), X(n — 2), - - ). (6)

The non-linear function, as described in (4), is written as a
real-valued function of one real variable. However, the input
and output signals in (6) are complex-valued. As described in
[8], in order for the SVR technique to be applicable to the mod-
eling problem in (6), both the input and the output values are
separated into real and imaginary parts, i.e. only real-valued
inputs and outputs are permitted.

A key aspect that distinguishes this work from previous mod-
eling efforts is that, here, the input signal is decomposed into sev-
eral sub-signals as described in section “Vector threshold
decomposition”. Thus, the model equations for the real part and
imaginary part are given as in (7) and (8) below,

Sclf(n), Fc}f(n— 1), ~--,5cf(n—M),

iggng, J?%En— 1;, ~--,J~C§En—%;, ceey

. xr(n), x;3(n—1), ---, x;(n—M), ---,
Re j(n) = fr icf(n), %{L(n o, ._.,%{L(n M, (7)

&é(”), i—;(n_l)’ >5C£(H_M)3 )

ici(n), kin—l),---,%ﬁ(n—M),~--,

Sclf(n), fclf(n— 1), ~--,5c1f(n—M), .

%ggn;, %ggn— 1;, -~-,5€§En—%g, ce

. x(n), x;,(n—1), ---, x;(n— M), ---,
Imy(n) :fI J~Cf(1’l), %{L(ﬂ—l),,i'{L(H—M),, (8)

X5 (n), %én—l),»~~,5c2(n—M),«-~,

), En—1), -, (n—M), -,

where ¥® and Re ji(n) refer to the real part of the input and out-
put signals, X! and Im j(n) refer to the imaginary part of the
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Fig. 2. Measured and modeled time-domain waveforms for GaN PA.
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Fig. 3. Output power spectra from measurement, the standard SVR-based model and
the proposed piecewise SVR model for the GaN PA driven by LTE signal.

input and output signals, respectively. The modeling topology is
described in Fig. 1.

As can be seen from the figure, this new model includes two
different SVR machines. The real and imaginary parts of the
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Fig. 1. Block diagram of the proposed behavioral
model.
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Fig. 4. AM/AM behavioral of the GaN PA from measurement and piecewise SVR
model.
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Fig. 5. AM/PM behavioral of the GaN PA from measurement and piecewise SVR
model.

input subsignals X(n — m) are separated and taken as the inputs
of the two SVR machines. The modeling procedure of the new
methodology is similar to the conventional method. The model

is trained with the training data [{X;(n — m)}ﬁ\:zo, ¥(n)]. Once
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Table 1. Performance of models for single transistor GaN PA

Jialin Cai et al.

Model Memory depth (M) No. of param. Extraction time (sec) Simulation time (sec) NMSE (dB)
Standard SVR model M=3 212 4.225 1.241 —46.8
(using theory from [9]) M=4 267 4.523 1.324 —47.6
Piecewise SVR M=3 306 4.837 1.423 —49.5
[0.:5] M=4 368 5.133 1.501 -51.0
Piecewise SVR M=3 324 4.959 1.476 —52.0
[0:3] M=4 387 5.220 1.587 —57.8
Piecewise SVR M=3 315 4911 1.515 —51.1
(0] M=4 355 5.002 1.649 —56.3

Measured

= = =Pigcewise SVR ([0.5])

---------- Piecewise SVR ([0.1,0.3])

= = = Error of Piecewise SVR ([0.5])

————— Error of Piecewise SVR ((0.1,0.3]) |
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Frequency Offset (MHz)

Fig. 6. Output power spectra from measurement, the piecewise SVR model with one
partition (o ={0.5}), and with two partitions («=1{0.1, 0.3}) for the GaN PA driven by an
LTE signal.

the model training is completed, it can be used for behavioral pre-
diction of the response of the PA when subjected to waveforms
under similar conditions.

Model validation

In this section, experimental tests are used to validate the pro-
posed modeling method when applied to both a single-transistor
PA and multi-transistor PA. Both PAs are designed in-house,
and are modeled based on the proposed decomposed piecewise
SVR technique. The models are extracted using the MATLAB
software.

Table 2. Performance of models for single transistor GaN PA, with two partitions

Single transistor GaN PA without “S” shape

In the first experimental validation, a PA, based on a 10 W GaN
transistor, is used to verify the efficacy of the proposed decom-
posed SVR model. The PA used here does not show the “S”
shaped AM/AM characteristic that would be typical of strongly
non-linear PAs, e.g. Doherty-based PAs. A single carrier 40
MHz long-term evolution (LTE) signal, centered at 2.15 GHz,
with 6.2dB PAPR, is used as the driving signal. The sampling
rate is set to 160 megasamples/s. Around 5000 samples are
recorded, with 3000 samples used for model training, while the
remainder of the data are used for model validation. The perform-
ance of the proposed model when applied to the GaN PA is pre-
sented in Figs 2-5, with the threshold set as a={0.5}, and the
memory length in this model set to four.

From the results in the figures, it is seen that the proposed pie-
cewise SVR model provides for a more accurate prediction of the
behavior of the single device GaN PA when compared with stand-
ard SVR model. A detailed model comparison is given in Table 1.
The proposed model provides more than a 3 dB improvement
when the threshold is set equal to 0.5, with memory depth
equal to four. The performance of the proposed model with vari-
ous threshold values is also shown in Table 1. As can be seen from
the table, for the PA in question, when the threshold is set to 0.3,
the best prediction is obtained at an NMSE close to —58 dB.

The validation of the proposed model with two partitions is
also given here. Figure 6 shows the performance of the piecewise
SVR models when o ={0.5} and a={0.1, 0.3}. As can be seen
from the results, the model with more partitions shows better per-
formance, as expected. A detailed model performance overview is
provided in Table 2. In the table, two different sets of threshold
values are used, with the set corresponding to o={0.1, 0.3}
achieving better prediction than the set with a={0.3, 0.6}. This
is mainly due to the fact that the first threshold set more evenly
separates the data when compared with the second set. A similar
situation occurred in the previous case.

Model Memory depth (M) No. of param. Extraction time (sec) Simulation time (sec) NMSE (dB)
Piecewise SVR M=3 327 5.455 2.045 -52.6
[0.3, 0.6]

M=4 454 5.621 2.324 —57.5
Piecewise SVR M=3 334 5312 2.323 —55.9
[0.1, 0.3]

M=4 475 5.711 2.401 —61.5
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Fig. 7. Measured and modeled time-domain waveforms (a), and errors of the models
(b) relating to the GaN Doherty PA.
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Fig. 8. Output power spectra and spectra error of the normal SVR model and the pie-
cewise SVR model compared with the measurement results on the GaN Doherty PA
driven by a four-carrier LTE signal, with 7.5 dB PAPR.

Multi-transistor GaN Doherty PA with “S” shape

In the second test example, the PA is operated at 3.5 GHz, with
IDS =50 mA for the main amplifier and VGS = —6 V for the aux-
iliary amplifier. The PA is driven by a four-carrier 80 MHz LTE
signal, with 7.5 dB PAPR, and the average output power of the
PA is 35dBm. The sampling rate is set at 400 megasamples/s.
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For this experimental test, the magnitude threshold is set as o
=1{0.3, 0.6} for normalized measurement data, i.e. where the max-
imum input magnitude is normalized to unity. Similar to the pre-
vious example, around 5000 samples are measured, with 3000 of
these samples used for model training, and the remainder with-
held for validation. The performance of the decomposed piece-
wise SVR model is presented in Figs 7-9 below, with the
memory length of the model, M, set equal to 5. As can be seen
from the results, the proposed piecewise SVR model gives an
extremely good performance, providing excellent prediction cap-
abilities in both time- and frequency-domains (Figs. 7 and 8,
respectively).

In addition to the comparison of the above measurements with
the proposed piecewise SVR model, a comparison is also provided
with the conventional SVR behavioral model, ie. with an SVR
model that does not employ the decomposed piecewise technique.
From the results, we can see that the proposed model shows sig-
nificant improvement. The modeled and measured AM/AM and
AM/PM characteristics of the Doherty PA are shown in Fig. 4.
The normalized mean square error (NMSE) is used in Table 3
to compare the performance of the proposed model to the
state-of-the-art, across different model orders and memory
lengths. To facilitate a reasonably fair comparison, a greedy algo-
rithm is employed to find the optimal piecewise GMP model. It
can be seen that the proposed piecewise SVR model provides a
significant improvement compared with the traditional method.
It also delivers a more than 6 dB improvement compared with
the normal SVR model when the memory length of both methods
is set to five (M=5), without adding significant model
complexity.

The results of piecewise SVR model when the magnitude
threshold a = {0.1, 0.3} are also given in Table 3. The power spec-
tral density comparison is given in Fig. 10, as can be seen from the
results, the model corresponding to a = {0.1, 0.3} provides a large
improvement when compared with the model with = {0.3, 0.6}.
The reason is given as before: the first model separates the data in
three evenly space partitions.

Conclusion

In this paper, a new behavioral model for RF power transistors,
based on decomposed piecewise SVR, is presented. Compared
with existing SVR modeling techniques, the presented approach
gives a significant reduction in model error when applied to
multi-device PAs. Experimental results show that, by employing
this new piecewise SVR modeling method, the distinct

1 x x x 150 x
= *  Measured - *  Measured
g %  Piecewise SVR 8 100 & *  Piecewise SVR
5 0.8 o
- 3 X
‘g‘_ - = 50 [ x
at . (5]
]
5] s 0
S04 £ b
2 & -50 y

@

Eo2 ® ont
o £ 100
= o K

0 . -150

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Normalized Input Power Normalized Input Power
(a) (b)

https://doi.org/10.1017/51759078720001208 Published online by Cambridge University Press

Fig. 9. AM/AM (a) and AM/PM (b) characteristics of the
GaN Doherty PA from measurements and from the pie-
cewise SVR model.
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Table 3. Performance of models for multi-transistor PA

Jialin Cai et al.

Nonlinear order (P), memory depth (M), No. of Extraction time Simulation time NMSE
Model cross-term shifts (L) param. (sec) (sec) (dB)
Piecewise MP [13] P=9, M=3 48 0.086 0.012 -29.7
P=11,M=4 75 0.100 0.014 -29.9
P=13,M=5 108 0.147 0.018 -30.0
Piecewise DDR [11] P=9, M=3 168 0.653 0.026 -31.2
P=11,M=4 270 0.908 0.035 =317
P=13,M=5 396 1.308 0.055 -31.8
Piecewise GMP [14] P=7,M=3,L=1 144 0.114 0.016 =313
P=7,M=4,L=1 180 0.143 0.018 -317
P=T7,M=4,L=2 300 0.277 0.032 -32.0
P=7,M=5,1=3 504 0.693 0.045 -32.3
Standard SVR M=3 289 5.224 1.100 -34.0
model [9]
M=4 367 5.496 1.324 -34.7
M=5 451 5.561 1.658 -35.1
Piecewise SVR M=3 456 6.359 2.011 =375
({0.3,0.6})
M=4 568 6.521 2.124 =SONT
M=5 682 6.633 2.258 -41.8
Piecewise SVR M=3 434 6.159 2.139 —40.9
({0.1,0.3})
M=4 585 6.221 2211 —44.6
M=5 646 6.373 2.363 -50.6
o under Grants 6142803180206, it was also supported by the Foundation of
- the State Key Laboratory of Millimeter Waves under Grant No. K202011,
g the Foundation of the Key Laboratory of RF Circuit and System, Ministry of
- Education under Grant GK198800299030-003.
30
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Fig. 10. Output power spectra from measurement, the piecewise SVR model with o=
{0.3, 0.6}, and with @ ={0.1, 0.3}, for the multi-device GaN Doherty PA driven by an LTE
signal.

characteristics of the multi-device system in different power levels
can be modeled accurately, and the distortion caused by the
inherent behavior of the non-linear system can effectively be pre-
dicted. The ability of the model to predict across input power
levels is also examined with positive results indicated.
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