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We study the existence of non-trivial solutions for a class of asymptotically periodic
semilinear Schrödinger equations in R

N . By combining variational methods and the
concentration-compactness principle, we obtain a non-trivial solution for the
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proofs we apply the mountain pass theorem and its local version.
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1. Introduction

In this paper we study the existence of non-trivial solutions for the semilinear
Schrödinger equation

−∆u + V (x)u = f(x, u), x ∈ R
N , (1.1)

where V : R
N → R and f : R

N ×R → R are continuous functions. In our main result
we establish the existence of a solution for (1.1) under an asymptotic periodicity
condition at infinity.

In order to precisely state our results, we denote by F the class of functions
h ∈ C(RN , R)∩L∞(RN , R) such that, for every ε > 0, the set {x ∈ R

N : |h(x)| � ε}
has finite Lebesgue measure. We suppose that V is a perturbation of a periodic
function at infinity in the following sense.

(V ) There exist a constant a0 > 0 and a function V0 ∈ C(RN , R), 1-periodic in
xi, 1 � i � N , such that V0 − V ∈ F and

V0(x) � V (x) � a0 > 0 for all x ∈ R
N .

Considering F (x, t) =
∫ t

0 f(x, s) ds the primitive of f ∈ C(RN × R, R), we also
suppose the following hypotheses:

(f1) F (x, t) � 0 for all (x, t) ∈ R
N × R and f(x, t) = o(t) as t → 0, uniformly for

x ∈ R
N ;
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(f2) there exists a function b ∈ C(R \ {0}, R+) such that

F̂ (x, t) = 1
2f(x, t)t − F (x, t) � b(t)t2

for all (x, t) ∈ R
N × R;

(f3) there exist a1 > 0, R1 > 0 and τ > max{1, N/2} such that

|f(x, t)|τ � a1|t|τ F̂ (x, t)

for all (x, t) with |t| > R1;

(f4) uniformly in x ∈ R
N , it holds that

lim
|t|→+∞

F (x, t)
t2

= +∞;

(f5) there exist q ∈ (2, 2∗) and functions h ∈ F , f0 ∈ C(RN × R, R), 1-periodic in
xi, 1 � i � N , such that:

(i) F (x, t) � F0(x, t) =
∫ t

0 f0(x, s) ds for all (x, t) ∈ R
N × R;

(ii) |f(x, t) − f0(x, t)| � h(x)|t|q−1 for all (x, t) ∈ R
N × R;

(iii) f0(x, ·)/| · | is increasing in R \ {0} for all x ∈ R
N .

The main result of this paper can be stated as the following theorem.

Theorem 1.1. Suppose that V satisfies (V ) and f satisfies (f1)–(f5). Then prob-
lem (1.1) possesses a solution.

As a by-product of our calculations we can obtain a weak solution for the periodic
problem. In this setting we can drop the condition (f5) and we shall prove the
following result.

Theorem 1.2. Suppose that V (·) and f(·, t) are 1-periodic in xi, 1 � i � N , and
V (x) � a0 > 0 for all x ∈ R

N . If f satisfies (f1), (f3), (f4) and

(f2)′ F̂ (x, t) > 0 for all t �= 0,

then problem (1.1) possesses a ground-state solution.

Problems such as (1.1) have been the focus of intensive research in recent years.
Initially, several authors dealt with the case in which f behaves like q(x)|t|p−1t,
1 < p < 2∗ − 1, and V is constant (see [5, 6]). In the work of Rabinowitz [14] and
Rabinowitz and Coti Zelati [8], the classical superlinear condition due to Ambrosetti
and Rabinowitz was imposed:

(AR) there exists µ > 2 such that

0 < µF (x, t) � f(x, t)t

for all x ∈ R
N and t �= 0.
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This hypothesis has an important role in the proof that Palais–Smale sequences are
bounded. In this work we assume condition (f4), which is weaker than condition
(AR). It has already appeared in the papers of Ding and Lee [9] and Ding and
Szulkin [10].

We emphasize that in theorem 1.1 we do not suppose periodicity on V or f(·, t).
Instead, we consider the asymptotically periodic case as in the paper of Lins and
Silva [12]. Condition (f5) means that f is a perturbation of the periodic function
f0. In this context, we refer the reader to [1–3,12,16,17] for some related (but not
comparable) results.

As an example of an application of our main theorem, we take a ∈ C(RN , R) ∩
L∞(RN , R) 1-periodic in xi, 1 � i � N , with a(x) � 2. Define the functions

f(x, t) = a(x)t ln(1 + t) + e−|x|2t(ln(1 + t) + 1 − cos(t)), t � 0,

f0(x, t) = a(x)t ln(1 + t), t � 0,

and f(x, t) = −f(x,−t), f0(x, t) = −f0(x,−t) for t < 0. This function satisfies
(f1)–(f5) but not (AR). Moreover, f(x, t)/t is oscillatory, and therefore the Nehari
approach used in [18] is not applicable.

The paper is organized as follows. In § 2 we present some technical results that
are used throughout the work while § 3 is devoted to the proofs of theorems 1.1
and 1.2.

2. Preliminary results

In this section we present some preliminaries for the proofs of our main theorems.
We denote by BR(y) the open ball in R

N of radius R > 0 and centre at y. The
Lebesgue measure of a set A ⊂ R

N will be denoted by |A|. For brevity we write∫
A

u instead of
∫

A
u(x) dx. We also omit the set A whenever A = R

N . Finally, | · |p
denotes the norm in Lp(RN ) for 1 � p � ∞.

Throughout the paper we assume that the potential V satisfies assumption (V ).
This implies that the norm

‖u‖2 =
∫

(|∇u|2 + V (x)u2), u ∈ H1(RN ),

is equivalent to the usual one. In what follows we denote by H the space H1(RN )
endowed with the above norm.

In our first lemma we obtain the basic estimates on the behaviour of the nonlin-
earity f .

Lemma 2.1. Suppose that f satisfies (f1), (f3) and part (ii) of (f5). Then, for any
given ε > 0, there exist Cε > 0 and p ∈ (2, 2∗) such that

|f(x, t)| � ε|t| + Cε|t|p−1, |F (x, t)| � ε|t|2 + Cε|t|p (2.1)

for all (x, t) ∈ R
N × R.

Proof. Taking ε > 0 and using (f1), we obtain δ > 0 such that

|f(x, t)| � ε|t|, x ∈ R
N , |t| � δ. (2.2)
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By (f3) there exists R > 0 satisfying

|f(x, t)|τ � a1|t|τ F̂ (x, t) � 1
2a1|t|τ+1|f(x, t)|, x ∈ R

N , |t| � R.

Then, setting p = 2τ/(τ − 1), we can use τ > N/2 to conclude that 2 < p < 2∗.
Moreover,

|f(x, t)| � C|t|(τ+1)/(τ−1) = C|t|p−1, x ∈ R
N , |t| � R. (2.3)

From the continuity and periodicity of f0 we obtain M > 0 such that

|f0(x, t)| � M, x ∈ R
N , δ � |t| � R.

Now, using part (ii) of (f5), we obtain

|f(x, t)| � |h|∞|t|q−1 + M �
(

|h|∞ +
M

δq−1

)
|t|q−1, x ∈ R

N , δ � |t| � R.

This, (2.2) and (2.3) proves the first inequality in (2.1). The second one follows
directly by integration.

In view of the above lemma, the functional I : H → R given by

I(u) = 1
2‖u‖2 −

∫
F (x, u)

is well defined. Moreover, standard calculations show that I ∈ C1(H, R) and the
Gateaux derivative of I is given by

I ′(u)v =
∫

(∇u∇v + V (x)uv) −
∫

f(x, u)v

for any u, v ∈ H. Hence, the critical points of I are precisely the weak solutions of
problem (1.1).

We recall that (un) ⊂ H is called a Cerami sequence for the functional I at level
c ∈ R if I(un) → c and (1 + ‖un‖)‖I ′(un)‖ → 0. The following result is a version of
the classical mountain pass theorem [4]. It says that the mountain pass geometry is
sufficient for obtaining a Cerami sequence. We refer the reader to [15] for the proof.

Theorem 2.2. Let E be a real Banach space. Suppose that I ∈ C1(E, R) satisfies
I(0) = 0 and

(I1) there exist ρ, α > 0 such that I(u) � α > 0 for all ‖u‖ = ρ,

(I2) there exists e ∈ E with ‖e‖ > ρ such that I(e) � 0.

Then I possesses a Cerami sequence at level

c = inf
Γ

max
t∈[0,1]

I(γ(t)),

where
Γ = {γ ∈ C([0, 1], E) : γ(0) = 0, ‖γ(1)‖ > ρ, I(γ(1)) � 0}.
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Since in our setting we are not able to prove compactness for I, we shall use the
following local version of the above result (see [12, theorem 2.3]).

Theorem 2.3 (local mountain pass theorem). Let E be a real Banach space. Sup-
pose that I ∈ C1(E, R) satisfies I(0) = 0, (I1) and (I2). If there exists γ0 ∈ Γ , Γ
defined as in theorem 2.2, such that

c = max
t∈[0,1]

I(γ0(t)) > 0,

then I possesses a non-trivial critical point u ∈ γ0([0, 1]) at the level c.

In the next result we prove that the functional I verifies the geometric conditions
of the mountain pass theorem.

Lemma 2.4. Suppose that f satisfies (f1), (f3), (f4) and part (ii) of (f5). Then I
satisfies (I1) and (I2).

Proof. By lemma 2.1 and Sobolev’s inequality, we have∫
F (x, u) � ε|u|22 + Cε|u|pp � c1ε‖u‖2 + C‖u‖p

for some c1 > 0. Since p > 2, we have

I(u) � ( 1
2 − c1ε)‖u‖2 + o(‖u‖2) � α

for ‖u‖ = ρ small enough. This proves (I1).
In order to verify (I2), we fix ϕ ∈ C∞

0 (RN ) satisfying ϕ(x) � 0 in R
N and

‖ϕ‖ = 1. We claim that there is R0 > 0 such that I(Rϕ) < 0 for any R > R0. If
this is true, it suffices to take e = Rϕ with R > 0 large enough to get (I2).

For the proof of the claim we set k = 2/
∫

ϕ2 and use (f4) to obtain M > 0
satisfying

F (x, t) � kt2 for all |t| � M.

Hence, setting AR = {x ∈ R
N : ϕ(x) � M/R}, we obtain∫

F (x, Rϕ) �
∫

AR

F (x, Rϕ) � kR2
∫

AR

ϕ2. (2.4)

Since ϕ � 0, we can choose R0 > 0 such that, for any R � R0, it holds that∫
AR

ϕ2 � 1
2

∫
ϕ2.

It follows from the definition of k and (2.4) that
∫

F (x, Rϕ) � R2, and therefore

I(Rϕ) � 1
2R2 − R2 = − 1

2R2 < 0

for any R > R0.

Lemma 2.5. Suppose that f satisfies (f1)–(f4) and part (ii) of (f5). Then any
Cerami sequence for I is bounded.
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Proof. We adapt here an argument from [9]. Let (un) ⊂ H be such that

lim
n→+∞

I(un) = c and lim
n→+∞

(1 + ‖un‖)‖I ′(un)‖H′ = 0.

It follows that

c + on(1) = I(un) − 1
2I ′(un)un =

∫
F̂ (x, un), (2.5)

where on(1) stands for a quantity approaching zero as n → +∞. Suppose by con-
tradiction that, for some subsequence still denoted (un), we have that ‖un‖ → ∞.
By defining vn = un/‖un‖, we obtain

on(1) =
I ′(un)un

‖un‖2 = 1 −
∫

f(x, un)vn

‖un‖ ,

and therefore

lim
n→+∞

∫
f(x, un)vn

‖un‖ = 1. (2.6)

For any r � 0 we set

g(r) = inf{F̂ (x, t) : x ∈ R
N , |t| � r}.

Let R1 > 0 be given by (f3). For any |t| > R1 there holds

a1F̂ (x, t) �
(

f(x, t)
t

)τ

�
(

2F (x, t)
t2

)τ

.

Hence, it follows from (f4) that F̂ (x, t) → ∞ as t → ∞ uniformly in x ∈ R
N . This,

(f2) and the definition of g imply that g(r) > 0 for all r > 0 and g(r) → ∞ as
r → ∞.

For 0 � a < b we define

Ωn(a, b) = {x ∈ R
N : a � |un(x)| < b},

and for a > 0,

cb
a = inf

{
F̂ (x, t)

t2
: x ∈ R

N , a � |t| � b

}
.

From (f2) we have that cb
a > 0. By using (2.5) and the above definitions, we obtain

c + on(1) =
∫

Ωn(0,a)
F̂ (x, un) +

∫
Ωn(a,b)

F̂ (x, un) +
∫

Ωn(b,∞)
F̂ (x, un)

�
∫

Ωn(0,a)
F̂ (x, un) + cb

a

∫
Ωn(a,b)

u2
n + g(b)|Ωn(b, ∞)|,

and therefore, for some C1 > 0, we have that

max
{ ∫

Ωn(0,a)
F̂ (x, un), cb

a

∫
Ωn(a,b)

u2
n, g(b)|Ωn(b, ∞)|

}
� C1. (2.7)
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The above inequality implies that |Ωn(b, ∞)| � C/g(b). Recalling that g(b) →
+∞ as b → +∞, we conclude that

lim
b→+∞

|Ωn(b, ∞)| = 0. (2.8)

For fixed µ ∈ [2, 2∗), by Hölder’s inequality and Sobolev embedding, we obtain, for
some C2 > 0,∫

Ωn(b,∞)
|vn|µ �

( ∫
Ωn(b,∞)

|vn|2∗
)µ/2∗

|Ωn(b, ∞)|(2∗−µ)/2∗

� C2‖vn‖µ|Ωn(b, ∞)|(2∗−µ)/2∗
= C2|Ωn(b, ∞)|(2∗−µ)/2∗

.

Since µ < 2∗, we conclude that

lim
b→+∞

∫
Ωn(b,∞)

|vn|µ = 0. (2.9)

Again from (2.7), for 0 < a < b fixed, it follows that∫
Ωn(a,b)

|vn|2 =
1

‖un‖2

∫
Ωn(a,b)

u2
n � 1

‖un‖2

C1

cb
a

= on(1).

Let C3 > 0 be such that |u|2 � C3‖u‖ for all u ∈ H and consider ε ∈ (0, 1
3 ). By

(f1), there exists aε > 0 such that

|f(x, t)| � ε|t|
C2

3
for all |t| � aε.

Hence, ∫
Ωn(0,aε)

f(x, un)vn

‖un‖ � ε

C2
3

∫
Ωn(0,aε)

v2
n � ε. (2.10)

By using (f5) and recalling that h ∈ L∞(RN , R), we obtain C4 > 0 such that
|f(x, un)| � C4|un| for every x ∈ Ωn(aε, bε). Thus,∫

Ωn(aε,bε)

f(x, un)vn

‖un‖ � C4

∫
Ωn(aε,bε)

v2
n < ε for all n � n0. (2.11)

If we set 2τ ′ = 2τ/(τ − 1) ∈ (2, 2∗), we can use condition (f3), (2.7) and Hölder’s
inequality to obtain∫

Ωn(bε,∞)

f(x, un)vn

‖un‖ =
∫

Ωn(bε,∞)

f(x, un)v2
n

|un|

�
( ∫

Ωn(bε,∞)

|f(x, un)|τ
|un|τ

)1/τ( ∫
Ωn(bε,∞)

|vn|2τ ′
)1/τ ′

� a
1/τ
1

( ∫
Ωn(bε,∞)

F̂ (x, un)
)1/τ( ∫

Ωn(bε,∞)
|vn|2τ ′

)1/τ ′

� C1

( ∫
Ωn(bε,∞)

|vn|2τ ′
)1/τ ′

.
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This expression and (2.9) provides bε > 0 large in such way that∫
Ωn(bε,∞)

f(x, un)vn

‖un‖ < ε for all n � n0. (2.12)

Finally, inequalities (2.10)–(2.12) imply that∫
f(x, un)vn

‖un‖ � 3ε < 1,

which contradicts (2.6). Therefore, (un) is bounded in H.

Remark 2.6. If f is periodic, we can obtain (2.11) without condition (f5). More-
over, in this case, it follows from periodicity and continuity of F0 that F0(x, t)/t2 �
k = k(a, b) > 0 for all x ∈ Ωn(a, b), and therefore the above lemma holds under the
setting of theorem 1.2.

The next result was inspired by [8, lemma 2.18]. See also a classical result due to
Lieb [11, theorem 8.10].

Lemma 2.7. Suppose that f satisfies (f1) and (f2). Let (un) ⊂ H be a Cerami
sequence for I at level c > 0. If un ⇀ 0 weakly in H, then there exist a sequence
(yn) ⊂ R

N and R > 0, α > 0 such that |yn| → ∞ and

lim sup
n→∞

∫
BR(yn)

|un|2 � α > 0.

Proof. Suppose, by contradiction, that the lemma is false. Then, for any R > 0, we
have that

lim sup
n→∞

∫
BR(y)

|un|2 = 0 for all R > 0.

Hence, we can use a result of Lions (see [13, lemma I.1] or [8, lemma 2.18]) to
conclude that |un|s → 0 for any s ∈ (2, 2∗). It follows from the second inequality
in (2.1) that

lim sup
n→+∞

∫
F (x, un) � lim sup

n→∞

(
ε

∫
|un|2 + Cε

∫
|un|p

)
� Cε,

where we have used the boundedness of (un) in L2(RN ). Since ε is arbitrary, we
conclude that

∫
F (x, un) → 0 as n → +∞. The same argument and the first

inequality in (2.1) imply that
∫

f(x, un)un → 0 as n → +∞.
Since (un) is a Cerami sequence, we obtain

c = lim
n→∞

[I(un) − 1
2I ′(un)un] = lim

n→∞

∫
( 1
2f(x, un)un − F (x, un)) = 0,

which contradicts c > 0. The lemma is proved.

We finish the section by stating two technical convergence results. The proofs
can be found in lemmas 5.1 and 5.2 of [12], respectively.
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Lemma 2.8. Suppose that V satisfies (V ) and f satisfies (f5). Let (un) ⊂ H be
a bounded sequence and let vn(x) = v(x − yn), where v ∈ H and (yn) ⊂ R

N . If
|yn| → ∞, then we have

(V0(x) − V (x))unvn → 0, (f0(x, un) − f(x, un))vn → 0

strongly in L1(RN ) as n → ∞.

Lemma 2.9. Suppose that h ∈ F and s ∈ [2, 2∗]. If (vn) ⊆ H1(RN ) is such that
vn ⇀ v weakly in H, then

lim
n→+∞

∫
h|vn|s =

∫
h|v|s.

3. Proofs of the main results

In this section we denote by I0 : H → R the functional associated with the periodic
problem, namely,

I0(u) = 1
2

∫
(|∇u|2 + V0(x)u2) −

∫
F0(x, u).

We also consider the following norm in H1(RN ):

‖u‖0 =
( ∫

|∇u|2 + V0(x)u2
)1/2

,

which is equivalent to the usual norm of this space.
We are ready to prove our main theorem.

Proof of theorem 1.1. By lemma 2.4 and theorem 2.2, there exists a sequence
(un) ⊂ H such that

I(un) → c � α > 0 and (1 + ‖un‖)I ′(un) → 0 as n → ∞. (3.1)

Applying lemma 2.5 we may assume, without loss of generality, that un ⇀ u weakly
in H. We claim that I ′(u) = 0. Indeed, since C∞

0 (RN ) is dense in H, it suffices to
show that I ′(u)ϕ = 0 for all ϕ ∈ C∞

0 (RN ). We have

I ′(un)ϕ − I ′(u)ϕ = on(1) −
∫

[f(x, un) − f(x, u)]ϕ. (3.2)

Using the Sobolev embedding theorem we can assume that, up to a subsequence,
un → u in Ls

loc(R
N ) for each s ∈ [1, 2∗) and1

un(x) → u(x) a.e. on K as n → ∞,

|un(x)| � ws(x) ∈ Ls(K) for every n ∈ N and a.e. on K,

where K denotes the support of the function ϕ. Therefore,

f(x, un) → f(x, u) a.e. on K as n → ∞,

1Here, ‘a.e.’ is a short form of ‘almost everywhere on K or almost every point x in K in sense
of measure’.
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and using (2.1) we obtain

|f(x, un)ϕ| � ε|w2| |ϕ| + Cε|wp−1| |ϕ| ∈ L1(K).

Thus, taking the limit in (3.2) and using the Lebesgue dominated convergence
theorem, we obtain

I ′(u)ϕ = lim
n→∞

I ′(un)ϕ = 0,

which implies that I ′(u) = 0.
If u �= 0, the theorem is proved. So, we deal in the following with the case in

which u = 0. By lemma 2.7, we recall that there exist a sequence (yn) ⊂ R
N , R > 0

and α > 0 such that |yn| → ∞ as n → ∞ and

lim sup
n→∞

∫
BR(yn)

|un|2 � α > 0. (3.3)

Without loss of generality, we may assume that (yn) ⊂ Z
N (see [7, p. 7]). Setting

ũn(x) = un(x+yn) and observing that ‖ũn‖ = ‖un‖0, up to a subsequence we have
that ũn ⇀ ũ in H, ũn → ũ in L2

loc(R
N ) and for almost every x ∈ R

N . From (3.3),
we have ũ �= 0.

Claim 3.1. I ′
0(ũ) = 0.

To prove the claim we take ϕ ∈ C∞
0 (RN ) and define, for each n ∈ N, ϕn(x) =

ϕ(x− yn). Arguing as in the beginning of the proof and using the periodicity of f0,
we obtain

I ′
0(ũ)ϕ = I ′

0(ũn)ϕ + on(1) = I ′
0(un)ϕn + on(1),

and therefore it suffices to check that I ′
0(un)ϕn = on(1). To achieve this objective

we notice that, by lemma 2.8,

I ′
0(un)ϕn = I ′(un)ϕn +

∫
[V0(x) − V (x)]unϕn −

∫
[f0(x, un) − f(x, u)]ϕn

= I ′(un)ϕn + on(1).

So, by (3.1), the claim is verified.

Claim 3.2. lim inf
n→∞

∫
F̂ (x, un) �

∫
F̂0(x, ũ).

By using part (ii) of (f5) and a straightforward calculation, we obtain

|F̂ (x, t) − F̂0(x, t)| �
(

1
2

+
1
q

)
h(x)|t|q.

Since un ⇀ 0 weakly in H, it follows from the above inequality and lemma 2.9 that

lim
n→∞

∫
F̂ (x, un) = lim

n→∞

∫
F̂0(x, un) = lim inf

n→∞

∫
F̂0(x, ũn) �

∫
F̂0(x, ũ),

where we have also used the periodicity of F̂0.
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The above claim and (3.1) provide

c = lim
n→∞

[I(un) − 1
2I ′(un)un] = lim inf

n→∞

∫
F̂ (x, un) �

∫
F̂0(x, ũ)

= I0(ũ) − 1
2I ′

0(ũ)ũ = I0(ũ),

and therefore I0(ũ) � c. It follows from part (iii) of (f5) that maxt�0 I0(tũ) = I0(ũ).
Hence, by the definition of c, (V ) and part (i) of (f5), we have that

c � max
t�0

I(tũ) � max
t�0

I0(tũ) = I0(ũ) � c.

We can now invoke theorem 2.3 to conclude that I possesses a critical point at level
c > 0. This finishes the proof.

We proceed now with the proof of the periodic result.

Proof of theorem 1.2. We first notice that lemmas 2.1, 2.4 and 2.5 are still valid
under the assumptions of theorem 1.2. Hence, by lemma 2.4, we can use theorem 2.2
to obtain a sequence (un) ⊂ H such that

lim
n→+∞

I0(un) = c0 and lim
n→+∞

(1 + ‖un‖0)‖I ′
0(un)‖ = 0,

where c0 is the mountain pass level of I0. Arguing as in the proof of theorem 1.1,
we conclude that un ⇀ u weakly in H with I ′

0(u) = 0.
As before, we only need to consider the case in which u = 0. By lemma 2.7, there

are a sequence (yn) ⊂ Z
N , an R > 0 and an α > 0 such that |yn| → ∞ as n → ∞

and
lim sup

n→∞

∫
BR(yn)

|un|2 � α > 0. (3.4)

Writing ũn(x) = un(x+yn) and observing that ‖ũn‖0 = ‖un‖0, up to a subsequence,
we have ũn ⇀ ũ weakly in H, ũn → ũ in L2

loc(R
N ) and ũn(x) → ũ(x) almost

everywhere in R
N . The local convergence and (3.4) imply that ũ �= 0. Arguing as

in the first claim of the proof of theorem 1.1, we conclude that I ′
0(ũ) = 0, and

therefore we obtain a non-zero weak solution.
In view of the above existence result, the number

m = inf{I0(u); u ∈ E and I ′(u) = 0} > 0

is well defined. We claim that m is achieved. Indeed, let (un) ⊂ H be a minimizing
sequence for m, namely,

I0(un) → m, I ′
0(un) = 0 and un �= 0.

Since (un) is a Cerami sequence for I0, it follows from lemma 2.5 that it is bounded.
Moreover, using I ′

0(un)un = 0 and (2.1) with ε small, we can obtain k > 0 satisfying
‖un‖0 � k. Thus, arguing as in the preceding paragraph, we obtain a translated
subsequence (ũn), which has a non-zero weak limit u0 such that I ′

0(u0) = 0 and
ũn(x) → u0(x) a.e. in R

N . By Fatou’s lemma,

m = lim
n→∞

I0(un) = lim
n→∞

I0(ũn) = lim inf
n→∞

∫
F̂0(x, ũn) �

∫
F̂0(x, u0) = I0(u0).

Consequently, I0(u0) = m, and therefore u0 �= 0 is a ground-state solution.
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We finish the paper by pointing out that, with a little more regularity on f , we
are able to obtain signed solutions. Indeed, following a standard process we may
define

f+(x, t) =

{
f(x, t), t � 0,

0, t < 0.

Then f+ satisfies (f1)–(f5) and we can consider the truncated functional

I+(u) = 1
2‖u‖2 −

∫
F+(x, u),

where F+ is the primitive of f+, to obtain a non-zero critical point u of I+. Testing
the derivative at u with the function min{u(x), 0}, we conclude that u � 0. If we
suppose that f is Lipschitz continuous, we can apply standard elliptic regularity
theory and the maximum principle to prove that u > 0 in R

N (see [14]). If we
truncate the right-hand side of the nonlinearity f we can also obtain a negative
solution. We omit the details.
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