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Superimposed deformation of the Solonker Belt and nearby
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Abstract – The deformation of the Solonker Belt and nearby regions is helpful for understanding the
tectonic evolution of the Central Asian Orogenic Belt. This study carried out structural analysis in
the Mandula and Ganqi areas of western Inner Mongolia, including the Solonker Belt, the Southern
Orogenic Belt and the northern Yinshan Belt (Langshan range). Our results reveal that the Solonker
Belt, the Southern Orogenic Belt and the northern Yinshan Belt underwent two stages (D1 and D2)
of deformation during the Mesozoic period. The D1 stage produced the NNE-directed thrusts and
asymmetric folds, indicating a NNE–SSW contraction. The northern Yinshan Belt, the Southern Oro-
genic Belt and the Solonker Belt formed as a series of NNE-verging tectonic nappes. The D2 stage
developed the NE-trending folds and the SE- or NW-directed thrusts that cross-cut the D1 structures.
The two events of nearly orthogonal or oblique shortening gave rise to the superimposed structures
(e.g. fold interference patterns). The quartz veins that filled the fractures of the D1 deformation con-
tain zircons of Middle Triassic U–Pb ages. The new dating data, along with the regional sedimentary
hiatus, led us to infer that the D1 stage of deformation occurred in Middle Triassic time and the D2
stage occurred in Late Jurassic time. We consider that the D1 stage of deformation resulted from a
convergent event, which might be related to the closure of the Palaeo-Asian Ocean or limited, narrow
ocean basins; and the D2 stage of deformation was the far-field result of subduction of the Palaeo-
Pacific Ocean and the closure of the Mongol-Okhotsk Ocean.

Keywords: structural analysis, Solonker Belt, Mesozoic, Central Asian Orogenic Belt, Inner Mongo-
lia.

1. Introduction

The Central Asian Orogenic Belt (CAOB) is a gi-
ant tectonic collage between the Siberian Craton and
North China–Tarim cratons (Sengör, Natal’in & Burt-
man, 1993; Jahn, 2004; Windley et al. 2007; Xiao
et al. 2009, 2015). It was built up by multiple subduc-
tion/accretionary and collisional processes along with
the closure of the Palaeo-Asian Ocean, and various tec-
tonic units were involved, such as Precambrian micro-
continents, ancient island arcs, fragments of oceanic
islands and seamounts, accretionary complexes and
passive continental margins (Mossakovsky et al. 1993;
Sengör, Natal’in & Burtman, 1993; Jahn, 2004; Wind-
ley et al. 2007).

Many studies have been carried out to understand
the tectonic processes of the CAOB, but the timing of
the final closure of the Palaeo-Asian Ocean is highly
controversial, ranging from Late Devonian to Triassic
(Xiao et al. 2003; Lin et al. 2008; Charvet et al. 2011;
Xu et al. 2013; Eizenhöfer et al. 2014, 2015a,b; Shao,
Tang & He, 2014; Li et al. 2014, 2017a,b,c; Liu et al.
2017). The Solonker Belt has been considered a Late
Permian to Middle Triassic suture zone, with Early Pa-
laeozoic subduction-accretionary rocks distributed to
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its north and south (Xiao et al. 2003, 2015; Li et al.
2014, 2017b,c; Eizenhöfer et al. 2015a,b; Liu et al.
2016). In contrast, some studies have regarded the So-
lonker Belt as a Permian extensional zone which was
built on the Early Palaeozoic orogens (Chen et al.
2012; Xu et al. 2013; Shao, Tang & He, 2014; Luo
et al. 2016; Wang, X. C. et al. 2016).

The Yinshan–Yanshan Belt is situated to the south of
the CAOB and has undergone polyphase deformation
during the Mesozoic period, which might have genetic
links with: (i) the closure of the Palaeo-Asian Ocean
at c. 250–200 Ma (e.g. Cui & Wu, 1997; Wang, Zhou
& Li, 2011), (ii) the Jurassic closure of the Mongol-
Okhotsk Ocean (Wang, Zhou & Li, 2011; Zhang, J.
et al. 2014) or (iii) the westward indentation of the
North China Plate due to the subduction of the Palaeo-
Pacific Ocean (e.g. Faure, Lin & Chen, 2012).

Some studies have examined the sedimentary, vol-
canic and metamorphic history in/adjacent to the So-
lonker Belt (e.g. Chen et al. 2000; Xiao et al. 2003,
2015; Xu et al. 2013; Song et al. 2015; Eizenhöfer
et al. 2015a,b; Zhang, Wei & Chu, 2015; Zhang
et al. 2016), but the scarcity of structural analysis
greatly limits our understanding of the tectonic de-
velopment of the Solonker Belt. In order to unravel
the genetic mechanism of the Solonker Belt and its
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corresponding tectonic events, this paper deals with
the superimposed deformation of the Solonker Belt,
the Southern Orogenic Belt and the northern Yinshan
Belt exposed in western Inner Mongolia (Fig. 1). In
the following, two main questions will be addressed,
namely (i) what is the bulk geometry and kinematics
deduced from the structural analysis? And (ii) what are
the timings of the deformation and their relationships
with the regional geodynamic events?

2. Geological setting

The CAOB in Inner Mongolia is subdivided into sev-
eral ENE-trending tectonic units, from south to north:
the Southern Orogenic Belt, the Solonker Belt and
the Northern Orogenic Belt. Several amalgamated mi-
crocontinents, including the Hunshandake block, the
South Mongolia Microcontinent and the southern mar-
gin of the Ergun block, have been proposed to account
for the present architecture (Fig. 1b; Xiao et al. 2003,
2009; Xu et al. 2013).

The Southern Orogenic Belt is separated from the
North China Craton by the Bayan Obo–Chifeng fault
and extends at least for > 700 km from the Ganqi
area in the west via Ondor Sum to the Chifeng area
in the east (Fig. 1b). It is composed of the Ordovi-
cian to Lower Silurian Ondor Sum Group, which is
predominantly composed of sericite quartz schists,
chlorite-epidote schists, albite-chlorite-epidote schists
and meta-basalts, and the Early Palaeozoic Bainaimiao
arc magmatic rocks (De Jong et al. 2006; Jian et al.
2008, 2010; Xu et al. 2013; Shi et al. 2013). Late
Palaeozoic magmatic rocks overprinted the Early Pa-
laeozoic Bainaimiao arc rocks (Zhang, S.-H. et al.
2009a,b, 2014). The Solonker Belt extends from the
Ganqi area to the Linxi area (Fig. 1b; Wang & Liu,
1986; Xiao et al. 2003, 2015) and is composed of
Upper Palaeozoic limestones, turbidites, volcaniclastic
rocks, mafic rocks and rare amounts of ultramafic bod-
ies (Wang & Liu, 1986; Xiao et al. 2003). The vol-
canic rocks and equivalent intrusions in the Solonker
Belt have age ranges of c. 310–250 Ma (e.g. Jian et al.
2010; Eizenhöfer et al. 2014). The North Orogenic
Belt is defined by the lithological association of Lower
Palaeozoic Baolidao arc plutons (e.g. Chen et al. 2000;
Jian et al. 2008), mélange rocks and Devonian molasse
sandstones (Xu et al. 2013).

The Yinshan–Yanshan Belt is an E–W-trending
Mesozoic tectonic unit, 1000 km in length, in the north
of the North China Craton. The basement rocks of
the Yinshan–Yanshan Belt consist of Archaean and
Palaeoproterozoic gneisses unconformably covered by
Meso- to Neoproterozoic terrigenous clastic strata and
carbonates (Kusky & Li, 2003; Zhao, Sun & Wilde,
2005; Faure et al. 2007; Kusky, Windley & Zhai,
2007). The basement rocks are unconformably over-
lain by Upper Palaeozoic and Mesozoic sedimentary
rocks. Our study area occupies the northern Yinshan
Belt, which is separated from the CAOB to the north
by the Bayan Obo fault and bounded by the Ordos

basin to the south (Fig. 1c; Zhang, J. et al. 2013, 2014;
Hu et al. 2014). Below we will describe the lithology
and structural feature of the Late Palaeozoic Solonker
Belt (the Mandula area), the Early Palaeozoic South-
ern Orogenic Belt (the Ganqi area) and the northern
Yinshan Belt (the Langshan range; Fig. 1c).

3. Geology and structural deformation

3.a. The Mandula area (the Solonker Belt)

3.a.1. Lithostratigraphy and magmatic rocks

The Mandula area mainly exposes the Upper Carbon-
iferous to Permian sedimentary and magmatic rocks.
The southern part of the Mandula area is dominated
by limestones and sandstones ascribed to the Upper
Carboniferous to Lower Permian Amushan Forma-
tion (C2–P1a). However, these limestones are olisto-
liths sedimented into a siltstone-greywacke matrix, and
thus the rocks are considered to have formed an olisto-
strome in Early Permian time (Shi, 2013). The olisto-
strome is characterized by metre- to kilometre-sized
blocks of limestone and sandstone. The long axis of the
olistoliths mostly strikes NW–SE (Fig. 2). The Lower
Permian Baotege Formation (P1b) and a basaltic lava
unit crop out to the north of the olistostrome. The
Baotege Formation is composed of well-stratified tur-
bidite and marlstone with intercalations of volcanic
layers. The basaltic lava was dated at 274 Ma (Chen
et al. 2012). In the north, the Lower–Middle Permian
Dashizhai Formation (P1-2d) is composed of basaltic
andesite, rhyolite, tuff, sandstone and silty mudstone
(Zhang et al. 2008; Shao, Tang & He, 2014). The
Middle Permian Zhesi Formation (P2z) comprises len-
ticular limestone, conglomerate, sandstone and mud-
stone with a mixed fauna of Boreal and Tethyan do-
mains (NMBGMR, 1991; Wang, Wang & Li, 2004).

The Upper Palaeozoic sedimentary rocks in the
Mandula area are unconformably covered by the Creta-
ceous sedimentary rocks comprising conglomerates
and sandstones (Fig. 2).

3.b.2. Polyphase deformation

Our field observations show that the olistostrome geo-
metrically overlies the lower basaltic lavas of 274 Ma.
The olistostrome and the lavas northwards thrust upon
the Lower Permian Baotege Formation (P1b) along the
F1 fault (Figs 2, 3 A–A′). The F1 fault is an ESE-
striking and SW-dipping thrust with a sinistral com-
ponent. Immediately south of the fault, the basalts de-
veloped striae with a nearly N–S direction (Fig. 4a).
Immediately north of the fault, the turbidite exhibits
a SW-dipping cleavage, and the relationship between
the bed and cleavage indicates an asymmetric fold.
Drag folds are locally observed along the fault, indicat-
ing NE-directed thrusting with a left lateral strike-slip
component (Fig. 4b).

The Lower Permian Baotege Formation tectonically
overlies the Middle Permian Zhesi Formation (P2z) as
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a result of the F2 thrust fault. The F2 fault presents as
geomorphologic valleys in the field, and the turbidite
along the fault exhibits a WNW-trending cleavage. The
Middle Permian Zhesi Formation develops open folds
with predominant NE- or SW-dipping beds.

The F3 fault is a WNW–ESE-striking and NNE-
directed thrust fault. It cross-cuts the Dashizhai Form-
ation and results in the volcanic bodies forming pop-
up structures along a SSW-directed antithetic thrust
(Figs 2, 3 A–A′). The strata near the F3 fault are ver-
tical and have developed a series of vertical, net-like
joints.

The F4 fault developed in the sandstones of the
Dashizhai Formation. The sandstones near the fault de-
veloped a vertical or NE-dipping cleavage. A sinistral
strike-slip component is deduced from the drag folds
in the sandstones.

There are small NE–SW-trending strike-slip faults
in the Mandula area (Fig. 2), which dislocated the
strata and accommodated the displacement of the
abovementioned NNE-directed thrust faults.

The Mandula area also has two main NE–SW-
trending, SE-dipping thrust faults, the F5 and F6 faults,
which cross-cut the sedimentary formations and the
Permian igneous plutons (Figs 2, 3 B–B′). The F5
thrust fault, 1–2 km in width, presents as an intens-
ively cleaved zone in the basaltic lavas and a mylonitic
zone in the granitic plutons and the limestones (P2z)
(Fig. 5a). Microscopic evidence in the mylonitic zone
indicates a top-to-the-NW sense of shear (Fig. 5a, b).
The F6 thrust fault, c. 1 km in width, cross-cuts the tur-
bidite to produce the SE-dipping cleavage (Fig. 2). The
striae on the F6 fault plane have a predominant NW–
SE direction (Fig. 5c). Microscopic indicators of the
F6 fault indicate a top-to-the-NW sense of displace-
ment (Fig. 5d). In addition, NW- or SE-directed small
thrust faults that cut the nearly WNW–ESE-trending
folded strata are observed in places (Fig. 5e, f).

The strata in the Mandula area are intensively fol-
ded. The turbidite of the Baotege Formation has vari-
ous dips (Figs 2, 6a, b). Two groups of shear joints
and one group of E–W-trending tension joints are ob-
served in the turbidite. In places, the joints are filled
with white quartz veins (Fig. 4c). The volcanic beds
of the Dashizhai Formation (P1-2d) mostly dip to the
north or south. By contrast, the volcaniclastic rocks
have various dips and sometimes the strata are over-
turned (Fig. 6c). The sandstones of the Zhesi Forma-
tion have various dips, but mainly dip to the NW or
SE when close to the F5 and F6 thrust faults (Fig. 2).
In most cases, the sandstones developed a pervasive
cleavage with a predominant WNW–ESE trend. But

W-dipping cleavage is observed in places, and the re-
lationship to the bed implies rotation by a later stage of
deformation (Fig. 4d).

3.a.3. Interpretation

Our field observations indicate that the two NE–
SW-trending, SE-dipping thrust faults (F5, F6) cross-
cut the WNW–ESE-trending thrust faults (F1–F4;
Table 1). Thus, two stages of deformation can be con-
cluded. The D1 deformation is responsible for the de-
velopment of the WNW–ESE-trending, NE- or NNE-
directed thrust faults and the WNW–ESE-trending
folds. Although the mineral stretching lineation cannot
be seen in most cases, the cleavage can be recognized
along the WNW–ESE-trending faulted zone, restric-
ted to the areas near the faults, with predominant NNE
or SSW dips (Fig. 2). The WNW–ESE-trending folds
and the predominant NNE- or SSW-dipping cleavage
in the faulted zones suggest the D1 stage of deform-
ation is characterized by NNE–SSW contraction. The
D2 deformation developed the NE–SW-trending, SE-
dipping thrust faults and the NE–SW-trending folds,
indicating a NW–SE contraction. The D2 deformation
reworked the D1 folds and bent the fold axes (Fig. 2,
see projection of intersection of bed and cleavage). Be-
cause of the superimposed deformation, the strata in
the Mandula area are characterized by dome-and-basin
or mega arrowhead-shaped structures (e.g. Ramsay &
Huber, 1987; Deng, Koyi & Nilfouroushan, 2016), es-
pecially in the turbidite and fine-grained volcaniclastic
rocks (Figs 6, 7).

3.b. The Ganqi area

3.b.1. Lithostratigraphy and magmatic rocks

The Ganqi area is mainly occupied by the Meso-
proterozoic basement rocks, Ordovician arc-related
meta-volcanic and meta-sedimentary rocks, the Or-
dovician to Silurian Ondor Sum Group composed of
sericite quartz schist, iron-bearing quartzite and meta-
volcanic rocks, and the Lower Permian Baotege Form-
ation (Fig. 8). The Mesoproterozoic rocks in the south-
ern Ganqi area are composed of gneiss, marble and
meta-sedimentary rocks that were intruded by the
Ordovician diorite and Permian granite (NMBGMR,
1991). The Ordovician meta-volcanic rocks mainly
consist of basalt, andesite and dacite. The Ondor Sum
Group has undergone greenschist-facies metamorph-
ism and was interpreted as a subduction-related com-
plex (Xu et al. 2013). The sericite quartz schist yielded
a detrital zircon peak age of 444 Ma (Xu et al. 2016).

Figure 1. (Colour online) (a) The location of the study area in the eastern Eurasian continent. (b) Tectonic division of western and
central Inner Mongolia (the tectonic division marked in italic is after Xiao et al. 2003 and Badarch, Cunningham & Windley, 2002; the
tectonic division of the SOB and NOB, and the positions of the SME, SMM and HB are after Xu et al. 2013). (c) Geological map of the
study area in western Inner Mongolia (after NMBGMR, 1991; Zhou et al. 2013). HLS – Helanshan; THS – Taihangshan; NCP – North
China plate; SCB – South China Block; CAOB – Central Asian Orogenic Belt; SME – Southern Margin of the Ergun block; NOB –
Northern Orogenic Belt; HB – Hunshandake block; SOB – Southern Orogenic Belt; SMM – Southern Mongolia Microcontinent; SB
– Solonker Belt. YY – Yinshan–Yanshan Belt.
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Figure 2. (Colour online) Geological and structural map of the Mandula area and lower hemisphere projections of the measured
structural data.

The Ordovician to Silurian meta-volcanic rocks and
subduction-related complex are defined as the South-
ern Orogenic Belt (Xu et al. 2013). The Baotege Form-
ation in the Ganqi area is a succession of turbidites
with intercalations of volcanic beds, which belong to
the Solonker Belt.

3.b.2. Polyphase deformation

The Ganqi area has undergone a nearly N–S contrac-
tion due to the Early Palaeozoic orogeny (Xu et al.
2013). Here we choose the foliation as the reference
surface (S1) to the study the geological architecture. In
places, the bedding of the meta-sedimentary rocks is
consistent with the foliation (S0-1).

From south to north, the Mesoproterozoic basement
rocks, the Southern Orogenic Belt and the Solonker
Belt formed as NNE-verging imbricated thrust nappes.

The Mesoproterozoic basement rocks were thrust upon
the Ordovician meta-volcanic rocks of the Southern
Orogenic Belt through a NW–SE-striking and SW-
dipping thrust (F7 fault, comparable to the Bayan Obo
fault). Above the F7 fault, we observed a series of
antithetic faults in the Mesoproterozoic amphibolites
(Figs 3 C–C′, 9a). Immediately north of the F7 fault,
the foliation of the Ordovician meta-volcanic rocks
predominantly strikes WNW–ESE, nearly vertical, and
the meta-volcanic rocks are characterized by NNE-
verging tight isoclinal folds.

The Mesoproterozoic and Lower Palaeozoic rocks
overthrust to the NNE upon the Permian volcaniclastic
rocks to form a kilometre-scale klippe (Figs 3 C–C′,
9b). Moreover, the rocks in the klippe are overturned
and intraformational folding is observed (Fig. 9c). The
minimum distance between the klippe and the root
zone is c. 15 km.
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Figure 3. (Colour online) Representative cross-sections through the Solonker tectonic zone (A–A′, B–B′, C–C′), the Southern Oro-
genic Belt (C–C′, D–D′) and the Langshan range (E–E′), illustrating the structural style of the Mesozoic tectonics. (The section
locations are in Fig. 1c, Fig. 2 and Fig. 8). D1 and D2 refer to the deformation phases described in the text. SB – Solonker Belt; SOB
– Southern Orogenic Belt.

The Ordovician meta-volcanic rocks were thrust
above the Ondor Sum Group and the Permian volcani-
clastic rocks of the Baotege Formation by the F8 fault
(Fig. 3 C–C′). The meta-volcanic rocks near the F8
fault developed WNW–ESE-trending, nearly vertical
foliation, and the amygdaloidal structures with calcite
infillings are sheared to form shear bands (Fig. 9d).
In the microscopic view, the nearly vertical stretching
lineation is defined by elongated phenocrysts, and the

kinematic indicators suggest a top-to-the-NNE sense
of shear (Fig. 9e).

Like the Mandula area, the Ganqi area also has a
group of NE–SW-trending faults. Some of the faults
display transpressional features.

The Mesoproterozoic meta-sedimentary rocks have
predominant beds/foliations dipping to the NW or SE,
but also have NNE or SSW dips (Fig. 8). As seen
in outcrop, the Mesoproterozoic meta-sedimentary
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Figure 4. (Colour online) Field pictures of the D1 stage deformation in the Mandula area. (a) N–S-trending striae in the basalts (Early
Permian), immediately south of the F1 fault. Length of pen for scale is 15 cm. (b) Drag fold preserved in the folded turbidite (Baotege
Formation, Early Permian, GPS: 42° 23′ 22′′ N, 110° 17′ 07′′ E); the strata are overturned to the north, indicating a northward thrust with
left lateral strike-slip components, immediately north of the F1 fault. Height of man for scale is c. 175 cm. (c) Two sets of shear joints
and a set of tensional joints developed in the Permian turbidite (Baotege Formation, Early Permian; GPS: 42° 23′ 35′′ N, 110° 16′ 33′′ E).
Quartz veins of Middle Triassic ages fill the joints (see Section 4 in the text). Length of pen for scale is 15 cm. (d) Intersection of the
bed and cleavage indicates two stages of deformation: the D1 of NNE–SSW contraction produced N-verging asymmetric folds and
related cleavages (S1); the D2 of NW–SE contraction rotated the cleavage planes, found in the Lower and Middle Permian Dashizhai
Formation (GPS: 42° 39′ 28′′ N, 110° 22′ 50′′ E).

rocks developed crenulation in the bedding plane (here
named as pre-D1). The pre-D1 crenulation was over-
lain by a NE–SW slicken lineation caused by inter-
layer sliding (Fig. 10a, b), and the beds developed a
cleavage that now dips to the west. Both the cleav-
age and the NE–SW slicken lineation indicate the
early stage (D1) of NNE-verging asymmetric folding.
Subsequently, the early structures were rotated by the
later stage (D2) of deformation so that the beds are
now overturned to the SE and the cleavage dips to
the west (Fig. 10a, b). The Ordovician meta-volcanic
rocks also have some foliations dipping to the NW or
SE (Fig. 3 D–D′).

The Ordovician and Silurian Ondor Sum Group is
the subduction mélange corresponding to the Early
Palaeozoic subduction event; it becomes difficult to
distinguish the deformation related to the Early Pa-
laeozoic subduction-related fabrics from the late-
stage structures. All the foliations of the Ondor Sum
Group plotted in a large range around N–S (Fig. 8).
The folded sericite schist, striking E–W, developed
a S-dipping cleavage that was filled by quartz veins
(Fig. 10c). However, the sericite quartz schist of the

Ondor Sum Group in places developed kink bands,
resulting from a NW–SE contraction (Fig. 10d). The
crenulation lineation of the early stage (D1 or Pre-D1)
sometimes dips to the NW or SE (Fig. 11a).

3.b.3. Interpretation

In addition to the deformation of the Ordovician–
Silurian rocks inherited from the Early Palaeozoic
event, two main deformation stages can be identi-
fied according to the superimposed structures. The
first stage of deformation (D1) developed the NNE-
directed thrusts, klippe above the Permian rocks and
the NNE (N)- or SSW (S)-dipping foliations, im-
plying a nearly NNE–SSW contraction. The second
stage of deformation (D2) reworked the early struc-
tures. The D2 stage of deformation resulted from a
NW–SE contraction as suggested by the NW- and SE-
dipping foliation and the small NW-trending transpres-
sional faults. The NNE- or SSW-dipping foliations
(D1) were refolded by the later approximately ortho-
gonal contraction (D2) to form the fold interference
patterns (Fig. 7).
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Superimposed deformation of the Solonker Belt

Figure 5. (Colour online) Photographs of NW- or SE-directed thrusts of the D2 stage of deformation in the Mandula area. (a) Mylonitic
granites preserved in the F5 thrust faults (GPS: 42° 25′ 08′′ N, 110° 27′ 41′′ E). (b) Microfabrics show a top-to-the-NW shearing; Qz
– quartz. (c) Foliated marlstones (the Baotege Formation, Early Permian) along the F6 fault. (d) Sigmoidal porphyroclast of feldspar
showing a top-to-the-NW sense of shear in the mylonitic sandstones of the F6 fault; Fld – feldspar. (e) SE-directed thrust (D2) cross-
cuts the N-dipping turbidite (D1), found in the Lower to Middle Permian Dashizhai Formation; the fault plane (SF) dips to the NW
and the beds (S0) dip to N. (f) Fault breccias and mirror surface with pseudotachylite are observed close to the fault. Length of pen for
scale is 15 cm.

3.c. The Langshan range (the northern Yinshan Belt)

3.c.1. Lithostratigraphy and magmatic rocks

The NE–SW-trending Langshan range is c. 80 km
in width. The basement rocks comprise Neoar-
chaean to Palaeoproterozoic gneiss, and Meso- to

Neoproterozoic meta-sedimentary and meta-volcanic
rocks (Hu et al. 2014). Upper Palaeozoic sandstone,
limestone and volcanic rocks are locally exposed.
The Mesoproterozoic basement rocks are unconform-
ably overlain by Jurassic and Cretaceous sequences
(Fig. 1c; NMBGMR, 1991). The Jurassic sequences,
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Figure 6. (Colour online) Field photos of the superimposed folds in the Mandula area. (a) Dome structure in the siltstones (Baotege
Formation, Early Permian; GPS: 42° 24′ 38′′ N, 110° 17′ 06′′ E). (b) Dome structure in fine-grained turbidite (Dashizhai Formation,
Early and Middle Permian). (c) Superimposed fold (dome) preserved in the Permian volcaniclastic rocks (Dashizhai Formation, Early
and Middle Permian; GPS: 42° 39′ 30′′ N, 110° 21′ 56′′ E). The strata dipping to the NE is overturned. The wavelength of the fold is c.
100 m, which is larger than folds observed in the siltstones (a) and (b).

the Shiguai Group, of more than 1 km thickness, are
composed of conglomerate, sandstone and shale (NM-
BGMR, 1991), and the Cretaceous strata, of more
than 2.5 km thickness, are composed of conglomer-
ate, sandstone and shale. The Langshan range consists
of magmatic rocks of Early Permian (294–272 Ma),
Late Permian (260–254 Ma) and Middle–Late Trias-
sic (245–227 Ma; Wang, Z. Z. et al. 2015, 2016; Feng
et al. 2017) ages. The Triassic igneous rocks are char-
acterized by biotite-granite and biotite-, K-feldspar-
granite (NMBGMR, 1991).

3.c.2. Polyphase deformation

Here we present a transverse section from SE to NW to
show the framework of the Langshan range (Fig. 3 E–
E′). The Mesoproterozoic rocks near the Ordos basin
were thrust to the southeast by a high-angle thrust
fault, over the Jurassic conglomerates and sandstones
(Fig. 11b). The Jurassic strata were folded into a series

of NE-trending open folds. Northwardly, in the cent-
ral part of Langshan range, the Mesoproterozoic rocks
were intruded by large amounts of Permian and Tri-
assic gneissic granites (Fig. 3 E–E′). The foliation of
the gneissic granite mostly dips to the north. Further to
the northwest, the Mesoproterozoic meta-sedimentary
rocks are characterized by NW-directed imbricated
sheets (Fig. 11c).

The main tectonic line changes to NNE-trending on
the western side of the Langshan range. Large volumes
of Permian granites and minor gneissic biotite-granite
plutons distribute along the western side of the Lang-
shan range. The Permian plutons developed two sets
of joints, along which the crystals recrystallized to be-
come coarser (Fig. 11d). The gneissic biotite-granite
plutons with predominant ESE-dipping foliations bear
WNW-directed stretching lineations defined by ori-
ented biotite and muscovite (Fig. 11e, f).

All the deformed rocks are unconformably covered
by the Cretaceous sedimentary rocks (Fig. 3 E–E′).
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Figure 7. Block diagrams showing the fold interference patterns created by the two stages of deformation in the Mandula and Ganqi
areas.

3.c.3. Interpretation

The deformation in the Langshan range is related to
two stages of deformation. The first stage (D1) de-
veloped the nearly E–W-striking foliation in the Per-
mian granitic rocks and the locally ductile deformation
of the Triassic gneissic granites, indicating a nearly
NNE–SSW contraction. The second stage (D2) de-
veloped the SE-directed thrust fault and NE-trending
folds in the Jurassic strata and the NW-directed imbric-
ated sheets in the Mesoproterozoic rocks, indicating a
NW–SE contraction. The conjugate joints in the gran-
itic plutons and the lineation in the gneissic biotite-
granite suggest the contraction was WNW–ESE on the
western side of the Langshan range, which is probably
related to strain partitioning of the NW–SE contrac-
tion along the NNE–SSW-trending boundary faults,
the Langshan fault (Zhang, J. et al. 2014) or the Zuun-
bayan fault (Webb, Johnson & Minjin, 2010). The
NNE–SSW-trending boundary fault might previously
have been a strike-slip fault caused by the NNE–SSW
contraction of the D1 stage.

To summarize, the study region (including the So-
lonker Belt, the Southern Orogenic Belt and the north-
ern Yinshan Belt) underwent two stages of deform-
ation during the Mesozoic period. In the Mandula
area of the Solonker Belt, the D1 stage of deform-

ation led to the development of the NNE-directed
thrusts and a series of WNW–ESE-trending, NNE-
verging folds (Table 1; Fig. 7). The D2 stage of de-
formation formed the NW-directed thrusts and NE–
SW-trending folds. The sedimentary rocks were fol-
ded by the two nearly orthogonal contractions to form
basin-and-dome or mega arrowhead-shaped fold pat-
terns (Fig. 7; e.g. Ramsay & Huber, 1987; Deng,
Koyi & Nilfouroushan, 2016). In the Ganqi area, the
Mesoproterozoic rocks and the Early Palaeozoic meta-
volcanic rocks are exposed as tectonic nappes thrust
to the NNE over the Permian volcaniclastic rocks dur-
ing the D1 stage. The rock foliation was refolded by
the D2 stage of NW–SE contraction. In the Langshan
range, the N- or NNE-dipping foliation of the Triassic
gneissic granites suggests the D1 stage of deformation.
The D2 stage of NW–SE contraction is responsible for
the development of SE- or NW-directed thrusts in the
Mesoproterozoic rocks and NE-trending folds in the
Jurassic sedimentary rocks.

4. Dating of the quartz veins

We chose quartz vein samples for zircon dating to
constrain the deformation age. The quartz veins are
ore veins of hydrothermal origins with a significant
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Figure 8. (Colour online) Geological and structural map of the Ganqi area and lower hemisphere projections of the measured structural
data.

amount of Au. In the field, the quartz veins cut the Per-
mian strata along the joints (Fig. 4c), or intrude along
the cleavages of asymmetric folds (Fig. 10c). Zircon
grains were separated using conventional heavy liquid
and magnetic techniques. The grains were then hand-
picked and mounted within epoxy resin discs, and then
polished to expose their internal structures. The in-
ternal morphology of the zircons was examined using
cathodoluminescence (CL) prior to U–Pb isotopic ana-
lyses. The CL imaging and U–Pb dating by laser ab-
lation inductively coupled plasma mass spectrometry
(LA-ICP-MS) were conducted at the Sample Solution
Analytical Technology Co. Ltd Wuhan with analysed
spot sizes of 32 μm. Detailed operating conditions for
the laser and ICP-MS instrument followed Liu et al.
(2008) and Lin et al. (2015). The measured data are
listed in the online Supplementary Material available
at http://journals.cambridge.org/geo.

Hydrothermal zircon may directly precipitate or
form through the alteration of magmatic zircon by
aqueous fluids exsolved from highly evolved magmas
(Schaltegger, 2007). Igneous zircon in hydrothermal
environments is easily altered by aqueous fluid, caus-
ing secondary textures that cut across the primary
growth zone (Corfu et al. 2003; Hoskin, 2005; Geisler,
Schaltegger & Tomaschek, 2007). The secondary tex-

tures overprinting the primary zircon domains often
present as patchy areas, sector zoning, a porous tex-
ture or as homogeneous without zoning (Hoskin, 2005;
McNaughton, Mueller & Groves, 2005; Lawrie et al.
2007; Pelleter et al. 2007; Park et al. 2016). In addi-
tion, typical hydrothermal zircons contain fluid inclu-
sions (e.g. Zhu et al. 2017; Fig. 12).

Sample DM-14-3 was taken in the Mandula area
(Fig. 2). The quartz vein intruded the Permian tur-
bidites which were folded by the D1 deformation
(Fig. 4c). Zircon grains separated from sample DM-
14-3 are yellow to light brown, translucent and have a
sub-rounded, elongated grain morphology, ranging in
length from 50 to 100 μm. Some zircon grains have
inhomogeneous internal textures (Fig. 12). The well-
developed magmatic oscillatory zoning is overlain by
patchy sectors, corresponding to the reworking of hy-
drothermal fluids (Fig. 13a). Twenty-five spots were
analysed and the youngest five grains yield a mean age
of 226 ± 3 Ma (MSWD = 0.98; Fig. 13a, b). The other
grains with relatively older ages are considered as in-
herited zircons.

Sample DM-45-1 was also taken in the Man-
dula area (Fig. 2). The quartz vein intruded the
Permian turbidites along joints. Zircon grains sep-
arated from sample DM-45-1 range from 50 to
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Figure 9. (Colour online) Field photos of structures related to the NNE-directed thrust in the Ganqi area. (a) The banded amphibolites
include imbricated S-verging asymmetric fold sheets (GPS: 42° 16′ 56′′ N, 107° 38′ 49′′ E). The thrusts among the sheets are antithetic
faults of the main thrust F7 (Bayan Obo fault). (b) Macroscopic view of the klippe (GPS: 42° 21′ 40′′ N, 107° 38′ 08′′ E). The klippe
is composed of Mesoproterozoic marbles and clastic rocks. The underlying rocks are the Permian folded volcaniclastic rocks and
turbidites. (c) Enlarged view of one klippe showing the marble developed intraformational folds. Height of man for scale is c. 175 cm.
(d) The intensively sheared Ordovician meta-volcanic rocks near the F8 fault. The white shear bands are stretched calcites filling in the
amygdaloidal structures. Length of pen for scale is 15 cm. (e) Oblique fractured porphyroblast suggests a top-to-the-NNE shearing,
from the Ordovician meta-volcanic rocks of (d).

150 μm in length. A total of 30 spots were
analysed and the five youngest grains cluster at the
age of 236 ± 6 Ma (MSWD = 0.13; Fig. 13). The
grains with Triassic ages show weak oscillatory zoning
overlain by irregular sectors because of hydrothermal
fluid reworking. The grains with ages in the range c.

310 Ma, 410–450 Ma and Precambrian ages are inter-
preted as inherited zircons.

Sample DM-54-3 was taken in the Ganqi area
(Fig. 8). The quartz vein intruded the Lower Palaeo-
zoic Ondor Sum Group along the cleavages of a D1
fold (Fig. 10c). The zircon grains are elongated to
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Figure 10. (Colour online) Superimposed folds in the Ganqi area. (a) The meta-sedimentary rocks bear multiple stages of structures
(GPS: 42° 17′ 10′′ N, 107° 38′ 35′′ E). The current strata (S0-1) are overturned, dipping to the SE. (b) On the basal surface, the crenulation
lineation (Lc) represents the pre-D1 fabric, which is overprinted by striae lineation (L1, marked by black arrows and see enlarged inset)
caused by interlayer sliding of the D1 folding. The cleavage (S2) is produced by the D1 NE- or NNE-verging folds but was rotated by
the D2 stage of NW–SE contraction (see text for more detailed explanations). (c) The sericite schist rocks (S1, reference surface) in the
Ondor Sum Group are refolded and produce the S2 cleavages which are filled by quartz veins. (d) The N-dipping (D1) sericite quartz
schist was overprinted by a kink band structure (D2), found in the Ondor Sum Group. Length of pen is 15 cm, length of hammer is
25 cm and height of man is c. 175 cm for scale.
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Figure 11. (Colour online) Field photos in the Ganqi area and the Langshan range. (a) The crenulation lineation is inclined by the
D2 stage of NW–SE contraction, found in the sericite quartz schist of the Ondor Sum Group, Ganqi area. (b) The Mesoproterozoic
gneissic complexes thrust onto the Jurassic conglomerates through a high-angle fault; the high-angle thrust is probably reversed
from a normal fault linked with Early Jurassic extension, found on the southeastern side of the Langshan range (GPS: 41° 18′ 33′′ N,
107° 29′ 28′′ E). (c) Outcrop-scale sigmoidal structures in the Mesoproterozoic meta-sedimentary rocks imply a series of NW-verging
imbricated sheets. (d) Conjugate joints in the Permian plutons are filled with coarser-grained granitic veins. The bisector of the two
sets of joints indicates a nearly E–W contraction. (e) The gneissic biotite granites on the western side of the Langshan range (foliation
dip: 110°/25°). (f) The WNW–ESE stretching lineation is defined by the oriented biotite and quartz; Bi – biotite; Ms – muscovite; Qz
– quartz; Kfs – K-feldspar. Length of pen is 15 cm and height of man is c. 175 cm for scale.

ellipsoidal in shape with grain sizes of 50–100 μm
(Fig. 12). Most of the grains show misted structures
without clear zoning. A total of 20 spots were ana-
lysed and five grains cluster at 226 ± 5 Ma (MSWD =
0.45; Fig. 13). The grains with Palaeozoic and Precam-

brian ages are considered to be inherited zircons. Sev-
eral grains plot away from the concordia curve, which
is probably caused by Pb loss.

Sample DM-77-2 was taken on the western side
of the Langshan range (Fig. 1c). In the outcrops, the
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Figure 12. (Colour online) Representative CL images and fluid inclusions of the analysed zircons. Ages (Ma) and analysed spots
(circles) are marked on the zircons. Patchy texture overprints oscillatory zoning of primary zircons as shown in a1, a2, a3, b2, b4;
zircons that are homogeneous without clear zoning are shown in a4, c2, c3; zircons with irregular morphology are b3, c1; zircons with
contrasting mantle texture are a4, a5, c3, d1.

Mesoproterozoic meta-sandstones trend WNW–ESE
due to the D1 deformation and are cross-cut by the
quartz vein. Zircon grains from sample DM-77-2 are
ellipsoidal in shape with grain sizes of 50–100 μm.
Some grains show homogeneous textures or dark in-
ner cores (Fig. 12). Only one zircon grain yields a con-
cordant Triassic age of 236 ± 2 Ma. Several grains do
not plot on the concordia curve, which is probably
caused by Pb loss. Three zircon grains yield a lower
intercept age of 235 ± 4 Ma (MSWD = 1.4; Fig. 13).

5. Discussion

5.a. The timing of the D1 and D2 stages of deformation

The two shear joints apparently comprise conjugate
joint sets with a nearly NNE–SSW direction of the

acute angle bisector (Fig. 4c), which is consistent with
the NNE–SSW contraction of the D1 deformation. The
quartz veins filled the joints or the cleavages of the fol-
ded strata/foliations (Figs 4c, 10c). Thus, we consider
that the formation age of the quartz veins is identical to
or younger than the age of the D1 deformation. Some
zircons obtained from the quartz veins show internal
textures of patchy sectors or misted structures without
clear zoning, which are features of zircons reworked by
hydrothermal fluids. Therefore, the hydrothermal zir-
cons represent the formation age of the quartz veins.
These zircons generally yield Middle Triassic ages.

It should be noted that the dated zircon ages are not
absolutely valid, because we cannot exclude the hydro-
thermal zircons from also being inherited ones, like the
other zircons of older ages. The joints are of brittle de-
formation, which cannot be excluded from being the
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Figure 13. (Colour online) Zircon U–Pb concordia diagrams for the analysed quartz vein samples. Samples DM-14-3 and DM-54-3
have three discordant Cretaceous age grains probably caused by Pb loss, and sample DM-77-2 has only one grain of age 236 ± 2 Ma
(see age data in online Supplementary Material available at http://journals.cambridge.org/geo).
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Figure 14. Synoptic table of the Late Permian to Early Cretaceous volcanic, plutonic and sedimentary rocks and tectonic events in the
Mandula and Ganqi areas showing the timing of the two tectonic events.

result of a much later stage of deformation. However,
we note that there is a significant sedimentary hiatus
during the Triassic Period (NMBGMR, 1991; Fig. 14).
Furthermore, geothermal modelling by detrital apatite
fission tracks in the Mandula area suggested that there
were high rates of cooling (1.3 °C/Myr) during Middle
to Late Triassic times, which produced a c. 4 km tec-
tonic exhumation (Li et al. 2016). The nearly N–S
shortening events were also documented in the Yin-
shan Belt during 237–213 Ma (muscovite Ar–Ar ages,
Gao, 2010; Zhang, J. et al. 2014) and the Yanshan Belt
during 270–190 Ma (Wang, Zhou & Li, 2011; Wang,
Zhou & Zhao, 2013). Our field observations show the
Jurassic rocks did not undergo the D1 stage of NNE–
SSW contraction. Thus, we tend to consider, based on
the above compiled data, that the D1 stage of deform-
ation happened in Middle Triassic time.

The D2 stage of deformation may have happened
during Late Jurassic time, because the Lower and
Middle Jurassic sedimentary rocks of the Shiguai
Group were folded by the D2 deformation and they
were unconformably covered by the unfolded Lower
Cretaceous strata of the Lisangou Formation (NM-
BGMR, 1991; Fig. 14). In addition, the Jurassic sed-

iments, containing pebbles derived from crystalline
basement, occur along a high-angle thrust fault at the
mountain front (Fig. 11b). The high-angle thrust fault
might be an inverted originally normal fault which was
linked with a significant regional extension between
the two stages (D1 and D2) of contraction (e.g. Meng
et al. 2014; Fig. 14).

5.b. Geodynamic implications

Some studies suggest that the final closure of the
Palaeo-Asian Ocean occurred during Late Permian to
Middle Triassic times (e.g. Eizenhöfer et al. 2014; Han
et al. 2015; Liu et al. 2016; Li et al. 2017a,b,c). Our
studies reveal that the D1 stage of NNE–SSW contrac-
tion is characterized by N- or NNE-directed thrusting
and the inferred age of the NNE–SSW contraction is
about Middle Triassic, which is consistent with the
tectonic models for the closure of the Palaeo-Asian
Ocean (Xiao et al. 2003; Eizenhöfer et al. 2014; Han
et al. 2015; Li et al. 2017a,b,c). Despite there being
some other studies that argued that the closure of the
Palaeo-Asian Ocean took place during Devonian time
and the Solonker Belt switched into a rifting stage,
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producing limited ocean basins during Permian time
(Xu et al. 2013; Chen et al. 2012; Shao, Tang & He,
2014; Luo et al. 2016), the discovery of Lower Meso-
zoic blueschists in East Inner Mongolia confirmed
the existence of a convergent event between the lim-
ited ocean basins (Chu et al. 2013; Zhang, Wei &
Chu, 2015; Zhang et al. 2016). The blueschists result-
ing from the closure of the embryonic, limited ocean
basins are not typically of the high-pressure nature of
deep subduction (Zhang, Wei & Chu, 2015; Zhang
et al. 2016). In the case of the closure of the limited,
narrow oceans, no self-sustaining subduction would
likely develop owing to insufficient slab pull (Hall
et al. 2003; Gurnis, Hall & Lavier, 2004; Chenin et al.
2017), and hence other Triassic geodynamic events,
like the Dabie–Qinling orogeny (e.g. Dong et al. 2011;
Huang et al. 2015; Li et al. 2016) are necessary to be
employed to interpret the large scale of the nearly N–
S contraction between the northern Yinshan Belt, the
Southern Orogenic Belt and the Solonker Belt.

Our studies suggest that the Late Jurassic deform-
ation (D2) is characterized by a NW–SE contraction.
Some other regions adjacent to our study area also doc-
umented the Late Jurassic contraction. For example,
in the Yanshan Belt, to the east of the study area, the
contraction during Middle–Late Jurassic time turned
to be NW–SE directed (Davis et al. 2001, 2002, 2009;
Wang, Zhou & Li, 2011); the Helanshan area, to the
south of the study area, formed NNE-trending folds
during Late Jurassic to Early Cretaceous times (e.g.
Darby & Ritts, 2002; Huang et al. 2015). The Late
Jurassic NW–SE contraction was considered to be
the far-field consequence of the convergence in the
Mongol-Okhotsk Ocean in Far East Asia (Davis et al.
2001) and the westward subduction of the Palaeo-
Pacific Ocean (e.g. Zhu et al. 2005, 2009; Faure, Lin &
Chen, 2012; Huang et al. 2015). The horizontal com-
pressional stress was transmitted from the subduction
zones and tended to concentrate in an intracontinental
‘weak’ zone (i.e. the pre-existing fault zones, thermally
weakened zones or mechanical contrasts between li-
thologies). The strains were concentrated in the So-
lonker Belt and the Yinshan–Yanshan Belt to develop
the superimposed structures of the D1 and D2 stages
of deformation (e.g. Deng & Koyi, 2015).

6. Conclusion

The Solonker Belt, the Southern Orogenic Belt and
the northern Yinshan Belt underwent two stages of de-
formation during the Mesozoic period. The D1 stage
of NNE–SSW contraction is responsible for the devel-
opment of the WNW-trending folds and NNE-directed
thrusts. The D2 stage of NW–SE contraction gives
rise to the NE-trending folds and NW- or SE-directed
thrusts. The primary strata/foliations are deformed by
the two nearly orthogonal or oblique contractions to
form the superimposed structures. Our new U–Pb zir-
con ages, along with other geological constraints, sug-
gest the D1 stage occurred in Middle Triassic time and

the D2 stage occurred in Late Jurassic time. The coeval
geodynamic events of the study area led us to consider
that the D1 deformation is related to the final closure
of the Palaeo-Asian Ocean or limited, narrow ocean
basins, and the D2 deformation is related to the sub-
duction of the Palaeo-Pacific Ocean and the closure of
the Mongol-Okhotsk Ocean.
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