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Abstract. The regularization of magnetic islands is studied for the case when the
electron temperature is larger than the ion temperature. The slab approximation
is used. Drift effects are neglected, i.e., the case of superdrift magnetic islands,
SDMIs, is analyzed. Then the regularization problem reduces to, first, a spreading
of the step-functional velocity profile and the conventional delta-functional polar-
ization current profile in the region near the island separatrix; second, finding the
dispersion terms of the polarization current in this region; and, third, calculating
the total polarization current contribution to the generalized Rutherford equation
for the island width. It is shown that this problem can be solved if one allows for the
effects of the electron pressure gradient in the parallel Ohm’s law. The polarization
current contribution in the case of islands regularized due to these effects proves
to be the same as that in the case of nonregularized islands.

1. Introduction
Development of magnetic island theory is important for the physics of tokamaks,
since islands can lead to a plasma pressure limitation in long-pulse discharges (Wil-
son et al. 1996a, b; Sauter et al. 1997). To find this limitation, one should allow for
the polarization current effect (Smolyakov 1989; Wilson et al. 1996a). To describe
this effect, one should take into account the perturbed perpendicular electric field.
In turn, this field results in cross-field plasma motion, so that one should know
the dependence of the velocity of this motion on the island magnetic flux, i.e., the
velocity profile. This dependence is found using the ambipolarity equation. Up to
now, the problem of finding the velocity profile has mainly been studied in the slab
geometry approximation, neglecting drift and resistive effects. The history of this
study and the related analysis of the polarization current problem are summarized
below.

According to Waelbroeck and Fitzpatrick (1997), and corresponding to general
plasma-physical notions (Tamm 1961), the ambipolarity equation is determined
by the perpendicular plasma viscosity. Mikhailovswkii et al. (2000a) (cited below
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as paper I) have shown (see also Waelbroeck and Fitzpatrick 1997) that if one uses
the conventional expression for the perpendicular viscosity (Braginskii 1965) and
neglects the electron dynamics (such neglect implies, in particular, that the electron
temperature is assumed to be zero and finite radial particle diffusion is ignored), one
does not find an acceptable velocity profile: near the island separatrix, this profile
proves to be of a step-function form. Then, following paper I, one should regularize
the velocity profile, i.e., ‘spread’ the step function. This problem was considered in
paper I. Similarly to Waelbroeck and Fitzpatrick (1997), the cold-electron approx-
imation was used in paper I. Then, according to paper I, one should introduce the
hyperviscosity, which spreads the step-like jump of the velocity near the separatrix
over a region with a characteristic scale of the order of the ion Larmor radius ρi,
i.e., the so-called Larmor transition layer. Note that the notion of the hyperviscos-
ity was used, in particular, by Smith and Hammett (1997) in spectral simulation of
two-dimensional drift turbulence. As usual, the hyperviscosity is introduced in nu-
merical simulations artificially (see, e.g., Kuvshinov et al. 2001). In contrast to this,
paper I found the hyperviscosity by solving the transport equations of Grad type
given by Mikhailovskii and Tsypin (1971) and Mikhailovskii (1992). The results
of this solution were qualitatively confirmed by Mikhailovskii et al. (2001a), who
calculated the hyperviscosity by means of a reduced Boltzmann kinetic equation
taken from Lakhin et al. (1987) and complemented by a model collisional term.

It was also known that, if one uses the conventional expression for the polariz-
ation current and the velocity profile of step-like form, one finds that the current
profile is of delta-function form (Waelbroeck and Fitzpatrick 1997). Such a form
of the current profile is a consequence of the fact that the above expression is
proportional to the first derivative of the velocity with respect to the island mag-
netic flux. According to Waelbroeck and Fitzpatrick (1997), the contribution of
the delta-function part of the polarization current, i.e., the surface current, to the
generalized Rutherford equation for the island width evolution is larger than that
of the volume current, and the sign of the surface current contribution is opposite
to that of the volume current. As a result, allowing for this surface current reverses
the sign of the polarization current term in the above equation obtained in the
preceding studies where the surface current was ignored. This result is the basis for
discussions regarding whether the polarization current stabilizes the neoclassical
tearing modes (NTMs).

Meanwhile, the conventional transport equations, used in deriving this result, are
invalid in the problems with a delta-function polarization current. Therefore, the
question arose whether the above sign reversal of the polarization current contri-
bution (the Waelbroeck–Fitzpatrick effect) is physically correct. This question was
studied by Mikhailovskii et al. (2000b) (cited below as paper II). It was shown in
paper II that, on regularizing the velocity profile by the hyperviscosity and as-
suming that the polarization current is given by the conventional expression, one
regularizes, at the same time, the current profile by spreading the delta-function
over the above Larmor transition layer. The contribution of the spread-out delta-
function proves to coincide with that of the exact delta function.

However, according to paper II, in addition to the conventional term, the polar-
ization current also includes so-called dispersion terms. In the Larmor transition
layer, these terms are of the same order as the conventional term. Then, the question
arises as to what is the contribution of these terms to the generalized Rutherford
equation. The answer to this question has been given in paper II. According to
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paper II, the dispersion terms can be expressed in the form of the full derivatives
of functions localized in the Larmor transition layer with respect to the island mag-
netic flux, while the contribution of the surface current to the above equation is
the integral from these terms with the constant weighting factor. Therefore, this
contribution turns out to be zero.

As a whole, the analysis of paper II resulted in two important consequences. First,
the Waelbroeck–Fitzpatrick effect is correct, and, second, for description of this
effect, one can restrict oneself to the conventional expression for the polarization
current only.

Like paper I, paper II used the cold-electron approximation. In turn, the hyper-
viscosity and the dispersion terms in the polarization current, studied in papers
I and II, are determined by finite-ion-temperature effects, so that they become
weaker with decreasing ion temperature. Then the question arises as to whether
the islands can be regularized due to finite-electron-temperature effects. The elu-
cidation of this question is the goal of the present paper. As in papers I and II,
we neglect drift and toroidicity effects, so that our subject is superdrift magnetic
islands (SDMIs) in the slab geometry approximation. The conditions under which
SDMIs can exist were discussed by Mikhailovskii et al. (2000c). The term ‘superdrift
magnetic islands’ was introduced by Mikhailovskii et al. (2000d).

Magnetic islands with account of finite-electron-temperature effects were earlier
studied by Smolyakov (1989, 1993); however, the spatial structure of the perturbed
plasma velocity was not analyzed. (The velocity profile was there taken in a model
form.) According to the above papers, to describe these effects, one should use the
parallel Ohm’s law, including the term with electron pressure gradient. We follow
this approach in the present paper.

Using the parallel Ohm’s law with the electron-pressure-gradient contribution,
one needs, generally speaking, to allow for perturbations of both plasma density
and electron temperature, i.e., to deal with the electron continuity equation and the
electron heat balance equation (Smolyakov 1989, 1993). However, for simplicity, we
neglect the perturbations of the electron temperature. For this reason, we do not
use the electron heat balance equation.

According to Smolyakov (1989, 1993), taking into account the electron pressure
gradient in the parallel Ohm’s law allows us to describe two effects: first, the effect
of a finite ratio of the ‘effective’ ion Larmor radius (i.e., that defined by the electron
temperature), denoted below by ρs, to the characteristic scale of the problem, and,
second, electron drift effects. However, according to the above discussion, we do
not study drift effects.

Note that, from the above discussion, when the hyperviscosity is introduced (see
paper I), the characteristic scale in the near-separatrix region is of the order of the
ion Larmor radius ρi. Apparently, in this case, one can use only model expressions
for the hyperviscosity, since there is no small parameter allowing one to solve the
Grad-type transport equations or the Boltzmann kinetic equation by expansion in
series in this parameter in calculating the hyperviscosity. Such model expressions
are obtained by keeping only the first few terms of an infinite series in ρ2

i∇2
⊥ (where

∇⊥ is the perpendicular gradient). In the case of finite electron temperature con-
sidered in the present paper, we start with exact (non-model) MHD equations, so
that the initial stage of our analysis does not require expansion in ρ2

s∇2
⊥. However,

in the following steps, we need to replace the infinite series in ρ2
s∇2
⊥ by a finite

series, so that, as in the problem with hyperviscosity (see in detail paper I), our
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procedure is a model one. This modeling is based on the following reasoning. Our
problem does not have an exact analytical solution, so that one should consider our
results as not exact but rather as very close approximations. Actually, the recent
magnetic island theory is based on a series of other reliable but not absolutely exact
results, so that the level of reliability of our modeling approach is typical of recent
studies. At the same time, undoubtedly, our problem can be analyzed numerically.
Then our analytical results can be used as benchmarks for numerical calculations.

It is well known that one of the obligatory equations of magnetic island theory is
the current continuity equation or, in other terminology, the vorticity equation (see
paper I). Thus, our basic MHD equations are the parallel Ohm’s law, the electron
continuity equation, and the vorticity equation. These equations are given in Sec. 2.
Instead of the vorticity equation, one can use the ion continuity equation. This
equation is also given in Sec. 2.

In addition to the basic MHD equations, Sec. 2 contains explanation of the mag-
netic island geometry, transition to the ‘island variables’, the procedure of reducing
the MHD equations in the approximation of weak dissipation, and an explanation
of the structure of the generalized Rutherford equation for the island width in the
slab approximation considered. Let us recall that the island variables are the mag-
netic flux of the island and the island cyclic variable. Note also that in reducing
the MHD equations, we introduce the reduced electrostatic potential, which differs
from the conventional electrostatic potential by a term proportional to x, where x
is the distance from the ‘centering’ rational magnetic surface. This function is an
important element of Smolyakov’s (1989, 1993) approach used in the present paper.

In Sec. 3, we integrate the ideal (nondissipative) parts of the MHD equations fol-
lowing the integration procedure developed by Smolyakov (1989, 1993) and called
there the vector integration. The most important difference of this procedure from
the standard integration procedure used in paper II is that, when integrating the
ion continuity equation, one has to deal with an ‘integration constant’ that is an
arbitrary function of the reduced electrostatic potential, while the standard integra-
tion procedure leads to integration constants that are functions of the island mag-
netic flux. This difference is not trivial for finite electron temperature, i.e., for finite
ρs∇⊥, since in this case the reduced electrostatic potential depends on both the is-
land magnetic flux and the island cyclic variable. Therefore, it is impossible to obtain
an exact analytical expression for the above integration constant for finite ρs∇⊥,
and one needs to construct model expressions for it. This is the first step of our mod-
eling mentioned in the above discussion. This modeling is one of the goals of Sec. 3.

Having constructed the model integration constant of the ion continuity
equation, one can obtain a closed equation for the difference between the reduced
electrostatic potential and the electrostatic potential profile function. This differ-
ence is, physically, the oscillatory part of the reduced electrostatic potential de-
scribing the parallel electric field. This part is determined by the oscillatory part
of the integrated ion continuity equation. The exact solution of this equation can
be expressed in terms of an infinite series in the parameter ρ2

s∇2
⊥. However, such a

series is unacceptable for analytical calculations. Therefore, we have to model it by
a finite series in the above parameter. Thereby, the reduced electrostatic potential is
expressed in terms of the electrostatic potential profile function as a finite series in
ρ2
s∇2
⊥. In a similar way, we model also the expression for the polarization current.

The modeling of all these functions is given in Sec. 3.
Section 4 is devoted to the regularization of the electrostatic potential profile
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function. The starting equation for this function is obtained from the condition
that the fourth derivative of the reduced electrostatic potential with respect to x
averaged over the island cyclic variable vanishes. Since, as was explained above, the
reduced electrostatic potential is a series in ρ2

s∇2
⊥ for finite electron temperature,

this equation contains, in addition to the fourth derivative of the profile function,
also terms with its higher derivatives. These terms play a role similar to that of
the hyperviscosity. Thereby, they allow one to regularize the profile function. Note,
however, that the regularization mechanism in the considered case is more compli-
cated than in the case with hyperviscosity. The fact is that allowing only for the
term of order ρ2

s∇2
⊥ does not lead to regularization, since the sign of this term is

opposite to the sign of the hyperviscous term of order ρ2
i∇2
⊥. Therefore, allowing

for this term only, one would obtain a nonlocalized addition to the profile function
predicted by conventional transport theory. Thus, for the regularization, one should
also allow for the term of order ρ4

s∇4
⊥, which is given in Sec. 4.

In Sec. 5, we discuss the polarization current contribution to the generalized
Rutherford equation for the considered case of magnetic islands regularized due to
the finite-electron-temperature effect. It is shown in this section that, similarly to
the case of finite ion temperature and vanishing electron temperature considered in
paper II, in our case, first, the polarization current is destabilizing, and, second, its
contribution to the generalized Rutherford equation for regularized islands proves
to be the same as that for non-regularized islands.

To estimate the importance of the first-mentioned fact, let us turn to Wael-
broeck and Fitzpatrick (1997), who also discussed the role of the polarization cur-
rent. These authors calculated the polarization current contribution for magnetic
islands with continuous but nonlocalized velocity profile, and concluded that this
current is destabilizing. However, such a profile is beyond the scope of the generally
accepted magnetic island theory. In addition, they considered islands with discon-
tinuous localized velocity profile, and suggested that in the case of such islands,
the polarization current also should be destabilizing. It was explained in paper II
that this suggestion should be considered as nothing but a likely hypothesis, which
needs justification by calculations with adequate velocity profile function and an
adequate starting expression for the perpendicular current. The analysis of paper
II has justified this hypothesis for the case of finite ion temperature and vanishing
electron temperature. Because of its importance, this hypothesis has been called in
paper II the Waelbroeck–Fitzpatrick (WF) rule. The results given in Sec. 5 show
that the WF rule is valid also in the opposite case when the electron temperature
is larger than the ion temperature.

Let us now comment on the above-mentioned result given in Sec. 5 that the
polarization current contribution is the same for both regularized and nonregular-
ized magnetic islands. This result is important owing to the fact that to find the
polarization current contribution one should not perform the rather complicated
calculations typical of the exact theory of regularized magnetic islands, since the
same results can be obtained in the scope of the rough but simple approach of the
theory of non-regularized magnetic islands. Paying tribute with respect to paper
II, this fact can be called Mikhailovskii’s rule.

General conclusions are given in Sec. 6.
Generalizations of our theory by incorporating electron drift effects and the effect

of finite radial particle diffusion are presented in Mikhailovskii et al. (2001b) (see
also Wilson et al. 2000).
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2. Basic equations and their reduction in the weak-dissipation
approximation
2.1. Basic MHD equations

We describe the electrons by the continuity equation and the parallel Ohm’s law:

d0n

dt
− 1
e
∇‖J = 0, (2.1)

− en0E‖ − Te∇‖n +
en0

σ‖
J = 0. (2.2)

Here n is the plasma number density, n0 is the unperturbed plasma density at the
resonant magnetic surface, J is the parallel electric current, E‖ = E·b is the parallel
electric field, b = B/B, B is the magnetic field, ∇‖ = b ·∇ is the parallel gradient,
Te is the electron temperature (assumed to be constant),

d0

dt
=
∂

∂t
+ VE ·∇, (2.3)

VE = cb×∇φ/B is the cross-field velocity, φ is the electrostatic potential (related
to the perpendicular electric field E⊥ by E⊥ = −∇⊥φ), ∇⊥ = ∇− b∇‖ is the per-
pendicular gradient, e is the ion charge, c is the speed of light, and σ‖ is the parallel
electric conductivity. The term with Te in (2.2) describes the effect of the electron
pressure gradient.

The ions are described by the ion continuity equation:

d0n

dt
− c2

4πeV 2
A

(
d0

dt
∇2
⊥φ− µ∇4

⊥φ
)

= 0. (2.4)

Here VA is the Alfvén velocity, the term with ∇4
⊥φ describes the effect of ion

perpendicular viscosity, µ = 0.3νiρ2
i is the viscosity coefficient (Braginskii 1965), νi

is the ion collision frequency, and ρi is the ion Larmor radius.
Note that on subtracting (2.1) from (2.4), one can obtain the vorticity equation

(the current continuity equation) in the form

d0

dt
∇2
⊥φ− µ∇4

⊥φ−
4πV 2

A

c2 ∇‖J = 0. (2.5)

Thus, our basic MHD equations are (2.1), (2.2), and (2.5) (or (2.4)).

2.2. Description of the island magnetic field

As in paper I, the magnetic island is assumed to be localized near some rational
magnetic surface r = rs, where r is the ‘radial’ coordinate labeling the magnetic
surface in a tokamak. The total magnetic field B is taken in the form

B = B0z−∇ψ × z, (2.6)

where B0z is the main (equilibrium) magnetic field at r = rs and z is the unit
vector determined by z = (B0ζζ + B0θθ)/B0, with θ and ζ the unit vectors along
gradients of the poloidal and toroidal angles θ and ζ, respectively; B0θ and B0ζ

are the poloidal and toroidal components of the equilibrium magnetic field at the
magnetic surface r = rs. The magnetic island flux function ψ is given by

ψ = ψ̃ cos ξ − x2B0

2Ls
, (2.7)
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where x = r− rs, Ls is the shear length, ψ̃ is a positive constant characterizing the
perturbation amplitude, ξ = mθ − lζ − ωt is the island cyclic variable, m and l are
the poloidal and toroidal mode numbers, and ω is the island rotation frequency.

2.3. Transition to the ‘island variables’

Instead of the variables (r, t), let us use the ‘island variables’ (ψ, ξ, t). In terms of
these variables,

∇‖ =
ky
B0
ψx

∂

∂ξ
, (2.8)

d0

dt
=
∂

∂t
− ω

(
∂

∂ξ
+
∂ψ

∂ξ

∂

∂ψ

)
+
cky
B0

ψx

(
∂φ

∂ψ

∂

∂ξ
− ∂φ

∂ξ

∂

∂ψ

)
, (2.9)

where

ψx ≡ ∂ψ

∂x
= −σx

(
2B0

Ls

)1/2

(ψ̃ cos ξ − ψ)1/2, (2.10)

and

ky =
m

rs
, σx = sgn x = ±1,

∂ψ

∂ξ
≡
(
∂ψ

∂ξ

)
x

.

Note also that, starting with the formula

E‖ = −∇‖φ +
1
c

∂ψ

∂t
, (2.11)

one can show that (Smolyakov 1989, 1993)

E‖ = −∇‖φ̃, (2.12)

where

φ̃ = φ− B0ωx

cky
, (2.13)

and x is expressed in terms of (ψ, ξ) by means of (2.7). The function φ̃ can be called
the reduced electrostatic potential. According to Wilson et al. (2000), this function
can be interpreted as the electrostatic potential in the island rest frame.

Using (2.13), we reduce (2.9) to (Smolyakov 1989, 1993)

d0

dt
=
∂

∂t
+
cky
B0

ψz

(
∂φ̃

∂ψ

∂

∂ξ
− ∂φ̃

∂ξ

∂

∂ψ

)
. (2.14)

2.4. MHD equations in the approximation of weak dissipation

Assuming the dissipative terms in (2.1), (2.2), (2.4), and (2.5) to be small, one can
develop the method of successive approximations similar to Smolyakov (1989, 1993)
based on expansion in series in small dissipation. Then, each perturbed function X
entering (2.1)–(2.5) is represented in the form

X = X (0) +X (1), (2.15)

where X (0) and X (1) are the ideal and dissipative parts, respectively.
The ideal parts of (2.1), (2.2), and (2.4) are(

d0

dt

)(0)

n(0) − 1
e
∇‖J (0) = 0, (2.16)
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∇‖
(
n(0) − en0

Te
φ̃(0)
)

= 0, (2.17)

(
d0

dt

)(0)

n(0) − c2

4πeV 2
A

(
d0

dt

)(0)

∇2
⊥φ̃

(0) = 0, (2.18)

where (
d0

dt

)(0)

=
cky
B0

ψx

(
∂φ̃(0)

∂ψ

∂

∂ξ
− ∂φ̃(0)

∂ξ

∂

∂ψ

)
. (2.19)

Similarly, the dissipative parts of (2.2) and (2.5) are of the form

− Te∇‖
(
n(1) − en0

Te
φ̃(1)
)

+
en(0)

σ‖
J (0) = 0, (2.20)

(
d0

dt

)(0)

∇2
⊥φ̃

(1) +
(
d0

dt

)(1)

∇2
⊥φ̃

(0) − µ∇4
⊥φ̃

(0) − 4πV 2
A

c2 ∇‖J (1) = 0, (2.21)

where (
d0

dt

)(1)

=
∂

∂t
+
cky
B0

ψx

(
∂φ̃(1)

∂ψ

∂

∂ξ
− ∂φ̃(1)

∂ξ

∂

∂ψ

)
. (2.22)

In addition, one can write the dissipative part of (2.1), but it is not needed here.
Let us introduce the operator of averaging over the island magnetic surface 〈. . .〉

defined by

〈. . .〉 =
∮

(. . .)
dξ

ψx

/∮
dξ

ψx
. (2.23)

We will use this operator outside the separatrix (for ψ < −ψ̃). In this case,
∮

(. . .) dξ
means integration over the island cyclic variable equal to

∫ π
−π(. . .) dξ. Then the

averaged parts of (2.20) and (2.21) are

〈J (0)〉 = 0, (2.24)〈(
d0

dt

)(0)

∇2
⊥φ̃

(1) +
(
d0

dt

)(1)

∇2
⊥φ̃

(0)

〉
− µ〈∇4

⊥φ̃
(0)〉 = 0. (2.25)

These equation are the so-called orthogonality conditions.

2.5. Generalized Rutherford equation

One of our goals is calculation on the polarization current contribution to the sta-
tionary generalized Rutherford equation for the island width. According to paper
II, in the slab approximation considered, this equation can be represented in the
form

1
4 ∆′ + ∆p = 0, (2.26)

where

∆p =
1

cψ̃

(
2Ls
B0

)2 ∫ −∞
ψ̃+∆

dψ

∮
J (0) cos ξ dξ

(ψ̃ cos ξ − ψ)1/2
, (2.27)

∆′ is the standard parameter of the linear tearing mode theory, and ∆ is a posi-
tive infinitesimal. Equation (2.27) has the property that the polarization current
density is symmetric about the rational surface.
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3. Integration and reduction of the ideal parts of the MHD equations
3.1. Integration of the ideal parts of the MHD equations

According to Smolyakov (1989, 1993), (2.16)–(2.18) can be integrated. The inte-
gration procedure starts with (2.17). One can see that this equation is satisfied
if

n(0) =
en0

Te
φ̃(0) + F (ψ), (3.1)

where F (ψ) is an arbitrary function of ψ. Using (3.1) and the expressions (2.8) and
(2.10) for the operators ∇‖ and (d0/dt)(0), we transform (2.16) to

∇‖(J (0) + ecF ′φ̃(0)) = 0, (3.2)

where the prime indicates the derivative with respect to ψ. Allowing for the orthog-
onality condition (2.24), we find from (3.2) that the function J (0) is given by

J (0) = −ceF ′(φ̃(0) − 〈φ̃(0)〉). (3.3)

Now we turn to (2.18), and note that this equation is satisfied if

c2

4πeV 2
A

∇2
⊥φ̃

(0) +G(φ̃(0)) = n(0), (3.4)

where G(φ̃(0)) is an arbitrary function of φ̃(0).

3.2. Transformation of the integrated ideal equations

Let us use the definitions

〈n(0)〉 ≡ N (ψ), (3.5)

ñ(0) = n(0) −N (ψ), (3.6)

where N (ψ) is the density profile function. In addition, we introduce the electro-
static potential profile function h(ψ) defined by

〈φ̃(0)〉 = −B0ω

cky
h(ψ), (3.7)

and the function α(0) characterizing the ideal oscillatory part of the electrostatic
potential,

α(0) = − cky
B0ω

(φ̃(0) − 〈φ̃(0)〉). (3.8)

Then

φ̃(0) = −B0ω

cky
(h + α(0)). (3.9)

It then follows from the averaged part of (3.1) that the function F is related to the
profile functions N and h by

F = N +
eB0n0ω

kycTe
h. (3.10)

On the other hand, the oscillatory part of (3.1) yields

ñ(0) = −eB0n0ω

kycTe
α(0). (3.11)
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Now we assume that the equilibrium plasma number density is homogeneous
and restrict ourselves to the model assumption

N = n0. (3.12)

Physically, such an assumption means that we neglect drift effects (cf. Sec. 1).
Allowing for (3.3), (3.10), and (3.12), in terms of α(0) and h, the ideal parallel

current is

J (0) =
cMn0ω

2h′α(0)

k2
yρ

2
s

, (3.13)

where ρs is the effective ion Larmor radius given by ρ2
s = Te/Mω2

B, M is the ion
mass, and ωB is the ion cyclotron frequency.

Taking the averaged part of (3.4) and using (3.5) and (3.9), we find that the
function G satisfies the equation〈

G

[
−B0ω

cky
(h + α(0))

]〉
= −n0 − cB0ω

4πeV 2
Aky
〈∇2
⊥(h + α(0))〉. (3.14)

Evidently, by redefining the argument of G, one can omit the factor (−B0ω/cky)
in this argument.

The oscillatory part of (3.4) leads to the following equation for the function α(0):

α(0) − ρ2
s(∇2
⊥α

(0) − 〈∇2
⊥α

(0)〉) = ρ2
s(∇2
⊥h− 〈∇2

⊥h〉)−
kycTe
eB0n0ω

(G− 〈G〉). (3.15)

Let us turn to (3.1), (3.3), and (3.4). These equations and all other equations of
Secs 3.1 and 3.2 are rigorous. However, (3.14) contains an as-yet unknown function
G, which should be found and excluded from our remaining equations by substi-
tuting G into (3.15). In this stage, one of the key problems arises: How can this
function be found?

One can see that a solution to (3.14) can be found by expanding in a series in the
oscillatory part of the electrostatic potential with several terms in the series. On
the other hand, one can see from (3.15) that the oscillatory part of the electrostatic
potential is a series in (ρs∇⊥)2. This is the ground for our statement in Sec. 1 that
the solution can be expressed as an infinite series in the above parameter.

3.3. Model expression for G

Having arrived at the conclusion that one cannot find an exact analytical solution
of (3.14), we have two possibilities: (1) to abandon completely an attempt to study
the effects of finite electron temperature, or (2) to perform such analysis by using
some models for the function G. We follow the second approach. The general logic
of our modeling is the following: we initially find an expression by expanding in
a series in a small parameter, and then consider this expression as a model valid
when the expansion parameter may be of the order of unity.

The first step of such a modeling is the following procedure of obtaining a model
expression for the function G.

According to (3.15), for small ρ2
s∇2
⊥, the function α(0) is small compared with h. In

this case, (3.14) can be solved by an expansion in a series in α(0). In the zeroth-order
approximation in α(0), it follows from (3.14) that

G = −n0 − cB0ω

4πeV 2
Aky
〈∇2
⊥h〉. (3.16)

This equation can be considered as a convenient model for G.
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3.4. Model expressions for α(0) and J (0)

Substituting (3.16) into (3.15), we find the following equation for α(0):

α(0) − ρ2
s(∇2
⊥α

(0) − 〈∇2
⊥α

(0)〉) = ρ2
s(∇2
⊥h− 〈∇2

⊥h〉). (3.17)

Let us emphasize that (3.17) should be considered as a model equation but not as a
rigorous one! Moreover, one can show that this model seems to be reasonable only
in neglecting the drift effects. If one allows for drift effects, (3.17) becomes a priori
invalid! This equation can be solved by an expansion in a series in ρ2

s. Keeping only
the first two terms of this expansion, one can obtain the following model expression
for α(0):

α(0) = α(0,0) + α(0,2), (3.18)

where

α(0,0) = ρ2
s(∇2
⊥h− 〈∇2

⊥h〉), (3.19)

α(0,2) = ρ4
s[∇2

⊥(∇2
⊥h− 〈∇2

⊥h〉)− 〈∇2
⊥(∇2

⊥h− 〈∇2
⊥h〉)〉]. (3.20)

We are interested in the case when ∂/∂x� ky. Then (3.19) reduces to

α(0,0) =
2B0ψ̃

Ls
ρ2
sh
′′(cos ξ − 〈cos ξ〉). (3.21)

We will use the function α(0,2) only near the separatrix. In this case, one can take

∇2
⊥ = ψ2

x

∂2

∂ψ2 . (3.22)

Then (3.20) reduces to

α(0,2) = ρ2
sh
IV ψ4

x. (3.23)

Here we have taken into account that near the separatrix, 〈ψ2
x〉 and 〈ψ4

x〉 vanish.
By means of (3.18), (3.21), and (3.23), we represent (3.13) into the form

J (0) = J (0,0) + J (0,2), (3.24)

where

J (0,0) =
cB3

0ω
2ψ̃

2πV 2
ALsk

2
y

h′h′′(cos ξ − 〈cos ξ〉), (3.25)

J (0,2) =
1

4π
ρ2
s

cB2
0ω

2

V 2
Ak

2
y

h′hIV ψ4
x. (3.26)

Equation (3.25) is the standard expression for the polarization current in the ap-
proximation of cold ions and electrons, while (3.26) describes the part of the polar-
ization current due to finite electron temperature. This part has the same structure
as that due to finite ion temperature (cf. paper II).

4. Electrostatic potential profile function
Now we turn to analysis of the orthogonality condition (2.25). In the operator
(d0/dt)(0), we neglect the term with α(0) (see (2.19)). This operator then proves to
be proportional to ψx∂/∂ξ, so that the contribution of the first term in the angular
brackets of (2.25) vanishes. In addition, we neglect the contribution of the term with
the operator (d0/dt)(1) in (2.25), since, first, we use the stationary approximation,
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∂/∂t = 0, and, second, the resistivity is assumed to be sufficiently small. Then
(2.25) reduces to

〈∇4
⊥φ̃

(0)〉 = 0. (4.1)

Allowing for (3.9) and the above discussion on calculating the function a(0), one
can see that (4.1) can be analyzed only by means of a model approach, i.e., by
expanding in a series in the small parameter ρ2

s∇2
⊥. Next, we assume that physically

correct results can be obtained by considering this parameter to be of the order of
unity in the corresponding terms of the series. Then, using (3.9), (3.18), (3.21), and
(3.23), one can transform (4.1) to

(A3h
′′)′′ + ρ2

sA5sh
V I + ρ4

sA7sh
V III = 0, (4.2)

where,

Al =
∮
ψlx dξ, l = 3, 5, 7, (4.3)

while the subscript s means that the value Al is taken at ψ = −ψ̃, i.e., at the
separatrix.

We need a solution of (4.2) for h′ vanishing for both ψ → −∞ and ψ → −ψ̃. We
represent

h′ = h̄′ + ĥ′. (4.4)

The functions h̄′ and ĥ′ are the ‘slow’ and ‘fast’ parts of h′, respectively. They are
defined by

(A3h̄
′′)′′ = 0, (4.5)

A3sĥ
IV + ρ2

sA5sĥ
V I + ρ4

sA7sĥ
V III = 0. (4.6)

The solution of (4.5) vanishing for ψ → −∞ is

h̄′ = Dg̃(ψ)/g̃s, (4.7)

where

g̃(ψ) =
∫ ψ

−∞

dψ

A3
, (4.8)

g̃s ≡ g̃(−ψ̃), and D is the constant of integration. Using the condition that electro-
static potential φ is finite as |x| → ∞, one can obtain D = (2πB0/Ls)1/2g̃s (see in
detail paper II). For ψ → −ψ̃, the solution (4.7) is finite, h′ → D. Then, one should
obtain the solution for ĥ′ vanishing for ψ → −∞ and tending to −D for ψ → −ψ̃.
Thereby, the function h′ will be regularized. In addition, in accordance with (4.6),
one can regularize also the first derivative of the function h′, obtaining h′′ → 0 for
ψ → −ψ̃.

We take

ĥ′ = exp

(
ψ̂κL
ρs

)
, (4.9)

where ψ̂ ≡ ψ + ψ̃ and κL is an as-yet unknown number. Then we obtain from (4.6)
that κL satisfies the ‘characteristic equation’

A7sκ
4
L +A5sκ

2
L +A3s = 0. (4.10)
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Hence it follows that

κ2
L,± =

A5s

2A7s

[
−1±

(
1− 4

A3sA7s

A5s

)1/2
]
. (4.11)

Using (4.3), we find the value Als(l = 3, 5, 7), and reduce (4.11) to

κ2
L,± =

7
48

Ls

B0ψ̃

[
−1± i

√
23
7

]
. (4.12)

Since Imκ2
L,±� 0, there are two localized solutions of the form (4.9). By combining

these solutions, one can construct the function h′ satisfying the conditions

lim
ψ→−ψ̃

h′ = 0, lim
ψ→−ψ̃

h′′ = 0. (4.13)

Similarly to paper II, in this case, the function ĥ′ is given by

ĥ′ = −
{
D1 exp

[
ψ̂(κ̂L + ikL)

ρs

]
+D2 exp

[
ψ̂(κ̂L − ikL)

ρs

]}
. (4.14)

Here, D1 and D2 are given by

D1 =
D

2

[
1 +

i

kL

(
κ̂L − 1

g̃sA3s

)]
, (4.15)

D2 =
D

2

[
1− i

kL

(
κ̂L − 1

g̃sA3s

)]
, (4.16)

kL = κL0 cos 1
2δ, κ̂L = κL0 sin 1

2δ,

where

κL0 =
7
48

Ls

B0ψ̃
, δ = cos−1

[
−
(

7
30

)1/2
]
.

Equations (4.4), (4.7), and (4.14) describe the regularized velocity profile, i.e., the
regularized electrostatic potential profile function.

5. Polarization current contribution to the generalized Rutherford
equation
For J (0) given by (3.24)–(3.26), the value of ∆p defined by (2.27) can be calculated
similarly to paper II. Then, one can find that the value J (0,2) does not contribute to
∆p. Therefore, the resulting expression for ∆p proves to be the same as in the case
of nonregularized magnetic islands. It is given by (for details, see paper II)

∆p =
4π
3

ω2L2
s

V 2
Ak

2
yw

3
[g2(1)− I], (5.1)

where w = 2(ψ̃Ls/B0)1/2 is the magnetic island halfwidth, g(1) = 0.869, and I =
0.229. According to (5.1),

∆p > 0, (5.2)

i.e., the polarization current is destabilizing.
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6. Conclusions
Neglecting drift effects, we have shown that, in addition to the hyperviscosity,
the effect of a parallel electron pressure gradient can lead to regularization of
rotating magnetic islands. This effect seems to be more important than that of
hyperviscosity in the case when the electron temperature is larger than the ion
temperature.

The above discussion, together with papers I and II, indicates that the magnetic
island theory generally accepted at present and dealing with a discontinuous lo-
calized velocity profile does not need to be revised in the sense that would follow
from the paper by Waelbroeck and Fitzpatrick (1997), who rejected such profiles
and suggested an alternative concept of magnetic islands with nonlocalized velocity
profiles. The latter profiles could be of interest in the problem of magnetic islands
in a plasma flow with sheared velocity characterized by some Alfvén Mach number.
It is known that a significant shear of the equilibrium plasma velocity appears in
the internal transport barrier (ITB) zone (see, e.g., Staebler et al. 1997). In this
respect, an investigation of the possibility of magnetic islands existing in this zone
seems to be important. Apparently, investigations of such a kind have not yet been
carried out. Note also that initially a nonlocalized velocity profile was predicted in
a numerical simulation by Parker (1992).

We have considered the polarization current contribution to the generalized
Rutherford equation for the island width, assuming the island to be regularized
by the above effect of a parallel electron pressure gradient, and have shown that
this contribution is the same as that for an island with a nonregularized (discon-
tinuous) velocity profile. Thereby, we have shown that the above-mentioned rule
of paper II is also valid in the case considered. As in the case of hot ions, this
contribution is destabilizing.

Note that the case where the electron temperature is essentially larger than the
ion temperature can be realized in electron cyclotron resonance heating (ECRH).
Such heating is used, in particular, in the TCV tokamak (Sauter et al. 2000). Obser-
vation of magnetic islands in TCV was recently reported by Reimerdes et al. (2000),
while initially the neoclassical tearing modes in discharges with much higher elec-
tron temperature were observed in COMPASS-D (Gates et al. 1997; Zohm et al.
1997).

Finally, let us discuss the situation where the electron and ion temperatures, Te
and Ti are of the same order. One can find that, to generalize (4.2) for the case of
arbitrary Ti/Te, one should substitute in this equation

ρ2
s → ρ2

s

(
1− Ti

Te
cL

)
, (6.1)

ρ4
s → ρ4

s

(
1− T 2

i

T 2
e

dL

)
, (6.2)

where, according to equation (79) of paper I, cL = 5
3 and dL = 553

300 . Similarly, in the
characteristic equation (4.10), one should change

A7s → A7s

(
1 +

T 2
i

T 2
e

dL

)
, (6.3)

A5s → A5s

(
1 +

Ti
Te
cL

)
. (6.4)
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Then, one can make sure that a localized function h′ satisfying the conditions (4.13)
exists for arbitrary Ti/Te.

For a finite ratio Ti/Te, one should also take into account the dispersion additions
to the polarization current dependent on Ti. Then, allowing for equation (37) of
paper II, the relation (3.26) for J (0,2) is modified as follows:

ρ2
s → ρ2

s

(
1 +

3
4
Ti
Te

)
. (6.5)

This means that the structure of J (0,2) for finite Ti/Te is the same as for Ti = 0.
Meanwhile, according to Sec. 5, the function J (0,2) of the form (3.26) does not con-
tribute to ∆p. Therefore, the same conclusion is valid for arbitrary Ti/Te.

Thereby, it is clear that the analysis given in the present paper, together with
that of papers I and II, is exhaustive for arbitrary Ti/Te.
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