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The timing of the popping: using the
log-periodic power law model to predict
the bursting of bubbles on financial markets

MARCUS GUSTAVSSON, DANIEL LEVEN and HANS S]OGREN
Linképing University

The occurrence and unpredictability of speculative bubbles on financial markets, and their accompany-
ing crashes, have confounded economists and economic historians worldwide. We examine the ability of
the log-periodic power law model (LPPL-model) to accurately predict the end dates of speculative
bubbles on financial markets through modeling of asset price dynamics on a selection of historical
bubbles. The method is based on a nonlinear least squares estimation that yields predictions of when
the bubble will change regime. Previous studies have only presented results where the predictions
turn out to be successtul. This study is the first to highlight both the potential and the limitations
of the LPPL-model. We find evidence that supports the characteristic patterns as proposed by the
LPPL-framework leading up to the change in regime; asset prices during bubble periods seem to oscillate
around a faster-than-exponential growth. In most cases the estimation yields accurate predictions, al-
though we conclude that the predictions are quite dependent on the point in time at which they are con-
ducted. We also find that the end of a speculative bubble seems to be influenced by both endogenous
speculative growth and exogenous factors. For this reason we propose a new way of interpreting the pre-
dictions of the model, where the end dates should be interpreted as the start of a time period where the
asset prices are especially sensitive to exogenous events. We propose that negative news during this time
period results in a regime shift and the bursting of the bubble. Thus, the model has the ability to predict
sensitivity to exogenous events ex ante.

Keywords: bubble forecasting, financial crisis, stock market crash, log-periodic power law model
(LPPL-model), asset price dynamics
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Speculative bubbles can be traced far back in history, and have foiled scholars for cen-
turies. During the South Sea bubble of the early eighteenth century Sir Isaac Newton
famously said: ‘I can calculate the motions of the heavenly bodies, but not the madness
of people’ (Kindleberger and Aliber 1978/20711). Since then many economists have
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made attempts to detect the bursting of bubbles ex ante. Robert Shiller is one amongst
the few who have successfully predicted crashes, as he did the crash of the dot-com
bubble in 2000 and that of the housing bubble in 2007 (Shiller 2000). However,
Shiller and many others face the same fundamental drawback: using their methods
they are unable to consistently and accurately predict the end date of a bubble,
which is more difficult than just acknowledging that the market will eventually
have to correct itself.

Sornette ef al. (1996) circumvent this drawback by presenting a quantification of the
asset price dynamics leading up to a crash in their log-periodic power law model,
henceforth called the LPPL-model. The authors propose that all speculative
bubbles are the results of endogenous market dynamics where asset prices during a
speculative bubble increase as a power law decorated with log-periodic oscillations.
A speculative bubble is assumed to be driven by two main characteristics: faster-
than-exponential growth and oscillatory movements. The faster-than-exponential
growth is explained by the concept of positive feedback (Sornette et al. 2013).
Positive feedback means that when prices go up, investors tend to buy because
they are expecting further price increases (Shiller 2000), in turn derived from the psy-
chological phenomenon known as herding behavior, as discussed by Shiller (1984)
and Nofsinger and Sias (1999). This phenomenon is what an observer of a market
might see during a speculative bubble. When positive feedback becomes dominant
the result is a self-reinforcing loop driving the market out of equilibrium. This
loop continues until the bubble reaches its critical point, which is when a change
in regime, 1.e. a change in growth rate of prices, occurs.

The oscillations of the LPPL-model are mainly based on empirical observations. As
pointed out by Sornette ef al. (1996), however, the oscillations bear resemblance to
the wave principle as posited by Elliott (1938/2012), which is sometimes used in tech-
nical analysis. According to Elliott, collective investor psychology alternates between
optimism and pessimism, which creates observable patterns in price movements. In
addition to this alternation between optimism and pessimism, Sornette ef al.
propose that the oscillations during a speculative bubble decrease in amplitude as
the price movements approach the regime shift. The theory suggests that the
regime shift should occur when the amplitude of the oscillations reaches zero. This
particular pattern is strictly empirical, as observed by several authors within this area
(see, for example, Sornette ef al. 1996). The literature does not provide a definitive
explanation of the mechanisms underlying the decreasing amplitude of oscillations.
It should be noted that the LPPL-model is only applicable to bubbles driven by en-
dogenous factors and that the model does not necessarily predict crashes, but rather
regime shifts. Therefore, a speculative bubble, in our definition, does not have to
be followed by a drastic downfall in asset prices. It might as well end by the asset
prices leveling out, although a common feature of all speculative bubbles is that
they end with a regime shift.

The patterns of the LPPL-model are illustrated in Figure 1, where the model has
been fitted to the S&P soo Index prior to the 1987 crash, colloquially known as
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Figure 1. The LPPL-model fitted to the S&P 500 Index prior to the 1987 crash

Black Monday. Note that the asset prices, as the model suggests, during this period
follow a faster-than-exponential trend and oscillate around this trend, while the oscil-
lations become lower in amplitude closer to the peak.

The LPPL-model has proven useful in predicting the end of speculative bubbles
both ex post and ex ante in various markets such as the 2006—8 oil bubble
(Sornette et al. 2009), historical bubbles on the Dow Jones Industrial Average
(Vandewalle ef al. 1999), the gold price peak of 2009 (Geraskin and Fantazzini
2011) and the real estate market in Las Vegas (Zhou and Sornette 2008). However,
since there are a lot of markets and bubbles to which the LPPL-model has not yet
been fitted, more studies are needed. Also, all previous studies only present results
that reinforce the theory, while none has highlighted both the potential and the lim-
itations of the LPPL-model. In addition, no previous study has examined the robust-
ness of the model. By addressing these issues we give ourselves the opportunity to
further assess the predictability and the accuracy of predictions of the model, and
thereby expand the understanding of the LPPL-model. In the next section, the
model, the estimation procedure and the data are presented. Then follow the empir-
ical test and a comparative analysis of the selected bubbles, before our results are
summarized.

I

The pattern proposed by the LPPL-model is quantified by the LPPL-equation. When
this model was first presented by Sornette et al. (1996) the equation was defined as

p(t) = A+ B(t. — )" + C(t, — t)"cos(w log(t. — ) + @) (1)

where asset price, p, is a function of time, f, and t, expresses the critical point, the most
probable time of a change in regime. The parameter z in the equation controls the
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strength of the feedback mechanism as well as the amplitude of the oscillations. z must
lie between o and 1, else we are dealing with some other type of process and not a
power law characterized by faster-than-exponential growth. @ denotes the frequency
of the oscillations and empirically takes on values between 4.8 and 7.9 (Johansen and
Sornette 2010). A is a positive parameter which naturally takes on the asset price value
of the LPPL-fit at the critical point. The parameter B will in the case of a speculative
bubble take on negative values since asset prices are increasing during a bubble, while
C must take on values between 1 and -1. ¢ in the equation simply signifies the direc-
tion of the oscillations.

Filimonov and Sornette (2013) present a modification of the equation where they
expand the cosine term of the original equation and rewrite the equation as follows:

p(t) = A+ B(t, — t)" + Ci(t, — t)” cos(w log(t. — 1))

+ Co(t, — 1) sin(w log(t, — 1)) (2)
Where
Ci=Coso
3)
C,=Csing

This transformation has two important implications. Firstly, the transformation
decreases the complexity of the fitting procedure since the optimization problem is
converted from a four-dimensional space to a three-dimensional space. Secondly,
and possibly of even greater importance, the cost function to be minimized now con-
tains a single minimum instead of multiple minima, as long as the model is appropriate
for the empirical data. The stability of the model is thereby significantly improved.
Due to this transformation the need for complex search algorithms such as a taboo
search is eliminated and more simple algorithms, e.g. a Gauss-Newton algorithm,
can be used without any reduction in the robustness of the estimation. For these
reasons we in this article choose to base our methods on equation (2).

This study is quantitative in its nature and based on a nonlinear least squares estima-
tion with the objective of solving the minimization problem related to equation (2),
using a Gauss-Newton algorithm. The nonlinear least squares estimation is conducted
over a great number of iterations, using a rolling window technique, where the start
and end date of the analyzed time period is changed in between iterations. This is con-
sistent with the recommendations of Sornette ef al. (2013) to make the predictions
more statistically robust. The estimation procedure returns the two fits with the
lowest sum of squared errors for each window of estimation. In each iteration we
use all available data up until one month before the actual regime shift in order to
examine whether an ex-ante prediction conducted one month before the peak
would have yielded an accurate prediction. Henceforth we consistently call this
date the last observed date. This procedure yields thousands of results, where the
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bad fits are separated from the good fits through a set of carefully chosen constraints on
the different parameters of the LPPL-equation.

Regarding the parameter w, measuring the frequency of oscillations, we choose to
follow the guidelines proposed by Filimonov and Sornette (2013) in allowing for
values between 3 and 15. When it comes to z, the parameter for feedback and amp-
litude of oscillations, we do not enforce any further constraints other than the
accepted values between o and 1. We also constrain B to only take on negative
values. In addition, we introduce constraints on the augmented Dickey-Fuller and
Phillips-Perron values of the fits to filter out stationary fits which have no explanatory
power in predicting the critical points. We only accept fits that are non-stationary at a
I percent significance level.

By enforcing these constraints we are left with only fits which help explain the
regime shift of the bubble, where the end date of each fit signifies the predicted critical
point of the bubble, i.e. the point in time at which the asset prices are anticipated to
change regime. These end dates are the objects of analysis, where they comprise con-
fidence intervals of critical points, indicating where it is most likely for the analyzed
bubble to change regime.

In testing the robustness of the model we proceed by setting the last observed date
two months and two weeks prior to the peak, respectively, and repeat the estimation
process. Then we can establish whether there is any distinct difterence in results based
on the last observed date, and whether these results match the theoretical assumption.

IT

We chose to focus this study on a selection of bubbles where their historical contexts
make them particularly interesting. This might, for example, be when it is well known
that the underlying assets were objects of speculation, or when differences in interest
rates caused increased capital flows between economies leading to increased anticipa-
tion of rising asset prices. We thereby circumvent the problems related to bubble se-
lection based on the drawdown methodology explained by Johansen and Sornette
(2010), where the methodology excludes speculative bubbles that do not end in a
crash, while it might include exogenous bubbles.

Based on this selection criterion, and due to the lack of previous thorough empir-
ical examination, we select the following eight bubbles to base our analysis upon; the
panic of 1907, when financial distress was spread across the Atlantic; the Wall Street
crash of 1929, one of the largest financial crises of the twentieth century; the
Japanese asset price bubble of the 1980s, one of the most spectacular and speculative
bubbles in living memory; the London stock price bubble of the 1990s, where
changes in interest rates possibly led to excessive speculation; the emerging markets
bubble of the 1990s, where investment trends contributed to excessive price
growth in emerging markets; the dot-com bubble of the late 1990s, where an entirely
new market led to disproportionate anticipations; the wheat price bubble of the
2000s, where the possible occurrence of speculation has been a topic of discussion;
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and lastly the Chinese stock market crash in 2015, where investors encouraged by na-
tional media invested large amounts, in many cases borrowed money.

The datasets consist of daily closing prices of various well-known stock price
indices and a commodity index. Data were retrieved from Thomson Reuters
Datastream, except data for the panic of 1907 and the Wall Street crash of 1929,
which were retrieved from www.measuringworth.com. The datasets have not
been processed by us in any way. We chose to base this study on actual price data
since we do not want to process the data more than necessary and since we have
found, in a previous study, that the choice of actual versus log-price data does not sig-
nificantly alter our results (Gustavsson and Levén 2015). We also consider that the use
of actual prices is preferable for graphical reasons since this makes the faster-than-ex-
ponential growth and thereby the positive feedback mechanism easier to distinguish
and understand.

When analyzing the different bubbles we use data from the following indices: for
the panic of 1907 and the Wall Street crash of 1929 we use data from the Dow Jones
Industrial Average; for the Japanese asset price bubble we use data from the Nikkei 225
Index; for the London stock price bubble we use data from the FTSE 100 Index; for
the emerging markets bubble we use data from the Hang Seng Index of Hong Kong;
for the dot-com bubble we use data from the Nasdaq Composite Index; for the wheat
price bubble we use American Soft Red Winter wheat futures prices; for the Chinese
crash we use data from the Shanghai Stock Exchange Composite Index.

ITI

In this section we examine the ability of the LPPL-model to accurately predict the end
of speculative bubbles, through modeling of asset price dynamics on a selection of his-
torical bubbles. Highlighted in dark grey in each figure of this section is the 8o percent
confidence interval of the critical points, f,, that are the results of the fitting procedure
described above. In lighter grey within this interval is a 50 percent confidence interval
of critical points. These intervals thus represent the most probable time fora change in
regime. The confidence intervals are plotted with the motivation that the date of the
regime shift is a highly stochastic process and that the prediction of one specific crash
date in fact might be misleading. The median date of the critical points is marked by
the (red) vertical line within the confidence interval and gives guidance to where it is
more likely for the regime shift to occur. In each graph only a dozen of the resulting
LPPL-fits are plotted, regardless of how many resulting fits are produced. We do this
for the sake of visibility, while the total number of fitted curves is given in the upper
left corner of each figure. The bold black line in each figure illustrates the last observed
date, which is where the ex-ante prediction is assumed to be conducted. Due to there
in most cases being a lot of fitted curves we, instead of presenting the parameter values
for each fit, present the parameter means based on all fits. These values are presented
for each estimation conducted one month prior to the peak.
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Figure 2. The LPPL-model fitted to the Dow Jones Index prior to the panic of 1907

The panic of 1907

In the panic of 1907, the Dow Jones Industrial Average fell almost so percent from its
peak the previous year. The immediate reason was a retraction of market liquidity by a
number of New York City banks and a loss of confidence among depositors. There
contagion came from Europe, where London and Paris had decided in 1906 to cut oft
the credits to Italian banks, after years of speculative investments. Thus, the regime
shift came already in 1906. When the financial distress was spread across the
Atlantic, the panic spread throughout the US, where many state and local banks
and businesses went bankrupt (Kindleberger and Aliber 1978/2011).

Figure 2 shows the results of a prediction conducted one month prior to the peak.
The results are ambiguous. We notice that the model finds two distinct patterns, one
with more frequent oscillations that seems to predict an earlier critical point, and one
with less frequent oscillations which pushes the interval of predicted end dates to later
dates. However, the projection only finds a total of 20 fits, indicating that the predic-
tion should not be taken as a certainty. We observe that the actual peak date of 19
January is captured within the 80 percent confidence interval but occurs months
before the so percent confidence interval.

A B Cr C2 z OMEGA

Mean 77.28830 —22.55191 2.321341 1.792278 0.660508 6.363124

Figure 3a, which shows a prediction conducted two months before the actual peak,
gives us a quite different result. Since the model no longer finds any fitted lines match-
ing the pattern with less frequent oscillations we get a much shorter interval of pre-
dicted end dates just after the last observed date. Neither the 50 percent confidence
interval nor the 8o percent interval captures the actual peak date.
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Figure 3a—b. The LPPL-model fitted to the Dow Jones Index prior to the panic of 1907 with different
last observed dates

The estimation conducted two weeks prior to the actual peak, as shown in
Figure 3b, finds results quite similar to those of Figure 2, with a broad and uncertain
interval of predictions. Throughout these three estimations it seems that the model
continuously finds oscillations and fits that are not of any significance when trying
to predict the regime shift. These results indicate that the model is a poor fit to this
time series. However, recall that the model is not supposed to be a good fit for all his-
toric bubbles.

The Wall Street crash of 1929

The stock market crash of 1929 formed the largest financial crisis of the twentieth
century. The panic of October 1929 and the Wall Street crash has come to serve
as a symbol of the economic contraction that gripped the world during the next
decade, during the Great Depression. After a few weeks, the Dow Jones Index
had gone down by more than 40 percent. The crash followed on from a specu-
lative boom from the mid 1920s, where steel production, building construction,
retail turnover and automobiles registered advanced from record to record. Like
the panic of 1907, the roots of the crash in 1929 could be traced to both
Europe and the US. On both continents, hundreds of banks and businesses
went into bankruptcy in the aftermath of the crash (Kindleberger and Aliber
1978/2011).

From Figure 4 it is apparent that the asset prices prior to the Wall Street crash follow
the characteristic pattern as proposed by the LPPL-model; the prices seem to oscillate
around a faster-than-exponential growth where the oscillations become smaller closer
to the peak. These price movements act exactly as they are expected to during a specu-
lative bubble, according to the LPPL-framework. It can also be seen from Figure 4
that the actual peak date of 3 September is encapsulated by both the so percent
and the 80 percent confidence intervals. These are promising results since they indi-
cate that an ex-ante estimation conducted one month prior to the actual peak date
would have accurately predicted the upcoming change in regime.
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Figure 4. The LPPL-model fitted to the Dow Jones Index prior to the Wall Street crash of 1929

A B CI C2 Z OMEGA

Mean 379.1522 —123.0183 —12.07881 —I1.122I0 0.760370 4.659381

When performing an estimation where the last observed date is two months prior
to the peak, we reach similar results to those of Figure 4. It can be seen from Figure sa
that the median date is shifted one day to the right in the graph, while both confidence
intervals are broadened compared to the first estimation. These results indicate that an
ex-ante prediction conducted two months prior to the peak would have yielded
almost the exact same conclusions regarding the upcoming regime shift as those of
the estimation performed one month prior to the peak. However, the broadened
confidence intervals indicate some additional uncertainty, which is expected when
performing an earlier ex-ante prediction.

From Figure sb, where the last observed date is set two weeks prior to the peak, it is
evident that both confidence intervals as well as the median are shifted approximately
two weeks later compared to the estimation of Figure 4. Since the LPPL-framework
suggests that the regime shift should occur when the oscillations reach zero, one pos-
sible explanation for this occurrence is that the oscillations are already quite low in
amplitude when the last two predictions are conducted. Due to this low amplitude,
the model anticipates the number of days after the last observed date needed to reach a
zero amplitude to be about the same in both of the last two predictions. Thus, the
confidence interval and the median are simply shifted to the right in the graph as
we conduct estimations closer to the peak. These results and this possible explanation
will be further assessed in the comparative analysis.
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Figure sa—b. The LPPL-model fitted to the Dow Jones Index prior to the Wall Street crash of 1929 with
different last observed dates
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Figure 6. The LPPL-model fitted to the Nikkei 225 Index during the Japanese asset price bubble of the
1980s

The Japanese asset price bubble of the 1980s

The Japanese asset price bubble, a classic example of a speculative bubble, formed in the
1980s due to an increased interest in investments in Japan. This increased interest was in
turn attributed to financial liberalization and a relaxed monetary policy followed by the
Bank of Japan. The result was a massive inflow of capital from foreign investors. The
asset prices plunged in early 1990, which is often attributed to two exogenous
events: a tightening of the monetary policy and new credit regulations introduced by
the Bank of Japan, imposing lending restrictions on Japanese banks.

When fitting the LPPL-equation to the time series preceding the peak we arrive at
the results presented in Figure 6. It can be seen from the figure that the stock prices
during this time period follow the characteristics of LPPL. It can also be seen from
Figure 6 that both the 80 and 50 percent confidence intervals capture the actual
peak date, or regime shift, of 29 December, while the median date is only five days
later. This means that if an ex-ante prediction would have been performed on the
Nikkei 225 Index one month prior to the actual peak it would have given us a
good estimation of the upcoming date of the regime shift.
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Figure 7a—b. The LPPL-model fitted to the Nikkei 225 Index during the Japanese asset price bubble of
the 1980s with different last observed dates

It is evident from Figure 7a that both the start and the end of the confidence inter-
vals are moved roughly one month to the left in the graph compared to the interval in
Figure 6, although the 8o percent confidence interval still captures the actual peak
date. One possible explanation for this behavior could, as in the case of the Wall
Street crash, be that the amplitude of oscillations is already quite low when the pre-
dictions are conducted. The confidence intervals will continue to move to the left in
the graph when moving the last observed date to the left, as long as the oscillations
soon before the last observed date are close to zero. This means that the LPPL-frame-
work would expect the regime shift to occur earlier. Why this speculative bubble lives
for so long is difficult to tell. One possibility is that an exogenous trigger might be
needed when the oscillations have reached maturity to offset the positive feedback
loop and end the bubble. Perhaps in this case there was no negative news big
enough to start the downward spiral prior to the implementation of a tightened mon-
etary policy and new central bank regulations. These tentative explanations will be
discussed more thoroughly in the comparative analysis below.

From Figure 7b it is apparent that the actual regime shift yet again is captured by the
80 percent confidence interval, while the intervals are moved roughly two weeks to
the right in the graph. This is probably for the same reason as above, namely that the
oscillations are so far gone when the prediction is conducted.

The London stock price bubble of the 1990s

During the early 1990s the United States Federal Reserve pursued an expansionary
monetary policy, which led American and foreign investors to seek alternative
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Figure 8. The LPPL-model fitted to the FTSE 100 Index during the London stock price bubble of the
1990s

investments with higher returns (Blakey 2010). Hence there was a large inflow of
capital to European and emerging financial markets. This capital inflow gave birth
to a rapid increase in stock prices on these markets. The eventual sudden change of
course has been attributed to the Federal Reserve’s shift to a more contractionary
policy.

In Figure 8, the LPPL-equation is fitted to the FTSE 100 Index during the period
preceding the downturn of 1994. It is apparent that the asset prices follow the char-
acteristics of LPPL. It is also evident that the predictions of the LPPL-model in this
case yield accurate results, since the actual change in regime on 2 February is captured
by both confidence intervals.

A B Ci C2 z OMEGA

Mean 4100.689 —1345.636 78.25435 —33.81155 0.286581 6.977419

The accuracy of the predictions may be surprising since both the initiation and end
of the bubble were most likely influenced by an exogenous factor, the Federal funds
rate. Perhaps the initiating shock started a wave of positive feedback where speculation
on further increases drove the market to new heights. In line with the results of the
Japanese asset price bubble, perhaps the Federal funds rate acted as an exogenous
trigger which disrupted the speculative behavior.

When the last observed date is set two months prior to the peak date the intervals of
predicted end dates are shifted to the left in the graph, as seen in Figure g9a. These
results are reminiscent of those for the Japanese asset price bubble, with the exception
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Figure 9a—b. The LPPL-model fitted to the FTSE 100 Index during the London stock price bubble of
the 1990s with different last observed dates
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Figure 10. The LPPL-model fitted to the Hang Seng Index during the emerging markets bubble of the
1990s

that none of the confidence intervals captures the actual peak of 2 February. As in the
case of the Japanese asset price bubble, the oscillations are already quite small when the
predictions are conducted and this is probably why the confidence intervals are simply
moved sideways.

When conducting the prediction closer to the peak, as seen in Figure gb, the inter-
vals of critical points capture the actual peak date.

The emerging markets bubble of the 1990s

During the middle of the 1990s institutional investors, mainly in Europe and North
America, found particular interest in emerging markets around the world
(Kindleberger and Aliber 1978/2011). By 1997 the large inflow of capital into
several Asian economies led to dramatic rises in asset prices, possibly fueled by specu-
lative behavior. Instability in the Thai economy eventually led to increased perceived
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risks in emerging markets, and the asset prices plunged in the second half of 1997.
The results below are based on the Hang Seng Index of Hong Kong. We have
chosen to focus on this index since the Hong Kong Stock Exchange was the
largest stock exchange among emerging markets at the time, and probably provides
the most reliable data.

It is apparent from Figure 10 that the analyzed time series exhibits clear character-
istics of the LPPL-model. The confidence intervals encapsulate the actual regime shift
which occurred on 7 August. There is, however, a heavy skew to the left, indicated by
the median red line, meaning that the regime shift is more likely to occur during the
earlier dates of the interval.

A B Ci Cz z OMEGA

Mean  27358.95  —15548.73  —471.5420  —284.7341  0.211476  5.697537

When the last observed date is set two months prior to the peak date, as in
Figure 11a, we observe slimmer confidence intervals of predicted end dates, with
the median only a few days earlier compared to the median of the estimation con-
ducted one month prior to the peak. This means that estimations performed one
and two months prior to the actual peak would have yielded almost the exact same
conclusions regarding the upcoming change in regime. Results that are largely un-
affected by when the predictions are conducted are what one wishes to see when
examining a bubble.

When the last observed date instead is set two weeks prior to the peak, as in
Figure 11b, the results are similar to the prediction done one month prior to the
peak, with the intervals and the median shifted to the right. This occurrence, yet
again, probably has to do with the oscillations already being quite low in amplitude
when the predictions are conducted.

The dot-com bubble of the late 1990s
The dot-com bubble of the late 1990s is perhaps one of the most well-known exam-
ples of a highly speculative bubble. The establishment of a new market with the
advent of internet-based-companies garnered great public interest, which led to
drastic increases in asset prices (Lowenstein 2004). Concerns about the digital shift
to a new millennium contributed to a hype in the computer service industry, includ-
ing consultancy. The drastic downturn following the peak was not triggered by any
particular major event, but was seemingly self-inflicted.

Having the characteristics of a speculative bubble, it does not come as a surprise that
the price movements during the dot-com bubble closely followed the patterns of the
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Figure 11a-b. The LPPL-model fitted to the Hang Seng Index during the emerging markets bubble of
the 1990s with different last observed dates
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Figure 12. The LPPL-model fitted to the Nasdaq Composite Index during the dot-com bubble of the
late 1990s

LPPL-model, as shown in Figure 12. The actual peak date on the Nasdaq Composite
Index occurred on 10 March 2000 and thus fits within the 8o percent confidence
interval of predictions, but not within the 50 percent interval.

A B Cr C2 z OMEGA

Mean 9391.387 —7576.932 186.7511 —1064.1183 0.433889 4.024070

It can be seen from Figure 13a that when setting the last observed date two months
before the peak date the intervals of predictions are comprised of very few curves, and
the actual peak date is missed by more than two months. It seems that the model finds
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Figure 13a—b. The LPPL-model fitted to the Nasdaq Composite Index during the dot-com bubble of
the late 1990s with different last observed dates

only one long oscillation prior to the last observed date and therefore predicts that the
bubble will continue for several months. The explanation for why this happens is that
the dot-com bubble spans over a quite short period and there is a great deal of infor-
mation needed for an accurate prediction contained in the price data of the last two
months before the regime shift. For the model to accurately predict the regime shift
there is a need for more data closer to the peak. When conducted one month before
the crash, as in Figure 12, the data include a second oscillation, thus allowing the es-
timation to find a regime shift closer to the observation date. Without these data the
model is unable to anticipate how rapidly the oscillations actually are decreasing in
size, which is crucial for the prediction.

When the last observed date is set two weeks before the actual peak date, as in
Figure 13b, the results are similar those of Figure 12, although the intervals are
shifted slightly to the right. The total number of fitted curves is now higher compared
to when the prediction is conducted both one and two months before the peak. This
is what one might expect when a bubble ranges over a short period of time and the
information contained in the last few months is of great significance for the prediction.

The wheat price bubble of the 2000s

During the period 2006—8 the price of wheat futures increased more than threefold to
a high of 1,280 US cents per bushel. Whether widespread speculative behavior was
the reason behind this rapid price increase or not has been a topic of discussion
after the drastic downturn in prices during 2008. Most probable is that the wheat
prices were affected by several factors including rising demand for food, climate
change, high oil prices, increased interest in alternative use of land through biofuels,
but also speculative behavior (Robles ef al. 2009). As a result of the global financial
crisis starting in 2007 and the associated credit crunch with more restrictive
lending, overall speculative behavior saw a major drop as capital became harder to
access (Mizen 2008). The downturn in wheat prices was probably a result of the
credit crunch, although other factors possibly could have been influential as well.
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Figure 14. The LPPL-model fitted to wheat futures prices during the wheat price bubble of the 2000s

Although the bubble in wheat futures is said to have begun in 2006 the model only
finds fits starting in April 2007. For this reason we only present the shorter period
between April 2007 and March 2008 in Figure 14 and 15a—b. It is possible that the
prices started to rise in 2006 but the actual herding behavior commenced in 2007.
The futures prices have two peaks, where we have chosen to define the second
peak as the regime shift, since it is at this time that the growth rate of the prices is dra-
matically changed. It can be seen from Figure 14 that the LPPL-model yields a quite
inaccurate prediction where the actual peak date is not encapsulated by the confi-
dence intervals and the median date is about two weeks prior to the peak date. It
can also be observed that the price of wheat futures, despite the inaccurate prediction,
closely follows the characteristic patterns proposed by the LPPL-model leading up to
the last observed date.

A B Cr C2 z OMEGA

Mean 1048.772 —471.5004 117.5622 —07.95906 0.693722 8.181709

A question that arises when examining Figure 14 is how it is possible for the model
to miss the actual regime shift with such significance despite the fits of the curves being
quite accurate. It seems that the oscillations are so far gone when the prediction is con-
ducted that they indicate a regime shift close to the last observed date, while the
movements after the last observed date are not possible to explain from the underlying
theory of the LPPL-model.

Figure 15a illustrates that an ex-ante prediction conducted two months before the
regime shift yields results indicating that the change in regime should occur right after
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Figure 15a—b. The LPPL-model fitted to wheat futures prices during the wheat price bubble of the 2000s
with different last observed dates

the last observed date. This prediction is, yet again, probably due to the fact that the
oscillations already have reached maturity and are quite small when the prediction is
conducted.

It is apparent from Figure 15b that the model yields more accurate critical points
when the ex-ante prediction is assumed to be conducted two weeks before the
actual change in regime. However, the 80 percent confidence interval just barely cap-
tures the actual peak date while the so percent interval does not. Yet again the oscilla-
tions are quite small when the prediction is conducted and therefore the change in
regime is expected to occur just after the last observed date.

The Chinese stock market crash in 2015

The Chinese stock market crash began with the popping of the stock market bubble
on 12 June 2015. Within one month, a third of the value of A-shares on the Shanghai
Stock Exchange was gone and half of the listed firms filed for a trading halt in an
attempt to prevent further losses. Despite efforts by the government to reduce the
fall, values of Chinese stock markets continued to drop. After three stable weeks
the Shanghai index fell by 8.5 percent on 24 August, dubbed Black Monday,
wiping out hundreds of billions of dollars in market capitalization. This event
marked the largest biggest one-day fall since 2007. Commodity prices fell into terri-
tory not seen since 1999, and the contagion infected Western markets.! One reason
for the bubble was a herding behavior among domestic investors. The Chinese
economy was expansive and enthusiastic individual investors, encouraged by state-
owned media, invested in stocks, often using borrowed money. Since the prospects
were high, the value of the stocks often exceeded the rate of growth and profits of
the very companies. The inflated prices also reflected a long history of high market
volatility in China, typical for emerging markets in transition economies. The

! “The great fall of China’, The Economist, 28 August 2015.
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Figure 16. The LPPL-model fitted to the Shanghai Stock Exchange Composite Index prior to the
Chinese stock market crash in 2015

bumpy prices and the burst of the bubble revealed structural imbalances in the
Chinese economy.?

From Figure 16 we can see that the bubble preceding the Chinese stock market
crash follows the pattern of the LPPL-model closely and that the median date ends
up just a few days ahead of the actual peak on 12 June. Both confidence intervals
are quite tight and encapsulate, or are close to encapsulating, the actual change in
regime.

A B Cr Cz z OMEGA

Mean 107745.0 —105196.0 —89.44806 —83.23766 0.020395 4.457972

‘When conducting a prediction two months prior to the peak we retrieve the fits of
Figure 17a, where it is apparent that the period prior to the last observed date follows the
LPPL-model pattern closely and that the model is quite uncertain about what is going
to happen next. For these reason we end up with widely scattered predicted end dates,
and thus wide confidence intervals. Both the 80 percent and the so percent confidence
intervals capture the actual peak, while the median is more than a month off.

The prediction conducted two weeks prior to the peak, as in Figure 17b, yields an
accurate prediction, where both confidence intervals capture the actual peak date and
the median date ends up just one day after the peak.

2 “Was the crash that big?’, The Economist, 24 August.
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Figure 17a-b. The LPPL-model fitted to the Shanghai Stock Exchange Composite Index prior to the
Chinese stock market crash in 2015 with different last observed dates

Iv

We find that most of the bubbles analyzed behave in accordance with the expected
characteristics of the LPPL-model. The price movements leading up to the regime
shift are characterized by faster-than-exponential growth and show clear oscillatory
patterns where the oscillations decrease in amplitude leading up to the regime shift.
The smaller oscillations close to the regime shift are in some cases difficult for the
model to fit perfectly, although it is clear that these oscillations in general are
smaller than the earlier oscillations, and that deviations from the patterns proposed
by the LPPL-model are uncommon.

The most apparent deviation from the expected behavior of the model is the results
for the panic of 1907. We previously noted that the prediction yields inaccurate and
uncertain results with poor robustness, which could be used as an argument against
the assumptions of the model. However, recall that the theory of the model only
applies to bubbles that are driven by the endogenous factors of the LPPL-framework
and does not claim that all bubbles follow this pattern. We instead consider the results
to be an indication that the bubble preceding the panic of 1907 was driven not by
endogenous super-exponential growth but by other factors. Thus we conclude that
the basic assumptions of the LPPL-model are legitimate, since the suggested patterns
are possible to observe on markets during bubble periods.

The reasoning behind why asset prices during bubble periods in theory should in-
crease faster-than-exponentially and simultaneously oscillate around this trend is well
established in the LPPL-framework. However, what is less discussed in the literature
are the reasons why the oscillations decrease in amplitude as the bubble approaches its
regime shift. Previous studies have explained this behavior as strictly empirical. We
imagine that the earlier oscillations during a bubble are results of investor mentality
alternating between optimism and pessimism, while one possible explanation for
the decreasing amplitude is that as asset prices reach greater heights, so does the
market anxiety. It is safe to assume that as investors get more anxious they are less con-
fident in their positions, while at the same time afraid of missing out on further
increases, resulting in short periods of market sell-outs and buy-ins. For this reason
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there are periods with ups and downs as the bubble approaches its peak. Despite these
movements being quite large in a short time frame, compared to the earlier oscilla-
tions during the bubble they are small. This behavior would result in more frequent
oscillations with lower amplitude as the bubble gets older. This reasoning is in line
with the theory proposed by Abreu and Brunnermeier (2003), according to which
rational arbitrageurs ‘test the market’ to find out whether many investors, like them-
selves, have realized that the asset prices are overvalued.

One recurring observation of the results is the apparent influence of exogenous
factors on the regime shift of a bubble. For example, the downturn following the
Japanese asset price bubble has been attributed to a tightened monetary policy and
new credit regulations, while the regime shift of the emerging markets bubble was
influenced by the Thai crisis. Despite these exogenous influences the predictions of
the model are quite accurate, which is unexpected since the model obviously
cannot predict the occurrence of exogenous events. Additionally, in some cases we
observe that the entire interval of predicted end dates is shifted when moving the
last observed date, calling into question the nature of the model’s predictive ability.
These results are problematic for the prediction of regime shifts since the actual
peak date is unknown when conducting ex-ante predictions. We propose a couple
of possible explanations for the exogenous influence on the regime shifts.

One possibility is that the exogenous events that seem to be plausible explanations
for the regime shifts are accredited more influence than is justified. Since it is difficult
to measure speculative behavior, the influence of endogenous speculative growth
might be mitigated in favor of more easily observable exogenous events. For
example, in the case of the London stock market bubble the regime shift seems to
have been the effect of unsustainable speculative behavior based on the results of
the LPPL-curves, but the prevailing explanation for the downturn is the more
easily observed external change in the interest rate. The disregarding of speculation
in favor of an exogenous trigger may explain the apparent influence of exogenous
factors although it does not serve as a satisfactory explanation for why the confidence
intervals of predicted end dates in many cases are shifted when the last observed date is
changed.

Another possible explanation is that the endogenous speculative growth and the
exogenous trigger events complement each other. We propose that the LPPL-
model patterns by themselves are not enough to explain the end of a speculative
bubble. Rather there is a need for an exogenous event to trigger the regime shift
after the oscillations have reached maturity. We find this to be the most feasible ex-
planation since it also explains the quite frequently occurring shift in the intervals
of predicted end dates. Consider, for example, the case of the Japanese asset price
bubble. From Figure 6 and Figure 7a—b it seems that the oscillatory patterns of the
LPPL-curves become very small and probably reach maturity in late 1988. By
setting the last observed date two months prior to the peak, the model then concludes
that the time series is sensitive to a regime shift just following the last observed date.
The fact that the asset prices continued to grow for two months more indicates that
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there was no exogenous event large enough to trigger the regime shift during this
period. In fact, the model in this case will predict the regime shift to occur quite
soon after the last observed date when predicting the outcome as early as in late
1988. In this particular case it took until the implementation of a tightened monetary
policy and stricter central bank regulations in late 1989 for the herding behavior to be
disrupted. At this point the asset prices had risen a great deal, while the impending
downturn was more severe.

Our hypothesis is strengthened by the logical assumption that for speculators to
stop buying and start selling, something more than endogenous factors is needed.
During bubble periods asset prices continue to rise due to anticipation of further
price increases. For the prices to take a downturn, or change regime, the investors
have to change their expectations with regard to anticipating decreasing asset
prices. It is easy to assume that this does not happen by itself; an exogenous event
is needed to disrupt the herding behavior and the investors’ anticipations. In some
cases this disruption might crystallize as reversed speculative behavior, where investors
sell because they are anticipating decreasing asset prices, causing a crash on the market.
If no exogenous event occurs the herding behavior and increasing asset prices will
continue until big enough negative news reaches the market. On the other hand, if
such an exogenous event occurs before the speculative behavior has reached maturity,
1.e. when the oscillations are still quite large in amplitude, the prices will not fall dras-
tically since they are not sufficiently overvalued to begin with. We expect a dip in
prices since they still are affected by exogenous shocks, although the asset prices
quickly return to the trend and thereafter continue to rise in accordance with the
LPPL-model patterns.

This reasoning is in line with the work of Abreu and Brunnermeier (2003), who
argue that rational arbitrageurs ‘ride the bubble’ even though they are aware of its ex-
istence and that it eventually has to burst. The rational arbitrageurs choose to stay in
the market because they do not know whether they have acquired this information
early or late relative to other rational arbitrageurs. These agents await the next negative
exogenous shock events and choose to get out of the market when the perceived
probability that the bubble will burst is sufficiently high. Our hypothesis suggests
that the model’s ability to predict the bursting of bubbles is not as strong as has
been claimed in previous studies, since it actually predicts periods when asset prices
are especially sensitive to exogenous events. Therefore, the results of all estimations
have to be interpreted in a more careful manner. When conducting an ex-ante pre-
diction and interpreting the results, the predicted critical points should not be inter-
preted as best estimates of a change in regime, but rather as the start of a period when
the asset prices are more sensitive to negative external events. However, as our empir-
ical results underline, the model still has the capacity to accurately predict regime
shifts. Negative exogenous events occur during most time periods and quite frequent-
ly, leading to the conclusion that a regime shift usually closely follows when the oscil-
lations have reached maturity. The asset prices do not change regime due to negative
exogenous events earlier since the oscillations at this point have not reached far
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enough. Therefore, the high frequency of negative exogenous events can explain the
accuracy of the LPPL-model in most cases.

Before going into what we have found on the robustness of the LPPL-model it is
important to consider what robustness actually means in this context. Consider an ex-
ante prediction conducted two months before the actual regime shift. For the model
to yield similar results when conducting an ex-ante prediction one month later, itis a
prerequisite that the price movements during the period in between have followed
the predicted LPPL-fits of the earlier estimation. If this is not the case the new pre-
diction will yield different results than those of the earlier prediction. We can
observe this on several of the bubbles analyzed where the results cannot be considered
robust. A representative example is that of the dot-com bubble, where the predictions
yield different results since price movements in between the dates of prediction are
contradictory to the LPPL-model patterns of the eatlier prediction. A counter-
example is that of the emerging markets bubble, where the price movements in
between the dates of prediction follow the first LPPL-fits closely. The results of the
emerging markets bubble are clearly to be considered robust.

Even though the results of the emerging markets bubble as well as, at least to some
degree, the Wall Street crash of 1929 yield robust results, the results in general cannot
be regarded as robust since most of the bubbles examined exhibit predictions that are
dependent on the time of prediction. Why the predictions regarding the dot-com
bubble are not robust is quite easy to tell. The bubble in this case spreads over a
quite short time interval while the asset prices increase very rapidly. Due to this
there is a great deal of information contained in the price data of the last few
months, why the earlier prediction does not capture the actual trend and its oscilla-
tions leading up to the regime shift. The same reasoning applies for the Shanghai
stock market bubble, also a bubble spanning over a quite short time period. The
Japanese asset price bubble, the London stock market bubble and the wheat price
bubble all seem to suffer from the same condition, where the results of the different
predictions cannot be regarded as robust.

Instead of drawing the conclusion that the LPPL-model is lacking predictive ability
due to this non-robustness, we stick to our hypothesis presented earlier. The reason
why these predictions are so dependent on the time of prediction is that the oscilla-
tions are so far gone when the predictions are conducted, and the market is awaiting
negative news big enough to disrupt the upward trend. For this reason, the predicted
end dates appear just after the last observed date. That the model does not yield robust
results is of no major significance, since this is totally logical if the estimation results are
interpreted as predictions as to when the asset prices start being more easily influenced
by exogenous factors.

Given this newfound interpretation one may ponder upon the ex-ante usability of
the LPPL-model. The different estimations of the Chinese stock market crash shed
light on this question since they reveal how the model can be used to examine
bubbles ex ante by monitoring price developments through continuous estimations.
At the estimation two months prior to the peak date the investor can see that an
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LPPL-model pattern is forming and that there are several possible trajectories the
future price development can take. One month later the investor observes the
course that the prices actually took, and can conclude that the peak is near. If the in-
vestor chooses to wait another two weeks before exiting the market they will notice
that the model still determines that the end is near. When performing continuous esti-
mations, results like these are exactly what you want to see, since they all point in the
same direction and form a basis for an investment strategy. The reasons why the ex-
ante usability becomes so clear in this case is that the Chinese stock market crash was
quite a short bubble and the usage of estimations conducted one month, two months
and two weeks prior to the crash, respectively, suits a shorter bubble better than a long
one. For the same reasons the ex-ante usability is also quite clear for the dot-com
bubble. We propose that future research should be more focused on assessing the
ex-ante usability of the LPPL-model, especially through monitoring a larger
number of estimations for each bubble, with a longer interval in between the difterent
estimations.

\Y

We have investigated the ability of the LPPL-model to accurately predict the end of
speculative bubbles on financial markets. Previous studies have only presented
results where the predictions turn out to be successful. Through this study we
are first to highlight both the potential and the limitations of the LPPL-model.
We have done so by applying the model to time series of eight bubbles, chosen
based on their historical context. Our empirical results reinforce the underlying
theory of the model that asset prices during bubble periods oscillate with decreasing
amplitude around a faster-than-exponential growth. We find that the predictions of
the LPPL-model in most cases are quite accurate, where the actual peak date is
encapsulated by the confidence intervals of critical points. The robustness of the
model, however, can be questioned since the predictions seem to be dependent
on when they are conducted.

One recurring observation is that asset prices continue to rise with small oscilla-
tory patterns even after the predicted regime shift. We suggest that this is due to
there being an interaction between exogenous and endogenous influences, where
an exogenous factor acts as a trigger and is needed for the speculative behavior
to be disrupted, thus changing the regime. With this motivation we propose that
the results of the LPPL-model should be interpreted differently. We argue that
the interval of critical points is not a prediction of the regime shift itself, but
rather a prediction of when the asset prices are especially sensitive to influences
of exogenous factors. The interval thus gives an indication of the point in time
after which a negative exogenous factor is enough to disrupt the speculative behav-
ior. The reason why the LPPL-model yields accurate predictions in most cases is
due to these exogenous events occurring quite frequently. When no such event
occurs the asset prices continue to rise, although the oscillations have reached
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maturity. To conclude, our study has shown that the LPPL-model has the ability to
predict sensitivity to exogenous events ex ante.

Submitted: 14 December 201§

Revised version submitted: 22 April 2016
Accepted: 20 June 2016

First published online: 22 August 2016

Sources

The Economist

References

ABREU, D. and BRUNNERMEIER, M. K. (2003). Bubbles and crashes. Econometrica, 71, pp.
173—204.

BLAKEY, G. G. (2010/2011). A History of the London Stock Market 1945—2009, 6th edn. London:
Harriman House.

ELLIOT, R. N. (1938/2012). The Wave Principle. New York: Snowball Publishing.

FILIMONOV, V. and SORNETTE, D. (2013). A stable and robust calibration scheme of the log-
periodic power law model. Physica A: Statistical Mechanics and Applications, 392, pp. 3698—707.

GERASKIN, P. and FANTAZZINI, D. (2011). Everything you always wanted to know about log-
periodic power laws for bubble modeling but were afraid to ask. European Journal of Finance, 19,
pp. 366—91.

GUSTAVSSON, M. and LEVEN, D. (2015). The predictability of speculative bubbles: an examination
of the log-period power law model. Master’s thesis, Business and Economics Programme, Linkdping
University.

JOHANSEN, A. and SORNETTE, D. (2010). Endogenous versus exogenous crashes in financial
markets. Brussels Economic Review, 53, pp. 201—53.

KINDLEBERGER, C. P. and ALIBER, R. Z. (1978/2011). Manias, Panics and Crashes: A History of
Financial Crises, 6th edn. London: Palgrave Macmillan.

LOWENSTEIN, R. (2004). Origins of the Crash: The Great Bubble and Its Undoing. New York: Penguin.

MIZEN, P. (2008). The credit crunch of 2007—2008: a discussion of the background, market reactions,
and policy responses. Federal Reserve Bank of St Louis Reviews, 90, pp. §31—67.

NOFSINGER, J. R. and SIAS, R. W. (1999). Herding and feedback trading by institutional and
individual investors. The_Journal of Finance, 54, pp. 2263—95.

ROBLES, M., TORERO, M. and VON BRAUN, J. (2009). When speculation matters. IFPRI Brief
57.

SHILLER, R. J. (1984). Stock prices and social dynamics. Brookings Papers on Economic Activity, 2, pp.
457-510.

SHILLER, R. J. (2000). Irrational Exuberance. New York: Princeton University Press.

SORNETTE, D., JOHANSEN, A. and BOUCHAUD, J. (1996). Stock market crashes, precursors and
replicas. Journal de Physique 1, 6, pp. 167—75.

SORNETTE, D., WOODARD, R., YAN, W. and ZHOU, W.-X. (2013). Clarifications to questions
and criticisms on the Johansen-Ledoit-Sornette bubble model. Physica A, 392, pp. 4417—28.

SORNETTE, D., WOODARD, R. and ZHOU, W.-X. (2009). The 2006—2008 oil bubble: evidence
of speculation and prediction. Physica A, 388, pp. 1571—6.

VANDEWALLE, N., AUSLOOS, M., BOVEROUX, P. and MINGUET, A. (1999). Visualizing the
logperiodic pattern before crashes. European Physics Journal B, 9, pp. 355—9.

ZHOU, W.-X. and SORNETTE, D. (2008). Analysis of the real estate market in Las Vegas: bubble,
seasonal patterns, and prediction of the CSW indexes. Physica A, 387, pp. 243—60.

https://doi.org/10.1017/50968565016000123 Published online by Cambridge University Press


https://doi.org/10.1017/S0968565016000123

	The timing of the popping: using the log-periodic power law model to predict the bursting of bubbles on financial markets
	I
	II
	III
	The panic of &#xF644;&#xF64C;&#xF643;&#xF64A;
	The Wall Street crash of &#xF644;&#xF64C;&#xF645;&#xF64C;
	The Japanese asset price bubble of the &#xF644;&#xF64C;&#xF64B;&#xF643;s
	The London stock price bubble of the &#xF644;&#xF64C;&#xF64C;&#xF643;s
	The emerging markets bubble of the &#xF644;&#xF64C;&#xF64C;&#xF643;s
	The dot-com bubble of the late &#xF644;&#xF64C;&#xF64C;&#xF643;s
	The wheat price bubble of the &#xF645;&#xF643;&#xF643;&#xF643;s
	The Chinese stock market crash in &#xF645;&#xF643;&#xF644;&#xF648;

	IV
	V


