
Math. Struct. in Comp. Science (2015), vol. 25, pp. 1484–1489. c© Cambridge University Press 2014

doi:10.1017/S0960129513000406 First published online 10 November 2014

An injection from the Baire space to natural

numbers

ANDREJ BAUER

Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia

Email: andrej.bauer@andrej.com

Received 13 August 2012

We provide a realizability model based on infinite time Turing machines in which there is an

injection from the internal Baire space, the object of infinite sequences of numbers, to the

object of natural numbers.

1. Introduction

At the Mathematical Foundations of Programming Semantics XXVII in May 2011, Oliva

(2011) held a tutorial in which he showed a program witnessing the fact that there was

no injection from the Baire space NN to natural numbers N . The program took as

input a function h : NN → N and produced two sequences x, y ∈ NN such that x �= y

and h(x) = h(y). Martı́n Escardó popularized the program as an interesting example

of extraction of computational content from classical proofs, which left one wondering

whether there was a constructive proof of the statement

∀h : NN → N . ∃x, y ∈ NN . x �= y ∧ h(x) = h(y) (1)

that would yield such a program more directly. Fred Richman asked for a constructive

proof of the weaker statement that there was no injection from the Baire space to the

natural numbers, and nobody could come up with one.

Classically there is no injection h : NN → N , of course. Constructively, such a map

must be wildly discontinuous, if it exists. Indeed, because convergent sequences in N are

eventually constant, h must map every injective sequence to a non-convergent sequence

in N . As every point is the limit of an injective sequence, h must be discontinuous at every

point. Brouwerian intuitionism, Russian constructivism and many other familiar models

of constructive mathematics, all enjoy continuity principles which therefore prohibit such

discontinuous maps.

Let me also mention that in Russian constructivism and in the effective topos (Hyland

1982), an injection NN → N ‘almost’ exists because the Baire space NN is a quotient of a

subset of N . This gives us a multi-valued injective map NN → N , which however cannot

be made single valued. Or to put it in another way, we have an injective operation which

does not preserve extensional equality of functions.

In this note, I observe that there is a realizability topos based on infinite time Turing

machines (Hamkins and Lewis 2000) in which there is an injection NN → N . Consequently,

we cannot hope to extract Oliva’s program directly from a constructive proof (1). It is

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406


An injection from the Baire space to natural numbers 1485

likely that the topos can be used for other ominous purposes. For example, it validates the

principle LPO, in fact it decides any arithmetical statement, but its logic is not classical,

as it never is in a non-trivial realizability topos.

2. Infinite time Turing machines

We give a brief overview of infinite time Turing machines and recommend Hamkins and

Lewis (2000) as a reference which contains more detailed descriptions and proofs of all

the unsupported claims made here. An infinite time Turing machine, or just machine, is

like a Turing machine which is allowed to run infinitely long, where the computation steps

are counted by ordinals. The machine has a finite program, an input tape, work tapes, an

output tape, etc. We assume that the tape cells contain 0’s and 1’s. At successor ordinals,

the machine acts like an ordinary Turing machine. At limit ordinals it enters a special

‘limit’ state, its heads are placed at the beginnings of the tapes, and the content of each

tape cell is computed as the lim sup of the values written in the cell at earlier stages. More

precisely, if cα denotes the value of the cell c at step α, then for a limit ordinal β we have

cβ =

{
0 if ∃α < β . ∀γ . (α � γ < β ⇒ cα = 0),

1 otherwise.

The machine terminates by entering a special halt state, or it may run forever. It turns

out that a machine which has not terminated by step ω1 runs forever.

We can think of machines as computing partial functions 2N ⇀ 2N: we initialize the

input tape with an infinite binary sequence x ∈ 2N , run the machine, and observe the

contents of the output tape if and when the machine terminates. We can also consider

infinite time computation of partial functions N ⇀ N: we initialize the input tape with

the input number, run the machine and interpret the contents of the output tape as a

natural number, where we ignore anything that is beyond the position of the output head.

By performing the usual encoding tricks, we can feed the machines more complicated

inputs and outputs, such as pairs, finite lists and even infinite lists of numbers. We say

that a function is infinite time computable if there is a machine that computes it.

The power of infinite time Turing machines is vast and extends far beyond the halting

problem for ordinary Turing machines, although, of course they cannot solve their own

halting problem. For example, for every Π1
1-subset S ⊆ 2N there is a machine which, given

x ∈ 2N on its input tape, terminates and decides whether x ∈ S .

There is a standard enumeration t0, t1, t2, . . . of infinite time Turing machines, where tn
is the machine whose program is encoded by the number n in some reasonable manner.

The associated enumeration ψ0, ψ1, ψ2, . . . of infinite time computable partial functions

N ⇀ N is defined as

ψn(k) =

{
m if tn on input k terminates and outputs m,

undefined otherwise.

The enumeration ψ satisfies the s-m-n and u-t-m theorems.

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406


A. Bauer 1486

Theorem 2.1 (s-m-n). There is a total infinite time computable map s : N × N → N such

that ψs(m,i)(j) = ψm(〈i, j〉) for all m, i, j ∈ N .

Theorem 2.2 (u-t-m). There is a partial infinite time computable map u : N × N ⇀ N
such that ψn(k) = u(n, k) for all n, k ∈ N .

To convince ourselves that the u-t-m theorem holds, we think a bit how a universal infinite

time Turing machine works. It accepts the description n of a machine and the initial input

tape x. At successor steps, the simulation of machine tn on input x proceeds much like

it does for the ordinary Turing machines. Thus it takes finitely many successor steps to

simulate one successor step of tn. Each limit step of tn is simulated by one limit step of

the universal machine, followed by finitely many successor steps. Indeed, whenever the

universal machine finds itself in the special limit state, it puts the simulated machine in the

simulated limit state, and moves the simulated heads to the beginnings of the simulated

tapes. These actions take finitely many steps. The contents of the simulated tapes need

not be worried about, as it will be updated correctly at limit stages.

To see what sort of tasks can be performed by infinite time Turing machines, we

consider several examples that will be useful later on.

There is a machine which decides whether two infinite sequences x, y ∈ NN are equal.

It first initializes a fresh work cell with 0, and then for each k, it compares xk and yk . If

they differ, it sets the work cell to 1. After ω steps the work cell will be 1 if and only if,

x �= y.

A more complicated problem is to semidecide whether a given machine tn computes

a given sequence x ∈ 2N . The machine which performs such a task accepts n and x as

inputs and begins by writing down the sequence yk = ψn(k) onto a work tape. This it can

do by simulating tn successively on inputs 0, 1, 2, . . . and writing down the values yk as

they are obtained. The machine also keeps track of which values yk have been computed

by flipping bits on a separate ‘tally’ tape from 0 to 1. If any of the yk ’s is undefined, the

machine will run forever. Otherwise, it will be able to detect in ω steps that the entire

sequence y has been computed and written down by checking that all bits on the separate

‘tally’ tape have been flipped to 1. After that, the machine verifies that xk = yk for all

k ∈ N , as described previously.

Suppose, we have a machine t which expects as input an infinite sequence x and

a number n. We would like to construct another machine which accepts an infinite

sequence x and outputs a number n such that t(x, n) terminates, if one exists. We use the

familiar dovetailing technique to tackle the problem. Given x ∈ 2N as input, we simulate

in parallel the executions of machine t on inputs of the form (x, n), one for each n:

t(x, 0), t(x, 1), t(x, 2), . . .

Each of these requires several infinite tapes, but since we only need countably many

of them, they may be interleaved into a single tape. At successor steps, the simulation

performs the usual dovetailing technique. At limit steps, the simulation inserts extra ω

bookkeeping steps, during which it places the simulated machines in the ‘limit’ state and

moves their head positions. The extra steps do not ruin the limits of the simulated tapes,

because those are left untouched. After the extra steps are performed, dovetailing starts

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406


An injection from the Baire space to natural numbers 1487

over again. As soon as one of the simulations t(x, n) terminates, we return the results n.

Note that n is computed from x in a deterministic fashion, although a different simulation

technique may yield a different n.

3. Realizability over infinite time Turing machines

For background on realizability theory, we refer to van Oosten (2008). To build a

realizability model from infinite time Turing machines, we first need to turn them into a

partial combinatory algebra J . Because the infinite time Turing machines enjoy the s-m-n

and u-t-m theorems, this is no problem at all. The underlying set of J is the set of natural

numbers N , and the partial application operation applies m to n by computing ψm(n). The

combinator K is obtained by an application of the s-m-n theorem to the first projection

〈i, j〉 
→ i, while the combinator S requires a bit more work and the use of the u-t-m

theorem.

In the next section, we will show that the realizability topos RT(J ) contains an injection

NN → N. In fact, we only need to consider a much simpler realizability model of numbered

sets over J . These are equivalent to a full subcategory of RT(J ) which contains the natural

numbers object N and the internal Baire space NN.

Recall that a numbered set (S, δ) is a set S with a partial surjection δ : N ⇀ S . If (T , η)

is another numbered set, we say that a map f : S → T is infinite time computable with

respect to δ and η if there exists an infinite time computable map r : N ⇀ N such that

dom(δ) ⊆ dom(r) and f(δ(n)) = η(r(n)) for all n ∈ dom(δ). We say that r tracks f.

The natural numbers object in RT(J ) is the numbered set N = (N , idN), while the

internal exponential NN is the set

{f : N → N | f is infinite-time computable}

of infinite time computable total function, with the numbering ψ restricted to the codes

of total maps.

4. An injection NN → N in RT(J )

To show that our realizability model has in injection NN → N, we first formulate a

constructive plan of attack. Recall that a set is subcountable if it is the image of a subset

of N .

Proposition 4.1. Suppose the following hold:

1. choice from functions to numbers, and

2. NN is a subcountable set.

Then there is an injection NN → N , constructively.

Proof. The second condition means that there is a partial surjection e : N ⇀ NN .

For all f ∈ NN , there exists n ∈ N such that e(n) = f. By function choice there exists

h : NN → N such that e(h(f)) = f for all f ∈ NN . Clearly, h is injective because e is its

right inverse.

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406


A. Bauer 1488

The second condition is satisfied in RT(J ). The partial surjection e : N ⇀ NN is defined

as

e(n) =

{
ψn if ψn is total

undefined otherwise,

and is tracked by the identity map. Its domain of definition is the set of codes of total

infinite time computable maps. The map e is surjective in the internal logic of the topos

because it is surjective and tracked by the identity.

Choice from functions to numbers is also known as AC1,0. It states that any total relation

between NN and N contains a function. We show that RT(J ) satisfies an even stronger

principle, namely general choice for functions: every total relation on NN contains a

function. In categorical terms, this amounts to NN being internally projective, see van

Oosten (2008, 3.2.3).

Proposition 4.2. The object NN is internally projective in RT(J ), if and only if, there exists

an infinite time computable map r : N ⇀ N such that:

1 if ψk is total then r(k) is defined and ψk = ψr(k), and

2 if ψk is total then r(r(k)) = r(k).

Proof. See e.g. van Oosten (2008, 3.2.3) or Bauer (2000, 1.3.4).

We describe informally how a machine t computing r works. Suppose k is the code of a

total function ψk (our machine will diverge if k is not the code of a total function). The

machine t first writes down the sequence xi = ψk(i) onto a tape. At the end of Section 2,

we argued that there is a machine which accepts x and a number m, and terminates if

and only if, ψm computes x. Therefore, by dovetailing t can compute an m such that ψm
computes x. Crucially, m depends only on x and the particular dovetailing technique, but

not on k. We may take r(k) = m because ψk = x = ψm, and r(r(k)) = m.

The map r just described tracks an injection NN → N, so we could have constructed

one directly, without knowing anything about internally projective sets. Nevertheless, it is

still interesting to know that RT(J ) validates function choice.

Acknowledgements

I thank Joel Hamkins for explaining infinite time Turing machines to me, and to Alex

Simpson and Jaap van Oosten for helpful discussions.

References

Bauer, A. (2000) The Realizability Approach to Computable Analysis and Topology, Ph.D. thesis,

Carnegie Mellon University.

Hamkins, J. D. and Lewis, A. (2000) Infinite time turing machines. Journal of Symbolic Logic

65 (2) 567–604.

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406


An injection from the Baire space to natural numbers 1489

Hyland, J. (1982) The effective topos. In: Troelstra, A. and Dalen, D. V. (eds.) The L.E.J. Brouwer

Centenary Symposium, North Holland Publishing Company 165–216.

Oliva, P. (2011) Programs from classical proofs via Gödel’s dialectica interpretation. In: 27th

Conference on Mathematical Foundations of Programming Semantics (MFPS XXVII), Pittsburgh,

USA.

van Oosten, J. (2008) Realizability: An Introduction to its Categorical Side, Studies in Logic and the

Foundations of Mathematics volume 152, Elsevier.

https://doi.org/10.1017/S0960129513000406 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000406

