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NONPARAMETRIC REGRESSION
IN THE PRESENCE OF
MEASUREMENT ERROR

SUSANNE M. SCHENNACH
University of Chicago

We introduce a nonparametric regression estimator that is consistent in the pres-
ence of measurement error in the explanatory variable when one repeated obser-
vation of the mismeasured regressor is availablee approach taken relies on a
useful property of the Fourier transformamely its ability to convert compli-
cated integral equations into simple algebraic equati®hs proposed estimator

is shown to be asymptotically normand its rate of convergence in probability

is derived as a function of the smoothness of the densities and conditional expec-
tations involved The resulting rates are often comparable to kernel deconvolu-
tion estimatorswhich provide consistent estimation under the much stronger
assumption that the density of the measurement error is knblenfinite-sample
properties of the estimator are investigated through Monte Carlo experiments

1. INTRODUCTION
1.1. Motivation

The bias resulting from the presence of measurement error in the explanatory
variables is a common problem in regression analydteough numerous solu-
tions to this problem have been derived for parametric regression maldels
corresponding problem in nonparametric specifications has remained relatively
unexplored

Some aspects of the nonparametric errors-in-variables problem have been pre-
viously investigatedThe problem of estimating the density of an unobserved
variable when this variable is measured with error and when the density of the
error is known has received considerable attention in the literatuthis set-
ting, the so-called kernel deconvolution estimattr a review of the exten-
sive literature seg e.g., Carroll and Hall 1988 Liu and Taylor 1989 Carroll,
Rupperf and Stefanskil995 has been shown to reach the optimal rate of con-
vergencg Fan 1991h. The problem of the nonparametric estimation of a regres-
sion function when the independent variable is measured with an error drawn
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from a known distribution has also been studibdthis casea kernel regres-
sion estimator based on kernel deconvolution is known to achieve optimal con-
vergence ratesFan and Truong1993. A more challenging problem is the
estimation of densities and regression functions when the independent variable
is measured with an error drawn from anknowndistribution Thanks to an
identity due to Kotlarskisee Rap1992 p. 21), the identification of the den-
sity of an unobserved random variable is possible when the joint density of two
error-contaminated measurements of that variable is knbinand Vuong(1998
show that the empirical version of this identity leads to a consistent estimator
with known convergence rates

In contrast to the nonparametric density estimation probtemnonparamet-
ric estimation of conditional expectations under similar conditions has so far
remained unsolvedrhis is the gap our paper intends to fill by extending the
traditional Nadaraya—Watson kernel regression estimator to allow for the inde-
pendent variable to be contaminated with an error of an unknown distribution
We show that the availability of two error-contaminated measurements of the
independent variable is all that is needed to achieve identificatibe useful-
ness of this result stems from the observation that although distributional assump-
tions are often not appropriate in applicatiptisis precluding the use of kernel
deconvolution estimatoysepeated measurements can frequently be found in
data setgAshenfelter and Krueget994 HausmanNewey and Powell 1995
Morey and Waldmanl1998 Bowles 1972 Borus and Nestell973 Freeman
1984.! For instancea given quantity may be repeatedly measured over,time
or the same quantity may be reported by different peogpleh as different
family members or an employer and an emplay&ee error on one of the mea-
surements does not need to have zero méaurs expanding the set of valid
repeated measurements to more general indicatorso repeated measure-
ments that exhibit a systematic drift

Our analysis not only derives the convergence rate of the proposed estimator
but also provides its asymptotic distributiofhe asymptotic properties of the
estimator are analyzed through various analytical examled its finite-
sample properties are investigated through Monte Carlo simulations that illus-
trate the bias-correcting power of our estimafdl proofs can be found in the
Appendix

1.2. Background

To understand the difficulties faced in nonparametric estimation in the pres-
ence of measurement ersdris instructive to recall the well-known solution to
the simpler problem of finding the density of an unobserved variablgiven

an imperfect measurementfor a review see Carroll et a 1995:

z=Xx"+ Az (1)

The measurement erravz is usually assumed to be independent frefnand

to be drawn from a known densitit is well known that the density of is
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given by the convolution of the density &f with the density ofAz. Thanks to
the convolution theorenthis relationship can be concisely expressed using char-
acteristic functions

m(v) = @) (v), (2)

where¢(v), m(v), and ¢ (v), respectivelydenote the characteristic functions
of x*, z andAz We can therefore identify the characteristic function of inter-
est ¢ (v), through

() - T 3)
Y= oy
wherem(») can be estimated by the Fourier transform of a nonparametric esti-
mator of the density of, such as a kernel estimatdrhe problem with this
procedure arises from the fact thahder mild assumptionsuch as assuming
that the density ofAz is continuouy i (v) vanishes ag» — oo, so that this
operation is not well defined for all. Hence merely replacingn(») by a con-
sistent estimaté(v) may not yield a consistent estimated@fr), because small
errors onm(v) are magnified by the arbitrarily large factofyi(v). This is the
well-known ill-defined inverse problem that occurs when one tries to invert a
convolution operationThe so-called kernel deconvolution estimat@arroll
et al, 1995 Fan 1991h addresses this problem by estimatimgr) using a
kernel whose Fourier transformx (v), is compactly supportedrhis ensures
that the estimated characteristic functitfw) is also compactly supporteehich
in turn guarantees that the numerator of equat®nwill vanish well before
the denominator causes the ratio to diverge
Itis clear that truncating the characteristic functioreaf this fashion intro-
duces a biasTo obtain a consistent estimattine support ok (v) is allowed to
expand as sample size grows in such a way that the total integrated noise over
all frequencies in the support @f{») decreasesThe fastef)(v) — 0 asy — oo,
the more slowly the support @&f(») can expand with sample size and the slower
the convergence rat&his is the fundamental difficulty associated with non-
parametric estimation in the presence of measurement &sdhe smoothness
of the density of the measurement error increasfes characteristic function
i (v) goes to zero increasingly rapidly as— co and the convergence rate wors-
ens The smoothness of the density xf also plays a role in determining the
convergence ratd’he bias introduced by the truncationmofv) at a finite fre-
qguency is a function of the magnitude of the rate of decaynf) asy — co.
The smoother the density &f, the faster its Fourier transform(v) decays as
v — oo, and the faster the bias decreases as the kernel bandwidth shrinks
The literature focusing on kernel deconvolution estimators typically describes
the smoothness of a density in terms of the asymptotic rate of decay of its Fou-
rier transform as frequenay goes to infinity The basis for such a description
is that the number of derivatives of a density that are continuous is directly

https://doi.org/10.1017/50266466604206028 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206028

NONPARAMETRIC REGRESSION WITH MEASUREMENT ERROR 1049

related to the asymptotic behavior of its Fourier transform as co. This leads

to the traditional distinction between “ordinarily smooth” functigndich admit

a finite number of continuous derivatives and whose Fourier transform decays
as|v|?, y < 0) and “supersmooth” functionavhich admit an infinite number

of continuous derivatives and whose Fourier transform decays dstpxfi),

a < 0,8 > 0). Examples of ordinarily smooth functions are gammaiform,

and double exponentiaghnd normal and Cauchy are supersmooth functions

The kernel deconvolution estimator exhibits a wide variety of convergence
rates depending on the smoothness of the densities invdlvednever the den-
sities ofx* and ofAz are ordinarily smoottthe kernel deconvolution will exhibit
a rate of convergence of the formm¢ for somec > 0 wheren is sample size
The situation degrades significantly when the densitgois supersmooth while
the density ofx* remains ordinarily smoothThe convergence rate is then of
the form (Inn)~¢ for somec > 0, which is slower than any negative power
of n.

The problem solved in this paper is more challenging than the one described
above First, we focus on a kernel regression estimator rather than a kernel
density estimatorSecondwe assume the density of the measurement error to
be unknown

2. ESTIMATION PROCEDURE
Our task is to find a functiog(x*) : R — R such that
y = g(x*) + Ay whereE[Ay|x*]=0. 4)

We considex™ a scalar to simplify the expositipalthough a multivariate exten-
sion is clearly possiblé When bothy andx* are observeda natural candidate
for this task is the well-known Nadaraya—Watson kernel estimatgf %f) at a
given pointx*

n
Nt v Kn(x® — &%)
=

9(x%h) = n ) (5)
n-t 2 Kn(X" — )
I=1

wherex;" andy, for | = 1...n denote the data points and the kerKg(-) is of
the form

X*

1
Kn(x*) = HK<F> (6)

andh is the bandwidth parameteFhe problem we are facing is that is not
observedAs shown in Schennadt2004) the availability of two repeated mea-
surements ok*
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X = X"+ AX, (7)
zZ=X"+ Az (8)

provides enough information to identify any moment of the fdgfu(y, x*)]
for any functionu(y, x*). Because the probability limitat constant band-
width h) of the Nadaraya—Watson kernel estimator is the ratio

ELYK,(x* = %°)]
E[Ky(x* = %))

g(x%h) = (9)

a similar technique can be applied hesettingu(y, x*) = y*Kn(x* — x*), for

k = 0,1. The extension of the existing results to a nonparametric setting
nevertheless requires additional steps to handle the fact that we need to char-
acterize an infinite family of momentindexed byx*. Fortunately this com-
plication can be elegantly handled by observing that the convolution operations
involved in computing the Nadaraya—Watson estimator are converted into sim-
ple products through the Fourier transform operatemabling the whole fam-

ily of moments to be estimated in a single operatidhe formal result that
permits identification is summarized in the following set of assumptions and
associated theorerhroughout the papgwe will take the convention that inte-
grals without explicit bounds are taken over the whole real line

Assumption 1

E[Ay|x* Az] =0,
EEA))/(||X*,AZ]] =0; (10)
Az andx™* are mutually independent

Assumption 2 E[|x*|], E[|AX|], andE[|y]|] are finite

Assumption 3 E[ykh K (h~1(x* — *))] < oo for all x*, anyh > 0, and
k=0,1

THEOREM 1 Under Assumptions 1-3, and providgg[e'¢?]| > 0 for any
finite £, the function
E[yh*K(h™*(x* = *))]
E[hK(h 2(x" =)’

g(x%h) = (11)

for x* € R and h= 0, can be expressed solely in terms of moments that involve
the observable variables y, x, and z:

M, (X% h)

Mol )’ .

g(x%h) =
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where, for k= 0,1,

1
M(x ) = == [he)aurent-ien) de (3)

and whereg,(¢) = E[ y¥exp(iéx*)] is given by’

_ £imy({)
$o(§) = eXp< f T d¢ ) (14)

B my(£)
h1(€) = o(é) — m,(£)’ (15)
where i= \—1 and (&) is the Fourier transform of the kernel(&*) and
m,(¢) = E[aexp(iéz)] fora=1,x,y. (16)

Note that knowledge of the momemts,(¢), for a = 1, %, y, which involve
observable variables onlig sufficient to identifyg(x* h). Because the moments
m,(&¢) can be estimated from the corresponding sample averagepropose
the following estimatar

DEFINITION 1. Let (x;,V;,z), fori = 1,...,n denote a sample of size n.
For a givenx* € R and some sequence of bandwidthis-h O, let

My(%* hy)

g(x*hy) = Mo(X".hy)’ (17)

where, for k= 0,1,

N 1 R
W) = > [l )di6) explién) o (18)
T
o ([im
¢o(v)—exp( fo G d§>, (19)
o mo
Bi0) = L3 ol 20)

and where, for a= 1, x, y,
n
Ma(£) = n~t > a explilz). (21)
j=1
An interesting property of this estimator is that it reduces to the Nadaraya—
Watson estimator in the absence of measurement regrwhenz = x = x*).

Indeed in that casem,({) = m,({) = n‘lEj”:lzj e2<p(§zj) = dmy(¢)/dZ, and
equation(19) can be integrated analytically to yiedth(v) = my(v), thus imply-
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ing that equatior(20) becomesp,(v) = m,({). With these equalities in mind
equation(18) then defines the Fourier representation of the numerator and the
denominator of the Nadaraya—Watson estimator

To ensure that the proposed estimator is well behawedneed to make the
following assumption

Assumption 4 The Fourier transform of the kernel(¢), is (i) bounded and
(ii) compactly supporte@without loss of generalitywe consider the support to
be[—11]).

The boundedness af(¢) is a very weak requirement because any kernel
K(2) violating it would necessarily fail to be absolutely integrafilee assump-
tion of compact support ok (¢£) is commonly made in the derivation of the
asymptotic properties of kernel deconvolution estimatdfan and Truong
1993. The need for this assumption arises from the fact that the estimator
involves a division by an asymptotically vanishing characteristic functioder
very mild smoothness requirementharacteristic functions decay to zero as
frequency increases toward infinit% compactly supported kernéin Fourier
representationexplicitly makes the frequency range considered in a given sam-
ple finite, ensuring that the divergence is kept under control

The restriction of compact suppdiih Fourier representatigmposes few prob-
lems in practicebecause one can take any given keiéx*) and construct a
modified kernelK(x*) that exhibits most of the properties of the original ker-
nel, while possessing a compact support in Fourier representatiois is
achieved by computing the Fourier transfokit¥) of the original kerneK (x*)
and multiplying it by a “windowing” functionW(¢) that vanishes beyond a
given frequency

R(&) = W(£)k(£). (22)

Judicious choice of a windowing function will ensure that the modified kernel
K (&) keeps most of the properties of the original kerri&dr instancea win-
dowing function such as

1 if [£]=¢
W(E) = @+exp(Q—E(@A—[ENTT— (¢ &)™ if1=[é]>¢
0 if |£] > 1

foranyé € 10,1 (23)

will leave the order of the kernel unaffectdaecause the windowing function
is constant in the neighborhood of the origime fact that this windowing func-
tion is infinitely many times differentiable will guarantee that the modified ker-
nel K(x*) decays faster than any power xf as|x*| — oo (provided that the
original kernelK(x*) had this property
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3. ASYMPTOTIC PROPERTIES

This section is organized as followko facilitate the analysis of the asymptotic
properties of the proposed estimai{ix*, h,,), we first provide a linear repre-
sentation of this estimatodenotedg(x*, h,), that will be shown to be asymp-
totically equivalent taj(x* h,,). This linearization serves two purpos&#st, it

will enable the derivation of the convergence rate of the estimator using tech-
niques that are analogous to the standard bias and variance decomposition used
in the context of conventional kernel estimato&econd a linear representa-

tion is essential to establish the asymptotic normality of the estimator

3.1. Linearization

In this sectionwe will provide very general results that summarize the proper-
ties of a linearized estimat@(x*, h,) that will be used to establish the asymp-
totic properties ofj(x* h,,). The form of the estimator prompts for two levels
of linearization First, as is commonly done in the analysis of nhonparametric
conditional expectation kernel estimataitse ratio ofM,(X*, h,,) andMo(%* h,)

in equation(17) is expanded in a Taylor series up to first ord@econdunlike

the usual Nadaraya—Watson estimator and kernel deconvolution estimators
Mo(%* h) and My(X* h) themselves take the form of nonlinear functionals of
the data generating procestsis thus convenient to carry out the linearization a
step further by calculating the Fréchet derivativeN(%* h) and M,(X*, h)
with respect to the estimated momeahi({) for a = 1, x,y in the vicinity of
Ma(&) = my(£). The following definition gives a linearized versigiix*, h) of

the estimatog(x* h).*

DEFINITION 2. For x* € R and h> 0, let
(%% h) = g(x*h) + ! (My(%*,h) — My(X* h))
g ) - g ) MO(X*,O) 1 ) 1 )

M, (X%,0)

T (Mo(%0))2 (Mo(%% h) = Mo(%*, h)), (24)

where, for k= 0,1, M (X", h) is given by equation (13),

M(%,h) = M(x5h) + X [ UM x5 h) (M (9) — my(£)) dg, (25)

I=1Lxy

A, R M (2)
(m(0)?

U2(Z, %% h) = (26)
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iAg(Z, X% h)

UO , *,h — ,
(¢, %% h) T

UP(Z, %% h) =0,
iAl(é,v X*’ h) mx(é,) + Cl(ga X*7 h)

Ull(é/’ X*5 h) =

(m(e” ()
le(g’ %% h) = %’
1
Co(Z, %%
UM, %5 h) = %’
1

(277)_1f exp(—iv* )k (—hv)p (v)dv  if =0
AL, %% ) = . (27)
(277')71J< exp(—ivX* )k (—hv)d (v)dv if £ <O,
¢
C(£, %5 h) = (27)~ exp(—idx*) k (—h{) di(£).
The advantage of the linear representation provided by Definition 2 is that it
is possible to decompose the ergix* h) — g(x*0) into well-defined “bias”

and “variance” termsas given by Lemma,lwhich follows

Assumption 5 [ i, X;, Z;, X", Ay;, AX;, Az ] for i = 1...nis an independent
and identically distributedi.i.d.) sequence

Assumption 6 E[y?71|z|1] < oo, E[x271|2]1] < oo, for j = 0,1.

Assumption 7 The density ofx* is nonzero ak* = X*.

LEMMA 1. Under Assumptions 1-7, f&@* € R and h> 0,
g(x* h) — g(x*,0) = b(x*,h) + v(x*h), (28)
where the bias term (x*, h) and the variance term(X* h) are given by
b(x*,h) = g(X* h) — g(x*0), (29)
v(X%h) = g(X% h) = g(X*, h) (30)
and wherev(&*, h) satisfies Hv(%* h)] = 0 and

E(v(x%h)?] = n"*Q (%% h),
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where

214(X% ) Mf(X*,h)EOO(X*,h)_ M1 (X% )2 0(X7% h)

SO (g2 (Mo(x*,)* (Mo(%7, h))?

(31)

SR ="t > ¥ ﬂUu'f(f,X*,h)\/|1|2(§,§)(U|'§2(§,X*,h))Tdde

I1=Lxyl=1xy

(32)

for ki, k, = 0,1, where U(Z, %% h) is given in Definition 2, where Mx*, h) for
k= 0,1is given in Theorem 1, and whetedenotes complex conjugation, and

ViL(8€) = mg (= &) —m (Om,(=¢§) forl,l,=1,%y. (33)

Under our assumptionthe expectation and the varianceg&*, h) — g(x*,0)
are well definedeven though the corresponding momentg©t*, h) — g(x*,0)
may not existAs long as the remaindéy(X*, h,) — g(x* h,) can be shown to
be asymptotically negligible in probabilitthe mean and the variance @(fx*, h)
can be interpreted as the mean and the variance of the limiting distribution of
a(x* h), whether or not the first two moments ¢fx* h,) are boundedThis
situation is not uniqueas these observations apply to any estimator involving
ratios of random quantitie3o ascertain that the linear approximatig(x™, h,,)
is appropriatethe following lemma provides the order of the remainder of the
linearization of§(x* h,,) and also the order of the statistical fluctuations in
g(x* hy,). This result is included for completenesait it is not essential for the
reader to master it to understand the main results of the subsequent sections

LEMMA 2. Let Assumptions 1-7 hold and let, (), ¢1(£), and m(Z)
as in Theorem 1,

U(h,) —flml(Z)l 1k20<<1+ |¢o(§)l>

% [ nollagelde

¢
+ IK(—hn§)|¢k(§)|> dz, (34)

A(hn>=(1+h;1>< su "’)6(5)')( sup |m1<§>|-1> (35)
£€[—hythy

eet-mabn [ bo()]
for ¢(€) = dpo(£)/dES If the sequence his such that (i) M(x*h,) —

M, (%*0) for k = 0,1, (i) U(h,)n"¥? — 0, and (iii) A(h,)n"¥2%< — 0 for
somee > 0, then
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a(x*hy) — g(%% hy) = Oy(U(hy)n™2), (36)
a(%%hy) — 9(X%hy) = Oy (U(hy)n™Y2A(hy)n~Y2+<). 37)
If, in addition, (iii) (Q(x*, h,)"Y2U(h,)A(h,)n~¥2%¢ — 0, then

9(x% hy) — g(x% hy) = (9(X* hy) — 9(X*, hy)) (1 + 0p(2)). (38)

The quantityU(h,) is defined so that it bounds any of the quantities defined
in equations(26) that enter the expression of the asymptotic variance of the
estimatoywhereas\ (h,) bounds the remainder terms from the linearization per-
formed in Definition 2 As expectedthe preceding stochastic expansion is writ-
ten in terms of successive powersrof¥/2, with the exception that the second
term is proportional ton~1*< instead ofn~!, because bounding the second
remainder term involves uniformly bounding various random functiartsch
slows the rate down by a factor.

In the proof of our convergence rate and asymptotic normality resuks
will subsequently verify that the hypotheses of Lemma 2 are implied by more
primitive regularity conditionsThe first conclusion of the Lemm@quations
(36) and(37)) will be sufficient to obtain the convergence rate of the estimator
Indeed if it can be shown thaa(h,)n"¥?*< — 0, the convergence rate is then
simply given byO,(U(h,)n~%2). BecauseO,(U(h,)n~*?) is an upper bound
on the convergence rate&hich may or may not be bindinghe secongslightly
stronger conclusion of Lemma @quation(38)) will be needed to obtain the
limiting distribution of the estimatoiThe basic intuition behind the additional
condition(iii ) is that for the O,(U (h,)n~*2A(h,)n~%*€) nonlinear remainder
to have no effect on the limiting distributipit must be asymptotically negli-
gible relative to the exact standard deviationgok* h,,) — g(%* h,), which is
given by (Q (%% h,)Y2n"¥2 by Lemma 1

3.2. Regularity Conditions

We now provide primitive regularity conditions that will enable us to derive
explicit convergence rate¥hese regularity conditions take the form of smooth-
ness restrictions imposed via constraints on the tail behavior of various Fourier
transformsTo specify the regularity conditionsve employ the following con-
venient notation

DEFINITION 3. An expression of the forn{§) < g(¢) for f,g: R — R indi-
cates that there exists a constant>0, independent of, such that f{) =
Cg(¢) for all £ € R (and similarly for >). Analogously, a < b, for two
sequences gb, indicates that there exists a constant C independent of n such
that a, = Ch, for all n € N.
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The literature focusing on “kernel deconvolution estimatde£e e.g., Car-
roll et al, 1995 and related estimatord=an and Truong1993 traditionally
distinguishes between “ordinarily smooth” functiofwghose Fourier transform
decays as$/|”, vy < 0 as|{| — o) and “supersmooth” function@vhose Fou-
rier transform decays as ef®|/|?), « < 0,8 > 0 as|/| — ). For the benefit
of concisenessour regularity conditions are given in terms of expressions of
the form(1 + |£])” exp(a|£|?), thereby simultaneously covering the ordinarily
smooth and supersmooth cases

Assumption 8 The functions ¢o() = E[€X"], ¢4() = dpo({)/dE,
$1() = E[ye' ], andmy(¢) = E[e"] satisfy

‘ o8| <axiar (39)

for somey, = 0 and

max{|do(O,|¢1(OI} < (L +[£])7* explay|]P4), (40)
Imy(O)] = (1+ [£D)7m expla| ]P) (41)

for someyy, ym €ER, @y =0, 0 =0, B, = 0, By, = 0 such thaty,, 8, = 0 and

YmBm = 0.

A few remarks are in ordeWhile the rate of decay apy(¢), the character-
istic function ofx*, is entirely determined by the smoothness of the density
f(x*) of x*, the rate of decay of,({) is governed by the smoothness of
f(x*)E[y|x*]. Verifying equation(40) would first involve finding bounds on
|po(O)| and|p4(2)| individually before taking the most slowly decaying term
Regroupingpo () and¢,(¢) in a single assumption is possible without loss of
generality because both quantities enter the expression of the estimator in a
similar fashion This grouping is also notationally convenieas it will reduce
the number of independent orders of magnitude that have to be considered when
determining the convergence rates of the estimator

As is always the case in deconvolution-type estimatore quantity(here
m,({)) needs to be bounded beldm equation(41)), instead of abovebecause
it appears in a denominator in the expression of the estimitue that equa-
tion (41) is implied by separate lower bounds on the modulus of the character-
istic functions ofx* andAz becausem;(¢) = E[e¢Z] = E[e/¢X |E[e/¥*?]. The
grouping of E[e'*"] and E[e'¢*?] is also aimed at reducing the notational
burden Although the constraint on the ratiy,({)/$,({) imposed by equation
(39) may appear unusuadit is clear that it is implied by a more familiar upper
bound on|¢’({)| and a lower bound om¢({)|. The absence of a term of
the form exge, |£]#") in equation(39) results in very little loss of generality
because all common ordinarily smooth and supersmooth functions are such that
equation(39) holds fory, = 1.

https://doi.org/10.1017/50266466604206028 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466604206028

1058 SUSANNE M. SCHENNACH

Before we can derive the convergence rate of the estilnamalso need to
characterize the type of kerni€l x*) used While most studies of measurement
error in nonparametric settings focus either on finite-order kerffels 1991h
Fan and Truong1993 or on infinite-order kernel$Politis and Romanal999
Li and Vuong 1998, we will consider both finite- and infinite-order kernels
The traditional finite-order kernels we consider are defined in Assumption 9

Assumption 9 [K(x*)dx* = 1 and for some integety,, > O,

f(x*)jK(x*)dx* =0 forj=1,...,y.—1, (42)
f(x*)VKK(x*)dx* # 0, (43)
f\x*|j\K(x*)|dx*<oo forj=1,...,v.. (44)

We also consider the following class of “infinite-order” kernels

Assumption 10 The Fourier transform of the kernek(¢), is such that
k(£) =1 for |£] < & for some& > 0.

Assumption 10 allows for a kernel of the form

sin(x*)

PR

K(x*) = (45)

X
which is particularly suited to the Fourier representation because its Fourier
transform is 1 in thd—1,1] interval and zero elsewher&his type of kernel

has previously been used in other Fourier-based estim@ationsid Vuong 1998

and amounts to truncating the Fourier transform above a given frequ&then

bothE[ y|x*] and the density ok* are infinitely many times differentiabl@n
infinite-order kernel will guarantee that the bias goes to zero faster than any
power of the bandwidthThe bias could therfor instance be an exponentially
decaying function of the inverse bandwidth?.

3.3. Rate of Convergence in Probability

The procedure to determine the asymptotic rates of pointwise convergence in
probability can be outlined as follows

1. Bound the bias of the linearized estimator in terms of the bounds given in
Assumption 8

2. Bound the variance of the linearized estimator in terms of the bounds given
in Assumption 8
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3. Find the sequence of bandwidthgthat makes the order of the bias squared
and of the variance equal and verify that the higher order terms are asymp-
totically negligible so that the asymptotic properties of the estimator
g(x* h,) can be obtained from the properties of its linearizatjor™, h,,).

Step 1. Calculation of the biag(x* h,,) — g(%*,0). We distinguish two cases
depending on whether the kernel used satisfies Assumption 9 or Assumption
10. In the following two lemmasrecall that the parameteng,, «,, and S,
defined in Assumption ,8describe the smoothness of the density™) of x*
and of the conditional expectatid y|x*] by specifying that their Fourier trans-
forms both decay at least as fasti@s exp(a,|{|?+) as frequency — co.

LEMMA 3. Under Assumptions 1-8, if the kernel is of order as defined
by Assumption 9, then the bias satisfies

|9(X% hy) — g(%%,0)| = O((hy )7 explap(hy 1)Pr)) = O((hy 1)),
wherea, = 0, B, = 0, and

Ve ifay#0
Yo =

. 46
smallesty,, € Z such thaty, = —y, andy, >y, +1 ifay=0. (46)

LEMMA 4. Under Assumptions 1-8, if the kernel satisfies Assumption 10
for some constarg, then the bias satisfies

|9(x*, hy) — 9(x%,0)] = O((hy 1) explay(hy 1)), (47)
where

a, = a, &P, (48)
Bo = By (49)
Yo=7vs T 1 (50)

In short when a finite-order kernel is usgthe rate of decrease of the bias is
controlled either by the order of the kerng| or by the smoothness ¢fx*)
andE[ y|x*], whichever is more limitingIn particular when bothf (x*) and
E[y|x*] are supersmoottso thata, # O, it is the order of the kernel that
determines the rate of decrease of the bi&ken an infinite-order kernel is
used only the smoothness df(x*) and E[ y|x*] matters Note that the bias
term is identical to that of a traditional kernel estimator that would be used if
x* were perfectly observedecausgvia equationg12) and(13), the bias can
be expressed entirely in terms @{(¢) for k = 0,1 and the kernelwhich are
nonrandom measurement error-free quantities
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Step 2. Calculation of the order of the variance tegtx*, h) — g(x* h).

LEMMA 5. Under Assumptions 1-8, the variance term satisfies

g(x* hy) — g(X* hy) = Oy(n~¥2(hy 1) explay, (hy1)A)), (51)
where
Yo=2+ Y4 = Ymt Vs> (52)
. (_am’ Bm) if IB¢ < Bm
(@, Bo) = :(% — e Bn) i By = B 3)

Note that the order of the variance term is determined not only by the smooth-
ness off (x*) andE[ y|x*] (throughy,, a4, B4, andy,) but also by the smooth-
ness of the density of the measurement ewofthrough the terms,,, @, and
Bm). Itis important to point out that the variance term increases much faster as
h — 0 (at constanh) than that of a standard kernel estimator with perfectly
observed variable@vhose variance term 8,((h,n)~*?)). Combined with the
fact that the bias term is unchanged indicated in step, this implies that the
achievable convergence rates will generally be slower than for a conventional
kernel estimator

Step 3. Determination of the rate of decrease of the bandwidth that offers
the best trade-off between bias squared and varidlitcebtain explicit rates of
convergencewe need to distinguish various casbased on the values @,
which characterizes the rate of convergence of the bias term as the bandwidth
shrinks andp,, which characterizes the rate of divergence of the variance term
as the bandwidth shrinkat constant sample sigzeBoth 8, andg, represent an
“exponent of supersmoothngkthat is, the constang in an expression of the
form (h;1)” exp(a(h;1)#).

THEOREM 2 Under Assumptions 1-8 and either Assumption 9 or 10, the
optimal bandwidth choices and the corresponding convergence rates in proba-
bility of the estimator can be expressed in terms of the const@yi8y, yu,

a,, By, v, defined by Lemmas 3-5. Let> 0 be arbitrarily small, let G, C, be
some positive constants, and ¥tbe given.

CasellIf B,>pB,>0

hyt = (CyInn+ Cy(In n)Pe/be) Ve, (54)
In n\Bo/By
(9(%% hy) = 9(x,0) = O, (eXp<(ab te) <§> )) (55)
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Case 2 If B, > 0 andB, = 0 (with a, = 0 andy, < 0)

hyt = (C;Inn+ C,InInn)Y, (56)
(9(x* hy) — 9(%%,0)) = Op((Inn)7>/v). (57)
Case31IfB,=8,#0
hyt = C,(Inn)¥ee, (58)
(9(%%hy) — g(X*,0)) = Op(nw/(2ee200)te), (59)
Case 4 If B, = B, = 0 (with a, = a, = 0 andy,, < 0)
hyl = C,n¥@r=2m) (60)
(6(%7 hy) = g(%*,0)) = Op(n7e/27e=2m)), (61)

A few remarks are in ordeFirst, it can be verified(see the proof of Theo-
rem 2 in the Appendixthat the bandwidth sequences given above are such that
conditions(i) and(ii) of Lemma 2 holdthus implying that the nonlinear remain-
ders are indeed negligible and that our simple bias-variance decomposition is
justified. Secondthe arbitrarily smalk was introduced to drastically simplify
the calculations and the statement of the results at the expense of a very small
loss in precisionThird, it is impossible to havgs, > B, becauseB, = B,
Bs = Bm, and

(1+ 117 explay [¢]%) = [do(H)] = [E[4] |E[e*7]]
= |E[€**]] = Imy({)| = (1 + [£])7m explam|{]Pm).
(62)

= |E[e¥X"]

The convergence rate of the proposed estimator varies substantially as a func-
tion of the smoothness of the densities and the conditional expectations involved
An important trend to observe among these rates is that large valygggiotli-
cating a rapidly decreasing biaslas» 0) and small values g8, (indicating a
slowly increasing variance ds — 0) are desirableThe convergence rates
obtained are typically slower than that of the Nadaraya—Watson kernel estima-
tor used when the variables are perfectly observédus limitation is not an
artifact of our estimation proceduré& has also been observed in the simpler
Fan and Truong estimatarhich is known to be optimal under stronger assump-
tions than ours(see Fan and Truondl993. The different cases will be
discussed—and compared to Fan and Truong’s findings—in more detail in
Section 4

Although we have focused on pointwise convergence ratsresults also
provide information regarding global convergence ralés upper bounds on
the pointwise bias and varianéand of the nonlinear remainder ternere in
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fact independent ok*. If the density ofx* is bounded away from zero over
some finite interva[a, b], it is straightforward to show that

b 1/p
([ 100 - otx:0 wese o 69

converges to zero in probability at the same rate as the pointwise rates derived
earlier for any bounded weighting functiai(x*) and anyp € [1,2]. How-

ever rates of uniform convergence in probability do not follow directly from
the results presented above

3.4. Asymptotic Normality

To establish the asymptotic normality of the proposed estimaterneed to
introduce a few additional assumptiorfarst, we need assumptions that are
commonly made whenever a central limit theorem for triangular arrays is invoked
(seee.g., Hardle and Linton1994 Theorem 2Andrews 1991 Assumption A.

Assumption 11 There exist<C > 0 such thaE[|x|?"®|z] = C, E[|y|?™®|z] =
C, Var[x|z] = C, and Vaf y|z] = C for all z®

The remaining assumptions are used to ensure that the condi®iox®,
hn)) Y20(h,)A(h,)n"¥2*¢ — 0 in Lemma 2 holdsso that the higher order
remainder terms are asymptotically negligible relative to the standard deviation
of the linearized estimatay(x*, h,). The main obstacle to overcome is the neces-
sity to find a lower bound for the varianc®(x* h,) of the estimatarThe dif-
ficulty of obtaining such a result is noted by F&10914a in his study of the
limiting distribution of the kernel deconvolution estimatéian’s solution to
this problem is simply to assume that the tails of the various Fourier transforms
entering the estimator are not only bounded by some function of the form
7 explall|?) but are asymptotically equdbs |£| — o) to such functional
form, thereby limiting the set of allowed function®ur solution to this prob-
lem is similar in spirit to Fan’s but considerably expands the range of possible
behavior toward infinity by employing the concept of functions that are “well
behaved at infinity as described by Lighthil{1962. The following definition
formalizes this notiord

DEFINITION 4. Let W be the set of all functiong : R — R such that
(i) ¢ (¢) is absolutely integrable in every finite interval and (jiy=7|¢({) —
V()| d¢ < oo for some Te R* and some function’ (/) that can be written
as a finite linear combination of finite products of functions of the foi
sgn()[ ], In|¢|, sin(cl), cos(cl), exp(c?) with ¢t € RY, ¢ € R, and
vy € N™.
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Assumption 12 For a giveng*, the functionsy () = (d/d{)UKX(Z, X*,0),
for k = 0,1 andl = 1,x,y and forUX(Z, x*, h) given in equation(26), belong
tow.

For simplicity we do not state Assumption 12 in terms of elementary quan-
tities such asn,(£) and¢,({), but it is clear that Assumption 12 is only a few
algebraic manipulations away from being a primitive conditidve need to
constrain the derivative dfi*(¢, x*,0) to rule out counterexamples where the
density ofz arbitrarily far away from the point of evaluaticti could have a
nonvanishing influence o§(%* h,) asymptoticallymaking it difficult to char-
acterize the behavior of the varianceras» cc.

The following condition requires the distribution nto be supported ofR,
which is usually the case in deconvolution problems because distributions that
have a nonvanishing characteristic functi@s imposed by equatio@1) in
Assumption 8 rarely have compact support

Assumption 13 f(z) > 0 for allz € R.

Finally, we need to impose a few constraints that would be very difficult to
state in a more primitive fashiorHowever these assumptions are not very
restrictive because the counterexamples violating them are somewhat cantrived

Assumption 14 Var[ g(%*, h,)] = max,_y , , Ma%—o, Var[ fUL({, X% h,) X
ae‘zdz].

This assumption merely states that the variance of the estimator is of an order
no less than any term in its asymptotic representafitis constraint can only
be violated if two or more of the term@JX(Z, x*, h,)a€'*?d; happen to cancel
out asymptoticallywhich is unlikely because each term depends on different
random quantities

Assumption 15 For C (¢, X*, h,,) as in equatiorf27), f;"\ck(.f, £ hy)|dé <
|[7Cu(é, %% hy) dé| for k= 0,1, for all { € R* and alln € N.

This assumption requires théf’|C (¢, X, h,)[d¢ and | [” C((&, X%, hy) d€|
be of the same ordelt precludesC, (¢, £*, h,) from having an oscillatory behav-
ior (as¢ varieg such that a precise cancellation would occur between the val-
ues ofC(¢, X%, h,) at different¢ during the integratioriThe cancellation would
have to occur for alf’ and n sufficiently large and be such that the order of
I C(é, %% h,) d€ would be affected

Assumptions 12—15 imply conditiof® (%X* h,))"*?U(h,)A(h,)n~ 2% -0
in Lemma 2 thus establishing the required asymptotic negligibility of the
nonlinear remainder termsf it is possible to calculatgQ(%* h,))~Y¥? X
U(h,)A(h,)n~¥2*< directly and verify that it goes to 0 asymptoticalljien
Assumptions 12—15 can be avoided altogefhake are now ready to state our
asymptotic normality result
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THEOREM 3 Under Assumptions 1-8 and 11-15, for any gi¥émand any
sequence hsatisfying

hyt < n~Y@*+2% =2y if the density of z is smoottB,,, = 0)

(1+m) Yhm . .
hyt < By Inn if the density of z is supersmodtf,, # 0)
Ay
(64)
for somen > 0, we have
nY2(Q (%7 hy))2(9(%% hy) = g(X%,0) = b(X*, hy) 5 N(0,1), (65)

whereQ(x* h,) and b(x* h,) are given in Lemma 1.

4. EXAMPLES

Section 33 derives the convergence rates of the proposed estimator under very
general conditionsWe now focus on specific examples that will allow us to
compare these convergence rates with those derived for the estimator proposed
by Fan and Truong@1993, which is the most closely related to oufsan and
Truong’s estimator extends the standard kernel deconvolution estimators used
for density estimation in the presence of a measurement error drawn from a
known distribution to the case of nonparametric regressibne estimator pre-
sented here accomplishes a more difficult task than Fan and Truong’s because
it considers the density of the measurement error unknogiying instead on
two error-contaminated measurements of the unobserved regretesare it
would come as no surprise if the kernel deconvolution rates were bEkier
comparison is nevertheless instructibecause it quantifies the precision loss
incurred by relaxing the distributional assumptions regarding the measurement
error.

We consider four example®Ve first study the “difficult” deconvolution prob-
lem that consists of estimating an ordinarily smooth conditional expectation
(E[y|x*]) when the density of both the true regresgbiand the measurement
errorAzare supersmootfThis problem is difficult because a supersmooth mea-
surement error strongly damps out the high-frequency componeffydfk* ]
and of the density ok*. Inverting this operation involves the amplification of
these damped-out componeras operation that necessarily causes a substan-
tial magnification of the statistical noiskn standard kernel deconvolution esti-
mators this situation gives rise to extremely slow convergence rated it is
instructive to verify that the situation does not degrade further when the distri-
bution of the measurement error is unknowine second example shows that
this slow convergence problem is avoided when the conditional expectation
E[y|x*]is supersmooth as wellhe third example assumes the density of the
measurement error is ordinarily smopthsituation that avoids the slow con-
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vergence problem for the kernel deconvolution estimator asitwe will see
not for our estimatorThe final example completes the analysis by showing
that when all quantities are ordinarily smopthe slow convergence problem
is avoided

Table 1 summarizes the assumptions made in each of the four cases consid-
ered A few remarks are in ordetn each casewe assume that the order of the
kernel is sufficiently large so that the smoothnes€£df/|x*] and of the den-
sity of x* (and not the order of the kernek the factor limiting the rate at
which the bias goes to zertWe also assume that equati¢d9) holds with
v, = 1. Table 1 also summarizes the convergence rates obtained by applying
Theorem 2 in each of the four examples conside¥®d will now discuss the
significance of these results

In Example 1the rates are entirely comparable to those obtained by Fan and
Truong (1993 for kernel deconvolution estimatorBhey found rates of the form
(Inn)¥# wherek is the number of continuous derivatives tlggk*) possesses
Because a function whose Fourier transform behaves asymptoticgliydd*<
necessarily hak continuous derivativest is clear that the rates are compara-
ble. The rates differ by, because Fan and Truong formulate their regularity
conditions in terms of derivatives whereas we formulate them in terms of the
asymptotic behavior of Fourier transfornfsormulating our regularity condi-

TAaBLE 1. Convergence rates obtained under given regularity assumptions

Example Assumptions Bandwidth choigestes
explaol®) =< |o(D)] < explaolel?) e
1 expay ) < WOl < eplalap) 0 SO
(D] < @+ g ’
explaold]P) < |po(O)| < explagll|P)
2 expla,lZf) < |p(D] =< explayl¢l?) hr?l=f<'””>lf
—a1/Ragt+2ay)+e
0] < expaictty %" )
explag|LlP) < |Po(d)| < explag|{|?)
3 @+IZhe < W@l < @+1eh o = ClIn

(y1+1)/B
(D] < @+ [ Op((Inn) )

L +1ZD < [do(D] < (X + L)
4 @+ 1D < (gDl < @+ I[L)r
62O < X+ [LD™

hyt = CnY(2v vty

Op(n(71+1)/(_2“/0_“/w+71))

Note:#({) = E[exp(ifAz)].
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tions in terms of derivatives would yield results identical to Fan and Truong’s
It is remarkable that under the assumptions leading to the worst-case conver-
gence rates for kernel deconvolution estimatong® assumption of a known
measurement error distribution can be relaxed without bringing the conver-
gence rate down further

Example 2 shows that the slow convergence rate problem can be alleviated
if the unknown regression functiog(x*) is supersmooth and if an “infinite-
order” kernel is usedThis situation ensures that the bias term goes to zero
faster than any power df, which is sufficient to convert a convergence rate of
the form(Inn)” to a rate of the forrn” for y < 0. More generallyrelatively
fast convergence rates can be achieved with infinite-order kernels whenever
case 3 of Section.3 applies Caution is howevey advised when using high-
order kernelsThey are known not to perform as well in finite samples as their
asymptotic properties would suggésee Hardle and Lintqri994). The origin
of the problem is that a high-order kernel must necessarily take negative values
over a portion of its suppartvhich makes it likely for the denominator of the
Nadaraya—Watson kernel estimator to approach,zaren at a point where the
true density is bounded away from zero

In Example 3 making the density of the measurement ertarordinarily
smooth instead of supersmooth does not improve the convergence rates rela-
tive to Example 1This is in sharp contrast to the behavior of kernel deconvo-
lution estimatorswhose convergence rates are of the forfrunder the same
assumptionsThe reason for this distinction is that the only characteristic func-
tion appearing in the denominator of a kernel deconvolution estimator is that of
the measurement errdiz, whereas in our estimatdt is the characteristic func-
tion of z that appears in the denominatdihe density ofz is supersmooth if
either the density of the true regressor or of the measurement erravz is
supersmoothHence a supersmooth density for* will also cause our estima-
tor to converge slowly

In Example 4it is seen that when the density xf is made ordinarily smooth
as well the slow convergence problem is avoided expectedThe resulting
rates are not necessarily identical to those of Fan and Truong’s kernel decon-
volution estimatarbut the rates at least take the form of a negative powex of
indicating that the distributional assumptions regarding the measurement error
can be relaxed without an undue increase in the statistical .noise

5. MONTE CARLO SIMULATIONS

We now investigate the finite-sample properties of the proposed estimator
through various Monte Carlo simulatianEhe designs are chosen so as to illus-
trate the examples of Section gummarized in Table,Wwhich cover the most
common combinations of smooth and supersmooth distributions and condi-
tional expectationsAs an example of a supersmooth distributitime normal
distribution with variancer? naturally comes to mindts characteristic func-
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tion has a tail of the form exp-(c?/2)|¢|?). As an example of an ordinarily
smooth distributionwe consider the Laplac@r double exponentialdistribu-
tion with meanu and variancer? denoted byL( «, o?) and defined as

1
o3 SPalt— #\V2) (66)

for anyt € R. The tail of the characteristic function of a Laplace density is of
the form|Z|~2.
Our example of a supersmooth regression function is the error function

2 o,
E[y|x*] = ﬁfo e vV dt=erf(x*) (67)

having a Fourier transform decaying at the rate * exp(— | Z|?)as|| — oo.
Finally, our example of an ordinarily smooth regression function is a piecewise
linear continuous function with a discontinuous first derivative

-1 ifx*<-1
E[ylx']=S(x")={x" ifx" €[~11] (68)
1 if x*>1,

whose Fourier transform decays |[@$ 2. To simplify comparisonsboth func-
tions are normalized to have the same range and a similar general sloape
that any difference in the results can be attributed to their difference in smooth-
nessAll simulations proceed by drawing 500 samples @faD, 2,000 or 8,000
observations from the distributions given in TableTable 2 also provides the
theoretical convergence rate in each ¢ad®ained by substituting the appro-
priate smoothness parameters in the expressions of Tableeldistribution of

Ay is never alteredbecause it has little impact on the asymptotic properties of

TABLE 2. Monte Carlo simulation designs

Example x* AX,Az Ay E[y|x*] Convergence rate
1 N(0,1) N(0,1/4) N(0,1/4) S(x*) Op((In n)~2)

2 N(0,1) N(0,1/4) N(0,1/4) erf(x*) Op(n~2/5%¢)

3 N(0,1) L(0,1/4) N(0,1/4) S(x*) Op((Inn)~%/2)

4 L(0,1) L(0,1/4) N(0,1/4) S(x*) Op(n*1/4)
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the estimator except for a trivial scaling of some of the components of the asymp-
totic variance For each samplehe variables, y, z are constructed through

y=E[y[x"]+ Ay, (69)
X = X* + AX, (70)
z=X*+ Az (71)

The variableqy, x, z) are used as an input for our estimat@nd the variables
(y, x) are fed into the Nadaraya—Watson estimai¢e also construct atinfea-
sible) Nadaraya—Watson estimator from the variablgsx*) for comparative
purposesFor all three estimatorsn infinite-order kernel whose Fourier trans-
form is given by equationi23) with € = 3 is used In this fashionthe kernel is
never the factor limiting the convergence raer each sampleve keep track
of the value of the estimated function at a given pghre x* = 1) and use it
to calculate the bias squaretthe varianceand the sum of the twahe mean
square errorA set of bandwidths ranging from.A to 25 is scanned in incre-
ments of 005 in search of the bandwidth minimizing the mean square .&rror
Of course this method of locating the optimal bandwidth relies on our knowl-
edge of the true regression functiogkithough this is appropriate for the pur-
pose of investigating the properties of an estimatofeasible bandwidth
selection rule would be a useful tool to develop

Table 3 compares the bias squartite varianceand the mean square error
of the three estimators considered as a function of bandwidth for a sample size
of 1,000 For concisenes®nly a subset of the bandwidths considered is shown
The rightmost column gives all quantities evaluated at the optimal bandwidth
(which may lie between two of the bandwidths listed in the previous colimns
A few important features can be consistently observed throughout the four exam-
ples considered

In comparison with the Nadaraya—Watson estimaiar estimator is clearly
very effective at reducing the biallore specificallyit is clear that the bias of
the Nadaraya—\Watson estimator does not converge to zero with decreasing band-
width but instead settles to a nonzero valirecontrast the bias of our estima-
tor decreases by orders of magnitude over the range of bandwidths saagpled
the bandwidth decreasedur estimator’s residual bias is attributable to the fact
that we are performing a nonparametric estimatiem that a fully unbiased
estimation is impossibldn fact it can readily be seen thaat a given band-
width, the bias of our estimator is very close to the bias of the infeasible
Nadaraya—Watson estimator using the uncontaminated regnessihius indi-
cating that our estimator does not appear to introduce additional bias at the
sample size considere@f course because the variance of our estimator is larger
than the infeasible Nadaraya—Watson estimatdarger bandwidth must be used
and the resulting biasvaluated at the optimal bandwidtis slightly larger
than in the error-free case
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TaBLE 3. Monte Carlo simulation results for the examples
Example 1
Fourier (optimal)
Bandwidth 10000 12500 15000 17500 20000 22500 25000 20500
Bias squared 0004 00039 00053 00125 Q0284 Q0592 Q1073 Q0331
Variance 04696 Q01978 02514 Q0995 Q0211 Q0030 Q0017 Q00133
Mean square error 0700 02018 02567 01120 Q0495 Q0623 Q1091 Q0464
Nadaraya—Watson
Bandwidth 10000 12500 15000 17500 20000 22500 25000 14000
Bias squared 0853 00815 (00829 00903 01089 01399 01820 Q0820
Variance 00237 Q0043 Q0024 Q0017 Q0013 Q0012 Q0010 Q0030
Mean square error .0090 Q0858 Q0853 00920 01102 Q1411 01831 00850
No measurement error
Bandwidth 10000 12500 15000 17500 20000 22500 25000 11000
Bias squared 0027 00045 (00054 00109 Q0274 Q0598 Q1078 Q0037
Variance 00043 00021 Q0018 Q0015 Q0011 Q0010 QO008 Q0027
Mean square error .0070 Q0066 Q0073 Q0124 Q0285 Q0608 Q1086 00064
Example 2
Fourier (optimal
Bandwidth 10000 12500 15000 17500 20000 22500 25000 21500
Bias squared 0056 00012 Q0007 Q0001 Q0042 Q0183 Q0461 00111
Variance 05137 01919 02399 00958 Q0202 Q0028 Q0016 Q0049
Mean square error 194 01931 02406 Q0960 Q0244 Q00211 Q0476 00159
Nadaraya—Watson
Bandwidth 10000 12500 15000 17500 20000 22500 25000 14500
Bias squared 0346 Q0309 00313 Q0357 Q0470 Q0668 Q0948 00310
Variance 00306 Q0042 Q0022 Q0015 Q0013 Q0011 Q0010 Q0025
Mean square error 0651 00351 Q00335 Q0372 Q0482 Q0679 00958 00335
No measurement error
Bandwidth 10000 12500 15000 17500 20000 22500 25000 17500
Bias squared 0002 Q0006 Q0007 QOOOO Q0038 Q0186 Q0463 Q0000
Variance 00037 Q0024 Q0018 Q0014 Q0010 Q0009  QOO0O8 Q0014
Mean square error ~ .0039 Q0030 Q0025 Q0014 Q0049 Q0195 Q0471 00014
Example 3
Fourier (optimal)
Bandwidth 10000 12500 15000 17500 20000 22500 25000 17000
Bias squared 0045 Q0016 Q0044 Q0098 Q0258 Q0576 Q1050 Q0082
Variance 01569 02382 00164 Q0080 Q0033 Q0019 QO015 00093
Mean square error .0614 02397 00208 Q0179 Q0291 Q0595 Q1065 Q0175
Nadaraya—Watson
Bandwidth 10000 12500 15000 17500 20000 22500 25000 14500
Bias squared 0569 Q0625 Q0626 Q0716 Q0925 Q1260 Q1705 Q0619
Variance 00289 00078 00025 00017 Q0013 Q0011 QOOO9 Q0028
Mean square error .0858 00703 Q0651 Q0734 Q0938 Q1270 01714 Q0647
No measurement error
Bandwidth 10000 12500 15000 17500 20000 22500 25000 13500
Bias squared 0027 Q0044 Q0052 Q0107 Q0272 Q0595 Q1074 Q0045
Variance 00059 00032 00025 Q0015 Q0010 (QOOO9  QOOO8 00029
Mean square error .0086 00076 Q0077 Q0122 Q0282 Q0604 01082 00075
Example 4
Fourier (optimal)
Bandwidth 10000 12500 15000 17500 20000 22500 25000 14500
Bias squared 0140 00033 Q0046 Q0397 Q0990 01691 02410 Q0017
Variance 01450 00198 Q0076 Q0037 Q0022 Q0015 Q0011 Q0091
Mean square error .0590 00231 Q0123 Q0434 01012 Q1706 02421 00108
Nadaraya—Watson
Bandwidth 10000 12500 15000 17500 20000 22500 25000 11000
Bias squared 0925 00966 01172 01531 02005 02544 03105 00921
Variance 00038 00025 00018 Q0014 Q0011 Q0010 QOOO08 Q0030
Mean square error .0963 00990 01191 01545 02016 02554 03113 00951
No measurement error
Bandwidth 10000 12500 15000 17500 20000 22500 25000 14000
Bias squared 0098 00032 Q0047 Q0400 Q0993 01693 02410 Q0002
Variance 00047 Q0035 Q0022 Q0014 Q0010 QOOO8 QOO07 00026
Mean square error .0145 Q0067 Q0069 Q0414 Q1003 Q1702 Q2417 00029
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The bias reduction made possible by the proposed estimator comes at the
expense of an increased variance relative to the Nadaraya—\Watson estimator
based on mismeasured regressbiewever the decrease in the bias more than
offsets the increase in the varianse that the mean square error we obtain is
still better than for the Nadaraya—Watson estimator

It is instructive to observe the estimator’s behavior as a function of the smooth-
ness of the various densities and conditional expectations consid®éedsymp-
totic theory presented earlier predicts the convergencewaieh can be directly
compared with the change in the mean square error at the optimal bandwidth
as a function of sample size for each of the examples considseedTable %

The fifth column of Table 4labeled “MSEgqo/ MSE»qq” reports the ratio of
mean square error at a sample size 008 relative to the mean square error at
sample size P00 We focus on these sample sizes because the differences
between the various examples are more readily seen at large sampldrsizes
Examples 1 and,3vhere the convergence rate should be s{ow, a negative
power of the log of sample sizeconvergence is indeed much slower than for
Examples 2 and,Avhere the convergence rate should be fast, a negative
power of sample sigeMoreover the decrease in mean square error predicted
by asymptotic theoryobtained by squaring the rates given in Table 2 and shown

TABLE 4. Monte Carlo simulation results as a function of sample size

Sample size ;000 2000 8000 MSEBp0o/ MSEzqgp  Theory
Example 1

Bandwidth 20500 15500 15500

Bias squared 0331 Q0072 Q0061

Variance 00133 Q0061 Q0024

Mean square error .0464 00133 Q0084 0631 Q721
Example 2

Bandwidth 21500 18000 17500

Bias squared 0111 Q0003 Q0000

Variance 00049 Q0028 Q0009

Mean square error .0159 00031 Q0009 0290 Q330
Example 3

Bandwidth 17000 15500 16500

Bias squared 0082 Q0058 Q0078

Variance 00093 Q0062 Q0021

Mean square error .0175 Q00120 Q0099 0825 Q721
Example 4

Bandwidth 14500 14000 14000

Bias squared 0017 Q0002 Q0002

Variance 00091 Q0055 Q0013

Mean square error .0108 00057 Q0016 0280 Q500
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in the last column of Table)4s an excellent predictor of the actual decrease in
three out of the four exampleblote that the systematic changes in bandwidth
as a function of sample size are difficult to distinguish from the inherent sim-
ulation noise because bandwidth variations are much smaller than the changes
in mean square errpas predicted by Theorem 2

Monte Carlo simulations can also be used to verify the applicability of the
asymptotic distribution in a finite sampl&he designs described in Table 2 are
again usegwith the mean square minimizing bandwidths given in Table 3 and
a sample size of ,000. For each samplewe keep track of the value of the
estimated function at a given poifk* = 1.0) and the estimated variance at
that point obtained with equatiori81) and(32) by replacing all expected val-
ues by sample averagethe point estimates are then standardjzit is
demeaned by the average of the point estimates and normalized by the average
of the estimated pointwise variandeigure 1 shows the empirical cumulative
distribution function(c.d.f.) of the standardized point estimatpsfor i =
1,...,500 obtained by sorting thp; in increasing order and by joining the points
(pi, (i —1)/499 by lines The resulting empirical .d.f. (jagged lines in Fig-
ure 1) agrees very well with the normaldf. predicted by asymptotic theory
(shown as a smooth line in Figure. 1

1.0
Example 1 Example 2
2
Z05
O
e
o~
0.0
1.0
Example 3 Example 4
2
£05
£
2
o~
0.0
-3 -2 -1 0 1 2 33 2 -1 0 1 2 3
zZ zZ

Ficure 1. Comparison between the finite-sample and the asymptotic distributions of
the estimatarThe abscissa ig = (Var[ §(0.5,2)])?(¢(0.5,2) — E[§(0.5,2)]).
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6. CONCLUSION

This paper presents a new kernel-based nonparametric estimator that extends
the conventional Nadaraya—\Watson kernel estimator to cover the case of an error-
ridden regressoiVe show that identification is achievable when one repeated
measurement of the error-contaminated regressor is avail@ahke remarkable
property of our estimator is that it requires no knowledge of the distribution of
the measurement ertarontrary to the popular kernel deconvolution estimator
The convergence rate and the asymptotic distribution of the proposed estimator
are derivedA series of examples illustrates the main factors determining the
convergence rate and enables us to compare the convergence rates we obtain
with those of earlier estimatar¥arious Monte Carlo simulations are used to
investigate the finite-sample properties of the estimator

NOTES

1. Freeman’s data séthe January 1977 Employer Employee Matched San@lerent Pop-
ulation Survey contains wages reported by employers and emplgyeleish are perfect examples
of repeated measurements

2. As in any nonparametric regressjahe well-known “curse of dimensionality” of course
limits the number of dimensions that can be handled in practice

3. Equation(14) is similar to an identity derived by Kotlarsksee Rap1992 p. 21), but our
proof of this result requires weaker independence assumptiorgarticular we do not require
independence betweetx andx* and betweemx andAz

4. The calculation of the Fréchet derivative can be found in the proof of Lemma 2 in the
Appendix

5. Note that the ratid¢4(£)|/|o(£)| entering the definitions ok (h,) andU(h,) can equiv-
alently be written agm,(¢)|/|mu(¢)| becausémy(¢)|/|mi(¢)| = |[E[xe*?]|/|E[€"?]| = |[E[x"e""]|/
|E[¥“]|=(|E[x"e“"]|/|E[€¥ 1)) (IE[e“**]|/|E[“**]]) =| E[x*e'“"1I/|E[" ]| =] b5({)/
[do(D)].

6. The familiar conditionE[|K(x*)|27] < oo, which is helpful to show the asymptotic nor-
mality of standard kernel estimatois of no use in establishing the asymptotic normality of our
more complex estimatom any caseAssumption 4 implies thaE [|K(x*)[?"?] < co.

7. We expand Lighthill's definition by allowing for exponential tailwhich is essential to
handle supersmooth functians

8. And the termn¥©+2% =2 in equation(64) can be replaced by®(2+27=2ym)

9. For less than 3% of the samples drawnumerical issues associated with near division by
zero in equation$19) and(20) were observed for a few of the smallest bandwidths samfled
simplify the reporting of the results as a function of bandwjdiiese draws were discarded and
new draws were made so that the total number of samples kept remain©56@0urse when
studying any given sampl@ractitioners would simply never choose such a small bandwidib
problem only occurs because we are performing Monte Carlo simulations and wish to report aver-
ages over replications as a function of bandwidth
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APPENDIX: PROOFS

Proof of Theorem 1. The result can be shown by direct substitutiBssumption 2
ensures that all expectations are well definElst, observe that equatiofi4) indeed
provides the value opq(£), by using Assumption:1

£imy({)
exp(L my({) d{)
- exF’(f E xexp(ic2)] d§> (A1)

E[exp(i{z)]
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exp(J.g E[ix* exp(iZx*)exp(ifAz)] + iE[Axexp(ifx* )exp(l{Az)] ) A2)

0 E[exp(iZx*)exp(ifAz)]

B ff E[ix* exp(i¢x*)|E[exp(i¢Az)] + IE[E[AX|x* AzZ]exp(i{x* )eXp(I{AZ)]
=P o E[exp(iZx*)|E[exp(i¢Az)]

(A.3)
= exp< fo ‘ % dg) (A.4)
= exp<f: d—dg In E [exp(i¢x*)] d§> (A.5)
= E[exp(iéx*)]/E[1] (A.6)
= ¢o(£). (A7)

Letting f(x*) be the density ok*, one can then show thail;(x* h) and Mg(X* h),
respectivelyprovide the numerator and the denominator of the Nadaraya—\Watson esti-
mator In what follows we use the independence betwe€randAz and the fact that

Elyexp(ic2)] = ETE[y|x’ Azlexpliex exp(izaa)] *8)
— E[E[g(x*)|x* AZ]exp(iéx* ) expli€az)] (A.9)

= E[g(x")exp(iéx™)expliéAz)] (A.10)

- Elg0x" ) exliéx”E[expliéaa)] (A1)

— E[yexp(iéx*)|E[expli£az)], (A.12)

MG = o [ ) 0e) T expiiex) i (113)

E[yexp(iéz)]

E [exp(i£2)] exp(—i&x*) dé (A.14)

1
-5 fK(hg)E[exp(ifx*)]

E[yexp(iéx™)]E[exp(iéAz)]
E[exp(iéx*)E[exp(iéAz)]

1 o
=5 fK(hg)E[exp(|§X*)]
X exp(—igx*) dé (A-19)

1
= [ wtnETyexptiex Tlexp-iex') e (A.16)
a
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1 . .
= o= [ wtheIETELyIx Texpliex Nexpi-icx) de (a17)
v
= ifx(hf)(fE[y|x*]f(x*)exp(ifx*)dx*)exp(—i§$<*)d§ (A.18)
2m

= fh*K(hﬂ(x* = X)(ELY|x]f(x7)) dx*
by Parsevdk identity (A.19)

= E[h 'K (h~*(x* = x*))E[y[x*]] (A.20)
= E[yh*K(h™*(x* = %))], (A.21)
. 1 )
Mo(x' ) = o [ () (6 expl-iéx*) o (.22)
= i fx(hg) ff(x*)exp(ifx*)dx* exp(—iéx™) dé (A.23)
2 '

= fh’lK(h’l(x* —x*)f(x*)dx* by Parseval’s identity (A.24)

= E[h 1K (h~X(x* — %*))]. (A.25)

| |

Proof of Lemma 1. The fact thaE [v(X* h)] = O follows from equatior{25) and the
fact thatE[ma({)] = n"* 2L, E[a; €% ] = E[a; %] = my({) for a =1, x,y. Finally,
to calculateE [v2(%* h)] we note thatby equation(25),

E[(My, (%%, h) — My, (%%, h)) (M, (X%, h) — My, (%%, h))] (A.26)

= E[(My, (X%, h) = M (X%, 1) (M, (%, h) = My, (X7, ) "] (A.27)

2 Jjulllﬁ(g, % E[(my, (§) — my (D) (M, (&) — mlz(f))f]

1h=Lxyl=1xy

X (Ulke(é, %7 )T dedé (A.28)

> X HU#(Z,X*,h)\/uluz(é,f)(u.?(g,X*,h))*d(dg (A.29)

I1=Lxyl=1xy

= Sk (X5 ), (A.30)

where V,,(£,€) = E[(, () — m () (M, (&) — m(£)T] = E[m (O (&)] —
m|1(§)mr2(§) = E[Ilj 5 else 4] — mll(f)mﬂ;(f) =my, (¢ — &) — m (Hm,(—€).
Equation(31) then follows directly from squaring equati@¢@4), taking its expectation
and using the expression fag_, (X* h) just derived n

1k
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LEMMA 6. If a; and z are sequences of i.i.d. real-valued random variables such
that E[a7] < o and E[|a;||z|] < o, then, for any yJ = 0 ande > 0,

sup  [M,() — mu()] = op(n~ V2", (A.31)
Ze[—untunY]
wheref, () = n"1 XL, a;exp(i{z) and my({) = E[aexp(i{z)].

Proof. See Lemma 6 in Schenna¢k004).

Proof of Lemma 2. To compute the Fréchet derivative M (%* h,) for k = 0,
with respect to the estimated momehj(¢) for a = 1, %,y in the vicinity of my(¢) =
my(¢), we first note a few simple result8 ratio of two random functiongh,(¢) for a =
1, %,y andmy({) can be exactly written as

Ma(0) + 8Ma() _
my(0) + oy (2)

wheredmy (&) = Ma(4) — ma(4), ga(d) = Ma(£)/my({) and wheredg.() can be written
in two alternative waysEither

da({) + 86a(0), (A.32)

S(0) MDD\ [, o)\t
= - .33
2% <ml<z> (my(0)? )( ! ml<z>> (A-33)
or
844(0) = 316u(0) + 5204(0), (A32)
om0 my0smy(0)
2O T T m@? (A35)
M) (3D (L e\t
22 0() = m1<z>< mm) (“ m1<;>>
Si(0) SMy(0) [ B0\ L
M) my(0) (“ m1<g>> ‘ (A.36)

Similarly, for Q&) = [S[Im (O)/my(D]de, 8Q«(&) = [Elim (O)/M()]dd —

fof[imx({)/ml({)]dg, and some random functiodQ,(¢) such that |8Q.(¢)| =
5Qu(é)],

A A 1 _ A
exp(Q«(§) +8Q«(£)) = exp(Qx(£)) <1+ Q) + 3 EXD(3QX(§))(5QX(§))2>- (A.37)

Substituting expansion®\.32) and(A.37) into
K <im
my«(£) < im,({) d {)

R 1
(3 )~ M) = = [ K<hn§)<

m(&) P\ Sy 'm0
_ myk(f) ¢ Imx({)
() exp(ﬁ, m(0) dg)) de (A-38)
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fork = O,lAand keeping the terms linear &, (), 6y ({), or 8y ({) gives the linear-
ization of M, (%%, h,,), denotedV, (%*, h,):

Mo(X", ) — Mo(X" i)
my(g) ( £im,(0) )
— d
2 | <) ma(e) © fo m(0) %

y ff(iamx({) _imy(£) oy (2)
o]

dsd
Mm@ (M(0)? ) ede

1 BiA(E)  mye(€)om,(é) £ imy(0)
| K(h"§)< Mm@ (@) >ex'°<fo my(0) dg) % (A39)

_ 1 flism(¢) im({)drmy({)
= fx(hnf)aﬁk(f)f()( me(0) (D)7 >d§d§

dMy(é) 8y (¢)
my (&) $ol6) = my (&)

By making use of the identity[” [§f(£,¢)didé = [ [7f(¢,0)déds +
f?oo f;“’f(f, {) déd¢ for any absolutely integrable functidhwe obtain

i (&) imx(§)5m1(§)> de

my (&) (my(€))?

x(hy §)< ¢k(§)> dg. (A.40)

2

(5 ) =~ MR ) = [ A hn)<

1 Ly My <§>
+ f Co(€, %% h,) (g)
1(5)
- C * hy A.41
= > fU|k(§,X*, h)&ry (€) dé¢. (A.42)

I=1xy
The order ofn™Y2(M(%* h,) — M (X% hy)) (in probability) can be found through its
varianceX (x* h) given by Lemma 1

(X h) = E folf(f,X M)V, 1, (£, €) (UK€, X7 ) T dgdé (A.43)

=L XxYyl= lxy

= 3 3 [ nivucoiuse oo (o

I1=1Lxyl= 1 X,y
where by Assumptions 5 and,6
VL& v = Mg, (& — &) —my (H)m,(=&)] (A.45)

= E[[l 15|18+ E[[1,][e“*[]E[|l,][e7**]] < 1. (A.46)
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It follows that

saem= S S ([ e i v o (A7)
=1L xyl,=1xy
2
—< > IUlk(g“,X*,h)d§> (A.48)
I=1, %,y

and therefore that

MK(X*, hn) - Mk(X*7 hn) = Op<nl/2 E |Ulk(§7 X*r h)|d§>

I=1,x,y
= 0,(n"20(h,)), (A.49)

whereU(h,), given in the statement of the lemmiaas been explicitly constructed to
bound any of thef|U/(£, x* h)|d/ terms(up to a multiplicative constantBy equation
(30), equation(A.49) implies equatior(36) in the statement of the lemmprovided that
Assumption 7 holds

To establish equatio(B87), we substitute expansiornié.32) and(A.37) into

Mk(X*a hn) - Mk(X*9 hn)

My (€) £im(¢)
= h - .
fx( n§)< T exp(fo () ds’) dm(&)) dé (A.50)

for k = 0,1 and remove the terms linear &h,({) for a = 1, x,y. We then find that
M(%*, hn) — M (%%, hy,) can be written agMy(X*, h,) — M (%% hy)| < 217:1 R, where

7<) &

Ro= [ Itmollsae@leol [ 16,6010 ) e, (A51)
0 0

R, = f ()18, 4(8)] | a8, (A.52)
2S) &

Ry = f ()18, Q<€) 62(6)] f 18,6,(0)] dede, (A53)
0 &

Re= [kl 1ap@) 1620 | 18,00 10z, (59
0 0
[o'e] §

R, = f (a1 86,4(€)1 | 62(8)] f 16,6,(0)] Az, (A.55)

oo 1 _ & 2
Re:f IK(hnf)lqyk(f)ll¢1(§)-eXp(IﬁQx(§)|)<f 5qx(§)|d§> dg, (A.56)
0 2 0

0 1 _ & 2
o [ oo ool 3 emisaion [ s e @s
0 2 0
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These terms can then be bounded in terms\@f,), U(h,) (given in the statement
of the lemma, and &, = MaX,_1 x y SURe[—h; 2 h; 11| Mp($) — Mu({)|, where the supre-
mum can be taken ovef—h, 1 h,!] becausex(h,&¢) vanishes outside that inter-
val. By Lemma 6 &, = O (n 1/2tey for any e > 0. Also, we note that
SUR e ntpty Pn/IM(O)] < @ A(h 1) = n Y2 A (hy ) = 0,(1). Now, for k = 0,1,
we have

[ 1L Ime@l ¢
r= K<hn§><ml(§)+|m1(§)|2)q>n¢o<§><fo |61qx<z>dz>d§ (A58)

e () ¢
< A(hy) b, f |K<hn§>|<1+'my f)wo(s)( f |51qx(§)d§>d§ (A.59)

[my(&)]
Y N §)|<1+ "‘yk(f)'>|¢o<§>|d§|alq (0l (A.60)
e g " [my(€)] *
= atb, [[Ine) 1660 + 160601 b1y 0,0l o (a61)
0 J¢
N Im (O 1
< A(h,) ®? h 1
)i [ [ )]+ o) e (1o (050 ) e
(A.62)
< A(h,)®20(h,). (A.63)
The remaining terms can be similarly bounded
stfmx(hnf)‘|n1yk(§) L 2114 0,
0 [my (&)1 Imy(€)] P
1,
+ W D21+ Op(l)\_1 dé (A.64)

) o 1 [my«(€)]
sA(hn)<I>,2,\1+op(l)l’lj0 IK(hnf)l—‘ml(g)\ |nr:1yl(§)| -

1‘¢0(§)d§ (A.65)

0 * |k (hy * |k (h,
</\(hn)cpr2,1+op(1)|1<fo | (li>(|\;;|k<§>|d§ J | <|§>|(gr(f>|d§>

(A.66)

= M(h,)®2U(h,)(1+ 0,(1)), (A.67)
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Ry < Alhy) b, f ()85 6,4(€)] | bo()] 0
= /\(hn)(i)n R2 = Op(l)RZa

[o'e] §
Ry = f (o) | bulE)] f 18,6,(0)] dece

%)

L (o) | bul€) g
|m1(§)|

< A(h,)®2|1+ op(1)|*1f
0

= A(h,) P2(1 + 0,(1))U(h,),

MmO ITma(0)]?

- 1 <OI -
RSSfo K(hn§)< 4 Imy {|><Dn|1+0p(1)1|¢o(§)|

¢
XJO 18, 0x(£)[ddé

. 't Imy(0)]
= /\(hn)q)n|1+op(l)‘7lj; |K(hn§)<l+ |r:nly(§)‘

£
Xfo 1626, (£)dZdé

~ * €
— Alhy) b1+ 0p(D)| ( f (a1 ()] f 16,0.(¢)|dzdé

0 é
" f ()| (&) f qux(§)|d§d§>

= A(hy) @, (1+ 0,(1D))R, = 0,(DRy,

o 1 ¢ ¢ 2
Re= [ ixmeioner e [ loaoias ) [ oo | ae

1 o ¢ ¢
explo,(D) f K(hn§)|¢k<f>|< f aqx<g>|d;>< f aqx<g>|d;> ae

=

NI~ NI

<

exp(0, (1) A(hy) D31+ 0,(1)]

” 1 [my(0)]
< |K<hnf>||¢k<§><fo<|mlm+ml(§)|2>d;>dg

1 N
=3 exp(0,(1))A(hy) PZ1 + 0,(1)[~*

= [ 1 [m.(0)|
x(h d

= 0,(1)A(h,)®2U(h,),
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[my()]

1 ¢ ¢ 2
< gonl [ saorac)( [ a0 o (82)

< A(h,) @, |1+ 0,(D)| 1

” [my<(Q)|
< [ e (1 T ot

& £ 2
xexp( f sqx(md;)( f |6qx(z>dg> ae (A.83)

sA(hn>ci>n|1+op<1>\-1L ()| 6o()]

I3 I3 2
xexp( f 6qx<z>|d;>< f |6qx<z>dz> o

ANyl + 0y(D)] 2 f ()| (&)

Rvifo K(hn§)<l+ lmyk({)|>)~(hn)<i>n1+ 0p(DI ™ do()]

& & 2
<o [ aaonoc)( [ 1saconoc) (189
6] 0
< A(h)®,[1+ 0,(1)| *Rg (A.85)
= 0,(DRe. (A.86)

It then follows that|M(%*h,) — M(%*hy)| < A(h,)®2U(h,) = Op(A(hn) X
Q(hn)n*”a) for somes > 0. By a standard Taylor expansion of the ralfa(*, hn)/
Mo(%* hy) aroundM,(%* h,) = M (X* h,) for k = 0,1, we have

e MR hy) My (% hy)
g(x 7hn) g(x 5hn) - MO(X*, hn) MO(X*, hn) (A87)
_ MI(X*’ hn) B MI(X*i hn)
= MO
_ Ml(MO(X*’ hn) - MO(X*7 hn)) (A 88)

Mg

for someMy lying betweenM(%* h,,) and M(%* h,). Becausdi) we have just shown
thatMy(X* hn) - Mi(%* hy) and M (%%, hy) = M(X% hy), (i) M(X*, hn) = M (%,0)
by assumptionand iii) M1(%*0) is bounded andiy(%*0) is bounded away from zero
by assumptionit follows that My * and M, /M& converge in probability to finite quan-
tities and thereforg(x* hy) — g(%* hy) is of the same order ad,(%* h,) — M (X* hy),
thus implying equatiori37).
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To establish the second conclusion of the theqreme note that because
nY2(Q (%% hy))"Y2(9(%%, hn) — g(X* hy)) = Op(1), we can write

(9(x*,hy) = g(x*, hy))
= 0y(DO,(U(hy)n~¥2A(hy)n~27<) (A.89)
= n¥2(Q(%% hy))2(g(X% hy) = g(X*, 1) Oy (U (hy)n™+2A(hy)n™2*<) (A.90)
= (9(%% hy) = g(%*, hy) Op((A(X*, 1)) H2U (hy) A(h)n~Y27<), (A.91)
Then
9(x%,h,) — g(X% hy)
= (9(x% hy) = g(X% hy)) + (§(X% hy) — g(X*, hy)) (A.92)
= (9(%%, hy) — g(&% hy)) + (g(X% hy) — g(X*, hy))
X Op((Q (%% hy)"¥2U (hy) A(hy)n~Y2%<) (A.93)
= (9(x*, hy) = g%, 1)) (1 + Op (A% hy))"¥2U () A(hy)n™H27))  (A.94)
= (9(x%, hy) = g(&% h,)) (1 + 0,(1)) (A.95)
becausdQ(x* h,))"Y20(h,)A(h,)n~Y2"€ — 0 by assumption u

Proof of Lemma 3. First, by equation(13), we have for k = 0,1,
* ® 1 1 *
M (X%, h) = M (%%,0) = Py (k(hd) = Dy () exp(—ifx™) dg. (A.96)
Expanding the Fourier transform of the kernel in a Taylor series up to gsdee obtain

[Mi (%%, D) = M(X7,0)]

- ‘2 f (L— k() bul&) expl—i£x") dé‘ (A.97)

i=1

efrl1 o1 - )
- ‘2 J (2 T RO (M) + ;K<Y><§><hn§>y>qsk(g)exp(—ufx*)df‘
0 . :
for someé € [0,¢].  (A.98)
Now let the ordery be chosen as followsf «, (defined in Assumption j8is nonzero

then lety = vy,, the order of the kernelf a,, = 0, then lety be the largest integer such
thaty =y, andy < —y,4 — 1. With this choice ofy, equation(A.98) simplifies to

*1 .
M (%7, h) = My(X%,0)[ = hy 2f0 o K(”(f)f’(bk(f)exp(—iS(*)df‘ (A.99)
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because all terms where< y vanish by the definition of the order of a kerndturther-
moreg we have

2 (* .
M) = M50 = 7 = [ 1) el7 (o) (A.100)
2 5 oo
=y 2 (maxx @) [ 1P 061, (101
v\ zer o

where maxer|x @ (£)| is finite by equation(44) of Assumption 9 The term
TS 1E1 | (€)]dE is finite alsq because our choice of guarantees that the integrand
decays to zero faster thagi *. Then by a standard Taylor expansion of the ratio
M1(X* hn)/Mo(X* hy) aroundM (X% h,) = My(%%0) and Mo(X* h,) = Mg(%*,0), the
convergence rate af(x* h,) — (%*,0) is O(hY) alsa

LEMMA7. For{ =0,ify>0,a<0,B>0o0rify ER,a =B =0, then
f 1+ &) explaéP)dé < (L+ &)1 exp(aé?). (A.102)
¢

Proof. The case wheree = g = 0 is trivial. If « < 0 andB > 0, Lemma 42 in
Li and Vuong (1998 shows thatfor y > 0 and ¢ > 0, f;"gy explaéP)dé =
O(eYr Pexp(aéP)), thus implying the result becausé*” Pexp(aéf) <
ErexplaéP). u

Proof of Lemma 4. From equatior{A.96), we have

IM((X7, h) = M (%%,0)| = zfo (1K(h§))¢k(§)exp(i§5<*)d§‘ (A.103)
= ‘2f (1—K(hf))¢k(§)exp(—i62*)d§‘ (A.104)
&t
SZJ, @+ k() DIy (£)dé (A.105)
&h

V.

< foo | (£)|dé by the boundedness af(hé) (A.106)
Zht

< f L+ &) exp(a¢§5¢)d§ (A.107)
£ht
< (14 Eh Yot explay, (Eh™1)Ps). (A.108)
Then by a standard Taylor expansion of the rafib,(x* h,)/Mo(X* h,) around

M1 (X% h,) = M1(X*,0) andMqg(X* h,)) = Mo(X*0), the convergence rate gf X* h,,) —
g(x%0) is O((1 + h™ 1)+ L exp(a,(£h~)P+)) alsa |

LEMMA 8. For ¢ =0, if B = 0and if (1 + £)” exp(aé?) is increasing in&,

¢
f (1+ &) explaé?) dé < (L+ &) exp(ag?). (A.109)
0]
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Proof. [§(1+ &)7explaéP)dé = (1 + () explal?) = (1+ ) 7 exp(alf) W

Proof of Lemma 5. By Lemma 2 the order of the variance term @, (U (h,)n~?),
where

Olhy) = mlmli(( "bw)

[¢0()]

x jm |K<—hnf>||¢k<§>df+|x<—hng>||¢k<§>|)dz,

(A.110)

where for k= 0,1,

(2m) L L Ik he) | ()] d = 2m)1(]¢] = hY) L Tle®lde (A11)

<1lZl=h"") {Lw A+ 1&Dr eXp(a¢,|§|B"’)d§}
(A.112)
= 1(IZI=h"H) @+ [¢D 7 explayl{lP)  (A113)
and
@m) k(=)D < 111 = h™H (L + [£)) 7 explag |£]P4). (A.114)

It follows that

Oh) =< [ @+ 12) 7 expl—aegl 180

X (A + @+ 12D = ha Y@+ [Z)Y 7 explagy | £]Pe)

k=0

+ 111 = hg M) (2 + [£])7e explagy| ¢1P+)) dg (A.115)

< [1021= @+ 2)Ee ey 215~ ag g (A116)

< (1+ hy 120 vt v vmexplay hyPe — ahyBm). (A.117)

Hence g(x* hn) — g(X* hp) = Op(n~Y2(1 + hy1)2 ety Ymexp(ay, hy Pe — ayhy #m).
]

Proof of Theorem 2. We make use of the order of the big&* h,) — g(x*,0) pro-
vided by Lemmas 3 and 4 and of the order of the variance @i, h,,) — g(Xx* h,)
provided by Lemma 5To check that the higher order tergix* h,) — g(x* h,) does
not affect the rates obtained by considering the first-order terms welybserve that
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by Lemma 2 the upper bound og(x* h,) — g(x* h,) provided by Lemma 5 holds for
4(%* h,) — g(x* h,) alsa if we can show thai(h,)n~?*¢ = o(1) for somee.

We consider each subcase of the theorem separattr,, be such thag(x* h,) —
g(x* hy) = Oy(Ry). Throughout the progflet €, €, €5,... denote arbitrarily small posi-
tive numbers

Case 1.8, > By. If the bandwidthh, is chosen to be

Inn (ap + 2ep) Inn Bo/By
hy 1A = + A1l
(™) <z<av+eu>> (@, %) \2(a, +e) (A118)
for somee,, e, > 0, the bias and the variance are of the same order and the convergence
rate is
R, < (h"1)"™exp(ay(h, 1)) + n~Y2(h~1)" exp(e, (hy 1)#) (A.119)
< exp((ap + €,) (hy1)P°) + n" V2 exp((a, + €,) (hy1)A) (A.120)
Inn 1 (ab — é—b)Bu/Bb Bb/By \ Bo/Bu
=< + — |
exp(“’” ) <<2<av ¥ e,,>> (@ + ) < 2a,+e) ”) > )
+ n~Y2ex }In n|) + (a, + 2¢,) _Inn__ (A.121)
P2 b 2(a, +€,) '
2 Inn Bu/By
< + _
exp(mb eb>(2(av 5 ev)) )
+ n Y2ex }Inn + (ap + 2€p) _Inn__\we (A.122)
P 2 %o €b 2(a, +€,) '
Inn Bo/By Inn Bo/By
= exp((ab + 2ey) (m) ) + exp((ab + 2¢y,) (m) )
(A.123)
5 9 Inn Bo/By 2
= + S EE— .
ol 200 52 ) w20
In N \Bo/Bu
< exp((ab +€) (2—> > for somee > 0. (A.125)
al/

Now, to check the negligibility of the higher-order termsve verify that
A(h,)n~Y2T<1 = (1) for some suitably chosesy > 0. Noting that3, = 8, anda, =
—anif B, > By, We have
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Alhp)n~ V2 e = (1+ hy Y rmexp(—an,(hy 1) Am)n~ Y2+ a (A.126)

< expl(—amy, + €)(hyH)Pm)n~Y2% < for anye, > 0 (A.127)
(—amt+e)inn

<e —— |n"Y?ta A.128

Xp( 200, + &) (A129)
—ant€)Inn

< exp( Som NN o, (A.129)

2(—apte€,)

< n~stY2n~V2%a for somee; > 0 (A.130)

= peaes (A.131)

=0(1) ife<es (A.132)

Case 2.8, = 0 (andy, < 0) andB, > 0. For somee, > 0, let

Then
Ry = (hy1)? + n™V2(hy 1) exple, (hyt)#) (A.134)
< (hyH) + n Y2 exp((a, + €,)(hy1)~) (A.135)
< (2(6:3 = + ZI;JT::; )yn/ﬁb +n~12 exp(% Inn+y,Inin n) (A.136)
< ( Ihn__, wlininn )Wb + (Inn)y (A.137)
2(a,+€,) (a,t€)
< (Inn)7/B (A.138)
and
Ahy)n" Y2 e < exp((—ay, + €,) (hy H)Pm)n~Y2 e for anye, > 0 (A.139)
< ((—am +e) %) n-v2re (A.140)
< (ﬁ In n) n-Yzta (A.141)
< nY2 esn~Y2+e for somee; > 0 (A.142)
=0(1) ife <es. (A.143)
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Case 3.8, = B, # 0. For somee > 0, let

h 1= ln—n o A.144
no 2(a, — ap +€) ’ (A )

Then

Ry = (hy ) explap(h™1)%) + n~Y2(hg ) exple, (h™1)P)  (A.145)

< expl(ap, + &) (hy1)Pe) + n"V2expl(e, + €,) (hy 1)) (A.146)
< exp| (a, + €p) In—n
P 2(a, — eyt €)
B Inn
+n~12 exp((au +€,) <m>) (A.147)

< exp((ﬁ + 61) In n)

+nv2 ex%(ﬁ + 62> In n> for €5, €, > 0 (A.148)

< na/(a,—2ap)+ter 4 g~ 1/2pa,/(2a,—2ap)+ep (A.149)
< new/(2a,—2ap)+er | pap/(2a,~2ap)+e; (A.150)
< n/@x-2w)*<  for somee > 0, (A.151)
Alhpn V2 e < exp((—ay, + €,) (hy Y)Pm)yn~Y2 <1 for anye, > 0 (A.152)
< exp(%) n-Y2ta (A.153)
< exp< : (Cf;fma: iz)a':i - ) nv2re (A154)
= exp(%) n-Yzta (A.155)
— nY2-en-Y2+a for somee, > Oif e, < € (A.156)
S (A.157)
=0(1) for somee; < e¢,. (A.158)
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Case 4.8, =B, =0 (anday, = a, = 0 andy,, < 0). Let h,* = n¥@%=2%) Then

R, < (hy 1) + n~¥2(h; 1) (A.159)

< n?/@%=2v) 4 n=V/2+7,/@y.~2v) (A.160)

< n7/Rye=2), (A.161)
A(h,)n~Y2+e = (14 hob)+v—rmp—V2+a (A.162)
< (NY@7=2%) )14y —ymn~1/2+e (A.163)

= Ny Ym/ 2y, ~2yp) 1/ 2+ey (A.164)

Noting thaty, =y + 1, v, = 2+ ¥4 — ¥m + ¥r, andyy, < 0, the exponent oh can be
written as

1+, — 1 1+y, — 1
Aty —vm) 1 o - A4y —Ym) N (A165)
2(y,—7) 2 22+ Y= Ym+t Y=Y 2
1+, — 1
< A+ Y = Ym) —Z4e (A.166)
224 Y4 = Ymt Y~ Vet 2
I+y —ym) 1
=— " 4 A.167
2B+y, —ym) 2 (A167)
< 0 fore, sufficiently small (A.168)

LEMMA 9. Let K,(z) be a sequence of real-valued nonrandom functions of a real
variable, let g and z be i.i.d. sequences with aatisfying Ha?*°|z = z] = C for some
C,5 > Ofor all z andVar[a;|z = z] = C for some C> 0 and for all z, and let

on = (E[a?KZ(z)] - (E[a;K,(z)])*)V2 (A.169)

If info=n on > 0 for some NE N* and super|dK.(z)/dz] = O(n®?~?%) for some
8 > 0, then

o inY2 i (a;Kn(z) — E[aK,(z)]) -5 N(0,2). (A.170)
j=1

Proof. LetZ, = a;Kn(z). The proof consists in verifying that,; satisfies the hypoth-
esis of the Lindeberg—Feller central limit theorem for triangular atrdtydeed the
Zn1,...,Znnare ii.d. by assumptionand it remains to be shown that the Lindeberg con-
dition holds for all € > 0,

lim o, ?E[1(|Z,j| = €0,n"?)Z5] — 0. (A.171)
n—oo

First, noting that 1ab= c¢) = 1(a= c¢”) + 1(b = ¢*™7) for anya,b,c € R™ and any
n € ]0,1[, we can write

U'rTZE[l(|aj Kn(z)| = o, nl/2)|aj Kn(zj)|2] =T, +T, (A.172)
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where
Ty = 04 2E[1(|a)] = e707n7?) 8, Ky() 2], (A173)
T, = 0, 2E[1(|K(2)| = e* "o " nE772) 3 K ((z) 2] (A.174)

Then T, = o, E[E[1(|a)| = £"07n"?)a’|7]IK,(7)]?] < o, *E[(707n"?) 7% X
|Kn(z)I?] becaus€E[a?*?|z = z] = C (i.e, E[1(|aj| = c)a?|z] = E[1(]a| = ¢) X
(a;/c)°af|z] = c°E[1(]a| = c)a?*?|z] = ¢ °E[a?"®|z] < c~?). Noting that

o = E[afKZ(z)] — (E[ajK,(z)])? (A.175)
= E[E[a]|z]KZ(z)] — (E[a;Kn(z)])? (A.176)
= E[(E[af|z]— (E[a]z])*)KZ(z)]

+ E[(Ela1z1)?KZ(z)] — (E[E[aj|z]Kq(z)])? (A177)
= E[Var[a|z]KZ?(z)] + Var[E[a;]Z 1K,(z)] (A.178)
> E[KZ(z)] + Var[E[a;|z 1K.(z)] (A.179)
> E[K2(z)], (A.180)

we haveT, < (E[KZ(z)]) *E[(e707n"?)°K2(z)] = (707 n"?) °(E[KZ(z)]) * X
E[KZ(z)] = (e707n"?)™® — 0. Also, T, = o, °E[E[a?z]1(|K,\(z)| =
e e ) KE(Z)] = Cop 2E[U(|Ka(z)] = et o inGR)KE(z)] <
E[1(IKn(z)| = &* 7o " n " /2)K2(Z)].

Let s, = super|dK,(2)/dZ|. For a given value oE[an(zj )] the maximum value of
E[1(|Kn(z)| = C)an(zj )] for someC > 0 is obtained when the support &f,(z) is
inside the support of the distribution afand whenK,,(z) is triangular

0 if |2 =1,
= st — 12l iz <1, (A.181)
wherel, = (30,2/(2s?))3. Then

0= [ 1K@ = e 7 2 K, (2262 02 (A.182)

= 10K, = 6272 ) K ()2 a2

ln
= 20, ?max f s2z2dz0 (A.183)
(eoyn¥/2)t1g7L
ng (830_3n3/2)(1—n)
= —max{(I}-——=—)0
307, S
2(g%0,n%?2)d=m
= max{(l - ,o}, (A.184)
3s,
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where

2(830'n n3/2)(1—n) _ 2(830.nn3/2)(17n>

3, = 3n@D> (A.185)
B 2e30 Mg (1-m) n(3/2)-0/2 -
= 3n@D> forp=246 (A.186)
2 3(1-m) ;- (1-n) [6/2
= 3 € O n%< — oo, (A.187)
and it follows thatl, — 0, as desired u

LEMMA 10. If 4 € W, thenlim ;.. p(z) = 0, where [z) is the inverse Fourier
transform ofiy (£).

Proof. This result is Theorem 18 in Lighthill1962 with the trivial modification
that the Fourier transform is replaced by the inverse Fourier transform and with the
slight extension that allows the tail behavior of the functieid) to be exponentialsee
Definition 4). This extension is straightforward because Lighthill's proof proceeds by
writing ¢ (£) = (&) + (¢ (£) — V() where(({) — ¥({)) can be handled using the
Riemann—Lebesgue lemmBy the assumption that € W, the function¥({) can be
chosen such that its inverse Fourier transfopg(z), can be calculated analytically and
be shown to satisfy lim_. p..(z) = 0. All that is needed to allow for more flexible
choices of tail behavior than initially employed by Lighthill is to find functio®i$/)
whose inverse Fourier transform can be calculated analytically and have the appropriate
tail behavior Using the techniques described in Gel'fand and Shil®964 Example 5
p. 169 the inverse Fourier transform of exponentials of the form(exp) for c € R
andy € N* can be shown to be

ic)Yg)
(eroz) (A188)
j=0 !

wheres®(¢) denotes théth derivative of Dirac’s delta distributiohis distribution
clearly vanishes agz| — oo, as requiredNote thaf although such a distribution does
not belong to the class of the so-called tempered distributibrdoes belong to the
wider class of distributions that forms the dual of compactly supported infinitely differ-

entiable test functioné.e., the so-called Typ& distributions of Gel'fand and Shilgv
| |

Proof of Theorem 3. According to the second conclusion of Lemmat@ have
g(x*,hy) — g(x* hn) = (9(x* hy) — g(x*h,))(1 + 0p(1)) we need to show that
(Q(x*,h,)" Y20 (h,) A(hy)n~Y2¢ - 0 for somee > 0. We proceed by finding a lower
bound onQ (%% h,,) and relating it toJ (h,). First, by Assumption 14Var[ g(x*, h,)] =
Q(X* hy) = MaXe—1, x yMaX—g1Var[Tanl, whereTy 5 n, for k= 0,1 anda =1, x,y, is
given by
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Tean= [USE M0 00 (A.189)
= fu,k(g, %% h,) (nl i 3 e‘421> dz (A.190)
j=1
=nt En) 3 Ky an(z), (A.191)
j=1

where
Kian(z) = fUak({,X*, hn)e'“% d¢. (A.192)

Then
Var[a; Ky 4 n(2)] = E[a?(Ky 4 n(Z))?] (A.193)
:J(Kk,&n(Z))zE[aZIZJf(Z)dz (A.194)
= f (Kean(2)?E[a?|2]f(2) dz (A.195)

€14

for any finite interval I, « not reduced to a pointBy Assumptions 11 and 13
infc,,, E[a%|z]f(z) = C > 0, and we have

Var[a; K, 5 n(z)] = J (K an(2)?dz (A.196)

2€15

We now show thathER\Hk(Kk’aqn(z))zdz remains bounded as — oo, thus imply-
ing that [(Kyan(2)?dz diverges at the same rate ds (K, n(2)?>dz First
liM 00 Kk a.n(2) = Ky a.00(2) is the inverse Fourier transform bE<(¢, x*,0) and by the
moment theoremthe inverse Fourier transform afl/d{)UX(Z, %%,0) is izKy a00(2).
Becausegd/d?) U/ (¢, x%,0) belongs toW by Assumption 12we can apply Lemma 10
to conclude that lim . |z||Kk a.(2)| = 0. Therefore there exist constants,C > 0
such that|KZ, .(2)| = Alz| 2 for |z| = C andk = 0,1 andl = 1, x,y. It is therefore
impossible forszR\hk(Kk,(,Ln(z))2 dzto become unbounded as— oo if I, is chosen
to be[—C,C]. We can then write

Var[a; K o n(z)] = f(Kk,a,n(z))zdz (A.197)
By Parseval’s identify and the fact thef*(£, x*, h,) vanishes foiZ| = h,*, we have

f(Kk,an(Z))zdF JIUlk(Z,X*, hn)[? d¢ (A.198)

o PRGSO (A.199)
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By the Cauchy—Schwartz inequality

< i |u|k<z,x*,hn>|dz> << i u.k(g,x*,hmdg)( i 1d;>,

[¢l=hpt [Z1=hn 1Z1=hn

which becomesupon rearrangement

-1 2
i u|k<z,x*,hn)2dzz< i 1dz> ( i |U.k<z,x*,hn>|dz> (A.200)
[Z]=hyt [Z]=hy?t [¢|=hyt

2
= 2hn<f UL, %%, hn)|d£> . (A.201)
[¢l=hpt
Collecting equation$A.197), (A.198), and(A.200), we have
2
Q(x*h,) = hn< max max f [UK(Z, %%, hn)|d§) . (A.202)
a=1x,y k=0,1 |§‘Sh;1

We then observe thaby equation(34) and Assumption 15

U(hn)=f\m1(§)\ 12(( ut (Z)l)f |C (¢, %%, hy)[dE + | C(4, X7 Ny, )|)

Imy(2)]
(A.203)
< Jlml(f)l’lé ((1+ As’)l)“ Cu(¢, %% hy) dé | + |C(L, %%, h ))df
k=0 [my(Q)] ¢l
(A.204)
< max maxf [UM(Z, %% hy) ] dE. (A.205)
a=1xy k=0,1 \{\sh;l

Combining equationgA.202) and(A.203) yields

(Q(x%h,))¥2 = hi/2U(hy), (A.206)

thus implying thath?A(h,)n"¥27< — 0 for somee > 0 is a sufficient condition for
the asymptotic negligibility of the higher order termghich we can now verify

If am=0, thenh¥2A(h,)n"Y2%¢ = (1+ h;1)2(1 + hy1)(1 + hy 1)y rmn~1/2+e
(1+h> 1)3/2+«/, Ymn~1/2+e < (n~ /B +2y— 2«/,“))3/2+y, Ymn~Y2+e < = 1(3/2+ Y —ym)
ne = o(l) for e > 0 sufficiently small

If am # 0, thenhY2A(hyY)n~17¢ < (14 h,1)¥25 7 Ymexp(—ay,(hy 1) Am)n— 12+
exp(—am(l + €,)(hyH)Pm)n~Y2 ¢ < exp((am(l + €)(1 + 1)/2ay)Inn)n-Y/2*e
n~Y2(etntmedne = o(1) for somee, > 0 and fore > 0 sufficiently small

We have now shown that the limiting distribution @f%* h,,) is the same as that of
g(x* hy). To obtain the limiting distribution of(x* h,,), we note thag(x* h,) — g(X* hy)
is a finite linear combination of the kernel-type estimatdgs, , defined in equa-
tion (A.191) using the kerneK, 5 n(z) defined by equatiorfA.192). The asymptotic
normality of T, o » can be shown using Lemma Provided that we can show that
SUper|dKy an(2)/dz] = O(n®2-%) for somes > 0. By the moment theorenthis
requirement is satisfied if [UX(Z, %% h,)||Z|dZ = O(n®2=%) for k = 0,1 anda =
1, x, y. Using the same techniques as in the proof of Lemimaéhave

X

A
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f\UJ(Z,X*, ha)l1Z1dd < (1+ hy )Y exple(hy )P), (A.207)

wherey =3+ y, — ym + 7y, and

(_amv Bm) if B(b < Bm
(e, B) = . (A.208)
(a¢ —am, Br)  f Bc/) = B
If am =0, thena = 0 and we have
f\Uak(Z,X*, h)[Z]dg < (hyt)3re ymtor (A.209)
< (NTNYEF2y=2ym) )3+ Yy~ ymt e (A.210)
= N 18 Y Ym Ty ) nGtyg = ymt )/ B2y —2ym) = o(n) (A.211)
becausdi) (3 + y4 — ym + vr) > 0 because, = —yn, andy, = 0 and(ii)
3t Yot Ve = Vm _ 3+ 2% 2= Vet Ymt Yy
3+ 2y, — 2y 3+ 2y, — 2y
=1— YT Vm” Ve <1 (A.212)
3+ 2y, — 2y,
If am # 0, then
f\u;(g, %% hy) |1 2]d¢ < exp((a + €4)(h;1)#) for somee, > 0 (A.213)
+e)(1+
< exp<—w In n) (A.214)
20,
20, — 1+
< exp<M In n) (A.215)
20,
<exp((1+eg)lnn) <n'*<s for somees < 3. (A.216)

Hence the hypotheses of Lemma 9 are verifieahd theTy 5 , are asymptotically nor-
mal. The expectation and the varianced*, h,,) can then be calculated as in Lemma 1
|
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