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We introduce a nonparametric regression estimator that is consistent in the pres-
ence of measurement error in the explanatory variable when one repeated obser-
vation of the mismeasured regressor is available+ The approach taken relies on a
useful property of the Fourier transform, namely, its ability to convert compli-
cated integral equations into simple algebraic equations+ The proposed estimator
is shown to be asymptotically normal, and its rate of convergence in probability
is derived as a function of the smoothness of the densities and conditional expec-
tations involved+ The resulting rates are often comparable to kernel deconvolu-
tion estimators, which provide consistent estimation under the much stronger
assumption that the density of the measurement error is known+ The finite-sample
properties of the estimator are investigated through Monte Carlo experiments+

1. INTRODUCTION

1.1. Motivation

The bias resulting from the presence of measurement error in the explanatory
variables is a common problem in regression analysis+ Although numerous solu-
tions to this problem have been derived for parametric regression models, the
corresponding problem in nonparametric specifications has remained relatively
unexplored+

Some aspects of the nonparametric errors-in-variables problem have been pre-
viously investigated+ The problem of estimating the density of an unobserved
variable when this variable is measured with error and when the density of the
error is known has received considerable attention in the literature+ In this set-
ting, the so-called kernel deconvolution estimator~for a review of the exten-
sive literature, see, e+g+, Carroll and Hall, 1988; Liu and Taylor, 1989; Carroll,
Ruppert, and Stefanski, 1995! has been shown to reach the optimal rate of con-
vergence~Fan, 1991b!+ The problem of the nonparametric estimation of a regres-
sion function when the independent variable is measured with an error drawn
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from a known distribution has also been studied+ In this case, a kernel regres-
sion estimator based on kernel deconvolution is known to achieve optimal con-
vergence rates~Fan and Truong, 1993!+ A more challenging problem is the
estimation of densities and regression functions when the independent variable
is measured with an error drawn from anunknowndistribution+ Thanks to an
identity due to Kotlarski~see Rao, 1992, p+ 21!, the identification of the den-
sity of an unobserved random variable is possible when the joint density of two
error-contaminated measurements of that variable is known+ Li and Vuong~1998!
show that the empirical version of this identity leads to a consistent estimator
with known convergence rates+

In contrast to the nonparametric density estimation problem, the nonparamet-
ric estimation of conditional expectations under similar conditions has so far
remained unsolved+ This is the gap our paper intends to fill by extending the
traditional Nadaraya–Watson kernel regression estimator to allow for the inde-
pendent variable to be contaminated with an error of an unknown distribution+
We show that the availability of two error-contaminated measurements of the
independent variable is all that is needed to achieve identification+ The useful-
ness of this result stems from the observation that although distributional assump-
tions are often not appropriate in applications, thus precluding the use of kernel
deconvolution estimators, repeated measurements can frequently be found in
data sets~Ashenfelter and Krueger, 1994; Hausman, Newey, and Powell, 1995;
Morey and Waldman, 1998; Bowles, 1972; Borus and Nestel, 1973; Freeman,
1984!+1 For instance, a given quantity may be repeatedly measured over time,
or the same quantity may be reported by different people, such as different
family members or an employer and an employee+ The error on one of the mea-
surements does not need to have zero mean, thus expanding the set of valid
repeated measurements to more general indicators, or to repeated measure-
ments that exhibit a systematic drift+

Our analysis not only derives the convergence rate of the proposed estimator
but also provides its asymptotic distribution+ The asymptotic properties of the
estimator are analyzed through various analytical examples, and its finite-
sample properties are investigated through Monte Carlo simulations that illus-
trate the bias-correcting power of our estimator+ All proofs can be found in the
Appendix+

1.2. Background

To understand the difficulties faced in nonparametric estimation in the pres-
ence of measurement error, it is instructive to recall the well-known solution to
the simpler problem of finding the density of an unobserved variablex* given
an imperfect measurementz ~for a review, see Carroll et al+, 1995!:

z 5 x* 1 Dz+ (1)

The measurement errorDz is usually assumed to be independent fromx* and
to be drawn from a known density+ It is well known that the density ofz is
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given by the convolution of the density ofx* with the density ofDz+ Thanks to
the convolution theorem, this relationship can be concisely expressed using char-
acteristic functions:

m~n! 5 f~n!c~n!, (2)

wheref~n!, m~n!, and c~n!, respectively, denote the characteristic functions
of x*, z, andDz+ We can therefore identify the characteristic function of inter-
est, f~n!, through

f~n! 5
m~n!

c~n!
, (3)

wherem~n! can be estimated by the Fourier transform of a nonparametric esti-
mator of the density ofz, such as a kernel estimator+ The problem with this
procedure arises from the fact that, under mild assumptions~such as assuming
that the density ofDz is continuous!, c~n! vanishes asn r `, so that this
operation is not well defined for alln+ Hence, merely replacingm~n! by a con-
sistent estimate[m~n! may not yield a consistent estimate off~n!, because small
errors on [m~n! are magnified by the arbitrarily large factor 10c~n!+ This is the
well-known ill-defined inverse problem that occurs when one tries to invert a
convolution operation+ The so-called kernel deconvolution estimator~Carroll
et al+, 1995; Fan, 1991b! addresses this problem by estimatingm~n! using a
kernel whose Fourier transform, k~n!, is compactly supported+ This ensures
that the estimated characteristic function[m~n! is also compactly supported, which
in turn guarantees that the numerator of equation~3! will vanish well before
the denominator causes the ratio to diverge+

It is clear that truncating the characteristic function ofz in this fashion intro-
duces a bias+ To obtain a consistent estimator, the support ofk~n! is allowed to
expand as sample size grows in such a way that the total integrated noise over
all frequencies in the support ofk~n! decreases+ The fasterc~n! r 0 asn r `,
the more slowly the support ofk~n! can expand with sample size and the slower
the convergence rate+ This is the fundamental difficulty associated with non-
parametric estimation in the presence of measurement error+ As the smoothness
of the density of the measurement error increases, the characteristic function
c~n! goes to zero increasingly rapidly asn r ` and the convergence rate wors-
ens+ The smoothness of the density ofx* also plays a role in determining the
convergence rate+ The bias introduced by the truncation ofm~n! at a finite fre-
quency is a function of the magnitude of the rate of decay ofm~n! asn r `+
The smoother the density ofx*, the faster its Fourier transformm~n! decays as
n r `, and the faster the bias decreases as the kernel bandwidth shrinks+

The literature focusing on kernel deconvolution estimators typically describes
the smoothness of a density in terms of the asymptotic rate of decay of its Fou-
rier transform as frequencyn goes to infinity+ The basis for such a description
is that the number of derivatives of a density that are continuous is directly
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related to the asymptotic behavior of its Fourier transform asn r `+ This leads
to the traditional distinction between “ordinarily smooth” functions~which admit
a finite number of continuous derivatives and whose Fourier transform decays
as 6n6g, g , 0! and “supersmooth” functions~which admit an infinite number
of continuous derivatives and whose Fourier transform decays as exp~a6n6b!,
a , 0,b . 0!+ Examples of ordinarily smooth functions are gamma, uniform,
and double exponential, and normal and Cauchy are supersmooth functions+

The kernel deconvolution estimator exhibits a wide variety of convergence
rates depending on the smoothness of the densities involved+Whenever the den-
sities ofx* and ofDzare ordinarily smooth, the kernel deconvolution will exhibit
a rate of convergence of the formn2c for somec . 0 wheren is sample size+
The situation degrades significantly when the density ofDz is supersmooth while
the density ofx* remains ordinarily smooth+ The convergence rate is then of
the form ~ ln n!2c for somec . 0, which is slower than any negative power
of n+

The problem solved in this paper is more challenging than the one described
above+ First, we focus on a kernel regression estimator rather than a kernel
density estimator+ Second, we assume the density of the measurement error to
be unknown+

2. ESTIMATION PROCEDURE

Our task is to find a functiong~x*! :R ° R such that

y 5 g~x* ! 1 Dy whereE @Dy6x* # 5 0+ (4)

We considerx* a scalar to simplify the exposition, although a multivariate exten-
sion is clearly possible+2 When bothy andx* are observed, a natural candidate
for this task is the well-known Nadaraya–Watson kernel estimator ofg~ Ix*! at a
given point Ix*

[g~ Ix*, h! 5

n21 (
l51

n

yl Kh~xl
*2 Ix* !

n21 (
l51

n

Kh~xl
*2 Ix* !

, (5)

wherexl
* andyl for l 5 1+ + +n denote the data points and the kernelKh~{! is of

the form

Kh~x* ! 5
1

h
KS x*

h
D (6)

andh is the bandwidth parameter+ The problem we are facing is thatx* is not
observed+ As shown in Schennach~2004! the availability of two repeated mea-
surements ofx*
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x 5 x* 1 Dx, (7)

z 5 x* 1 Dz, (8)

provides enough information to identify any moment of the formE @u~ y, x*!#
for any functionu~ y, x* !+ Because the probability limit~at constant band-
width h! of the Nadaraya–Watson kernel estimator is the ratio

g~ Ix*, h! 5
E @ yKh~x* 2 Ix* !#
E @Kh~x* 2 Ix* !#

, (9)

a similar technique can be applied here, settingu~ y, x*! 5 ykKh~x* 2 Ix*!, for
k 5 0,1+ The extension of the existing results to a nonparametric setting
nevertheless requires additional steps to handle the fact that we need to char-
acterize an infinite family of moments, indexed by Ix*+ Fortunately, this com-
plication can be elegantly handled by observing that the convolution operations
involved in computing the Nadaraya–Watson estimator are converted into sim-
ple products through the Fourier transform operation, enabling the whole fam-
ily of moments to be estimated in a single operation+ The formal result that
permits identification is summarized in the following set of assumptions and
associated theorem+ Throughout the paper, we will take the convention that inte-
grals without explicit bounds are taken over the whole real line+

Assumption 1+

E @Dy6x*,Dz# 5 0,

E @Dx6x*,Dz# 5 0;
(10)

Dz andx* are mutually independent+

Assumption 2+ E @6x* 6# , E @6Dx6#, andE @6y6# are finite+

Assumption 3+ E @ ykh21K~h21~x* 2 Ix*!!# , ` for all Ix*, any h . 0, and
k 5 0,1+

THEOREM 1+ Under Assumptions 1–3, and provided6E @eijz#6 . 0 for any
finite j, the function

g~ Ix*, h! 5
E @ yh21K~h21~x* 2 Ix* !!#
E @h21K~h21~x* 2 Ix* !!#

, (11)

for Ix* [ R and h$ 0, can be expressed solely in terms of moments that involve
the observable variables y, x, and z:

g~ Ix*, h! 5
M1~ Ix*, h!

M0~ Ix*, h!
, (12)
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where, for k5 0,1,

Mk~ Ix*, h! 5
1

2p
Ek~hj!fk~j!exp~2ij Ix* ! dj (13)

and wherefk~j! [ E @ yk exp~ijx*!# is given by3

f0~j! 5 expSE
0

j imx~z!

m1~z!
dzD, (14)

f1~j! 5 f0~j!
my~j!

m1~j!
, (15)

where i5 M21 and k~j! is the Fourier transform of the kernel K~x*! and

ma~j! 5 E @a exp~ijz!# for a 5 1, x, y+ (16)

Note that knowledge of the momentsma~j!, for a 5 1, x, y, which involve
observable variables only, is sufficient to identifyg~ Ix*,h!+ Because the moments
ma~j! can be estimated from the corresponding sample averages, we propose
the following estimator+

DEFINITION 1+ Let ~xi , yi , zi !, for i 5 1, + + + , n denote a sample of size n.
For a given Ix* [ R and some sequence of bandwidths hn r 0, let

[g~ Ix*, hn! 5
ZM1~ Ix*, hn!

ZM0~ Ix*, hn!
, (17)

where, for k5 0,1,

ZMk~ Ix*, hn! 5
1

2p
Ek~hnj! Zfk~j!exp~2ij Ix* ! dj, (18)

Zf0~n! 5 expSE
0

n i [mx~z!

[m1~z!
dzD, (19)

Zf1~n! 5
[my~z!

[m1~z!
Zf0~n!, (20)

and where, for a5 1, x, y,

[ma~z! 5 n21 (
j51

n

aj exp~izzj !+ (21)

An interesting property of this estimator is that it reduces to the Nadaraya–
Watson estimator in the absence of measurement error~i+e+, whenz5 x 5 x*!+
Indeed, in that case, [mx~z! 5 [mz~z! 5 n21 ( j51

n zj exp~zzj ! 5 d [m1~z!0dz, and
equation~19! can be integrated analytically to yieldZf0~n! 5 m1~n!, thus imply-
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ing that equation~20! becomes Zf1~n! 5 [my~z!+ With these equalities in mind,
equation~18! then defines the Fourier representation of the numerator and the
denominator of the Nadaraya–Watson estimator+

To ensure that the proposed estimator is well behaved, we need to make the
following assumption+

Assumption 4+ The Fourier transform of the kernel, k~j!, is ~i! bounded and
~ii ! compactly supported~without loss of generality, we consider the support to
be @21,1# !+

The boundedness ofk~j! is a very weak requirement because any kernel
K~z! violating it would necessarily fail to be absolutely integrable+ The assump-
tion of compact support ofk~j! is commonly made in the derivation of the
asymptotic properties of kernel deconvolution estimators~Fan and Truong,
1993!+ The need for this assumption arises from the fact that the estimator
involves a division by an asymptotically vanishing characteristic function+ Under
very mild smoothness requirements, characteristic functions decay to zero as
frequency increases toward infinity+ A compactly supported kernel~in Fourier
representation! explicitly makes the frequency range considered in a given sam-
ple finite, ensuring that the divergence is kept under control+

The restriction of compact support~in Fourier representation! poses few prob-
lems in practice, because one can take any given kernelK~x*! and construct a
modified kernel EK~x*! that exhibits most of the properties of the original ker-
nel, while possessing a compact support in Fourier representation+ This is
achieved by computing the Fourier transformk~j! of the original kernelK~x*!
and multiplying it by a “windowing” functionW~j! that vanishes beyond a
given frequency:

Ik~j! 5 W~j!k~j!+ (22)

Judicious choice of a windowing function will ensure that the modified kernel
Ik~j! keeps most of the properties of the original kernel+ For instance, a win-

dowing function such as

W~j! 5 5
1 if 6j6# Nj

~11 exp~~12 Nj!~~12 6j6!21 2 ~6j62 Nj!21!!!21 if 1 $ 6j6 . Nj
0 if 6j6 . 1

for any Nj [ #0,1@ (23)

will leave the order of the kernel unaffected, because the windowing function
is constant in the neighborhood of the origin+ The fact that this windowing func-
tion is infinitely many times differentiable will guarantee that the modified ker-
nel EK~x*! decays faster than any power ofx* as 6x* 6 r ` ~provided that the
original kernelK~x*! had this property!+
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3. ASYMPTOTIC PROPERTIES

This section is organized as follows+ To facilitate the analysis of the asymptotic
properties of the proposed estimator[g~ Ix*, hn!, we first provide a linear repre-
sentation of this estimator, denoted Sg~ Ix*, hn!, that will be shown to be asymp-
totically equivalent to [g~ Ix*, hn!+ This linearization serves two purposes+ First, it
will enable the derivation of the convergence rate of the estimator using tech-
niques that are analogous to the standard bias and variance decomposition used
in the context of conventional kernel estimators+ Second, a linear representa-
tion is essential to establish the asymptotic normality of the estimator+

3.1. Linearization

In this section, we will provide very general results that summarize the proper-
ties of a linearized estimatorSg~ Ix*, hn! that will be used to establish the asymp-
totic properties of [g~ Ix*, hn!+ The form of the estimator prompts for two levels
of linearization+ First, as is commonly done in the analysis of nonparametric
conditional expectation kernel estimators, the ratio of ZM1~ Ix*,hn! and ZM0~ Ix*,hn!
in equation~17! is expanded in a Taylor series up to first order+ Second, unlike
the usual Nadaraya–Watson estimator and kernel deconvolution estimators,
ZM0~ Ix*, h! and ZM1~ Ix*, h! themselves take the form of nonlinear functionals of

the data generating process+ It is thus convenient to carry out the linearization a
step further by calculating the Fréchet derivative ofZM0~ Ix*, h! and ZM1~ Ix*, h!
with respect to the estimated moment[ma~z! for a 5 1, x, y in the vicinity of
[ma~z! 5 ma~z!+ The following definition gives a linearized versionSg~ Ix*, h! of

the estimator [g~ Ix*, h!+4

DEFINITION 2+ For Ix* [ R and h. 0, let

Sg~ Ix*, h! 5 g~ Ix*, h! 1
1

M0~ Ix*,0!
~ RM1~ Ix*, h! 2 M1~ Ix*, h!!

2
M1~ Ix*,0!

~M0~ Ix*,0!!2 ~ RM0~ Ix*, h! 2 M0~ Ix*, h!!, (24)

where, for k5 0,1, Mk~ Ix*, h! is given by equation (13),

RMk~ Ix*, h! 5 Mk~ Ix*, h! 1 (
l51, x, y

EUl
k~z, Ix*, h!~ [ml ~z! 2 ml ~z!! dz, (25)

U1
0~z, Ix*, h! 5 2

iA0~z, Ix*, h!mx~z!

~m1~z!!2 , (26)
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Ux
0~z, Ix*, h! 5

iA0~z, Ix*, h!

m1~z!
,

Uy
0~z, Ix*, h! 5 0,

U1
1~z, Ix*, h! 5

iA1~z, Ix*, h!mx~z!

~m1~z!!2 1
C1~z, Ix*, h!

m1~z!
,

Ux
1~z, Ix*, h! 5

iA1~z, Ix*, h!

m1~z!
,

Uy
1~z, Ix*, h! 5

C0~z, Ix*, h!

m1~z!
,

Ak~z, Ix*, h! 5 5 ~2p!21E
z

`

exp~2in Ix* !k~2hn!fk~n! dn if z $ 0

~2p!21E
z

2`

exp~2in Ix* !k~2hn!fk~n! dn if z , 0,

(27)

Ck~z, Ix*, h! 5 ~2p!21 exp~2iz Ix* !k~2hz!fk~z!+

The advantage of the linear representation provided by Definition 2 is that it
is possible to decompose the errorSg~ Ix*, h! 2 g~ Ix*,0! into well-defined “bias”
and “variance” terms, as given by Lemma 1, which follows+

Assumption 5+ @ yi , xi , zi , xi
*,Dyi ,Dxi ,Dzi # for i 5 1+ + +n is an independent

and identically distributed~i+i+d+! sequence+

Assumption 6+ E @ y22j 6z6 j # , `, E @x22j 6z6 j # , `, for j 5 0,1+

Assumption 7+ The density ofx* is nonzero atx* 5 Ix*+

LEMMA 1 + Under Assumptions 1–7, forIx* [ R and h. 0,

Sg~ Ix*, h! 2 g~ Ix*,0! 5 b~ Ix*, h! 1 v~ Ix*, h!, (28)

where the bias term b~ Ix*, h! and the variance termv~ Ix*, h! are given by

b~ Ix*, h! 5 g~ Ix*, h! 2 g~ Ix*,0!, (29)

v~ Ix*, h! 5 Sg~ Ix*, h! 2 g~ Ix*, h! (30)

and wherev~ Ix*, h! satisfies E@v~ Ix*, h!# 5 0 and

E @~v~ Ix*, h!!2# 5 n21V~ Ix*, h!,
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where

V~ Ix*, h! 5
S11~ Ix*, h!

~M0~ Ix*, h!!2 1
M1

2~ Ix*, h!S00~ Ix*, h!

~M0~ Ix*, h!!4 2 2
M1~ Ix*, h!S10~ Ix*, h!

~M0~ Ix*, h!!3

(31)

Sk1k2
~ Ix*, h! 5 n21 (

l151, x, y
(

l251, x, y
EEUl1

k1~z, Ix*, h!Vl1 l2~z,j!~Ul2
k2~j, Ix*, h!!† dzdj

(32)

for k1, k2 5 0,1, where Ul
k~z, Ix*, h! is given in Definition 2, where Mk~ Ix*, h! for

k 5 0,1 is given in Theorem 1, and where† denotes complex conjugation, and

Vl1 l2~z,j! 5 m~l1 l2!~z 2 j! 2 ml1~z!ml2~2j! for l1, l2 5 1, x, y+ (33)

Under our assumptions, the expectation and the variance ofSg~ Ix*,h! 2 g~ Ix*,0!
are well defined, even though the corresponding moments of[g~ Ix*, h! 2 g~ Ix*,0!
may not exist+ As long as the remainder[g~ Ix*, hn! 2 Sg~ Ix*, hn! can be shown to
be asymptotically negligible in probability, the mean and the variance ofSg~ Ix*,h!
can be interpreted as the mean and the variance of the limiting distribution of
[g~ Ix*, h!, whether or not the first two moments of[g~ Ix*, hn! are bounded+ This

situation is not unique, as these observations apply to any estimator involving
ratios of random quantities+ To ascertain that the linear approximationSg~ Ix*, hn!
is appropriate, the following lemma provides the order of the remainder of the
linearization of [g~ Ix*, hn! and also the order of the statistical fluctuations in
Sg~ Ix*, hn!+ This result is included for completeness, but it is not essential for the

reader to master it to understand the main results of the subsequent sections+

LEMMA 2 + Let Assumptions 1–7 hold and let, forf0~z!, f1~z!, and m1~z!
as in Theorem 1,

PU~hn! 5E6m1~z!621 (
k50

1 SS11
6f0
' ~z!6

6f0~z!6D
3 E

6z6

`

6k~2hnj!6 6fk~j!6dj

1 6k~2hnz!6 6fk~z!6D dz, (34)

l~hn! 5 ~11 hn
21!S sup

j[@2hn
21, hn

21#

6f0
' ~j!6

6f0~j!6DS sup
j[@2hn

21, hn
21#
6m1~j!621D (35)

for f0
' ~j! [ df0~j!0dj+5 If the sequence hn is such that (i) Mk~ Ix*, hn! r

Mk~ Ix*,0! for k 5 0,1, (ii) PU~hn!n2102 r 0, and (iii) l~hn!n21021e r 0 for
somee . 0, then
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Sg~ Ix*, hn! 2 g~ Ix*, hn! 5 Op~ PU~hn!n2102!, (36)

[g~ Ix*, hn! 2 Sg~ Ix*, hn! 5 Op~ PU~hn!n2102l~hn!n21021e !+ (37)

If, in addition, (iii) ~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e r 0, then

[g~ Ix*, hn! 2 g~ Ix*, hn! 5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!~11 op~1!!+ (38)

The quantity PU~hn! is defined so that it bounds any of the quantities defined
in equations~26! that enter the expression of the asymptotic variance of the
estimator, whereasl~hn! bounds the remainder terms from the linearization per-
formed in Definition 2+ As expected, the preceding stochastic expansion is writ-
ten in terms of successive powers ofn2102, with the exception that the second
term is proportional ton211e instead ofn21, because bounding the second
remainder term involves uniformly bounding various random functions, which
slows the rate down by a factorne +

In the proof of our convergence rate and asymptotic normality results, we
will subsequently verify that the hypotheses of Lemma 2 are implied by more
primitive regularity conditions+ The first conclusion of the Lemma~equations
~36! and~37!! will be sufficient to obtain the convergence rate of the estimator+
Indeed, if it can be shown thatl~hn!n21021e r 0, the convergence rate is then
simply given byOp~ PU~hn!n2102!+ BecauseOp~ PU~hn!n2102! is an upper bound
on the convergence rate, which may or may not be binding, the second, slightly
stronger conclusion of Lemma 2~equation~38!! will be needed to obtain the
limiting distribution of the estimator+ The basic intuition behind the additional
condition~iii ! is that, for theOp~ PU~hn!n2102l~hn!n21021e ! nonlinear remainder
to have no effect on the limiting distribution, it must be asymptotically negli-
gible relative to the exact standard deviation ofSg~ Ix*, hn! 2 g~ Ix*, hn!, which is
given by~V~ Ix*, hn!!102n2102, by Lemma 1+

3.2. Regularity Conditions

We now provide primitive regularity conditions that will enable us to derive
explicit convergence rates+ These regularity conditions take the form of smooth-
ness restrictions imposed via constraints on the tail behavior of various Fourier
transforms+ To specify the regularity conditions, we employ the following con-
venient notation+

DEFINITION 3+ An expression of the form f~z! d g~z! for f, g :R ° R indi-
cates that there exists a constant C. 0, independent ofz, such that f~z! #
Cg~z! for all z [ R (and similarly for f). Analogously, an d bn for two
sequences an,bn indicates that there exists a constant C independent of n such
that an # Cbn for all n [ N.
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The literature focusing on “kernel deconvolution estimators”~see, e+g+, Car-
roll et al+, 1995! and related estimators~Fan and Truong, 1993! traditionally
distinguishes between “ordinarily smooth” functions~whose Fourier transform
decays as6z6g, g , 0 as6z6 r `! and “supersmooth” functions~whose Fou-
rier transform decays as exp~a6z6b!, a , 0,b . 0 as6z6r `!+ For the benefit
of conciseness, our regularity conditions are given in terms of expressions of
the form~11 6z6!g exp~a6z6b!, thereby simultaneously covering the ordinarily
smooth and supersmooth cases+

Assumption 8+ The functions f0~z! 5 E @eizx* # , f0
' ~z! [ df0~z!0dz,

f1~z! 5 E @ yeizx* # , andm1~z! 5 E @eizz# satisfy

* f0
' ~z!

f0~z! * d ~11 6z6!gr (39)

for somegr $ 0 and

max$6f0~z!6,6f1~z!6% d ~11 6z6!gf exp~af 6z6bf !, (40)

6m1~z!6 f ~11 6z6!gm exp~am6z6bm! (41)

for somegf,gm [ R, af # 0, am # 0, bf $ 0, bm $ 0 such thatgf bf $ 0 and
gmbm $ 0+

A few remarks are in order+ While the rate of decay off0~z!, the character-
istic function of x*, is entirely determined by the smoothness of the density
f ~x* ! of x*, the rate of decay off1~z! is governed by the smoothness of
f ~x*!E @ y6x*# + Verifying equation~40! would first involve finding bounds on
6f0~z!6 and 6f1~z!6 individually before taking the most slowly decaying term+
Regroupingf0~z! andf1~z! in a single assumption is possible without loss of
generality, because both quantities enter the expression of the estimator in a
similar fashion+ This grouping is also notationally convenient, as it will reduce
the number of independent orders of magnitude that have to be considered when
determining the convergence rates of the estimator+

As is always the case in deconvolution-type estimators, one quantity~here
m1~z!! needs to be bounded below~in equation~41!!, instead of above, because
it appears in a denominator in the expression of the estimator+ Note that equa-
tion ~41! is implied by separate lower bounds on the modulus of the character-
istic functions ofx* andDz becausem1~z! 5 E @eizz# 5 E @eizx* #E @eizDz# + The
grouping of E @eizx* # and E @eizDz# is also aimed at reducing the notational
burden+ Although the constraint on the ratiof0

' ~z!0f0~z! imposed by equation
~39! may appear unusual, it is clear that it is implied by a more familiar upper
bound on6f '~z!6 and a lower bound on6f~z!6+ The absence of a term of
the form exp~ar 6z6br ! in equation~39! results in very little loss of generality,
because all common ordinarily smooth and supersmooth functions are such that
equation~39! holds forgr 5 1+
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Before we can derive the convergence rate of the estimator, we also need to
characterize the type of kernelK~x*! used+While most studies of measurement
error in nonparametric settings focus either on finite-order kernels~Fan, 1991b;
Fan and Truong, 1993! or on infinite-order kernels~Politis and Romano, 1999;
Li and Vuong, 1998!, we will consider both finite- and infinite-order kernels+
The traditional finite-order kernels we consider are defined in Assumption 9+

Assumption 9+ *K~x*! dx* 5 1 and, for some integergk . 0,

E~x* ! jK~x* ! dx* 5 0 for j 5 1, + + + ,gk 2 1, (42)

E~x* !gkK~x* ! dx* Þ 0, (43)

E6x* 6 j 6K~x* !6dx* , ` for j 5 1, + + + ,gk + (44)

We also consider the following class of “infinite-order” kernels+

Assumption 10+ The Fourier transform of the kernel, k~j!, is such that
k~j! 5 1 for 6j6 , Nj for some Nj . 0+

Assumption 10 allows for a kernel of the form

K~x* ! 5
sin~x* !

px*
, (45)

which is particularly suited to the Fourier representation because its Fourier
transform is 1 in the@21,1# interval and zero elsewhere+ This type of kernel
has previously been used in other Fourier-based estimators~Li and Vuong, 1998!
and amounts to truncating the Fourier transform above a given frequency+When
bothE @ y6x*# and the density ofx* are infinitely many times differentiable, an
infinite-order kernel will guarantee that the bias goes to zero faster than any
power of the bandwidth+ The bias could then, for instance, be an exponentially
decaying function of the inverse bandwidthh21+

3.3. Rate of Convergence in Probability

The procedure to determine the asymptotic rates of pointwise convergence in
probability can be outlined as follows+

1+ Bound the bias of the linearized estimator in terms of the bounds given in
Assumption 8+

2+ Bound the variance of the linearized estimator in terms of the bounds given
in Assumption 8+
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3+ Find the sequence of bandwidthshn that makes the order of the bias squared
and of the variance equal and verify that the higher order terms are asymp-
totically negligible, so that the asymptotic properties of the estimator
[g~ Ix*, hn! can be obtained from the properties of its linearizationSg~ Ix*, hn!+

Step 1. Calculation of the biasg~ Ix*,hn! 2 g~ Ix*,0!+We distinguish two cases,
depending on whether the kernel used satisfies Assumption 9 or Assumption
10+ In the following two lemmas, recall that the parametersgf, af, and bf,
defined in Assumption 8, describe the smoothness of the densityf ~x*! of x*

and of the conditional expectationE @ y6x*# by specifying that their Fourier trans-
forms both decay at least as fast aszgf exp~af 6z6bf ! as frequencyz r `+

LEMMA 3 + Under Assumptions 1–8, if the kernel is of ordergk, as defined
by Assumption 9, then the bias satisfies

6g~ Ix*, hn! 2 g~ Ix*,0!6 5 O~~hn
21!gb exp~ab~hn

21!bb !! 5 O~~hn
21!gb !,

whereab 5 0, bb 5 0, and

gb 5 H2gk if af Þ 0

smallestgb [ Z such thatgb $ 2gk andgb . gf 1 1 if af 5 0+
(46)

LEMMA 4 + Under Assumptions 1–8, if the kernel satisfies Assumption 10
for some constantNj, then the bias satisfies

6g~ Ix*, hn! 2 g~ Ix*,0!6 5 O~~hn
21!gb exp~ab~hn

21!bb !!, (47)

where

ab 5 af Nj bf, (48)

bb 5 bf , (49)

gb 5 gf 1 1+ (50)

In short, when a finite-order kernel is used, the rate of decrease of the bias is
controlled either by the order of the kernelgk or by the smoothness off ~x*!
andE @ y6x*# , whichever is more limiting+ In particular, when bothf ~x*! and
E @ y6x*# are supersmooth, so thataf Þ 0, it is the order of the kernel that
determines the rate of decrease of the bias+ When an infinite-order kernel is
used, only the smoothness off ~x*! and E @ y6x*# matters+ Note that the bias
term is identical to that of a traditional kernel estimator that would be used if
x* were perfectly observed, because, via equations~12! and~13!, the bias can
be expressed entirely in terms offk~z! for k 5 0,1 and the kernel, which are
nonrandom measurement error-free quantities+
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Step 2. Calculation of the order of the variance termSg~ Ix*, h! 2 g~ Ix*, h!+

LEMMA 5 + Under Assumptions 1–8, the variance term satisfies

Sg~ Ix*, hn! 2 g~ Ix*, hn! 5 Op~n2102~hn
21!gv exp~av~hn

21!bv !!, (51)

where

gv 5 2 1 gf 2 gm 1 gr , (52)

~av ,bv ! 5 H~2am,bm! if bf , bm

~af 2 am,bm! if bf 5 bm+
(53)

Note that the order of the variance term is determined not only by the smooth-
ness off ~x*! andE @ y6x*# ~throughgf, af, bf, andgr ! but also by the smooth-
ness of the density of the measurement errorDz ~through the termsgm, am, and
bm!+ It is important to point out that the variance term increases much faster as
h r 0 ~at constantn! than that of a standard kernel estimator with perfectly
observed variables~whose variance term isOp~~hnn!2102!!+ Combined with the
fact that the bias term is unchanged, as indicated in step 1, this implies that the
achievable convergence rates will generally be slower than for a conventional
kernel estimator+

Step 3. Determination of the rate of decrease of the bandwidth that offers
the best trade-off between bias squared and variance+ To obtain explicit rates of
convergence, we need to distinguish various cases, based on the values ofbb,
which characterizes the rate of convergence of the bias term as the bandwidth
shrinks, andbv, which characterizes the rate of divergence of the variance term
as the bandwidth shrinks~at constant sample size!+ Both bb andbv represent an
“exponent of supersmoothness,” that is, the constantb in an expression of the
form ~hn

21!g exp~a~hn
21!b !+

THEOREM 2+ Under Assumptions 1–8 and either Assumption 9 or 10, the
optimal bandwidth choices and the corresponding convergence rates in proba-
bility of the estimator can be expressed in terms of the constantsab,bb,gb,
av,bv,gv defined by Lemmas 3–5. Lete . 0 be arbitrarily small, let C1,C2 be
some positive constants, and letIx* be given.

Case 1+ If bv . bb . 0

hn
21 5 ~C1 ln n 1 C2~ ln n!bb0bv !10bv, (54)

~ [g~ Ix*, hn! 2 g~ Ix*,0!! 5 OpSexpS~ab 1 e!S ln n

2av
Dbb0bvDD+ (55)
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Case 2+ If bv . 0 andbb 5 0 ~with ab 5 0 andgb , 0!

hn
21 5 ~C1 ln n 1 C2 ln ln n!10bv, (56)

~ [g~ Ix*, hn! 2 g~ Ix*,0!! 5 Op~~ ln n!gb0bv !+ (57)

Case 3+ If bb 5 bv Þ 0

hn
21 5 C1~ ln n!10bb, (58)

~ [g~ Ix*, hn! 2 g~ Ix*,0!! 5 Op~nab0~2av22ab!1e !+ (59)

Case 4+ If bb 5 bv 5 0 ~with ab 5 av 5 0 andgb , 0!

hn
21 5 C1n10~2gv22gb!, (60)

~ [g~ Ix*, hn! 2 g~ Ix*,0!! 5 Op~ngb0~2gv22gb! !+ (61)

A few remarks are in order+ First, it can be verified~see the proof of Theo-
rem 2 in the Appendix! that the bandwidth sequences given above are such that
conditions~i! and~ii ! of Lemma 2 hold, thus implying that the nonlinear remain-
ders are indeed negligible and that our simple bias-variance decomposition is
justified+ Second, the arbitrarily smalle was introduced to drastically simplify
the calculations and the statement of the results at the expense of a very small
loss in precision+ Third, it is impossible to havebb . bv becausebb 5 bf,
bv 5 bm, and

~11 6z6!gf exp~af 6z6bf ! f 6f0~z!65 6E @eizx* #6$ 6E @eizx* #6 6E @eizDz#6

$ 6E @eizz#6$ 6m1~z!6 f ~11 6z6!gm exp~am6z6bm!+

(62)

The convergence rate of the proposed estimator varies substantially as a func-
tion of the smoothness of the densities and the conditional expectations involved+
An important trend to observe among these rates is that large values ofbb ~indi-
cating a rapidly decreasing bias ash r 0! and small values ofbv ~indicating a
slowly increasing variance ash r 0! are desirable+ The convergence rates
obtained are typically slower than that of the Nadaraya–Watson kernel estima-
tor used when the variables are perfectly observed+ This limitation is not an
artifact of our estimation procedure: it has also been observed in the simpler
Fan and Truong estimator, which is known to be optimal under stronger assump-
tions than ours~see Fan and Truong, 1993!+ The different cases will be
discussed—and compared to Fan and Truong’s findings—in more detail in
Section 4+

Although we have focused on pointwise convergence rates, our results also
provide information regarding global convergence rates+ The upper bounds on
the pointwise bias and variance~and of the nonlinear remainder terms! are in
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fact independent ofIx*+ If the density ofx* is bounded away from zero over
some finite interval@a,b# , it is straightforward to show that

SE
a

b

6 [g~ Ix*, hn! 2 g~ Ix*,0!6 pW~ Ix* ! d Ix*D10p

(63)

converges to zero in probability at the same rate as the pointwise rates derived
earlier for any bounded weighting functionW~ Ix*! and anyp [ @1,2# + How-
ever, rates of uniform convergence in probability do not follow directly from
the results presented above+

3.4. Asymptotic Normality

To establish the asymptotic normality of the proposed estimator, we need to
introduce a few additional assumptions+ First, we need assumptions that are
commonly made whenever a central limit theorem for triangular arrays is invoked
~see, e+g+, Härdle and Linton, 1994, Theorem 2; Andrews, 1991, Assumption A!+

Assumption 11+ There existsC . 0 such thatE @6x621d 6z# # C, E @6y621d 6z# #
C, Var@x6z# $ C, and Var@ y6z# $ C for all z+6

The remaining assumptions are used to ensure that the condition~V~ Ix*,
hn!!2102 PU~hn!l~hn!n21021e r 0 in Lemma 2 holds, so that the higher order
remainder terms are asymptotically negligible relative to the standard deviation
of the linearized estimatorSg~ Ix*,hn!+ The main obstacle to overcome is the neces-
sity to find a lower bound for the varianceV~ Ix*, hn! of the estimator+ The dif-
ficulty of obtaining such a result is noted by Fan~1991a! in his study of the
limiting distribution of the kernel deconvolution estimator+ Fan’s solution to
this problem is simply to assume that the tails of the various Fourier transforms
entering the estimator are not only bounded by some function of the form
zg exp~a6z6b! but are asymptotically equal~as 6z6 r `! to such functional
form, thereby limiting the set of allowed functions+ Our solution to this prob-
lem is similar in spirit to Fan’s but considerably expands the range of possible
behavior toward infinity by employing the concept of functions that are “well
behaved at infinity,” as described by Lighthill~1962!+ The following definition
formalizes this notion+7

DEFINITION 4+ Let W be the set of all functionsc :R ° R such that
(i) c~z! is absolutely integrable in every finite interval and (ii)*6z6$T 6c~z! 2
C~z!6 dz , ` for some T[ R1 and some functionC~z! that can be written
as a finite linear combination of finite products of functions of the form6z6c

1

,
sgn~z!6z6c

1

, ln6z6, sin~cz!, cos~cz!, exp~czg! with c1 [ R1, c [ R, and
g [ N1.
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Assumption 12+ For a given Ix*, the functionsckl~z! 5 ~d0dz!Ul
k~z, Ix*,0!,

for k 5 0,1 and l 5 1, x, y and forUl
k~z, Ix*, h! given in equation~26!, belong

to W+

For simplicity, we do not state Assumption 12 in terms of elementary quan-
tities such asm1~z! andfk~z!, but it is clear that Assumption 12 is only a few
algebraic manipulations away from being a primitive condition+ We need to
constrain the derivative ofUl

k~z, Ix*,0! to rule out counterexamples where the
density ofz arbitrarily far away from the point of evaluationIx* could have a
nonvanishing influence on[g~ Ix*, hn! asymptotically, making it difficult to char-
acterize the behavior of the variance asn r `+

The following condition requires the distribution ofz to be supported onR,
which is usually the case in deconvolution problems because distributions that
have a nonvanishing characteristic function~as imposed by equation~41! in
Assumption 8! rarely have compact support+

Assumption 13+ f ~z! . 0 for all z [ R+

Finally, we need to impose a few constraints that would be very difficult to
state in a more primitive fashion+ However, these assumptions are not very
restrictive because the counterexamples violating them are somewhat contrived+

Assumption 14+ Var@ Sg~ Ix*, hn!# f maxa51, x, y maxk50,1 Var@*Ua
k~z, Ix*, hn! 3

aeizz dz# +

This assumption merely states that the variance of the estimator is of an order
no less than any term in its asymptotic representation+ This constraint can only
be violated if two or more of the terms*Ua

k~z, Ix*, hn!aeizz dz happen to cancel
out asymptotically, which is unlikely because each term depends on different
random quantities+

Assumption 15+ For Ck~j, Ix*, hn! as in equation~27!, *z
`6Ck~j, Ix*, hn!6dj d

6*z
`Ck~j, Ix*, hn! dj6 for k 5 0,1, for all z [ R1 and alln [ N+

This assumption requires that*z
`6Ck~j, Ix*, hn!6dj and 6*z

`Ck~j, Ix*, hn! dj6
be of the same order+ It precludesCk~j, Ix*,hn! from having an oscillatory behav-
ior ~asj varies! such that a precise cancellation would occur between the val-
ues ofCk~j, Ix*, hn! at differentj during the integration+ The cancellation would
have to occur for allz and n sufficiently large and be such that the order of
*z
`Ck~j, Ix*, hn! dj would be affected+
Assumptions 12–15 imply condition~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e r 0

in Lemma 2, thus establishing the required asymptotic negligibility of the
nonlinear remainder terms+ If it is possible to calculate~V~ Ix*, hn!!2102 3
PU~hn!l~hn!n21021e directly and verify that it goes to 0 asymptotically, then

Assumptions 12–15 can be avoided altogether+8 We are now ready to state our
asymptotic normality result+
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THEOREM 3+ Under Assumptions 1–8 and 11–15, for any givenIx* and any
sequence hn satisfying

hn
21 d n2hn10~312gr22gm! if the density of z is smooth~bm 5 0!

hn
21 d SS2

~11 h!

2am
D ln nD10bm

if the density of z is supersmooth~bm Þ 0!

(64)

for someh . 0, we have

n102~V~ Ix*, hn!!2102~ [g~ Ix*, hn! 2 g~ Ix*,0! 2 b~ Ix*, hn!! d
&& N~0,1!, (65)

whereV~ Ix*, hn! and b~ Ix*, hn! are given in Lemma 1.

4. EXAMPLES

Section 3+3 derives the convergence rates of the proposed estimator under very
general conditions+ We now focus on specific examples that will allow us to
compare these convergence rates with those derived for the estimator proposed
by Fan and Truong~1993!, which is the most closely related to ours+ Fan and
Truong’s estimator extends the standard kernel deconvolution estimators used
for density estimation in the presence of a measurement error drawn from a
known distribution to the case of nonparametric regressions+ The estimator pre-
sented here accomplishes a more difficult task than Fan and Truong’s because
it considers the density of the measurement error unknown, relying instead on
two error-contaminated measurements of the unobserved regressor+ Hence, it
would come as no surprise if the kernel deconvolution rates were better+ The
comparison is nevertheless instructive, because it quantifies the precision loss
incurred by relaxing the distributional assumptions regarding the measurement
error+

We consider four examples+We first study the “difficult” deconvolution prob-
lem that consists of estimating an ordinarily smooth conditional expectation
~E @ y6x*# ! when the density of both the true regressorx* and the measurement
errorDz are supersmooth+ This problem is difficult because a supersmooth mea-
surement error strongly damps out the high-frequency components ofE @ y6x*#
and of the density ofx*+ Inverting this operation involves the amplification of
these damped-out components, an operation that necessarily causes a substan-
tial magnification of the statistical noise+ In standard kernel deconvolution esti-
mators, this situation gives rise to extremely slow convergence rates, and it is
instructive to verify that the situation does not degrade further when the distri-
bution of the measurement error is unknown+ The second example shows that
this slow convergence problem is avoided when the conditional expectation
E @ y6x*# is supersmooth as well+ The third example assumes the density of the
measurement error is ordinarily smooth, a situation that avoids the slow con-
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vergence problem for the kernel deconvolution estimator but, as we will see,
not for our estimator+ The final example completes the analysis by showing
that when all quantities are ordinarily smooth, the slow convergence problem
is avoided+

Table 1 summarizes the assumptions made in each of the four cases consid-
ered+ A few remarks are in order+ In each case, we assume that the order of the
kernel is sufficiently large so that the smoothness ofE @ y6x*# and of the den-
sity of x* ~and not the order of the kernel! is the factor limiting the rate at
which the bias goes to zero+ We also assume that equation~39! holds with
gr 5 1+ Table 1 also summarizes the convergence rates obtained by applying
Theorem 2 in each of the four examples considered+ We will now discuss the
significance of these results+

In Example 1, the rates are entirely comparable to those obtained by Fan and
Truong~1993! for kernel deconvolution estimators+ They found rates of the form
~ ln n!k0b wherek is the number of continuous derivatives thatg~x*! possesses+
Because a function whose Fourier transform behaves asymptotically asz2~k111e!

necessarily hask continuous derivatives, it is clear that the rates are compara-
ble+ The rates differ bye, because Fan and Truong formulate their regularity
conditions in terms of derivatives whereas we formulate them in terms of the
asymptotic behavior of Fourier transforms+ Formulating our regularity condi-

Table 1. Convergence rates obtained under given regularity assumptions

Example Assumptions Bandwidth choices0rates

1

exp~a06z6b! d 6f0~z!6 d exp~a06z6b!

exp~ac 6z6b! d 6c~z!6 d exp~ac 6z6b!

6f1~z!6 d ~1 1 6z6!g1

hn
21 5 C~ ln n!10b

Op~~ ln n!~g111!0b!

2

exp~a06z6b! d 6f0~z!6 d exp~a06z6b!

exp~ac 6z6b! d 6c~z!6 d exp~ac 6z6b!

6f1~z!6 d exp~a16z6b!

hn
21 5 C~ ln n!10b

Op~n2a10~2a012ac!1e!

3

exp~a06z6b! d 6f0~z!6 d exp~a06z6b!

~1 1 6z6!gc d 6c~z!6 d ~1 1 6z6!gc

6f1~z!6 d ~1 1 6z6!g1

hn
21 5 C~ ln n!10b

Op~~ ln n!~g111!0b!

4

~1 1 6z6!g0 d 6f0~z!6 d ~1 1 6z6!g0

~1 1 6z6!gc d 6c~z!6 d ~1 1 6z6!gc

6f1~z!6 d ~1 1 6z6!g1

hn
21 5 Cn10~22g02gc1g1!

Op~n~g111!0~22g02gc1g1!!

Note: c~z! 5 E@exp~izDz!# +
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tions in terms of derivatives would yield results identical to Fan and Truong’s+
It is remarkable that under the assumptions leading to the worst-case conver-
gence rates for kernel deconvolution estimators, the assumption of a known
measurement error distribution can be relaxed without bringing the conver-
gence rate down further+

Example 2 shows that the slow convergence rate problem can be alleviated
if the unknown regression functiong~x*! is supersmooth and if an “infinite-
order” kernel is used+ This situation ensures that the bias term goes to zero
faster than any power ofh, which is sufficient to convert a convergence rate of
the form~ ln n!g to a rate of the formng for g , 0+ More generally, relatively
fast convergence rates can be achieved with infinite-order kernels whenever
case 3 of Section 3+3 applies+ Caution is, however, advised when using high-
order kernels+ They are known not to perform as well in finite samples as their
asymptotic properties would suggest~see Härdle and Linton, 1994!+ The origin
of the problem is that a high-order kernel must necessarily take negative values
over a portion of its support, which makes it likely for the denominator of the
Nadaraya–Watson kernel estimator to approach zero, even at a point where the
true density is bounded away from zero+

In Example 3, making the density of the measurement errorDz ordinarily
smooth instead of supersmooth does not improve the convergence rates rela-
tive to Example 1+ This is in sharp contrast to the behavior of kernel deconvo-
lution estimators, whose convergence rates are of the formnk under the same
assumptions+ The reason for this distinction is that the only characteristic func-
tion appearing in the denominator of a kernel deconvolution estimator is that of
the measurement errorDz, whereas in our estimator, it is the characteristic func-
tion of z that appears in the denominator+ The density ofz is supersmooth if
either the density of the true regressorx* or of the measurement errorDz is
supersmooth+ Hence, a supersmooth density forx* will also cause our estima-
tor to converge slowly+

In Example 4, it is seen that when the density ofx* is made ordinarily smooth
as well, the slow convergence problem is avoided, as expected+ The resulting
rates are not necessarily identical to those of Fan and Truong’s kernel decon-
volution estimator, but the rates at least take the form of a negative power ofn,
indicating that the distributional assumptions regarding the measurement error
can be relaxed without an undue increase in the statistical noise+

5. MONTE CARLO SIMULATIONS

We now investigate the finite-sample properties of the proposed estimator
through various Monte Carlo simulations+ The designs are chosen so as to illus-
trate the examples of Section 4, summarized in Table 1, which cover the most
common combinations of smooth and supersmooth distributions and condi-
tional expectations+ As an example of a supersmooth distribution, the normal
distribution with variances2 naturally comes to mind+ Its characteristic func-
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tion has a tail of the form exp~2~s202!6z62!+ As an example of an ordinarily
smooth distribution, we consider the Laplace~or double exponential! distribu-
tion with meanm and variances2 denoted byL~m,s2! and defined as

1

sM2
exp~2s6 t 2 m6M2! (66)

for any t [ R+ The tail of the characteristic function of a Laplace density is of
the form 6z622+

Our example of a supersmooth regression function is the error function

E @ y6x* # 5
2

Mp
E

0

x*

e2t 2
dt [ erf~x* ! (67)

having a Fourier transform decaying at the rate6z621 exp~2 1
4
_6z62!as 6z6 r `+

Finally, our example of an ordinarily smooth regression function is a piecewise
linear continuous function with a discontinuous first derivative

E @ y6x* # 5 S~x* ! [ 5
21 if x* , 21

x* if x* [ @21,1#

1 if x* . 1,

(68)

whose Fourier transform decays as6z622+ To simplify comparisons, both func-
tions are normalized to have the same range and a similar general shape, so
that any difference in the results can be attributed to their difference in smooth-
ness+ All simulations proceed by drawing 500 samples of 1,000, 2,000, or 8,000
observations from the distributions given in Table 2+ Table 2 also provides the
theoretical convergence rate in each case, obtained by substituting the appro-
priate smoothness parameters in the expressions of Table 1+ The distribution of
Dy is never altered, because it has little impact on the asymptotic properties of

Table 2. Monte Carlo simulation designs

Example x* Dx,Dz Dy E@ y6x*# Convergence rate

1 N~0,1! N~0,104! N~0,104! S~x*! Op~~ ln n!2102!
2 N~0,1! N~0,104! N~0,104! erf~x*! Op~n22051e !
3 N~0,1! L~0,104! N~0,104! S~x*! Op~~ ln n!2102!
4 L~0,1! L~0,104! N~0,104! S~x*! Op~n2104!
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the estimator except for a trivial scaling of some of the components of the asymp-
totic variance+ For each sample, the variablesx, y, z are constructed through

y 5 E @ y6x* # 1 Dy, (69)

x 5 x* 1 Dx, (70)

z 5 x* 1 Dz+ (71)

The variables~ y, x, z! are used as an input for our estimator, and the variables
~ y, x! are fed into the Nadaraya–Watson estimator+We also construct an~infea-
sible! Nadaraya–Watson estimator from the variables~ y, x*! for comparative
purposes+ For all three estimators, an infinite-order kernel whose Fourier trans-
form is given by equation~23! with Nj 5 1

2
_ is used+ In this fashion, the kernel is

never the factor limiting the convergence rate+ For each sample, we keep track
of the value of the estimated function at a given point~here, x* 5 1! and use it
to calculate the bias squared, the variance, and the sum of the two, the mean
square error+ A set of bandwidths ranging from 1+0 to 2+5 is scanned in incre-
ments of 0+05 in search of the bandwidth minimizing the mean square error+9

Of course, this method of locating the optimal bandwidth relies on our knowl-
edge of the true regression function+ Although this is appropriate for the pur-
pose of investigating the properties of an estimator, a feasible bandwidth
selection rule would be a useful tool to develop+

Table 3 compares the bias squared, the variance, and the mean square error
of the three estimators considered as a function of bandwidth for a sample size
of 1,000+ For conciseness, only a subset of the bandwidths considered is shown+
The rightmost column gives all quantities evaluated at the optimal bandwidth
~which may lie between two of the bandwidths listed in the previous columns!+
A few important features can be consistently observed throughout the four exam-
ples considered+

In comparison with the Nadaraya–Watson estimator, our estimator is clearly
very effective at reducing the bias+ More specifically, it is clear that the bias of
the Nadaraya–Watson estimator does not converge to zero with decreasing band-
width but instead settles to a nonzero value+ In contrast, the bias of our estima-
tor decreases by orders of magnitude over the range of bandwidths sampled, as
the bandwidth decreases+ Our estimator’s residual bias is attributable to the fact
that we are performing a nonparametric estimation, so that a fully unbiased
estimation is impossible+ In fact, it can readily be seen that, at a given band-
width, the bias of our estimator is very close to the bias of the infeasible
Nadaraya–Watson estimator using the uncontaminated regressorx*, thus indi-
cating that our estimator does not appear to introduce additional bias at the
sample size considered+ Of course, because the variance of our estimator is larger
than the infeasible Nadaraya–Watson estimator, a larger bandwidth must be used,
and the resulting bias, evaluated at the optimal bandwidth, is slightly larger
than in the error-free case+
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Table 3. Monte Carlo simulation results for the examples

Example 1
Fourier ~optimal!

Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 2+0500
Bias squared 0+0004 0+0039 0+0053 0+0125 0+0284 0+0592 0+1073 0+0331
Variance 0+4696 0+1978 0+2514 0+0995 0+0211 0+0030 0+0017 0+0133
Mean square error 0+4700 0+2018 0+2567 0+1120 0+0495 0+0623 0+1091 0+0464

Nadaraya–Watson
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+4000
Bias squared 0+0853 0+0815 0+0829 0+0903 0+1089 0+1399 0+1820 0+0820
Variance 0+0237 0+0043 0+0024 0+0017 0+0013 0+0012 0+0010 0+0030
Mean square error 0+1090 0+0858 0+0853 0+0920 0+1102 0+1411 0+1831 0+0850

No measurement error
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+1000
Bias squared 0+0027 0+0045 0+0054 0+0109 0+0274 0+0598 0+1078 0+0037
Variance 0+0043 0+0021 0+0018 0+0015 0+0011 0+0010 0+0008 0+0027
Mean square error 0+0070 0+0066 0+0073 0+0124 0+0285 0+0608 0+1086 0+0064

Example 2
Fourier ~optimal!

Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 2+1500
Bias squared 0+0056 0+0012 0+0007 0+0001 0+0042 0+0183 0+0461 0+0111
Variance 0+5137 0+1919 0+2399 0+0958 0+0202 0+0028 0+0016 0+0049
Mean square error 0+5194 0+1931 0+2406 0+0960 0+0244 0+0211 0+0476 0+0159

Nadaraya–Watson
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+4500
Bias squared 0+0346 0+0309 0+0313 0+0357 0+0470 0+0668 0+0948 0+0310
Variance 0+0306 0+0042 0+0022 0+0015 0+0013 0+0011 0+0010 0+0025
Mean square error 0+0651 0+0351 0+0335 0+0372 0+0482 0+0679 0+0958 0+0335

No measurement error
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+7500
Bias squared 0+0002 0+0006 0+0007 0+0000 0+0038 0+0186 0+0463 0+0000
Variance 0+0037 0+0024 0+0018 0+0014 0+0010 0+0009 0+0008 0+0014
Mean square error 0+0039 0+0030 0+0025 0+0014 0+0049 0+0195 0+0471 0+0014

Example 3
Fourier ~optimal!

Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+7000
Bias squared 0+0045 0+0016 0+0044 0+0098 0+0258 0+0576 0+1050 0+0082
Variance 0+1569 0+2382 0+0164 0+0080 0+0033 0+0019 0+0015 0+0093
Mean square error 0+1614 0+2397 0+0208 0+0179 0+0291 0+0595 0+1065 0+0175

Nadaraya–Watson
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+4500
Bias squared 0+0569 0+0625 0+0626 0+0716 0+0925 0+1260 0+1705 0+0619
Variance 0+0289 0+0078 0+0025 0+0017 0+0013 0+0011 0+0009 0+0028
Mean square error 0+0858 0+0703 0+0651 0+0734 0+0938 0+1270 0+1714 0+0647

No measurement error
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+3500
Bias squared 0+0027 0+0044 0+0052 0+0107 0+0272 0+0595 0+1074 0+0045
Variance 0+0059 0+0032 0+0025 0+0015 0+0010 0+0009 0+0008 0+0029
Mean square error 0+0086 0+0076 0+0077 0+0122 0+0282 0+0604 0+1082 0+0075

Example 4
Fourier ~optimal!

Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+4500
Bias squared 0+0140 0+0033 0+0046 0+0397 0+0990 0+1691 0+2410 0+0017
Variance 0+1450 0+0198 0+0076 0+0037 0+0022 0+0015 0+0011 0+0091
Mean square error 0+1590 0+0231 0+0123 0+0434 0+1012 0+1706 0+2421 0+0108

Nadaraya–Watson
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+1000
Bias squared 0+0925 0+0966 0+1172 0+1531 0+2005 0+2544 0+3105 0+0921
Variance 0+0038 0+0025 0+0018 0+0014 0+0011 0+0010 0+0008 0+0030
Mean square error 0+0963 0+0990 0+1191 0+1545 0+2016 0+2554 0+3113 0+0951

No measurement error
Bandwidth 1+0000 1+2500 1+5000 1+7500 2+0000 2+2500 2+5000 1+4000
Bias squared 0+0098 0+0032 0+0047 0+0400 0+0993 0+1693 0+2410 0+0002
Variance 0+0047 0+0035 0+0022 0+0014 0+0010 0+0008 0+0007 0+0026
Mean square error 0+0145 0+0067 0+0069 0+0414 0+1003 0+1702 0+2417 0+0029
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The bias reduction made possible by the proposed estimator comes at the
expense of an increased variance relative to the Nadaraya–Watson estimator
based on mismeasured regressors+ However, the decrease in the bias more than
offsets the increase in the variance, so that the mean square error we obtain is
still better than for the Nadaraya–Watson estimator+

It is instructive to observe the estimator’s behavior as a function of the smooth-
ness of the various densities and conditional expectations considered+ The asymp-
totic theory presented earlier predicts the convergence rate, which can be directly
compared with the change in the mean square error at the optimal bandwidth,
as a function of sample size for each of the examples considered~see Table 4!+
The fifth column of Table 4, labeled “MSE80000MSE2000,” reports the ratio of
mean square error at a sample size of 8,000 relative to the mean square error at
sample size 2,000+ We focus on these sample sizes because the differences
between the various examples are more readily seen at large sample sizes+ In
Examples 1 and 3, where the convergence rate should be slow~i+e+, a negative
power of the log of sample size!, convergence is indeed much slower than for
Examples 2 and 4, where the convergence rate should be fast~i+e+, a negative
power of sample size!+ Moreover, the decrease in mean square error predicted
by asymptotic theory~obtained by squaring the rates given in Table 2 and shown

Table 4. Monte Carlo simulation results as a function of sample size

Sample size 1,000 2,000 8,000 MSE80000MSE2000 Theory

Example 1
Bandwidth 2+0500 1+5500 1+5500
Bias squared 0+0331 0+0072 0+0061
Variance 0+0133 0+0061 0+0024
Mean square error 0+0464 0+0133 0+0084 0+631 0+721

Example 2
Bandwidth 2+1500 1+8000 1+7500
Bias squared 0+0111 0+0003 0+0000
Variance 0+0049 0+0028 0+0009
Mean square error 0+0159 0+0031 0+0009 0+290 0+330

Example 3
Bandwidth 1+7000 1+5500 1+6500
Bias squared 0+0082 0+0058 0+0078
Variance 0+0093 0+0062 0+0021
Mean square error 0+0175 0+0120 0+0099 0+825 0+721

Example 4
Bandwidth 1+4500 1+4000 1+4000
Bias squared 0+0017 0+0002 0+0002
Variance 0+0091 0+0055 0+0013
Mean square error 0+0108 0+0057 0+0016 0+280 0+500
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in the last column of Table 4! is an excellent predictor of the actual decrease in
three out of the four examples+ Note that the systematic changes in bandwidth
as a function of sample size are difficult to distinguish from the inherent sim-
ulation noise, because bandwidth variations are much smaller than the changes
in mean square error, as predicted by Theorem 2+

Monte Carlo simulations can also be used to verify the applicability of the
asymptotic distribution in a finite sample+ The designs described in Table 2 are
again used, with the mean square minimizing bandwidths given in Table 3 and
a sample size of 1,000+ For each sample, we keep track of the value of the
estimated function at a given point~x* 5 1+0! and the estimated variance at
that point obtained with equations~31! and~32! by replacing all expected val-
ues by sample averages+ The point estimates are then standardized, that is,
demeaned by the average of the point estimates and normalized by the average
of the estimated pointwise variance+ Figure 1 shows the empirical cumulative
distribution function~c+d+f+! of the standardized point estimatespi for i 5
1, + + + ,500, obtained by sorting thepi in increasing order and by joining the points
~ pi , ~i 2 1!0499! by lines+ The resulting empirical c+d+f+ ~ jagged lines in Fig-
ure 1! agrees very well with the normal c+d+f+ predicted by asymptotic theory
~shown as a smooth line in Figure 1!+

Figure 1. Comparison between the finite-sample and the asymptotic distributions of
the estimator+ The abscissa isZ 5 ~Var@ [g~0+5,2!# !2102~ [g~0+5,2! 2 E @ [g~0+5,2!# !+

NONPARAMETRIC REGRESSION WITH MEASUREMENT ERROR 1071

https://doi.org/10.1017/S0266466604206028 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206028


6. CONCLUSION

This paper presents a new kernel-based nonparametric estimator that extends
the conventional Nadaraya–Watson kernel estimator to cover the case of an error-
ridden regressor+ We show that identification is achievable when one repeated
measurement of the error-contaminated regressor is available+ One remarkable
property of our estimator is that it requires no knowledge of the distribution of
the measurement error, contrary to the popular kernel deconvolution estimator+
The convergence rate and the asymptotic distribution of the proposed estimator
are derived+ A series of examples illustrates the main factors determining the
convergence rate and enables us to compare the convergence rates we obtain
with those of earlier estimators+ Various Monte Carlo simulations are used to
investigate the finite-sample properties of the estimator+

NOTES

1+ Freeman’s data set~the January 1977 Employer Employee Matched Sample, Current Pop-
ulation Survey! contains wages reported by employers and employees, which are perfect examples
of repeated measurements+

2+ As in any nonparametric regression, the well-known “curse of dimensionality” of course
limits the number of dimensions that can be handled in practice+

3+ Equation~14! is similar to an identity derived by Kotlarski~see Rao, 1992, p+ 21!, but our
proof of this result requires weaker independence assumptions+ In particular, we do not require
independence betweenDx andx* and betweenDx andDz+

4+ The calculation of the Fréchet derivative can be found in the proof of Lemma 2 in the
Appendix+

5+ Note that the ratio6f0
' ~z!606f0~z!6 entering the definitions ofl~hn! and PU~hn! can equiv-

alently be written as6mx~z!606m1~z!6 because6mx~z!606m1~z!65 6E @xeizz#606E @eizz#65 6E @x*eizz#60
6E @eizz#65~6E @x*eizx* #606E @eizx* #6!~6E @eizDz#606E @eizDz#6!56E @x*eizx* #606E @eizx* #656f0

' ~z!60
6f0~z!6+

6+ The familiar conditionE @6K~x*!621d# , `, which is helpful to show the asymptotic nor-
mality of standard kernel estimators, is of no use in establishing the asymptotic normality of our
more complex estimator+ In any case, Assumption 4 implies thatE @6K~x*!621d# , `+

7+ We expand Lighthill’s definition by allowing for exponential tails, which is essential to
handle supersmooth functions+

8+ And the termn10~312gr22gm! in equation~64! can be replaced byn10~212gr22gm! +
9+ For less than 0+5% of the samples drawn, numerical issues associated with near division by

zero in equations~19! and ~20! were observed for a few of the smallest bandwidths sampled+ To
simplify the reporting of the results as a function of bandwidth, these draws were discarded and
new draws were made so that the total number of samples kept remains 500+ Of course, when
studying any given sample, practitioners would simply never choose such a small bandwidth+ The
problem only occurs because we are performing Monte Carlo simulations and wish to report aver-
ages over replications as a function of bandwidth+
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APPENDIX: PROOFS

Proof of Theorem 1. The result can be shown by direct substitution+ Assumption 2
ensures that all expectations are well defined+ First, observe that equation~14! indeed
provides the value off0~j!, by using Assumption 1:

expSE
0

j imx~z!

m1~z!
dzD

5 expSE
0

j iE @x exp~izz!#

E @exp~izz!#
dzD (A.1)
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5 expSE
0

j E @ix * exp~izx* !exp~izDz!# 1 iE @Dx exp~izx* !exp~izDz!#

E @exp~izx* !exp~izDz!#
dzD (A.2)

5 expSE
0

j E @ix * exp~izx* !#E @exp~izDz!# 1 iE @E @Dx6x*,Dz# exp~izx* !exp~izDz!#

E @exp~izx* !#E @exp~izDz!#
dzD
(A.3)

5 expSE
0

j E @ix * exp~izx* !#

E @exp~izx* !#
dzD (A.4)

5 expSE
0

j d

dz
ln E @exp~izx* !# dzD (A.5)

5 E @exp~ijx* !#0E @1# (A.6)

5 f0~j!+ (A.7)

Letting f ~x*! be the density ofx*, one can then show thatM1~ Ix*, h! and M0~ Ix*, h!,
respectively, provide the numerator and the denominator of the Nadaraya–Watson esti-
mator+ In what follows, we use the independence betweenx* andDz and the fact that

E @ y exp~ijz!# 5 E @E @ y6x*,Dz# exp~ijx* !exp~ijDz!# (A.8)

5 E @E @g~x* !6x*,Dz# exp~ijx* !exp~ijDz!# (A.9)

5 E @g~x* !exp~ijx* !exp~ijDz!# (A.10)

5 E @g~x* !exp~ijx* !#E @exp~ijDz!# (A.11)

5 E @ y exp~ijx* !#E @exp~ijDz!# , (A.12)

M1~ Ix*, h! 5
1

2p
Ek~hj!f0~j!

my~j!

m1~j!
exp~2ij Ix* ! dj (A.13)

5
1

2p
Ek~hj!E @exp~ijx* !#

E @ y exp~ijz!#

E @exp~ijz!#
exp~2ij Ix* ! dj (A.14)

5
1

2p
Ek~hj!E @exp~ijx* !#

E @ y exp~ijx* !#E @exp~ijDz!#

E @exp~ijx* !#E @exp~ijDz!#

3 exp~2ij Ix* ! dj (A.15)

5
1

2p
Ek~hj!E @ y exp~ijx* !# exp~2ij Ix* ! dj (A.16)
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5
1

2p
Ek~hj!E @E @ y6x* # exp~ijx* !# exp~2ij Ix* ! dj (A.17)

5
1

2p
Ek~hj!SEE @ y6x* # f ~x* !exp~ijx* ! dx*Dexp~2ij Ix* ! dj (A.18)

5Eh21K~h21~x* 2 Ix* !!~E @ y6x* # f ~x* !! dx*

by Parseval's identity (A.19)

5 E @h21K~h21~x* 2 Ix* !!E @ y6x* ## (A.20)

5 E @ yh21K~h21~x* 2 Ix* !!# , (A.21)

M0~ Ix*, h! 5
1

2p
Ek~hj!f~j!exp~2ij Ix* ! dj (A.22)

5
1

2p
Ek~hj!SE f ~x* !exp~ijx* ! dx*Dexp~2ij Ix* ! dj (A.23)

5Eh21K~h21~x* 2 Ix* !! f ~x* ! dx* by Parseval’s identity (A.24)

5 E @h21K~h21~x* 2 Ix* !!# + (A.25)

n

Proof of Lemma 1. The fact thatE @v~ Ix*, h!# 5 0 follows from equation~25! and the
fact thatE @ [ma~z!# 5 n21 (j51

n E @aj e
izzj # 5 E @aj e

izzj # 5 ma~z! for a 5 1, x, y+ Finally,
to calculateE @v2~ Ix*, h!# we note that, by equation~25!,

E @~ RMk1
~ Ix*, h! 2 Mk1

~ Ix*, h!!~ RMk2
~ Ix*, h! 2 Mk2

~ Ix*, h!!# (A.26)

5 E @~ RMk1
~ Ix*, h! 2 Mk1

~ Ix*, h!!~ RMk2
~ Ix*, h! 2 Mk2

~ Ix*, h!!†# (A.27)

5 (
l151, x, y

(
l251, x, y

EEUl1
k1~z, Ix*, h!E @~ [ml1~z! 2 ml1~z!!~ [ml2~j! 2 ml2~j!!†#

3 ~Ul2
k2~j, Ix*, h!!† dzdj (A.28)

5 (
l151, x, y

(
l251, x, y

EEUl1
k1~z, Ix*, h!Vl1 l2~z,j!~Ul2

k2~j, Ix*, h!!† dzdj (A.29)

5 Sk1k2
~ Ix*, h!, (A.30)

where Vl1 l2~z,j! 5 E @~ [ml1~z! 2 ml1~z!!~ [ml2~j! 2 ml2~j!!†# 5 E @ [ml1~z! [ml2
† ~j!# 2

ml1~z!ml2
† ~j! 5 E @l1j l2j e

izzje2izzj # 2 ml1~z!ml2
† ~j! 5 m~l1 l2!~z 2 j! 2 ml1~z!ml2~2j!+

Equation~31! then follows directly from squaring equation~24!, taking its expectation,
and using the expression forSk1k2

~ Ix*, h! just derived+ n
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LEMMA 6 + If aj and zj are sequences of i.i.d. real-valued random variables such
that E@aj

2# , ` and E@6aj 6 6zj 6# , `, then, for any u,U $ 0 and « . 0,

sup
z[@2Unu,Unu#

6 [ma~z! 2 ma~z!6 5 op~n21021« !, (A.31)

where [ma~z! 5 n21 (j51
n aj exp~izzj ! and ma~z! 5 E @a exp~izz!# .

Proof. See Lemma 6 in Schennach~2004!+

Proof of Lemma 2. To compute the Fréchet derivative ofZMk~ Ix*, hn! for k 5 0,1
with respect to the estimated moment[ma~z! for a 5 1, x, y in the vicinity of [ma~z! 5
ma~z!, we first note a few simple results+ A ratio of two random functions[ma~z! for a 5
1, x, y and [m1~z! can be exactly written as

ma~z! 1 d [ma~z!

m1~z! 1 d [m1~z!
5 qa~z! 1 d [qa~z!, (A.32)

wheredma~z! 5 [ma~z! 2 ma~z!, qa~z! 5 ma~z!0m1~z! and whered [qa~z! can be written
in two alternative ways: Either

d [qa~z! 5 S d [ma~z!

m1~z!
2

ma~z!d [m1~z!

~m1~z!!2 DS11
d [m1~z!

m1~z! D21

(A.33)

or

d [qa~z! 5 d1 [qa~z! 1 d2 [qa~z!, (A.34)

d1 [qa~z! 5
d [ma~z!

m1~z!
2

ma~z!d [m1~z!

~m1~z!!2 , (A.35)

d2 [qa~z! 5
ma~z!

m1~z! S d [m1~z!

m1~z! D2S11
d [m1~z!

m1~z! D21

2
d [ma~z!

m1~z!

d [m1~z!

m1~z! S11
d [m1~z!

m1~z! D21

+ (A.36)

Similarly, for Qx~j! 5 *0
j@imx~z!0m1~z!# dz, d ZQx~j! 5 *0

j@i [mx~z!0 [m1~z!# dz 2
*0

j@imx~z!0m1~z!# dz, and some random functiond OQx~j! such that 6d OQx~j!6 #
6d ZQx~j!6,

exp~Qx~j! 1 d ZQx~j!! 5 exp~Qx~j!!S11 d ZQx~j! 1
1

2
exp~d OQx~j!!~d ZQx~j!!2D+ (A.37)

Substituting expansions~A+32! and~A+37! into

ZMk~ Ix*, hn! 2 Mk~ Ix*, hn! 5
1

2p
Ek~hnj!S [myk~j!

[m1~j!
expSE

0

j i [mx~z!

[m1~z!
dzD

2
myk~j!

m1~j!
expSE

0

j imx~z!

m1~z!
dzDD dj (A.38)
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for k 5 0,1 and keeping the terms linear ind [m1~z!, d [mx~z!, or d [my~z! gives the linear-
ization of ZMk~ Ix*, hn!, denoted RMk~ Ix*, hn!:

RM0~ Ix*, hn! 2 M0~ Ix*, hn!

5
1

2p
Ek~hnj!

myk~j!

m1~j!
expSE

0

j imx~z!

m1~z!
dzD

3 E
0

jS id [mx~z!

m1~z!
2

imx~z!d [m1~z!

~m1~z!!2 D dzdj

1
1

2p
Ek~hnj!S d [myk~j!

m1~j!
2

myk~j!d [m1~j!

~m1~j!!2 DexpSE
0

j imx~z!

m1~z!
dzD dj (A.39)

5
1

2p
Ek~hnj!fk~j!E

0

jS id [mx~z!

m1~z!
2

imx~z!d [m1~z!

~m1~z!!2 D dzdj

1
1

2p
Ek~hnj!S d [myk~j!

m1~j!
f0~j! 2

d [m1~j!

m1~j!
fk~j!D dj+ (A.40)

By making use of the identity*2`
` *0

j f ~j,z! dzdj 5 *0
` *z
` f ~j,z! djdz 1

*2`
0 *z

2` f ~j,z! djdz for any absolutely integrable functionf, we obtain

RMk~ Ix*, hn! 2 Mk~ Ix*, hn! 5EAk~j, Ix*, hn!S id [mx~j!

m1~j!
2

imx~j!d [m1~j!

~m1~j!!2 D dj

1
1

2p
EC0~j, Ix*, hn!

d [myk~j!

m1~j!
dj

2
1

2p
ECk~j, Ix*, hn!

d [m1~j!

m1~j!
dj (A.41)

5 (
l51, x, y

EUl
k~j, Ix*, h!d [ml ~j! dj+ (A.42)

The order ofn2102~ RMk~ Ix*, hn! 2 Mk~ Ix*, hn!! ~in probability! can be found through its
varianceSkk~ Ix*, h! given by Lemma 1:

Skk~ Ix*, h! 5 (
l151, x, y

(
l251, x, y

EEUl1
k~z, Ix*, h!Vl1 l2~z,j!~Ul2

k~j, Ix*, h!!† dzdj (A.43)

# (
l151, x, y

(
l251, x, y

EE6Ul1
k~z, Ix*, h!6 6Vl1 l2~z,j!6 6Ul2

k~j, Ix*, h!6dzdj, (A.44)

where, by Assumptions 5 and 6,

6Vl1 l2~z,n!6 5 6m~l1 l2!~z 2 j! 2 ml1~z!ml2~2j!6 (A.45)

# E @6 l1 l26 6ei ~z2j!z6# 1 E @6 l16 6eizz6#E @6 l26 6e2ijz6# d 1+ (A.46)
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It follows that

Skk~ Ix*, h! d (
l151, x, y

(
l251, x, y

EE6Ul1
k~z, Ix*, h!6 6Ul2

k~j, Ix*, h!6dzdj (A.47)

5 S (
l51, x, y

E6Ul
k~z, Ix*, h!6dzD2

(A.48)

and therefore that

RMk~ Ix*, hn! 2 Mk~ Ix*, hn! 5 OpSn2102 (
l51, x, y

E6Ul
k~z, Ix*, h!6dzD

5 Op~n2102 PU~hn!!, (A.49)

where PU~hn!, given in the statement of the lemma, has been explicitly constructed to
bound any of the*6Ul

k~z, Ix*, h!6dz terms~up to a multiplicative constant!+ By equation
~30!, equation~A+49! implies equation~36! in the statement of the lemma, provided that
Assumption 7 holds+

To establish equation~37!, we substitute expansions~A+32! and~A+37! into

ZMk~ Ix*, hn! 2 Mk~ Ix*, hn!

5Ek~hnj!S [myk~j!

[m1~j!
expSE

0

j i [mx~z!

[m1~z!
dzD2 fk~j!D dj (A.50)

for k 5 0,1 and remove the terms linear ind [ma~z! for a 5 1, x, y+ We then find that
ZMk~ Ix*, hn! 2 Mk~ Ix*, hn! can be written as6 ZMk~ Ix*, hn! 2 RMk~ Ix*, hn!6 d (j51

7 Rj where

R1 5E
0

`

6k~hnj!6 6d1 [qyk~j!6 6f1~j!6SE
0

j

6d1 [qx~z!6dzD dj, (A.51)

R2 5E
0

`

6k~hnj!6 6d2 [qyk~j!6 6f1~j!6dj, (A.52)

R3 5E
0

`

6k~hnj!6 6d2 [qyk~j!6 6f1~j!6E
0

j

6d1 [qx~z!6dzdj, (A.53)

R4 5E
0

`

6k~hnj!6 6qyk~j!6 6f1~j!6E
0

j

6d2 [qx~z!6dzdj, (A.54)

R5 5E
0

`

6k~hnj!6 6d [qyk~j!6 6f1~j!6E
0

j

6d2 [qx~z!6dzdj, (A.55)

R6 5E
0

`

6k~hnj!6 6qyk~j!6 6f1~j!6
1

2
exp~6d OQx~j!6!SE

0

j

6d [qx~z!6dzD2

dj, (A.56)

R7 5E
0

`

6k~hnj!6 6d [qyk~j!6 6f1~j!6
1

2
exp~6d OQx~j!6!SE

0

j

6d [qx~z!6dzD2

dj+ (A.57)
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These terms can then be bounded in terms ofl~hn!, PU~hn! ~given in the statement
of the lemma!, and ZFn 5 maxb51, x, y supz[@2hn

21,hn
21# 6 [mb~z! 2 mb~z!6, where the supre-

mum can be taken over@2hn
21, hn

21# becausek~hnj! vanishes outside that inter-
val+ By Lemma 6, ZFn 5 Op~n21021e ! for any e . 0+ Also, we note that
supz[@2hn

21,hn
21# ZFn06m1~z!6 d ZFnl~hn

21! 5 n21021el~hn
21! 5 op~1!+ Now, for k 5 0,1,

we have

R1 # E
0

`

6k~hnj!6S 1

6m1~j!6
1
6myk~j!6

6m1~j!62D ZFn6f0~j!6SE
0

j

6d1 [qx~z!6dzD dj (A.58)

d l~hn! ZFnE
0

`

6k~hnj!6S11
6myk~j!6

6m1~j!6 D6f0~j!6SE
0

j

6d1 [qx~z!6dzD dj (A.59)

5 l~hn! ZFnE
0

`E
z

`

6k~hnj!6S11
6myk~j!6

6m1~j!6 D6f0~j!6dj6d1 [qx~z!6dz (A.60)

5 l~hn! ZFnE
0

`E
z

`

6k~hnj!6~6f0~j!61 6fk~j!6! dj6d1 [qx~z!6dz (A.61)

# l~hn! ZFn
2E

0

`E
z

`

6k~hnj!6~6f0~j!61 6fk~j!6! djS11
6mx~z!6

6m1~z!6D 1

6m1~z!6
dz

(A.62)

d l~hn! ZFn
2 PU~hn!+ (A.63)

The remaining terms can be similarly bounded:

R2 # E
0

`

6k~hnj!6* 6myk~j!6

6m1~j!62
1

6m1~j!6
ZFn
2611 op~1!621

1
1

6m1~j!62
ZFn
2611 op~1!621*6f0~j!6dj (A.64)

d l~hn! ZFn
2611 op~1!621E

0

`

6k~hnj!6
1

6m1~j!6 *
6myk~j!6

6m1~j!6
1 1*6f0~j!6dj (A.65)

d l~hn! ZFn
2611 op~1!621SE

0

` 6k~hnj!6 6fk~j!6

6m1~j!6
dj 1E

0

` 6k~hnj!6 6f0~j!6

6m1~j!6
djD

(A.66)

5 l~hn! ZFn
2 PU~hn!~11 op~1!!, (A.67)
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R3 d l~hn! ZFnE
0

`

6k~hnj!6 6d2 [qyk~j!6 6f0~j!6dj (A.68)

5 l~hn! ZFn R2 5 op~1!R2, (A.69)

R4 5E
0

`

6k~hnj!6 6fk~j!6E
0

j

6d2 [qx~z!6dzdj (A.70)

d l~hn! ZFn
2611 op~1!621E

0

` E
z

`

6k~hnj!6 6fk~j!6dj

6m1~z!6
dz (A.71)

5 l~hn! ZFn
2~11 op~1!! PU~hn!, (A.72)

R5 # E
0

`

6k~hnj!6S 1

6m1~z!6
1
6myk~z!6

6m1~z!62D ZFn611 op~1!621 6f0~j!6

3 E
0

j

6d2 [qx~z!6dzdj (A.73)

5 l~hn! ZFn611 op~1!621E
0

hn
21

6k~hnj!6S11
6myk~z!6

6m1~z!6 D6f0~j!6

3 E
0

j

6d2 [qx~z!6dzdj (A.74)

5 l~hn! ZFn611 op~1!621 SE
0

`

6k~hnj!6 6f0~j!6E
0

j

6d2 [qx~z!6dzdj

1E
0

`

6k~hnj!6 6fk~j!6E
0

j

6d2 [qx~z!6dzdjD (A.75)

5 l~hn! ZFn~11 op~1!!R4 5 op~1!R4, (A.76)

R6 # E
0

`

6k~hnj!6 6fk~j!6
1

2
expSE

0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD2

dj (A.77)

#
1

2
exp~op~1!!E

0

`

6k~hnj!6 6fk~j!6SE
0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD dj (A.78)

d
1

2
exp~op~1!!l~hn! ZFn

2611 op~1!621

3 E
0

`

6k~hnj!6 6fk~j!6SE
0

jS 1

6m1~z!6
1
6mx~z!6

6m1~z!62D dzD dj (A.79)

5
1

2
exp~op~1!!l~hn! ZFn

2611 op~1!621

3 E
0

`E
z

`

6k~hnj!6 6fk~j!6djS 1

6m1~z!6
1
6mx~z!6

6m1~z!62D dz (A.80)

5 Op~1!l~hn! ZFn
2 PU~hn!, (A.81)

1080 SUSANNE M. SCHENNACH

https://doi.org/10.1017/S0266466604206028 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206028


R7 # E
0

`

6k~hnj!6S11
6myk~z!6

6m1~z!6 Dl~hn! ZFn611 op~1!621 6f0~j!6

3
1

2
expSE

0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD2

dj (A.82)

d l~hn! ZFn611 op~1!621

3 E
0

`

6k~hnj!6S11
6myk~z!6

6m1~z!6 D6f0~j!6

3 expSE
0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD2

dj (A.83)

d l~hn! ZFn611 op~1!621E
0

`

6k~hnj!6 6f0~j!6

3 expSE
0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD2

dj

1 Al~hn! ZFn611 op~1!621E
0

`

6k~hnj!6 6fk~j!6

3 expSE
0

j

6d [qx~z!6dzDSE
0

j

6d [qx~z!6dzD2

dj (A.84)

d l~hn! ZFn611 op~1!621R6 (A.85)

5 op~1!R6+ (A.86)

It then follows that 6 ZMk~ Ix*, hn! 2 RMk~ Ix*, hn!6 d l~hn! ZFn
2 PU~hn! 5 Op~l~hn! 3

PU~hn!n211d! for somed . 0+ By a standard Taylor expansion of the ratioZM1~ Ix*, hn!0
ZM0~ Ix*, hn! around ZMk~ Ix*, hn! 5 Mk~ Ix*, hn! for k 5 0,1, we have

[g~ Ix*, hn! 2 Sg~ Ix*, hn! 5
ZM1~ Ix*, hn!

ZM0~ Ix*, hn!
2
RM1~ Ix*, hn!

RM0~ Ix*, hn!
(A.87)

5
ZM1~ Ix*, hn! 2 RM1~ Ix*, hn!

M̂0

2
M̂1~ ZM0~ Ix*, hn! 2 RM0~ Ix*, hn!!

M̂0
2 (A.88)

for someM̂k lying between ZMk~ Ix*, hn! and RMk~ Ix*, hn!+ Because~i! we have just shown
that ZMk~ Ix*, hn!

p
&& RMk~ Ix*, hn! and RMk~ Ix*, hn!

p
&& Mk~ Ix*, hn!, ~ii ! Mk~ Ix*, hn! r Mk~ Ix*,0!

by assumption, and~iii ! M1~ Ix*,0! is bounded andM0~ Ix*,0! is bounded away from zero
by assumption, it follows that M̂0

21 andM̂10M̂0
2 converge in probability to finite quan-

tities and therefore[g~ Ix*,hn! 2 Sg~ Ix*,hn! is of the same order asZMk~ Ix*,hn! 2 RMk~ Ix*,hn!,
thus implying equation~37!+
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To establish the second conclusion of the theorem, we note that, because
n102~V~ Ix*, hn!!2102~ Sg~ Ix*, hn! 2 g~ Ix*, hn!! 5 Op~1!, we can write

~ [g~ Ix*, hn! 2 Sg~ Ix*, hn!!

5 Op~1!Op~ PU~hn!n2102l~hn!n21021e ! (A.89)

5 n102~V~ Ix*, hn!!2102~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!Op~ PU~hn!n2102l~hn!n21021e ! (A.90)

5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!Op~~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e !+ (A.91)

Then,

[g~ Ix*, hn! 2 g~ Ix*, hn!

5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!! 1 ~ [g~ Ix*, hn! 2 Sg~ Ix*, hn!! (A.92)

5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!! 1 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!

3 Op~~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e ! (A.93)

5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!~11 Op~~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e !! (A.94)

5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!~11 op~1!! (A.95)

because~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e r 0 by assumption+ n

Proof of Lemma 3. First, by equation~13!, we have, for k 5 0,1,

Mk~ Ix*, h! 2 Mk~ Ix*,0! 5
1

2p
E~k~hz! 2 1!fk~z!exp~2iz Ix* ! dz+ (A.96)

Expanding the Fourier transform of the kernel in a Taylor series up to orderg, we obtain

6Mk~ Ix*, hn! 2 Mk~ Ix*,0!6

5 *2E
0

`

~12 k~hnj!!fk~j!exp~2ij Ix* ! dj* (A.97)

5 *2E
0

`S(
i51

g21 1

i!
k~i ! ~0!~hnj! i 1

1

g!
k~g!~ Dj!~hnj!gDfk~j!exp~2ij Ix* ! dj*

for some Dj [ @0,j# + (A.98)

Now let the orderg be chosen as follows+ If af ~defined in Assumption 8! is nonzero,
then letg 5 gk, the order of the kernel+ If af 5 0, then letg be the largest integer such
that g # gk andg , 2gf 2 1+ With this choice ofg, equation~A+98! simplifies to

6Mk~ Ix*, h! 2 Mk~ Ix*,0!6 5 hn
g*2E

0

` 1

g!
k~g!~ Dj!jgfk~j!exp~2ij Ix* ! dj* (A.99)
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because all terms wherei , g vanish, by the definition of the order of a kernel+ Further-
more, we have

6Mk~ Ix*, h! 2 Mk~ Ix*,0!6 # hn
g

2

g!
E

0

`

6k~g!~ Dj!6 6j6g 6fk~j!6dj (A.100)

# hn
g

2

g! Smax
Dj[R
6k~g!~ Dj!6DE

0

`

6j6g 6fk~j!6dj, (A.101)

where maxDj[R 6k~g!~ Dj!6 is finite by equation ~44! of Assumption 9+ The term
*0
`6j6g 6fk~j!6dj is finite also, because our choice ofg guarantees that the integrand

decays to zero faster thanj21+ Then, by a standard Taylor expansion of the ratio
M1~ Ix*, hn!0M0~ Ix*, hn! aroundM1~ Ix*, hn! 5 M1~ Ix*,0! and M0~ Ix*, hn! 5 M0~ Ix*,0!, the
convergence rate ofg~ Ix*, hn! 2 ~ Ix*,0! is O~hn

g! also+ n

LEMMA 7 + For z $ 0, if g . 0, a , 0, b . 0 or if g [ R, a 5 b 5 0, then

E
z

`

~11 j!g exp~aj b ! dj d ~11 j!11g exp~aj b !+ (A.102)

Proof. The case wherea 5 b 5 0 is trivial+ If a , 0 andb . 0, Lemma 4+2 in
Li and Vuong ~1998! shows that, for g . 0 and z . 0, *z

` jg exp~aj b ! dj 5
O~j 11g2b exp~aj b!!, thus implying the result becausej 11g2b exp~aj b! d
j11g exp~aj b!+ n

Proof of Lemma 4. From equation~A+96!, we have

6Mk~ Ix*, h! 2 Mk~ Ix*,0!6 5 *2E
0

`

~12 k~hj!!fk~j!exp~2ij Ix* ! dj* (A.103)

5 *2E
Njh21

`

~12 k~hj!!fk~j!exp~2ij Ix* ! dj* (A.104)

# 2E
Njh21

`

~11 6k~hj!6!6fk~j!6dj (A.105)

d E
Njh21

`

6fk~j!6dj by the boundedness ofk~hj! (A.106)

d E
Njh21

`

~11 j!gf exp~af j bf ! dj (A.107)

d ~11 Njh21!gf11 exp~af~ Njh21!bf !+ (A.108)

Then, by a standard Taylor expansion of the ratioM1~ Ix*, hn!0M0~ Ix*, hn! around
M1~ Ix*, hn! 5 M1~ Ix*,0! andM0~ Ix*, hn! 5 M0~ Ix*,0!, the convergence rate ofg~ Ix*, hn! 2
g~ Ix*,0! is O~~1 1 h21!gf11 exp~af~ Njh21!bf !! also+ n

LEMMA 8 + For z $ 0, if b $ 0 and if ~1 1 j!g exp~aj b! is increasing inj,

E
0

z

~11 j!g exp~aj b ! dj d ~11 j!11g exp~aj b !+ (A.109)
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Proof. *0
z~1 1 j!g exp~aj b! dj # z~1 1 z!g exp~az b! # ~1 1 z!11g exp~az b! n

Proof of Lemma 5. By Lemma 2, the order of the variance term isOp~ PU~hn!n2102!,
where

PU~hn! 5E6m1~z!621 (
k50

1 SS11
6f0
' ~z!6

6f0~z!6D
3 E

6z6

`

6k~2hnj!6 6fk~j!6dj 1 6k~2hnz!6 6fk~z!6D dz,

(A.110)

where, for k 5 0,1,

~2p!21E
z

2`

6k~2hj!6 6fk~j!6dj # ~2p!211~6z6# h21!E
z

2`

6fk~j!6dj (A.111)

d 1~6z6# h21! HE
z

2`

~11 6j6!gf exp~af 6j6bf ! djJ
(A.112)

5 1~6z6# h21!~11 6z6!11gf exp~af 6z6bf ! (A.113)

and

~2p!21 6k~2hz!6 6fk~z!6 d 1~6z6# h21!~11 6z6!gf exp~af 6z6bf !+ (A.114)

It follows that

PU~hn! d E~11 6z6!2gm exp~2am6z6bm!

3 (
k50

1

~~11 ~11 6z6!gr !1~6z6# hn
21!~11 6z6!11gf exp~af 6z6bf !

1 1~6z6# hn
21!~11 6z6!gf exp~af 6z6bf !! dz (A.115)

d E1~6z6# hn
21!~11 6z6!11gf1gr2gm exp~af 6z6bf 2 am6z6bm! dz (A.116)

d ~11 hn
21!21gf1gr2gm exp~af hn

2bf 2 amhn
2bm!+ (A.117)

Hence, Sg~ Ix*, hn! 2 g~ Ix*, hn! 5 Op~n2102~11 hn
21!21gf1gr2gm exp~af hn

2bf 2 amhn
2bm!!+

n

Proof of Theorem 2. We make use of the order of the biasg~ Ix*, hn! 2 g~ Ix*,0! pro-
vided by Lemmas 3 and 4 and of the order of the variance termSg~ Ix*, hn! 2 g~ Ix*, hn!
provided by Lemma 5+ To check that the higher order term[g~ Ix*, hn! 2 Sg~ Ix*, hn! does
not affect the rates obtained by considering the first-order terms only, we observe that,
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by Lemma 2, the upper bound onSg~ Ix*, hn! 2 g~ Ix*, hn! provided by Lemma 5 holds for
[g~ Ix*, hn! 2 g~ Ix*, hn! also, if we can show thatl~hn!n2~102!1e 5 o~1! for somee+

We consider each subcase of the theorem separately+ Let Rn be such that Sg~ Ix*, hn! 2
g~ Ix*, hn! 5 Op~Rn!+ Throughout the proof, let e, e1, e2, + + + denote arbitrarily small posi-
tive numbers+

Case 1. bv . bb+ If the bandwidthhn is chosen to be

~hn
21!bv 5 S ln n

2~av1 ev !
D1

~ab 1 2eb!

~av1 ev !
S ln n

2~av1 ev !
Dbb0bv

(A.118)

for someev, eb . 0, the bias and the variance are of the same order and the convergence
rate is

Rn d ~h21!gb exp~ab~hn
21!bb ! 1 n2102~h21!gv exp~av~hn

21!bv ! (A.119)

d exp~~ab 1 eb!~hn
21!bb ! 1 n2102 exp~~av1 ev !~hn

21!bv ! (A.120)

d expS~ab 1 eb!SS ln n

2~av1 ev !
D2

1

~av1 ev !
S ~ab 2 eb!bv 0bb

2~av1 ev !
ln nDbb0bvDbb0bvD

1 n2102 expSS1

2
ln nD1 ~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD (A.121)

d expS~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD

1 n2102 expSS1

2
ln nD1 ~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD (A.122)

5 expS~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD1 expS~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD

(A.123)

5 2 expS~ab 1 2eb!S ln n

2~av1 ev !
Dbb0bvD (A.124)

d expS~ab 1 e!S ln n

2av
Dbb0bvD for somee . 0+ (A.125)

Now, to check the negligibility of the higher-order terms, we verify that
l~hn!n21021e1 5 o~1! for some suitably chosene1 . 0+ Noting thatbv 5 bm andav 5
2am if bv . bb, we have
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l~hn!n21021e1 5 ~11 hn
21!11gr2gm exp~2am~hn

21!bm!n21021e1 (A.126)

d exp~~2am 1 e2!~hn
21!bm!n21021e1 for anye2 . 0 (A.127)

d expS ~2am 1 e2! ln n

2~av1 ev !
Dn21021e1 (A.128)

d expS ~2am 1 e2! ln n

2~2am 1 ev !
Dn21021e1 (A.129)

d n2e31102n21021e1 for somee3 . 0 (A.130)

5 ne12e3 (A.131)

5 o~1! if e1 , e3+ (A.132)

Case 2. bb 5 0 ~andgb , 0! andbv . 0+ For someev . 0, let

~hn
21!bv 5

ln n

2~av1 ev !
1

gb ln ln n

~av1 ev !
+ (A.133)

Then,

Rn 5 ~hn
21!gb 1 n2102~hn

21!gv exp~av~hn
21!bv ! (A.134)

d ~hn
21!gb 1 n2102 exp~~av1 ev !~hn

21!bv ! (A.135)

d S ln n

2~av1 ev !
1

gb ln ln n

~av1 ev !
Dgb0bb

1 n2102 expS1

2
ln n 1 gb ln ln nD (A.136)

d S ln n

2~av1 ev !
1

gb ln ln n

~av1 ev !
Dgb0bb

1 ~ ln n!gb (A.137)

d ~ ln n!gb0bb (A.138)

and

l~hn!n21021e1 d exp~~2am 1 e2!~hn
21!bm!n21021e1 for anye2 . 0 (A.139)

d S~2am 1 e2!
ln n

2~av1 ev !
Dn21021e1 (A.140)

d S ~2am 1 e2!

2~2am 1 ev !
ln nDn21021e1 (A.141)

d n1022e3n21021e1 for somee3 . 0 (A.142)

5 o~1! if e1 , e3+ (A.143)
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Case 3. bb 5 bv Þ 0+ For somee . 0, let

hn
21 5 S ln n

2~av2 ab 1 e!D10bb

+ (A.144)

Then,

Rn 5 ~hn
21!gb exp~ab~h21!bb ! 1 n2102~hn

21!gv exp~av~h
21!bb ! (A.145)

d exp~~ab 1 eb!~hn
21!bb ! 1 n2102 exp~~av1 ev !~hn

21!bb ! (A.146)

d expS~ab 1 eb!S ln n

2~av2 ab 1 e!DD
1 n2102 expS~av1 ev !S ln n

2~av2 ab 1 e!DD (A.147)

d expSS ab

2~av2 ab!
1 e1D ln nD

1 n2102 expSS av
2~av2 ab!

1 e2D ln nD for e1, e2 . 0 (A.148)

d nab0~2av22ab!1e1 1 n2102nav 0~2av22ab!1e2 (A.149)

d nab0~2av22ab!1e1 1 nab0~2av22ab!1e2 (A.150)

d nab0~2av22ab!1e for somee . 0, (A.151)

l~hn!n21021e1 d exp~~2am 1 e2!~hn
21!bm!n21021e1 for anye2 . 0 (A.152)

d expS ~2am 1 e2! ln n

2~av2 ab 1 e!Dn21021e1 (A.153)

d expS ~2am 1 e2! ln n

2~af 2 am 2 af 1 e!Dn21021e1 (A.154)

5 expS ~2am 1 e2! ln n

2~2am 1 e! Dn21021e1 (A.155)

5 n1022e4n21021e1 for somee4 . 0 if e2 , e (A.156)

5 ne12e4 (A.157)

5 o~1! for somee1 , e4+ (A.158)
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Case 4. bb 5 bv 5 0 ~andab 5 av 5 0 andgb , 0!+ Let hn
21 5 n10~2gv22gb! + Then,

Rn d ~hn
21!gb 1 n2102~hn

21!gv (A.159)

d ngb0~2gv22gb! 1 n21021gv 0~2gv22gb! (A.160)

d ngb0~2gv22gb!, (A.161)

l~hn!n21021e 5 ~11 hn
21!11gr2gmn21021e1 (A.162)

d ~n10~2gv22gb! !11gr2gmn21021e1 (A.163)

5 n~11gr2gm!0~2gv22gb!n21021e1+ (A.164)

Noting thatgb $ gf 1 1, gv5 2 1 gf 2 gm 1 gr , andgm , 0, the exponent ofn can be
written as

~11 gr 2 gm!

2~gv2 gb!
2

1

2
1 e1 5

~11 gr 2 gm!

2~2 1 gf 2 gm 1 gr 2 gb!
2

1

2
1 e1 (A.165)

#
~11 gr 2 gm!

2~2 1 gf 2 gm 1 gr 2 gf 1 1!
2

1

2
1 e1 (A.166)

5
~11 gr 2 gm!

2~3 1 gr 2 gm!
2

1

2
1 e1 (A.167)

, 0 for e1 sufficiently small+ (A.168)

n

LEMMA 9 + Let Kn~z! be a sequence of real-valued nonrandom functions of a real
variable, let aj and zj be i.i.d. sequences with aj satisfying E@aj

21d 6zj 5 z# # C for some
C,d . 0 for all z andVar@aj 6zj 5 z# $ C for some C. 0 and for all z, and let

sn 5 ~E @aj
2Kn

2~zj !# 2 ~E @aj Kn~zj !# !2!102+ (A.169)

If infn$N sn . 0 for some N[ N1 and supz[R 6dKn~z!0dz6 5 O~n~302!2d! for some
d . 0, then

sn
21n2102 (

j51

n

~aj Kn~zj ! 2 E @aj Kn~zj !# ! d
&& N~0,1!+ (A.170)

Proof. Let Znj 5 aj Kn~zj !+ The proof consists in verifying thatZnj satisfies the hypoth-
esis of the Lindeberg–Feller central limit theorem for triangular arrays+ Indeed, the
Zn1, + + + ,Znn are i+i+d+ by assumption, and it remains to be shown that the Lindeberg con-
dition holds: for all « . 0,

lim
nr`

sn
22E @1~6Znj 6 $ «snn102!Znj

2 # r 0+ (A.171)

First, noting that 1~ab $ c! # 1~a $ ch! 1 1~b $ c12h! for any a,b,c [ R1 and any
h [ #0,1@, we can write

sn
22E @1~6aj Kn~zj !6 $ «snn102!6aj Kn~zj !62# # T1 1 T2 (A.172)

1088 SUSANNE M. SCHENNACH

https://doi.org/10.1017/S0266466604206028 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206028


where

T1 5 sn
22E @1~6aj 6$ «hsn

h nh02!6aj Kn~zj !62# , (A.173)

T2 5 sn
22E @1~6Kn~zj !6$ «12hsn

12h n~12h!02!6aj Kn~zj !62# + (A.174)

Then, T1 5 sn
22E @E @1~6aj 6 $ «hsn

h nh02!aj
26zj #6Kn~zj !62# d sn

22E @~«hsn
h nh02!2d 3

6Kn~zj !62# becauseE @aj
21d 6zj 5 z# # C ~i+e+, E @1~6aj 6 $ c!aj

26zj # # E @1~6aj 6 $ c! 3
~aj 0c!daj

26zj # # c2dE @1~6aj 6 $ c!aj
21d 6zj # # c2dE @aj

21d 6zj # d c2d!+ Noting that

sn
2 5 E @aj

2Kn
2~zj !# 2 ~E @aj Kn~zj !# !2 (A.175)

5 E @E @aj
26zj #Kn

2~zj !# 2 ~E @aj Kn~zj !# !2 (A.176)

5 E @~E @aj
26zj # 2 ~E @aj 6zj # !2!Kn

2~zj !#

1 E @~E @aj 6zj # !2Kn
2~zj !# 2 ~E @E @aj 6zj #Kn~zj !# !2 (A.177)

5 E @Var@aj 6zj #Kn
2~zj !# 1 Var@E @aj 6zj #Kn~zj !# (A.178)

f E @Kn
2~zj !# 1 Var@E @aj 6zj #Kn~zj !# (A.179)

f E @Kn
2~zj !# , (A.180)

we haveT1 d ~E @Kn
2~zj !# !21E @~«hsn

h nh02!2dKn
2~zj !# 5 ~«hsn

h nh02!2d~E @Kn
2~zj !# !21 3

E @Kn
2~zj !# 5 ~«hsn

h nh02!2d r 0+ Also, T2 5 sn
22E @E @aj

26zj #1~6Kn~zj !6 $
«12hsn

12h n~12h!02!Kn
2~zj !# # Csn

22E @1~6Kn~zj !6 $ «12hsn
12h n~12h!02!Kn

2~zj !# d
E @1~6Kn~zj !6$ «12hsn

12h n~12h!02!Kn
2~zj !# +

Let sn 5 supz[R6dKn~z!0dz6+ For a given value ofE @Kn
2~zj !# the maximum value of

E @1~6Kn~zj !6 $ C!Kn
2~zj !# for someC . 0 is obtained when the support ofKn~z! is

inside the support of the distribution ofz and whenKn~z! is triangular,

Kn~z! 5 H0 if 6z6$ ln

sn~ln 2 6z6! if 6z6 , ln,
(A.181)

wherel n 5 ~3sn
20~2sn

2!!103+ Then,

In 5E1~6Kn~z!6$ «12hsn
12h n~12h!02!6Kn~z!62f ~z! dz (A.182)

f E1~6Kn~z!6$ «12hsn
12h n~12h!02!6Kn~z!62 dz

5 2sn
22 maxHE

~«snn102!12hsn
21

ln

sn
2z2 dz,0J (A.183)

5
2sn

2

3sn
2 maxHSl n

3 2
~«3sn

3n302!~12h!

sn
3 D,0J

5 maxHS12
2~«3snn302!~12h!

3sn
D,0J , (A.184)

NONPARAMETRIC REGRESSION WITH MEASUREMENT ERROR 1089

https://doi.org/10.1017/S0266466604206028 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206028


where

2~«3snn302!~12h!

3sn

f
2~«3snn302!~12h!

3n~302!2d
(A.185)

5
2«3~12h!sn

~12h! n~302!2d02

3n~302!2d
for h 5 d (A.186)

5
2

3
«3~12h!sn

~12h! nd02 r `, (A.187)

and it follows thatIn r 0, as desired+ n

LEMMA 10+ If c [ W, then lim 6z6r` p~z! 5 0, where p~z! is the inverse Fourier
transform ofc~z!.

Proof. This result is Theorem 18 in Lighthill~1962! with the trivial modification
that the Fourier transform is replaced by the inverse Fourier transform and with the
slight extension that allows the tail behavior of the functionc~z! to be exponential~see
Definition 4!+ This extension is straightforward because Lighthill’s proof proceeds by
writing c~z! 5 C~z! 1 ~c~z! 2 C~z!! where~c~z! 2 C~z!! can be handled using the
Riemann–Lebesgue lemma+ By the assumption thatc [ W, the functionC~z! can be
chosen such that its inverse Fourier transform, p`~z!, can be calculated analytically and
be shown to satisfy lim6z6r` p`~z! 5 0+ All that is needed to allow for more flexible
choices of tail behavior than initially employed by Lighthill is to find functionsC~z!
whose inverse Fourier transform can be calculated analytically and have the appropriate
tail behavior+ Using the techniques described in Gel’fand and Shilov, ~1964, Example 5,
p+ 169! the inverse Fourier transform of exponentials of the form exp~czg! for c [ R
andg [ N1 can be shown to be

(
j50

` ~ic!gjd~gj ! ~z!

j!
, (A.188)

whered~k!~z! denotes thekth derivative of Dirac’s delta distribution+ This distribution
clearly vanishes as6z6 r `, as required+ Note that, although such a distribution does
not belong to the class of the so-called tempered distributions, it does belong to the
wider class of distributions that forms the dual of compactly supported infinitely differ-
entiable test functions~i+e+, the so-called TypeK distributions of Gel’fand and Shilov!+

n

Proof of Theorem 3. According to the second conclusion of Lemma 2, to have
[g~ Ix*, hn! 2 g~ Ix*, hn! 5 ~ Sg~ Ix*, hn! 2 g~ Ix*, hn!!~1 1 op~1!! we need to show that

~V~ Ix*, hn!!2102 PU~hn!l~hn!n21021e r 0 for somee . 0+We proceed by finding a lower
bound onV~ Ix*, hn! and relating it to PU~hn!+ First, by Assumption 14, Var@ Sg~ Ix*, hn!# [
V~ Ix*, hn! f maxa51, x, y maxk50,1Var@Tk,a, n# , whereTk,a, n, for k 5 0,1 anda 5 1, x, y, is
given by
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Tk,a,n 5EUa
k~z, Ix*, hn! [ma~z! dz (A.189)

5EUl
k~z, Ix*, hn!Sn21 (

j51

n

aj e
izzjD dz (A.190)

5 n21 (
j51

n

aj Kk,a,n~zj !, (A.191)

where

Kk,a,n~zj ! 5EUa
k~z, Ix*, hn!eizzj dz+ (A.192)

Then,

Var@aj Kk,a,n~zj !# f E @aj
2~Kk,a,n~zj !!

2# (A.193)

5E~Kk,a,n~z!!2E @a2 6z# f ~z! dz (A.194)

$ E
z[Ia, k

~Kk,a,n~z!!2E @a2 6z# f ~z! dz (A.195)

for any finite interval Ia, k not reduced to a point+ By Assumptions 11 and 13,
infz[Ia, k

E @a2 6z# f ~z! $ C . 0, and we have

Var@aj Kk,a,n~zj !# f E
z[Ia, k

~Kk,a,n~z!!2 dz+ (A.196)

We now show that*z[R\Ia, k
~Kk,a,n~z!!2 dz remains bounded asn r `, thus imply-

ing that *~Kk,a, n~z!!2 dz diverges at the same rate as*z[Ia, k
~Kk,a,n~z!!2 dz+ First,

limnr`Kk,a, n~z! [ Kk,a,`~z! is the inverse Fourier transform ofUa
k~z, Ix*,0! and, by the

moment theorem, the inverse Fourier transform of~d0dz!Ul
k~z, Ix*,0! is izKk,a,`~z!+

Because~d0dz!Ul
k~z, Ix*,0! belongs toW by Assumption 12, we can apply Lemma 10

to conclude that lim6z6r`6z6 6Kk,a,`~z!6 5 0+ Therefore, there exist constantsA,C . 0
such that6Kk,a,`

2 ~z!6 # A6z622 for 6z6 $ C and k 5 0,1 and l 5 1, x, y+ It is therefore
impossible for*z[R\Ia, k

~Kk,a,n~z!!2 dz to become unbounded asn r ` if Ia, k is chosen
to be@2C,C# + We can then write

Var@aj Kk,a,n~zj !# f E~Kk,a,n~z!!2 dz+ (A.197)

By Parseval’s identify and the fact thatUl
k~z, Ix*, hn! vanishes for6z6 $ hn

21, we have

E~Kk,a,n~z!!2 dz5E6Ul
k~z, Ix*, hn!62 dz (A.198)

5E
6z6#hn

21
6Ul

k~z, Ix*, hn!62 dz+ (A.199)

NONPARAMETRIC REGRESSION WITH MEASUREMENT ERROR 1091

https://doi.org/10.1017/S0266466604206028 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466604206028


By the Cauchy–Schwartz inequality,

SE
6z6#hn

21

6Ul
k~z, Ix*, hn!6dzD2

# SE
6z6#hn

21

6Ul
k~z, Ix*, hn!62 dzDSE

6z6#hn
21

1dzD,
which becomes, upon rearrangement,

E
6z6#hn

21
6Ul

k~z, Ix*, hn!62 dz $ SE
6z6#hn

21
1dzD21SE

6z6#hn
21
6Ul

k~z, Ix*, hn!6dzD2

(A.200)

5 2hnSE
6z6#hn

21
6Ul

k~z, Ix*, hn!6dzD2

+ (A.201)

Collecting equations~A+197!, ~A+198!, and~A+200!, we have

V~ Ix*, hn! f hnS max
a51, x, y

max
k50,1

E
6z6#hn

21
6Ul

k~z, Ix*, hn!6dzD2

+ (A.202)

We then observe that, by equation~34! and Assumption 15,

PU~hn! 5E6m1~z!621 (
k50

1 SS11
6mx~z!6

6m1~z!6DE6z6` 6Ck~z, Ix*, hn!6dj 1 6Ck~z, Ix*, hn!6D dz

(A.203)

d E6m1~z!621 (
k50

1 SS11
6mx~z!6

6m1~z!6D*E6z6`Ck~z, Ix*, hn! dj*1 6Ck~z, Ix*, hn!6D dz

(A.204)

d max
a51, x, y

max
k50,1

E
6z6#hn

21
6Ul

k~z, Ix*, hn!6dz+ (A.205)

Combining equations~A+202! and~A+203! yields

~V~ Ix*, hn!!102 f hn
102 PU~hn!, (A.206)

thus implying thathn
102l~hn!n21021e r 0 for somee . 0 is a sufficient condition for

the asymptotic negligibility of the higher order terms, which we can now verify+
If am 5 0, thenhn

102l~hn!n21021e 5 ~11 hn
21!102~1 1 hn

21!~1 1 hn
21!gr2gmn21021e 5

~11 hn
21!3021gr2gmn21021e d ~n2hn10~312gr22gm! !3021gr2gmn21021e d n2h~3021gr2gm! 3

ne 5 o~1! for e . 0 sufficiently small+
If am Þ 0, thenhn

102l~hn
21!n211e d ~11 hn

21!3021gr2gm exp~2am~hn
21!bm!n21021e d

exp~2am~1 1 e2!~hn
21!bm!n21021e d exp~~am~1 1 e2!~1 1 h!02am! ln n!n21021e 5

n2102~e21h1he2!ne 5 o~1! for somee2 . 0 and fore . 0 sufficiently small+
We have now shown that the limiting distribution of[g~ Ix*, hn! is the same as that of
Sg~ Ix*,hn!+ To obtain the limiting distribution ofSg~ Ix*,hn!, we note that Sg~ Ix*,hn! 2 g~ Ix*,hn!

is a finite linear combination of the kernel-type estimatorsTk,a, n defined in equa-
tion ~A+191! using the kernelKk,a, n~z! defined by equation~A+192!+ The asymptotic
normality of Tk,a, n can be shown using Lemma 9, provided that we can show that
supz[R 6dKk,a, n~z!0dz6 5 O~n~302!2d! for somed . 0+ By the moment theorem, this
requirement is satisfied if*6Ua

k~z, Ix*, hn!6 6z6dz 5 O~n~302!2d! for k 5 0,1 and a 5
1, x, y+ Using the same techniques as in the proof of Lemma 5, we have
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E6Ua
k~z, Ix*, hn!6 6z6dz d ~11 hn

21!g exp~a~hn
21!b !, (A.207)

whereg 5 3 1 gf 2 gm 1 gr and

~a,b! 5 H~2am,bm! if bf , bm

~af 2 am,bm! if bf 5 bm+
(A.208)

If am 5 0, thena 5 0 and we have

E6Ua
k~z, Ix*, hn!6 6z6dz d ~hn

21!31gf2gm1gr (A.209)

d ~n2hn10~312gr22gm! !31gf2gm1gr (A.210)

5 n2h~31gf2gm1gr !n~31gf2gm1gr !0~312gr22gm! 5 o~n! (A.211)

because~i! ~3 1 gf 2 gm 1 gr ! . 0 becausegf $ 2gm andgr $ 0 and~ii !

3 1 gf 1 gr 2 gm

3 1 2gr 2 2gm

5
3 1 2gr 2 2gm 2 gr 1 gm 1 gf

3 1 2gr 2 2gm

5 1 2
gr 2 gm 2 gf

3 1 2gr 2 2gm

, 1+ (A.212)

If am Þ 0, then

E6Ua
k~z, Ix*, hn!6 6z6dz d exp~~a 1 e4!~hn

21!b ! for somee4 . 0 (A.213)

d expS2
~a 1 e4!~11 h!

2am

ln nD (A.214)

d expS ~2am 2 e4!~11 h!

2am

ln nD (A.215)

d exp~~11 e5! ln n! d n11e5 for somee5 , 2
1
2+ (A.216)

Hence, the hypotheses of Lemma 9 are verified, and theTk,a, n are asymptotically nor-
mal+ The expectation and the variance ofSg~ Ix*,hn! can then be calculated as in Lemma 1+

n
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