
ment theories, with only some weak architectural constraints.
Moreover, these languages are computationally universal and thus
are equivalent to one another in the sense that one language can
simulate the other. How does one evaluate or falsify such univer-
sal languages? Are the multiple criteria listed by the authors suf-
ficient to rule out anything at all, or do they simply suggest areas
to improve on? The authors’ grading scheme is telling in this re-
spect. It only evaluates how an architecture satisfies one criterion
better than another criterion, and does not say how to choose be-
tween two architectures. One cannot, of course, duck the question
merely by choosing an architecture based on the criterion one is
interested in explaining. This is precisely the original problem that
Newell was trying to address through his multiple criteria.

The authors suggest that timing constraints and memory limi-
tations imply that one cannot only program arbitrary models in
ACT-R. But that still leaves room for an infinite variety of models,
and ACT-R cannot tell us how to choose between them. To take
an analogy to programming languages: It is possible to design an
infinite variety of cognitive architectures and implement an infi-
nite variety of models in each one. Can we ever collect enough ev-
idence to be able to choose one over another?

This suggests to me that a cognitive theory must be carefully
distinguished from the concrete implementation and the under-
lying architecture. Just as a programming language can implement
any given algorithm, a cognitive architecture can instantiate any
cognitive theory (albeit with some variations in time efficiencies).
This should not count as evidence for the validity of the architec-
ture itself, any more than good performance of an algorithm
should count as evidence for the validity of the programming lan-
guage. Cognitive science can make better progress by carefully
distinguishing the algorithm from the architecture and confining
the claims to those parts of the algorithm that are in fact respon-
sible for the results. Consider, for example, ACT-R’s theory of
past-tense learning by children. More specifically, consider the
empirical observation that the exceptions tend to be high-fre-
quency words. A&L attribute this to the fact that only high-fre-
quency words develop enough base-level activation to be re-
trieved in ACT-R. In more general terms, only high-frequency
words provide sufficient training data for the system to be able to
learn an exception. How much of this explanation is a result of the
particulars of ACT-R theory as opposed to being a necessary con-
sequence of learning in a noisy domain? If any learning system
that operates in a noisy environment needs more training data to
learn an exception, why should this be counted as evidence for the
ACT-R theory? Similar criticisms can be leveled against other cog-
nitive architectures and mechanisms such as SOAR and chunking,
connectionism, and backprop.

In other words, even when multiple criteria are used to evalu-
ate a cognitive architecture, there still remains an explanatory gap
(or a leap of faith) between the evidence presented and the para-
digm used to explain it. To guard against such over-interpretation
of the evidence, Ohlsson and Jewett propose “abstract computa-
tional models,” which are computational models that are designed
to test a particular hypothesis without taking a stand on all the de-
tails of a cognitive architecture (Ohlsson & Jewett 1997). Similar
concerns are expressed by Pat Langley, who argues that the source
of explanatory power often lies not in the particular cognitive ar-
chitecture being advanced but in some other fact such as the
choice of features or the problem formulation (Langley 1999).
Putting it another way, there are multiple levels of explanations for
a phenomenon such as past-tense learning or categorization, in-
cluding computational theory level, algorithmic level, and imple-
mentation level. Computational theory level is concerned with
what is to be computed, whereas algorithmic level is concerned
with how (Marr 1982). Cognitive architecture belongs to the im-
plementation level, which is below the algorithmic level. Where
the explanatory power of an implementation mostly lies is an open
question.

Only by paying careful attention to the different levels of ex-
planations and evaluating them appropriately can we discern the

truth. One place to begin is to propose specific hypotheses about
the algorithmic structure of the task at hand and evaluate them us-
ing a variety of sources of evidence. This may, however, mean that
we have to put aside the problem of evaluating cognitive archi-
tectures, for now or forever.
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Abstract: Modelling human reasoning characterizes the fundamental hu-
man cognitive capacity to describe our past experience and use it to form
expectations as well as plan and direct our future actions. Natural language
semantics analyzes dynamic forms of reasoning in which the real-time or-
der determines the temporal relations between the described events,
when reported with telic simple past-tense clauses. It provides models of
human reasoning that could supplement ACT-R models.

Real-time performance, the second criterion for a human cogni-
tive architecture in Newell (1990), requires the system to operate
as fast (or as slow) as humans (target article, sect. 2, Table 1) on
any cognitive task. Real time is hence considered a constraint on
learning as well as on performance (sect. 5). Although I certainly
consider it an advantage of the ACT-R system that it does not rely
on artificial assumptions about presentation frequency in the way
classical connectionist systems do (Taatgen & Anderson 2002), the
limited focus the two systems share on the acquisition of the mor-
phological variability in the simple past-tense inflection in English
ignores its obvious common semantic properties, which also must
be learned. In this commentary, I propose to include in real-time
performance the characteristic human ability to use time effec-
tively when using language to encode information that systemati-
cally depends on contextual parameters, such as order of presen-
tation or time of utterance.

Human linguistic competence includes automated processes of
temporal reasoning and understanding, evidence of which is pre-
sented in our linguistic intuitions regarding the temporal relations
that obtain between events described in coherent discourse. The
presentation order in which simple past-tense clauses are pro-
duced in real time often contains important clues for the correct
interpretation. As opposed to the past progressive ( John was leav-
ing) and the past perfect ( John had left), the English simple past
tense ( John left) refers to an event that not only precedes the time
of utterance but also is temporally located with respect to other
events described by prior discourse. The following examples, (1)
and (2), show that the order of presentation affects our under-
standing of what happened.

(1) John lit a cigarette. He left.
(2) John left. He lit a cigarette.

From (1) we understand that John left after he had lit a cigarette.
But (2) makes us understand that the described events occurred
in the opposite order. Obviously, the real-time order of presenta-
tion in this case determines the temporal relations between the
events described. But this is not always so, as we see from exam-
ples (3) and (4), where reversing the order of the simple past-tense
clauses does not affect the temporal relations between the events.

(3) John slept for hours. He dreamt of Mary.
(4) John dreamt of Mary. He slept for hours.

Either (3) or (4) makes us understand that John dreamt of Mary
while he slept, which is reinforced by the lexical presupposition of
dreaming requiring that the dreamer be asleep.
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The differences observed between the interpretations of (1)–
(4), coincidentally all morphologically strong past-tense inflec-
tions, are attributed to the aspectual class of the clauses, which
may be telic or atelic (Hinrichs 1986; Partee 1984). Although the
compositional characterization of telicity has been a core item on
the linguistic research agenda for quite some time, it is generally
agreed that in English, clauses that may be modified by durative
adverbials, such as for hours, are atelic, and clauses that are unac-
ceptable with durative modifiers are telic (ter Meulen 1995;
Verkuyl 1996). Temporal precedence effects, which conceptually
shift the reference time, are determined by order of presentation
of telic clauses in simple past-tense clauses.

Children gradually learn to produce cohesive discourse with
simple past-tense clauses, effectively using order of presentation,
instead of connecting clauses in their stories with and then . . . and
then. . . . It depends on their understanding of logical or causal re-
lations between lexical items; for example, dreaming entails sleep-
ing, leaving entails moving elsewhere. It also requires mastering
deductive or abductive forms of reasoning, into which neither
classical connectionism nor ACT-R have many modelling insights
to offer, as Anderson & Lebiere (A&L) readily admit. Reasoning
in context and exploiting the dependencies between tense and
other indexical features of linguistic expressions cannot be re-
duced to conditioned correlations between lexical items and con-
cepts, as classical connectionists may want to argue, because it
needs a representation of the agent’s own information structured
information state, as well as a representation of the external do-
main described by linguistic input and other agents it communi-
cates with. Human understanding of information communicated
in ordinary language discourse should, therefore, constitute a core
task on the common agenda of cognitive science, testing not only
Newell’s criteria of real-time performance and natural language,
but also adaptive, dynamic, and flexible behavior, as well as knowl-
edge integration and development. Natural language semantics is
studying the structured dependencies between context, informa-
tion, and described domain (Asher et al. 1994; ter Meulen 2000;
van Eijck & Kamp 1997). The “Dynamic Turn” in the semantics
of both formal-logical, and natural languages has profoundly
changed the agenda of the traditional logical systems to require
that a dynamic semantics of natural language ideally provides ab-
stract models of our human cognitive capacities of information
processing, envisaged in Partee (1997) as the program to “natu-
ralize formal semantics.” ACT-R accounts of human cognition
may well find it a congenial companion, supplementing its self-
proclaimed need for an account of human reasoning.

Real-world behavior as a constraint on the
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Abstract: The Newell Test is an important step in advancing our under-
standing of cognition. One critical constraint is missing from this test: A
cognitive architecture must be self-contained. ACT-R and connectionism
fail on this account. I present an alternative proposal, called Distributed
Adaptive Control (DAC), and expose it to the Newell Test with the goal of
achieving a clearer specification of the different constraints and their re-
lationships, as proposed by Anderson & Lebiere (A&L).

Anderson & Lebiere (A&L) make the important step to resurrect
a number of benchmarks, originally proposed by Newell, which a
theory of cognition should satisfy. One benchmark that is missing
from this list is that the proposed architecture must be self-con-
tained. Self-contained implies that the knowledge of the cognitive

system is acquired through an autonomous learning process; that
is, its ontology is derived from the interaction between the system
and the world. Both ACT-R and classical connectionism do not
score well on this constraint. ACT-R fails because it focuses on the
use of predefined knowledge in its productions and its recombi-
nation by means of chunking. The implementation of its memory
structures using artificial neural networks and the inclusion of a
subsymbolic/symbolic nomenclature does not address this prob-
lem. Classical connectionism fails because it relies on learning
rules, for example, backpropagation, that allow the user to com-
pile a predefined input-output mapping into the model (Ver-
schure 1990; 1992). In both cases the models do not tell us how
knowledge is acquired in the first place. One could argue that solv-
ing this problem of priors is the most fundamental challenge to
any candidate theory of cognition (Verschure 1998).

In order to challenge the authors to define more precisely what
it takes to satisfy the Newell Test, I present an alternative proposal
for a cognitive architecture, called Distributed Adaptive Control
(DAC). DAC describes an embodied cognitive architecture im-
plemented by a neuronal system in the context of real-time, real-
world behavior. DAC assumes that behavior is organized around
three tightly coupled layers of control: reactive, adaptive, and con-
textual (Fig. 1A). The typical paradigms in which we have devel-
oped this architecture are robot equivalents of random foraging
tasks (Fig. 1B). It should be emphasized that DAC develops its
own domain ontology out of its continuous interaction with the
world. Hence, as opposed to ACT-R, DAC is self-contained.

Flexible behavior (“better”). DAC has been shown to organize
landmark-based foraging behavior in different types of robots
(Verschure et al. 1992; 1996; Verschure & Voegtlin 1998), has
been applied to simple games such as tic-tac-toe (Bouvet 2001),
has controlled a large scale public exhibit (Eng et al. 2003), and
has been shown to be equivalent to an optimal Bayesian interpre-
tation of goal-oriented problem solving (Verschure & Althaus
2003). By satisfying this last constraint, DAC implicitly addresses
a wide range of cognitive phenomena (Massaro 1998). This latter
constraint argues that our models should attack abstract models
describing large repertoires of performance as opposed to single
instances of particular behaviors.

Real-time performance (“better”). As opposed to ACT-R, DAC
takes real time literally as the time it takes to control real-world
behavior. In biologically detailed models, derived from the DAC
architecture, of both the sensory (i.e., the learning-dependent
changes in receptive field properties of the primary auditory cor-
tex, as reported by Kilgard & Merzenich 1998) and motor aspects
(focusing on the cerebellum) of classical conditioning, we have
shown that these principles can account for learning performance
both in terms of number of trials and in terms of the relevant real-
time interstimulus intervals (Sanchez-Montanez et al. 2002; Hof-
stötter et al. 2002). Hence, these models generalize the hypothe-
sis of DAC towards the neuronal substrate and can account for
properties of performance in terms of the underlying neuronal
mechanisms. Important here is that temporal properties of be-
havior are not redescribed in functional terms, which is an under-
constrained problem, but directly interpreted in terms of neu-
ronal mechanisms. This illustrates that the benchmarks cannot be
interpreted as independent constraints.

Adaptive behavior (“best”). The DAC architecture has been
designed in the context of real-world embodied cognition (see also
flexible behavior). The claim is that only such an approach can ac-
count for this constraint. ACT-R is not embodied.

Vast knowledge base (mixed). DAC shows how task-depen-
dent knowledge can be acquired and used to organize behavior
and has been applied to a range of tasks (see flexible behavior).
However, the full neuronal implementation of its structures for
short- and long-term memory is not mature enough to make
strong statements on its capacity and flexibility (Voegtlin & Ver-
schure 1999). Hence, DAC takes satisfying neuronal constraints
as a fundamental benchmark in answering functional challenges.
ACT-R seems to stop at a functional interpretation.
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