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Abstract

Evolutionary and Adaptive strategies~ES & AS! for diverse multilevel search across a preliminary, whole-system
design hierarchy defined by discrete and continuous variable parameters are described. Such strategies provide high-
level decision support when integrated with preliminary design software describing the major elements of an engineer-
ing system. Initial work involving a Structured Genetic Algorithm~stGA! with appropriate mutation regimes to encourage
search diversity is described and preliminary results are presented. The shortcomings of the stGA approach are iden-
tified and alternative strategies are introduced. A dual agent strategy~GAANT ! involving elements of an ant colony
search and an evolutionary search concurrently manipulating the discrete and continuous variable parameter sets is
presented. Appropriate communication between the two search agents results in a more efficient search across the
hierarchy than that achieved by the stGA, while also simplifying the chromosomal representation. This simplification
allows the further development of the preliminary design hierarchy in terms of complexity. The technique therefore
represents a significant contribution to configuration design where multilevel, mixed discrete0continuous parameter
design problems can be prevalent.
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1. INTRODUCTION

During the initial stages of a large-scale, engineering de-
sign project the engineer will be presented with the task of
identifying initial high-potential system configurations that
best satisfy many performance criteria. Such criteria may
be qualitative and quantitative in nature and will likely be
ill-defined and either incomplete or over emphasized dur-
ing these higher level stages of the design process. Design
at this stage is generally a multidisciplinary exercise requir-
ing extensive cooperation of several groups with varying
goals working concurrently within an uncertain and there-
fore high-risk design environment.

The research described in the paper is primarily con-
cerned with the feasibility0bid stages of large-scale be-
spoke design projects. These early stages are characterized
by a high degree of uncertainty related to limited available
data and lack of definition in the initial design brief. A de-

gree of necessary assumption is therefore required and a
breadth-first approach is evident. The detail of any system
modelling must be commensurate with the degree of con-
fidence in the available data and it therefore follows that
caution must be exercised when interpreting the results from
such preliminary design tools. Engineering judgement based
upon problem-specific knowledge and an understanding of
the shortfalls of the software plays a significant role.

The hypothesis underlying the research described is that
during these early stages of design, the engineer requires a
flexible tool that will provide an efficient search of a high-
dimensional design space. The search will result in the iden-
tification of high-performance solutions from diverse regions
of a design hierarchy described by discrete design decisions
and continuous variables.

The genetic algorithm~GA! ~Holland, 1975; Goldberg,
1989! generation of a number of high-performance solu-
tions based upon quantitative criteria can provide sufficient
information for the engineer to form a qualitative judge-
ment. This benefits the significant requirement for caution
related to problem uncertainties and allows conflicting qual-
itative criteria to be taken into consideration. The selection
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of the most appropriate solutions or design region results in
a significant reduction in the size of the design space and
subsequent concentration of further search in high potential
areas. The objective is not to locate the global optimum of
the space described by the mathematical model but to select
some local optima that best satisfies all current qualitative
and quantitative criteria relating to the current design re-
quirements. The assessment, through designer interaction
and off-line processing utilizing problem-specific knowl-
edge, of such solutions may lead to the recognition of op-
timal design direction at that stage in terms of least risk and
best performance.

The research therefore concerns the utilization of the GA
to achieve an efficient concurrent, multilevel search across
hierarchical structures described by discrete and continu-
ous variable parameters. This search should result in the iden-
tification of high-performance solutions from diverse regions
of such a hierarchy. The continuous variables are directly
related to the differing system configurations described by
the selected discrete design options. Continuous design sets
may therefore differ in terms of number of variables and
their combination as illustrated by the simple hierarchical
representation of Figure 1. This results in the creation of
many continuous design spaces of differing character, size
and complexity, each dependent upon specific discrete de-
sign configurations. The requirement therefore is for a search
strategy that can initially maintain a diverse search across
the discrete elements of the hierarchy, while optimally sam-
pling the differing dependent continuous design sets. The
initial objective is a rapid decomposition of the hierarchy
into a small number of high-performance configurations
through the concurrent identification of high potential, di-
verse design domains.

The overall objective is the development of an explor-
atory, high-level, decision support tool, which will signif-
icantly reduce lead times during this “whole-system” stage
of design, while allowing a more extensive search of the

available design alternatives. This should result in the iden-
tification of competitive solution domains that may have
been overlooked during the problem decomposition pro-
cesses of traditional heuristic design. A high degree of en-
gineer interaction is envisaged in order that qualitative
criteria based upon previous design experience can be ap-
plied to local, high-performance solutions. Most impor-
tantly the strategies will enable the engineer to rapidly
survey the potential of diverse regions of a multilevel hi-
erarchy. This offers an alternative to compromising the
search space potential by immediately returning to famil-
iar design configurations from previous studies, which may
result in premature concentration of search effort and less
opportunity for the discovery of innovative solutions.

The GA-based selection of the most appropriate solu-
tions or design regions and subsequent off-line assessment
and processing results in a significant reduction in the size
of the design space and subsequent concentration of further
search in the most appropriate areas. The research therefore
concerns the utilisation of the GA to achieve an efficient
concurrent, multilevel search across hierarchical structures
described by discrete and continuous variable parameters.
Much of the initial research in this area involved the ma-
nipulation of a design hierarchy for large-scale hydropower
systems~Parmee, 1995, 1996! ~Fig. 2! and it is this domain
that provides the case study for the following paper. An-
other similar hierarchy currently under investigation con-
cerns the steam cycle of thermal power generation plant,
where the discrete elements relate to plant configuration and
continuous variables include dimensional parameters and
system control settings~Parmee et al., 1996; Chen et al.,
1997!. The intention is that the strategies and techniques
described here should be generic in nature being applicable
across a wide range of whole-system engineering design
problems.

2. THE HYDROPOWER SYSTEM

The paper illustrates the development of appropriate adap-
tive search~AS! strategies by concentrating upon the hier-

Fig. 1. Simple hierarchy. Fig. 2. Basic hydropower design hierarchy.
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archy of Figure 2, which simply describes major elements
of a large-scale hydropower system. In such a case, the de-
sign team will initially be tasked with the identification of
high potential hydropower sites either within a particular
geographic region or within a specific river network. Al-
though a large number of potential sites may exist, engi-
neering judgement based upon experience, knowledge, and
basic analysis will eliminate the majority. However, a small
number of sites with differing topographic characteristics
will remain and further elimination becomes impossible
without a lower-level design and economic analysis to de-
termine best configurations of the main structural elements
of the hydropower system and appropriate operational char-
acteristics.

At this prefeasibility stage of the design process, the en-
gineer will be working with limited data relating to ground
conditions, flow regimes, etc. Information concerning such
aspects will be arriving daily as teams carry out preliminary
surveys of the appropriate region. Economic analysis based
upon available data will be concurrently identifying the out-
put requirements and costs of the proposed system to estab-
lish the project’s viability against other power generation
development based upon alternative fuel sources. The pro-
cess is therefore initially characterized by a high degree of
uncertainty and much iteration based upon available data
and related necessary assumption. Iteration will continue un-
til the level of risk is sufficiently low for firm decisions to
be made concerning appropriate design directions. The de-
tail of the system modelling during these preliminary stages
must be commensurate with the degree of confidence in the
available data. Computational expense must be kept to an
acceptable level to allow rapid iteration and comparison of
results. The overall objective is to determine the “best” site
that, when combined with the related optimal overall sys-
tem configuration, will provide maximum power output at
minimum cost.

The establishment of the basic feasibility of such sys-
tems is a time-consuming and therefore costly process. The
degree of design iteration generally carried out in a trial-
and-error manner under the guidance of domain experts con-
sumes many person-hours. This is unsurprising when one
considers a basic representation of the hierarchical struc-
ture of the hydropower problem as shown in Figure 2. This
simple hierarchy, although only involving a few of the main
elements of the system, already describes a complex over-
all design space of some 109 differing site0system config-
urations. Traditionally the hierarchy would be decomposed
down to a level where the dimensionality is sufficiently low
to allow a degree of meaningful search. This approach se-
verely compromises the design potential by restricting in-
vestigation to local subsets of the design hierarchy that are
of a dimension that can be realistically investigated within
time and budget constraints. The research described in the
following paper addresses this problem by investigating the
utilization of AS techniques such as the GA to achieve an
efficient concurrent, multilevel search of these complete hi-
erarchical structures.

2.1. The model

At the current state of development, the model of the hy-
dropower system must be regarded as illustrative as op-
posed to definitive. It is essential, initially, to determine the
feasibility of an efficient adaptive search across a highly
discontinuous search space described at differing levels by
discrete and continuous variables. Research has concen-
trated upon the recognition of those characteristics that en-
able the search process to concurrently investigate diverse
regions of the design hierarchy. However, although not de-
finitive, the model represents practical design aspects of most
of the major subsets of the overall system design. The sub-
sets described by the current model are:

• The Site: Five sites are considered each with differing
dimensional characteristics relating to idealized valley
cross-section and longitudinal valley sections. The lon-
gitudinal sections extend up to two kilometers down-
stream of the dam.

• Mode of Operation: Two distinct modes of operation are
considered: Baseload supply, where all of the available
flow is constantly utilized for power generation and peak
power supply, where generation is restricted to those pe-
riods providing an increased unit price. The peak power
option introduces a further variable parameter—Period
of Generation—which sets the number of hours of en-
ergy production per day. This parameter is only active
when the peak power option is selected. Annual energy
output is calculated from:

Baseload supply:MWh5 87603 Qi 3 Phi 3 9.813 1023

~1a!

Peak power supply:MWh5 3653
Tdfi
Gpi

3 Phi 3 Pf

3 9.813 1023, ~1b!

where

MWh5 Megawatt hours produced per annum,

Q 5 flow rate at sitei,

Tdf 5 total daily flow available at sitei,

Gp 5 total daily generation period at sitei,

Ph 5 potential head at sitei, and

Pf 5 unit price factor~circa 1.5!.

Peak power generation incurs cost penalties on pressure tun-
nel construction, due to the necessary accommodation of
significantly increased flow rates. Peak energy output is in-
creased by the unit price factor to allow for the enhanced
value of power out.

• The Dam: Two dam types are considered—Concrete
Gravity and Embankment. A range of materials are
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available for the embankment dams resulting in differ-
ing slope characteristics and varying dam volume. The
embankment dam model takes into account type of ma-
terial and calculates dam volume~EDv! based upon up-
stream and downstream slope and dam height~EDh!.
The width of the dam core~EDw! remains constant for
each site. It is assumed that the same material is used
both upstream and downstream of the core; that is,

Edv 5 ~EDw3 EDh! 1S EDh2

sin~Amt !
D, ~2!

where

Ami 5 maximum angle of repose for materialt.

Up to three grades of fill material are available at each site
with varying haulage distance and extraction cost. Type of
material directly affects the volume of the embankment dams
due to maximum slope requirements. Haul distances for the
differing materials are also taken into consideration. The
model output consists of total cost~EDc! relating to dam
volume and haulage0excavation cost~Hc per cubic metre!.
Material type is only considered when the embankment dam
option is selected; that is,

EDc 5 EDv3 Hc ~3!

The concrete gravity dam model at this stage is limited to
the satisfaction of overturning criteria using the standard
“middle third” rule, that is, the resultant force from gravi-
tational and hydrostatic forces must pass through the “mid-
dle third” of the concrete dam base. An iterative procedure
determines minimum base width dependent upon dam height.
Dam volume~CDv! is calculated from the appropriate val-
ley section and dam height~Dh!.

• Pressure Tunnels: The length of the headrace and tail-
race tunnels~PTl! is represented as a single continuous
variable at each site within the limits of a 2-kilometer lon-
gitudinal valley section, that is, point of exit of the tail-
race can be at any point within that 2-kilometer section.
Potential head~Ph! is measured between dam crest and
tunnel exit.

• Powerhouse Location: It is assumed that tunnel length
is related to Powerhouse depth~Pd!, that is, the deeper
the powerhouse the less circuitous the tunnel route to
satisfy minimum overburden requirements. Power-
house depth is therefore represented as a continuous
variable between differing upper and lower bounds at
each site. Tunnel length is then adjusted by means of a
factor ~PTf ! related to powerhouse depth; that is,

PTf 5 11 Fki 3
Pdi

~Pdmax2 Pdmin
G , ~4!

where

k 5 factor relating to overall topology of each
site i and

Pdmax, Pdmin 5 upper and lower bounds of Powerhouse
depth.

The upper and lower bounds of the powerhouse depth can
be considered to describe the constraints imposed by the
topological characteristics of each site and a trade-off is re-
quired between powerhouse construction costs, tunnel costs,
and potential head. Overall pressure tunnel costs~PTc! are
therefore calculated from:

PTc5 PTf 3 PTl 3 Utc, ~5!

where

Utc 5 Unit cost~per meter! of tunnel construction. This
cost varies dependent upon mode of operation due
to the accommodation of increased flow rates.

Powerhouse costs~Phc! are relative to depth, that is:

Phc5 Phs3 S Pdi

~Pdmax2 Pdmin!D, ~6!

where

Phs5 cost of surface powerhouse construction.

Variable parameters within the model are therefore: site,
mode of operation, dam type, dam height, material type,
period of generation, pressure tunnel length, and power-
house depth. The model consists of several modules each
returning overall cost of a major component from the sim-
ple mathematical representations of the factors described
above. Pressure tunnel length, dam height, and power-
house depth are common to all configurations, whereas pe-
riod of generation is only included when peak power mode
is selected and material type is only included upon selec-
tion of the embankment dam option as illustrated in Fig-
ure 2 and the sample chromosomal representations of
Figure 3. Other parameters, the values of that differ be-
tween site but do not vary independently, are: Diversion
tunnel length; spillway cost and a factor applied to the con-
crete gravity dam option related to ground stabilization re-
quirements. These parameters are in addition to those
already describing the dimensional characteristics of each
site, that is, longitudinal and cross-sectional. The model is
therefore an illustrative representation of a real-world sys-
tem. The mathematical simulations of the various ele-
ments of the system provide data relating to tunnel length,
dam volume, powerhouse depth, and energy output. The
system is then costed using data supplied by Knight Pie-
sold and Partners of Ashford, Kent, and a total capital cost
is thus generated from those elements included in the anal-
ysis. This cost is then increased by 25% to take into ac-
count those elements not included such as spillways,
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generation sets, and transmission. All cost data are based
upon average current costs for hydropower development
in Central Africa. The Net Present Value~NPV1! of the
total Capital Cost~CCt ! plus an assumed annual operating
cost is calculated over a 25-year period at an annual dis-
count rate~m! of 15%. The energy output of the system is
similarly discounted~NPV2! over the same period and a
unit cost of energy generation~UC! calculated; that is,

NPV1 5 (
n

1 F CCt

~11 m!nG ~7!

UC 5 F NPV1

NPV2
G ~8!

NPV2 5 (
n

1 F MWh

~11 m!nG. ~9!

The overall objective is to minimize unit cost,UC.
The range of variation of the eight variables are shown in

Table 1.

3. THE STRUCTURED GENETIC ALGORITHM

Previous research concerning the manipulation of inter-
related discrete and continuous design variables using evo-

lutionary techniques is evident within the engineering struc-
tural optimization community. For example, the develop-
ment of parallel strategies for large mixed-integer structural
problems relating to multimember transmission and radio
towers~Cai & Thierauf, 1996! utilizing evolution strategies
~Rechenburg, 1984!. This large mixed-integer problem is
decomposed into two subproblems consisting of either dis-
crete or continuous variables and appropriate information
exchange between the two domains is introduced. This two-
stage approach relating to the geometrical layout and the
sizing of truss members has also been investigated utilizing
genetic algorithms with applications to trussed-beam roofs
and the design of cable-stayed bridges~Jenkins, 1991!. Hy-
brid strategies involving a GA search for optimal discrete
geometries and a logic-based approach to determine opti-
mum member sizing were introduced by Koumousis and
Georgiou~1994!, whereas Hajela et al.~1992! adopt a two-
stage, constraint relaxation approach. Later work maintains
a two-stage approach~1995! involving an initial topologi-
cal design for kinematic stability requirements followed by
an optimization for response constraints. Leite and Topping
have proposed an alternative approach first utilising a sim-
ulated annealing algorithm to search the space of possible
topological solutions whilst avoiding the generation and de-
velopment of non-feasible geometries~Leite, 1996!.

Fig. 3. Chromosome representation.
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These techniques are primarily sequential in nature, first ad-
dressing the discrete space before subsequently searching the
continuous space relevant to the identified optimal configu-
ration. The problem domains largely concern routine design
utilizing well-defined structural models to provide a mea-
sure of relative fitness for each candidate solution. In addi-
tion, the continuous design spaces tend to relate to member
sizing and, although some difference in the upper and lower
bounds may exist, the diversity of the different continuous sets
of Figure 1 is not evidenced. To achieve the desired concur-
rent search of the discrete and continuous spaces, a number
of design grammar representations have therefore been in-
vestigated~e.g., Antonisse, 1991; Dasgupta, 1992b; Koza,
1992, 1994; Gero, 1994!. The fixed-length structure and def-
inition of the hydropower design hierarchy does not require
the flexibility and variable length representations of the ge-
neticprogrammingparadigm, thuspreviousexperiencewithin
the Center initially led to the incorporation of the Structured
Genetic Algorithm~stGA! ~Dasgupta & MacGregor, 1992a,
1992b, 1994! as an appropriate starting point for the devel-
opment of a suitable global search paradigm. The prelimi-
nary design models introduced in the previous section have
therefore been integrated with an stGA. The stGAallows pa-
rameters defining the characteristics of each site to be en-
coded in thesamechromosomestring.Controllingparameters,
relating to site, mode of operation, and dam type then “switch
on” the relevant parameters within the chromosome string,
which relate to the appropriate configuration. The “live” pa-
rameters are subsequently passed to the design models. Other
parameters remain dormant within the string unless acti-
vated in a later population as a result of crossover or random
mutation. This process eliminates the possibility of nonfea-
sible parameter combinations being passed to the mathemat-
ical model. The chromosome structure for the hydropower
system is shown in Figure 3. The stGA is therefore defining
the hierarchical structure consisting of both discrete vari-
ables~i.e., site, mode of operation, and dam and material
types!, which henceforth shall be referred to as setAand con-
tinuous variables~dam height, tunnel length, powerhouse
depth, flow-rate, etc.!, set B, as shown in Figure 1. Tradition-
ally, such a design hierarchy would be decomposed to re-
duce dimensionality and allow search to take place within an

extremely limited, but manageable, design space. The objec-
tive of the initial research is to achieve concurrent process-
ing of the hierarchical levels by utilizing the nonlinear search
capabilities of the stGA.

The initial choice of the stGA was based upon the results
from other research within the Plymouth Engineering De-
sign Centre relating to the algorithm’s utilization for the op-
timization of finite impulse response~FIR! digital filters
~Wade et al., 1994; Roberts & Wade, 1994!. This work in-
vestigated the utility of the stGA for the concurrent manip-
ulation of discrete parameters relating to primitive filter type,
delay information, and coefficient addresses within a three-
layer representation of the FIR filters. Further work in the
area relates to the use of the stGA for geometry-type repre-
sentation in the application of genetic algorithms to cooling
hole geometry design of gas turbine blades~Roy et al., 1996!.
Some significant success has been achieved in these do-
mains although stGA utilization has so far been restricted to
problems requiring few levels of representation.

3.1. Binary mapping

The initial stGA implementation utilized a binary represen-
tation of the design parameters~Parmee, 1995!. However,
this representation immediately presented problems in terms
of the probabilities of mutation and crossover being di-
rectly related to the length of the binary representation of
each parameter. The combination of simple binary switches
~i.e., dam type—embankment or mass concrete!, multiple-
option discrete parameters~i.e., site!, and the continuous vari-
ables~e.g., tunnel length! results in differing orders of binary
representation. The simple design switches can be repre-
sented by a single binary digit, whereas discrete multiple
options must be represented by an appropriate binary order,
the decoded value of which must then be suitably scaled to
provide the necessary integers. The order of the binary rep-
resentation of the continuous variables depends upon the
required parameter resolution but is unlikely to be less than
five and in the research described here a six-digit binary
representation has been used. We therefore have a chromo-
some string consisting of binary encodings of different or-
der for each parameter type. The probability of parameter

Table 1. Variable parameter ranges

Site 1 2 3 4 5

Modes of operation 2 2 2 2 2
Dam types 2 2 2 2 2
Tunnel length 0–2000 m 0–2000 m 0–2000 m 0–2000 m 0–2000 m
Powerhouse depth 0–100 m 0–50 m 0–150 m 0–125 m 0–100 m
Dam height 0.8–1 Vd* 0.7–0.95 Vd 0.6–0.85 Vd 0.8–1 Vd 0.8–1 Vd
Generation period 4–10 hours 5–10 hours 5–12 hours 4–9 hours 5–10 hours
Material type 3 3 3 3 3

*Vd 5 Valley depth.
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disruption from either random mutation or crossover siting
is therefore significantly greater for higher order encodings
than for the single binary digit representations.

This problem is addressed by introducing a weighting to
each binary digit: that is,

Wb 5 ~~Omax2 Omin! 1 1!/~~Ob 2 Omin!! 1 1!,

where

Wb 5 the weighting applied to the binary digit,

Ob 5 the order of the binary representation of the pa-
rameter to which the digit belongs,

Omin 5 the order of the minimum length binary repre-
sentation, and

Omax5 the order of the maximum length binary repre-
sentation.

~where “order” defines the number of binary digits describ-
ing a parameter!.

Having established a weighted population of binary dig-
its Roulette Wheel selection~Goldberg, 1989! can be im-
plemented to select those to be mutated, that is, the larger
the weighted value of the gene the greater the probability of
selection for mutation. Another factor to be taken into con-
sideration, however, is the binary representation of the
multiple-option discrete parameters~i.e., site and material
type! and problems associated with the scaling of the de-
coded values to ensure that each integer describing site0
material type has the same probability of selection.

Chromosome length is also a cause for concern. The sim-
ple system is described by eight variables: Site, Mode of
Operation, Dam Type, Dam Height, Powerhouse Depth,
Generation Period, Tunnel Length, and Material Type. How-
ever, these parameters must be represented, where appro-
priate, for each of the branches of the design hierarchy.
This results in a chromosome string containing 96 variable
parameters. Even by restricting continuous parameter res-
olution to a five-digit binary representation, a chromo-
some length of over 400 genes~binary digits! is required
to maintain this basic system representation. It is envis-
aged that a realistic preliminary design model of the sys-
tem will involve several more layers of discrete0continuous
variable parameters with a corresponding significant in-
crease in chromosome length.

All of the above factors indicate that a binary mapping
approach may not be the most appropriate. With this in mind,
a real-number representation has also been implemented.

3.2. Real number representation

An immediate benefit of real-number representation is a re-
duction in chromosome length, a significant reduction in
stGA coding complexity, and the elimination of problems

associated with mutation and crossover site probability plus
the elimination of decoding0scaling problems. Single-point
crossover is carried out at randomly selected sites located
between parameters and mutation is a simple perturbation
of randomly selected parameters between their upper and
lower bounds~Davis, 1991!.

3.3. Preliminary results

Initial runs of the binary stGA and the real-number stGA
show a rapid convergence upon relatively high-performance
solutions. Knowledge of the discontinuous nature~in terms
of discreteness! of the search space caused by the discrete
variable parameters introduces a degree of caution when con-
sidering these solutions as being globally optimal. Investi-
gation of the number of times the algorithm has visited each
of the discrete branches~20 in number! of the hierarchy dur-
ing preliminary testing reveals that little search across the
system has taken place. This is illustrated in Figure 4, which
shows the average results from 50 runs of a basic real-
number stGA with single-point crossover, 0.02 mutation
probability, roulette wheel selection, and an elitist strategy
~i.e., the best member of each population is always repro-
duced!. Each line represents a discrete path through the hi-
erarchy while the number of calls relates to the number of
times the paths have been visited over 50 generations with
a population size of 100 chromosomes.

With the basic representation of Figure 2 we could, of
course, decompose the hierarchy to some extent and initiate
independent GA searches within each branch. The overall
objective, however, is to develop a search methodology that
allows concurrent processing of far more complex hierar-
chies. Such systems will likely involve discrete branching

Fig. 4. Basic stGA approach. Each line represents one of the possible 20
paths created by the discrete parameter set A. The number of calls relates
to the number of times each discrete set has been passed to the mathemat-
ical model. The graph therefore illustrates the degree of search diversity0
exploration across the multilevel representation. Fitness values shown here
and in Figure 5 are relative to best fitness achieved in the GAANT appli-
cation of Figure 11. This fitness relates directly to the minimization of unit
cost of power output of the system as described in Section 2.1.
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below levels described by continuous variables. The intro-
duction of independent GA search along selected branches
will rapidly become nonfeasible unless we return to the tra-
ditional approach of decomposition and subsequent search
of limited regions.

The development of suitable mutation regimes to ensure
that the discrete elements of the hierarchy have a sufficient
probability of mutation has been necessary to allow an ac-
ceptable degree of investigation of the lower-level vari-
ables. This has been achieved by assigning independent
variable mutation probabilities to the high-level discrete vari-
ables~Set A!. A uniform mutation probability is applied to
the remaining continuous parameters~Set B!. Typically a
mutation probability of 0.2 that has been applied to set A,
while a mutation rate of 0.02 has been uniformly applied to
the remaining continuous parameters~set B! ~Parmee, 1995!.
Elitism is not implemented. The effect of this “variable mu-
tation” approach is to promote search across the hierarchy
with search effort significantly increased along each of the
discrete paths and improved solutions obtained from the ma-
jority of the 20 possible system configurations. The optimal
solution of Figure 4 is not equalled, however, and so a hy-
brid approach has been implemented. In this case, varying
mutation~no elitism! is implemented for the first 25 gener-
ations at which point uniform mutation plus elitism takes
over for a further 25 generations. The results from the hy-
brid approach are shown in Figure 5.

The results shown represent averages from 50 runs of the
stGA, each run commencing from a different point. Popu-
lation size equals 100 chromosomes and single-point cross-
over with a probability of 0.6 with roulette wheel selection
was implemented.

3.4. Discussion of preliminary results

It is apparent from the graph of Figure 4 that although a
high-performance solution has been achieved, little search
across the design hierarchy has taken place. On average

10% of the paths had not been visited at all during each
run of the uniform mutation1 elitism stGA. Confidence
in this “best” solution actually representing the global op-
timum must therefore be low especially when one consid-
ers the discontinuous nature~in terms of discreteness! of
the search space. We must also consider the requirements
of the engineer. It is suggested that the identification of a
single optimum solution would not be considered satisfac-
tory by the designer during these early stages of the design
process. More information would be required concerning
the performance of various configurations within other sites
to instill confidence and to allow other considerations to
be taken into account. It is likely that various objectives
exist in addition to the minimization of unit energy cost.
Criteria, such as site and design preferences, construction
aspects, plant and personnel availability and seasonal site
conditions, may have to be considered. The stGA tool must
therefore be utilized in a decision support manner and in
this respect must provide multiple high-performance solu-
tions from disparate regions of the hierarchy. Another fac-
tor here relates to confidence in available data—how valid
is a single optimum solution where uncertainty exists con-
cerning the validity of currently available site data?

The “variable mutation” approach results in a diverse
search process where a much higher proportion of the de-
sign hierarchy has been visited and a number of high-
performance solutions have been located but the optimal
solution of Figure 4 is not identified. The introduction of
the hybrid approach achieves a diverse search across the
hierarchy, while also resulting in the identification of better
performing solutions than those of Figure 4. Although the
results show that it is possible to establish a diverse search
across a complex design hierarchy using an stGA and ap-
propriate mutation regimes, the performance of this ap-
proach for a more complex structure is not known. It is
apparent that an alternative approach with the basic design
hierarchy presented here would be to carry out 20 indepen-
dent searches along each of the discrete paths.Although time-
consuming, this would provide optimal solutions across the
entire structure. However, it is envisaged that to develop a
meaningful system model, a more complex hierarchy will
be required involving an increased number of layers and
significantly more variable parameters. This will eliminate
the opportunity for decomposition and independent search.

These initial results show that the appropriate utilization
of the Structured Genetic Algorithm can:

• provide a single high-performance solution from the
design hierarchy described in the text within 50 gen-
erations.

• provide multiple high-performance solutions from the
same hierarchy within 50 generations.

In all cases a real-number representation of the parameters
appears to be adequate and is far less complex than a binary
mapping.Fig. 5. Hybrid mutation strategy approach.
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3.5. Deficiencies of the STGA and mutation
strategies

For the strategies so far discussed, crossover can be poten-
tially disruptive to the desired formation of high-performance
parameter sets particularly in the earlier generations. A high
diversity of system configuration described by the three main
discrete parameters~set A! in early generations leads to a
high level of crossover of the continuous variables~set B!
between differing configurations. This leaves little oppor-
tunity for the evolution of better continuous variable sets
for any particular discrete configuration. Crossover merely
perturbs either A or B depending upon the location of the
crossover site with little relevant improvement in the con-
tinuous variables when related to a particular site, mode of
operation, or dam type. The situation improves as a degree
of convergence becomes apparent. The probability of cross-
over between “like” configurations then increases and there
is therefore an increased opportunity for an overall relevant
improvement in parameter set B. This represents a serious
problem in that the opportunities for premature conver-
gence are prevalent. The initial hydropower hierarchy is sim-
ple and a significant increase in complexity will result from
further development. This is bound to involve additional sets
of discrete parameters at lower levels of the hierarchy, which
will likely exacerbate the problem and increase the proba-
bility of premature convergence.

Another area for concern is the inherent parameter re-
dundancy within each of the stGA’s parameter strings. To
prevent the generation of nonfeasible~lethal! parameter
combinations, it is necessary to include parameter repre-
sentations for each of the discrete design options. This re-
quires a string containing 96 parameters of which only 8
~i.e., those relevant to the discrete configuration! will be
passed to the design model as shown in Figure 2. A high
proportion of crossover and mutation could therefore be
ineffective unless restricted to those areas of the string cur-
rently active. Added to this are the problems associated
with the excessive number of parameters required in an
stGA representation, as the hierarchy is developed and prob-
lem complexity increases.

4. SIMPLIFYING THE PARAMETER
REPRESENTATION

The ideal representation would be a strategy that ensures
the avoidance of lethal parameter sets, while allowing the
information exchange evident during traditional crossover.
Crossover could be restricted to parameter strings that are
identical in terms of the discrete parameter set~i.e., set A!.
This would allow an exchange of information relevant to a
particular design configuration and the subsequent evolu-
tion of that configuration in terms of the continuous vari-
ables~set B!, while also allowing a straightforward eight-
parameter chromosome representation.

However, this crossing of “like” configurations in terms
of the discrete parameters does not allow their perturbation

and their subsequent improvement. This problem could be
addressed by introducing the variable mutation probability
approach described earlier, that is, introduce a high muta-
tion probability in set A and a lower probability to set B.
The overall strategy would therefore involve two individ-
ual search agents that are operating autonomously, that is, a
simple hill climber manipulating the discrete set A and a
genetic algorithm manipulating the continuous set B. Com-
munication, however, is inherent and exists at a lower level
between the individual chromosomes of the continuous
set B via information exchange during crossover and at a
higher level between the two search agents via the evalua-
tion of each string and subsequent selection using roulette
wheel ~Goldberg, 1989!. An improvement upon this ap-
proach can be achieved by introducing lower-level infor-
mation exchange between the discrete sets, A, of each
generation by introducing elements of an ant colony meta-
phor for the manipulation of the discrete set. This introduc-
tion forms the basis of the GAANT algorithm.

4.1. The ant colony algorithm

The ant colony algorithm~ANT ! is analogous to the for-
aging strategies of ant colonies~Colorni et al., 1991, 1992;
Bilchev & Parmee, 1995, 1996!. The technique relies upon
multiagent cooperation to concentrate the search in those
areas where “food” is abundant. The amount of food avail-
able in this instance being related to the relative fitness of
the design solution as defined by the engineering system
model. The initial ant resource is initialized by generating
uniformly random starting directions from a virtual “nest,”
as shown in Figure 6. The parameter sets defining these
points are sent to the design model and the allocation of
further ant resource along each trail is proportional to the
relative fitness of the returned values from the design model
~Fig. 7!. A search radius,R, is defined, which determines
the maximum extent of the subspace to be considered in

Fig. 6. Random selection of initial search directions.
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each cycle. Directions are then randomly selected from each
initial point and further ant resource follows these direc-
tions in steps not greater than the radiusR. Each ant thus
defines a new point in the design space. Poorly perform-
ing trails are evaporated after some preset number of cy-
cles ~Fig. 8! and the ant resource from these trails is
reallocated around the better performing trails. In its sim-
plest form, ANT could be considered to represent a multi-
start hillclimber with communication between each element.
It is this communication aspect that prevents rapid conver-
gence upon local optima and provides the basis for the al-
gorithm’s search capabilities, which result in the
identification of high-performance solutions.

4.2. Gaant

Two particular Ant Colony “operators” are of interest:

• fitness proportionate distribution : similar to fitness
proportionate reproduction—in this case, the number

of software “ants” distributed down each “trail” is pro-
portionate to the relative strength~i.e., fitness! of that
trail. Each discrete path of the hierarchy represents a
possible “trail.”

• evaporation: if the strength of a particular “trail” does
not improve over a preset number of iterations, then
that “trail” is evaporated and the released “ant” re-
source is redistributed around the better “trails.”

The concepts supporting these two operations have been
adapted slightly and integrated with the manipulation of
the discrete parameter set. The flow chart of Figure 9 il-
lustrates this integration. To further explain the process,
the values of set A are randomly selected in generation 1
and combined with a randomly selected population of
set B. The initial population of discrete parameters sur-
vives for a preset number of generations~n!, while the as-

Fig. 7. Fitness proportionate distribution of nest resource.

Fig. 8. Evaporation of poor performance trails. Fig. 9. GAANT flow chart.
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sociated continuous parameters are manipulated by a simple
GA. A combination of like parameter sets during cross-
over and reproduction is controlled by means of the speci-
ation of each chromosome in terms of like configurations
of the discrete parameters. Crossover then only occurs be-
tween members of the same species. Evolution of set B
continues over each generation, whereas improvements in
set A are achieved as follows: The average fitness ofeach
chromosome is calculated overn generations then com-
pared to the average fitness of the chromosomes of thenth
generation. Evaporation, duplication and perturbation of the
discrete parameter sets is then established in accordance
with their relative fitness~rfit !, which is represented in
terms of their average fitness~ fitn! overn generations and
the average fitness of members of thenth generation~ fit-
all !, that is, rfit 5 fitn/fitall . This allows the following
communication:

• low-level communication between the chromosomes of
set B resulting in the evolution of the continuous pa-
rameters within the bounds imposed by their discrete
system configuration;

• low-level communication everynth generation be-
tween the chromosome sets representing the discrete
parameters, which results in their gradual improve-
ment; and

• high-level communication between the two agents in
the form of relative fitness of an entire string overn
generations.

Evaporation, duplication, and perturbation are controlled at
the nth generations by introducing two thresholdsRf1 and
Rf2 ~Fig. 10!. If rfit is less thanRf1, then the trail is evap-
orated, that is, the chromosome is not reproduced. Ifrfit is
greater thanRf2, then the trail is maintained~i.e., the chro-
mosome is reproduced! and further resource is allocated from
the evaporated trails~i.e., the population deficit created by
trail evaporation is made good by randomly selecting chro-
mosomes from those with a fitness higher thanRf2!. Fi-

nally, if rfit lies betweenRf1 andRf2, the discrete parameters
are randomly perturbed to create a new trail.

5. RESULTS AND DISCUSSION

Initial results displayed in the same format as Figures 4 and
5 are shown in Figure 11 and should be compared to the
hybrid stGA results of Figure 5. All results are based upon
a population size of 100 chromosomes withn 5 5 genera-
tions; Rf1 5 20.75 andRf2 5 0.75 ~in terms of standard
deviations from the mean!. Table 2 shows a more detailed
comparison between the dual mutation regime approach and
GAANT. Initial results illustrate the change in performance
related to the overall number of calls to the fitness function
and the setting ofn. Fitness is shown relative to that of the
initial GAANT implementation withn 5 5 and number of
calls5 2500. The results are averaged from 100 runs of the
various algorithms. Standard deviation~SD! of the number
of calls along the best path and of the fitness along that path
over the 100 runs is shown. Table 2 also shows the number
of times individual runs have failed to visit paths and the

Fig. 10. Scaling of rfit and introduction of Rf thresholds.

Fig. 11. GAANT implementation.
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worst case showing the max number of “misses” related to
a particular path over the 100 runs.

It is apparent from Figures 5 and 11 and from the num-
ber of solutions greater than 0.8 in Table 2 that the GAANT
approach can provide improved performance in terms of
maximum fitness across a larger number of paths than the
dual mutation0stGA approach. The standard deviation~SD!
of the calls and of the fitness along the best path has been
calculated to give an indication of the robustness of the
two approaches. The very highSD of the hybrid stGA ap-
proach prompted further investigation of the results that
showed a far from normal distribution, which indicates a
lack of robustness. This is further supported by the num-
ber of paths that are not visited over the 100 generations
of the test runs. The GAANT approach, however, shows
far greater stability from the standard deviations and the
complete cover of the 20 discrete paths. Although both of
the techniques finally converge upon the same configura-
tion ~i.e., best discrete path!, the GAANT solution from
that path is significantly better than that found by the stGA.

Other aspects currently under investigation include the
values ofRf1 andRf2 and the redistribution and evaporation
strategies of the ant colony manipulation of the discrete pa-
rameters. Extensive experimentation is planned based upon
a number of test hierarchies of varying complexity.

6. FURTHER WORK

The research has led to the application of GAANT to more
complex structures relating to the optimization of thermal
power system configuration. In this case the feed-heater lay-
out of the steam cycle of nuclear power plant has been ad-
dressed~Chen & Parmee, 1997!. Discrete variables relate
to steam tapping points and the number and configuration
of the feed heaters. Continuous variables include control set-
tings and system component dimensions. Preliminary re-
sults show a significant reduction in design lead time in
addition to significant increases in predicted power output
~circa 0.3%!. The integration of GAANT and GAANT vari-

ants has resulted in totally machine-based design process-
ing that has replaced an engineer0machine based process.
Overall design time has been reduced by approximately 75%.
This further work also indicates the generic applicability of
the strategies. Research is now continuing by addressing
more fundamental issues relating to the structure of the
GAANT strategy, while also improving the generic aspects
through the introduction of the technique and variations to
a wide range of engineering problem domains.

The concepts behind the GAANT representation have also
been applied to the manipulation of variable-length multi-
level mathematical function representations. The objective
here has been to improve the calibration of preliminary de-
sign models to empiric data or to results from a more in-
depth analysis~FEAor CFD!. This is achieved by identifying
those areas of coding where insufficient knowledge or the re-
quirement of keeping computational expense to a minimum
has resulted in unavoidable function approximation. A con-
tributing factor may be the inclusion of empirically derived
coefficients~i.e., discharge, drag, etc.!. The objective is to
evolve improved coding within these areas to achieve a bet-
ter calibration with existing empiric data or results generated
from a more in-depth, computationally expensive analysis. If
this is possible, then the element of associated risk would be
correspondingly lessened,while rapiddesign iterationcanstill
be achieved utilizing these simple, but more representative
models. Initial research indicated that adaptive techniques and
genetic programming~GP! ~Koza, 1992,1994! when uti-
lised for system identification can achieve these objectives to
a limited extent. It soon became apparent that the problems
associated with the crossover of continuous coefficients be-
tween differing discrete functional structures causes similar
problems to those identified in Section 3.5 relating to the suc-
cessful crossover of useful information within the fixed-
length design hierarchies.As previously noted, the exchange
of information fromcontinuousdesignspaces tounrelateddis-
crete design configurations does not promote the formation
of high-performance variable parameter combinations. This
semantic disruption problem has been recognized within the

Table 2. Comparison of stGA and GAANT approaches

Hybrid stGA Approach GAANT Implementation

n 5 5 n 5 10

2500 Calls 5000 Calls 2500 Calls 5000 Calls 5000 Calls 7500 Calls

Max solution 0.95 0.97 1 1.01 1 1.01
No. of solutions. 0.9 3 3 3 3 3 3
No. of solutions. 0.8 5 5 7 9 9 10
No. of calls along best path 611 1727 711 1277 1287 2545
SDof No. of calls~Best path! 580 1706 207 460 413 738
SDof Fitness~Best path! 0.21 0.26 0.05 0.05 0.05 0.04
No. of missed paths 93 78 0 0 0 0
Max No. of misses of any path 20 26 0 0 0 0
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GPcommunity~Iba et al., 1996!. The success of the GAANT
strategy has stimulated experimentation to assess the ben-
efits of a similar approach to the manipulation of the variable-
length hierarchies describing the mathematical functions and
engineering representations. Some significant preliminary re-
sults have been achieved~Watson & Parmee, 1997!. The in-
dication is that further development of the GAANT concepts
and their integration with GP techniques for the manipula-
tion of variable-length representations has some consider-
able potential.

7. CONCLUSION

A comparison of the GAANT approach with the previous
work involving the stGA shows that the strategy can find
better solutions for a greater number of discrete configura-
tions. Diversity of search is thus maintained and with fewer
calls to the model in some cases~Fig. 11!. The GAANT
technique is also exhibiting a much greater degree of ro-
bustness than the stGA approach, which is of significant im-
portance in terms of generic applicability of the strategy.

Of equal if not more significance during these early stages
of development is that improvement has been achieved using
a basic chromosomal representation of the eight variable pa-
rameters that describe the system. The extensive chromo-
somes of the stGA are no longer required, thus problems
concerning redundancy and complexity of implementation
can be avoided. This allows us to further develop the sys-
tem hierarchy to achieve a more realistic preliminary de-
sign model involving further levels comprising of discrete
and continuous variable sets. The complexity of the stGA
representation would have seriously restricted such a devel-
opment. The research has therefore established an alterna-
tive strategy that can maintain sufficient search diversity and
improve results, while also allowing the continuation of over-
all system development. In this respect it can be considered
to represent a significant contribution to the successful in-
tegration of adaptive search with whole-system design.

The results represent an initial basic implementation of
the GAANT algorithm. The implementation of an experi-
mental strategy to investigate the main characteristics of the
dual-agent approach is likely to result in further improve-
ments in performance. The generic aspects of the work must
be considered. The GAANT approach is proving to be ap-
plicable to a range of whole-system design problems and its
potential could therefore be considerable within the early
stages of design. Current work investigating the integration
of these strategies with thermal system plant configuration
~Section 6! is indicating that application of the algorithm is
generic. Significant improvement in predicted power out-
put and design lead time is being achieved by manipulating
the whole plant models utilizing basic variations of the
GAANT algorithm. The indication is that the current dual
agent philosophy will provide a basis for further develop-
ment. Initial application to the thermal system problem would

not have been possible without the simplification of the chro-
mosomal representation offered by GAANT.

With regard to the hydropower system application, sig-
nificant improvements and additions to the model are re-
quired to provide an acceptable design tool. Areas that must
be addressed include: hydrological and geological consid-
erations; river diversion; hydraulic characteristics; storage;
spillway requirements; turbomachinery, generator sets, and
transmission; and more definitive modelling of the water-
retaining structures. However, it must be understood that
the resulting design tool is for use during the preliminary
stages of the design process~i.e., prefeasibility0bid stage!.
The resulting mathematical representations need not be
overly complex for reasons explained previously. In its
present form, the GA-driven model may provide some rapid
insight relating to site potential in the early days of the
project, but it must be considered illustrative only in its
present form.

The computational expense associated with the GAANT
manipulation of the hydropower model is low. Runs involv-
ing 2500 calls to the evaluation function are completed, on
average, within a 3-min period on a two-processor, SPARC
10 workstation. Even considering the basic hierarchy used
here, the GAANT processing of the problem would far out-
perform a human designer using either computer-supported
heuristic techniques or more deterministic gradient-based
optimization tools to independently search each of the con-
tinuous variable domains related to the 20 possible discrete
design configurations of this illustrative hydropower hier-
archy. It could be argued that, in this case, an experienced
engineer could eliminate many of the discrete paths with
high confidence. However, the purpose of this initial work
has been to establish the strategy using a relatively simplis-
tic test case. The results show that concurrent processing of
the different levels of the hierarchy can be achieved and that
diverse high-performance solutions can be identified. The
rapid, exploratory aspects of the strategy have therefore been
illustrated. These aspects have been further proven from
application in the thermal system domain introduced in
Section 6.

The intention has been to develop a strategy that sup-
ports exploration during the early stages of the design of a
large-scale system, where poorly defined initial data and un-
certainty are major factors. The research has established such
a strategy and therefore offers an exploratory, decision sup-
port environment that could be of major benefit to such de-
sign domains. It is suggested that large-scale civil engineering
certainly falls into this category due to the interface with
natural systems often remote from the design office. How-
ever, recent research involving preliminary airframe design
is illustrating similar characteristics in this case in terms of
long-range forecasting of military airframe requirements.
Work is now proceeding in this area and the GAANT ap-
proach will likely play a fundamental role. With respect to
the far bettter defined thermal system design problem,
GAANT has offered the means to allow extensive experi-
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mentation using the system simulation software, which has
resulted in the discovery of novel feed heater layouts. Such
experimentation0exploration would not have taken place if
extensive man–machine involvement had been required.

A criticism of the GAANT approach could relate to the
complexity of the disjoint continuous spaces. Currently lit-
tle more than a simple genetic algorithm~SGA! is being
utilized to search these domains and future work must ad-
dress the utilization of higher performance GAs such as the
CHC ~Eshelman, 1991! or Fast Breeder~Muhlenbeim &
Schlierkamp-Voosen, 1993! to better handle problems as-
sociated with deceptive fitness landscapes, high modality,
and heavy constraint. This is being addressed in current
PEDC research in this area. However, the utilization of the
SGA is justified in this preliminary investigation and initial
establishment of the strategy. Consideration must be given
to the validity of the design model, however. Extensive search
to locate an elusive peak or trough could be considered waste-
ful if the probability of that solution, being erroneous under
more detailed analysis, is high.

It should be stressed that the utilization of the explor-
atory capabilities of GAANT, when uncertainty is preva-
lent, should involve a high degree of engineer interaction.
In this manner, designer intuition and problem-specific
knowledge can be applied to locally optimal solutions that
well-reasoned decisions concerning future design direction
can be made. Again, confidence factors relating to model
resolution must be considered.

There is now little reason to believe that further modi-
fication plus the introduction of other, perhaps more ap-
propriate, adaptive search paradigms will not result in
satisfactory diverse search across more complex hierar-
chies. The exploratory aspects of the approach are now well-
founded and it has been shown that these will allow the
engineer to explore regions of the design space that are
currently beyond reach within the constraints imposed re-
lating to budget and available design time.

ACKNOWLEDGMENTS

The Plymouth Engineering Design Centre is one of six EPSRC
Engineering Design Centres that have been established in recent
years at various U.K. academic institutions. Knight Piesold and
Partners, an international civil and environmental consultancy based
in Ashford, Kent has provided support in the form of discussion,
advice, and cost data for the research described in the paper. The
authors thank Knight Piesold and EPSRC for their support of our
research activities.

REFERENCES

Antonisse, HJ.~1991!. A grammar based genetic algorithm. InFounda-
tions of Genetic Algorithms~Rawlins G.J.E., Ed.!, pp. 193–204. Mor-
gan Kaufman, Los Altos, California.

Bilchev, G., & Parmee, I.C.~1995!. The ant colony metaphor for searching
continuous design spaces.Proc. AISB Workshop on Evolutionary Com-
puting; Lecture Notes in Computer Science 993, pp. 25–39. Springer-
Verlag, London.

Bilchev, G., & Parmee, I.C.~1996!. Constrained optimisation with an ant
colony search model.Proc. 2nd Int. Conf. on Adaptive Computing in
Eng. Design and Control, 145–151.

Cai, J., & Thierauf, G.~1996!. Structural optimisation of a steel transmis-
sion tower using parallel evolution strategy.Proc. Adaptive Comput-
ing in Eng. Design and Control ’96. 18–25.

Chen, K., Parmee, I.C., & Gane, C.R.~1997!. Dual mutation strategies for
mixed-integer optimisation in power station design.Proc. IEEE Int.
Conf. Evolutionary Computation385–390.

Colorni, A., Dorigo, M., & Manniezzo, V.~1991!. Distributed optimisa-
tion by ant colonies.Proc. Eur. Conf. Artificial Life, 134–142.

Colorni, A., Dorigo, M., & Maniezzo, V.~1992!. An investigation of some
properties of the ant algorithm.Proc. PPSN ’92, pp. 509–520. Elsevier
Publishing, New York.

Dasgupta, D., & MacGregor, D.~1992a). Designing application-specific
neural networks using the structured genetic algorithm.Proc. Int. Work-
shop on Combination of Genetic Algorithms and Neural Networks, pp.
87–96. IEEE Computer Society Press.

Dasgupta, D., & MacGregor, D.~1992b). Nonstationary function optimi-
sation using the structured genetic algorithm.Proc. Second Int. Conf.
Parallel Problem Solving From Nature (PPSN), pp. 145–154. Springer
Verlag, Brussels.

Dasgupta, D., & MacGregor, D.~1994!. A more biologically motivated
genetic algorithm: The model and some results.Cybern. Sys.: An Int.
J. 25(3), 447–469.

Davis, L. ~1991!. Handbook of genetic algorithms. Van Nostrand Rein-
hold, New York.

Eshelman, L.J.~1991!. The CHC adaptive search algorithm: How to have
safe search when engaging in nontraditional genetic recombination. In
Foundations of Genetic Algorithms and Classifier Systems, ~Rawlins,
G.J.E., Ed!, pp. 265–283. Morgan Kaufmann, San Mateo, California.

Gero, J.S.~1994!. Evolutionary learning of novel grammars for design im-
provement.AIEDAM 8, 83–94.

Goldberg, D.E.~1989!. Genetic algorithms in search, optimisation & ma-
chine learning. Addison-Wesley Publishing Co., Reading, Massachu-
setts.

Hajela, P., Lee, E., & Lin C.Y.~1992!. Genetic search strategies in multi-
criterion optimal design.Structural Optimisation 4, 99–107.

Hajela, P., & Lee E.~1995!. Genetic algorithms in truss topological opti-
misation.J. Solids Structures 32(22), 3341–3357.

Holland, J.~1975!. Adaptation in natural and artificial systems. The Uni-
versity of Michigan Press, Ann Arbor.

Iba, H., Degaris, H., & Sato, T.~1996!. A numerical approach to genetic
programming for systems identification.J. Evolutionary Computation
3(4), 417–452.

Jenkins, W.M.~1991!. Towards structural optimisation via the genetic al-
gorithm.Computers and Structures 40(5), 1321–1327.

Koumousis, V.K., & Georgiou P.G.~1994!. Genetic algorithms in discrete
optimisation of steel truss roofs.ASCE J. Computing in Civil Eng. 8(3).

Koza, J.~1992!. Genetic programming. MIT Press, Cambridge.
Koza, J.~1994!. Genetic programming II. MIT Press, Cambridge.
Leite, J.P.B.~1996!. Parallel adaptive search techniques for structural op-

timisation. PhD Thesis. Dept. of Mechanical and Chemical Engineer-
ing, Heriot-Watt University, Edinburgh, UK.

Muhlenbeim, H., & Schlierkamp-Voosen, D.~1993!. Predictive models for
the breeder genetic algorithm.Evolutionary Computation 1(1), 25–49.

Parmee, I.C.~1995!. Diverse evolutionary search for preliminary whole
system design.Proc. 4th Int. Conf. AI in Civil and Structural Eng, 199–
204.

Parmee, I.C.~1996!. The development of a dual-agent strategy for effi-
cient search across whole system engineering design hierarchies.Lec-
ture Notes in Computer Science 1141, Springer-Verlag, ISBN 3 540
61723 X, pp. 523–532.

Parmee, I.C., Gane, C., Donne, M., & Chen, K.~1996!. Genetic strategies
for the design and optimal operation of thermal systems.Proc. Fourth
Eur. Congress on Intelligent Techniques and Soft Computing, 419–
423.

Rechenburg, I.~1984!. The evolution strategy: A mathematical model of
Darwinian evolution. InSynergetics: From Microscopic to Macro-
scopic Order, ~Frehlend E., Ed.!, Vol. 22, pp. 122–132. Springer Series
in Synergetics, New York.

Roberts, A., & Wade, G.~1994!. Optimisation of finite wordlength filters
using a genetic algorithm.Proc. 2nd Int. Conf. Adaptive Computing in
Eng. Design and Control.

444 I.C. Parmee

https://doi.org/10.1017/S0890060498125039 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498125039


Roy, R., Parmee, I.C., & Purchase, G.~1996!. Integrating the genetic al-
gorithm with the preliminary design of gas turbine cooling systems.
Proc. 2nd Int. Conf. Adaptive Computing in Eng. Design and Control,
228–235.

Wade, G., Roberts, A., & Williams G.~1994!. Multiplier-less FIR filter
design using a genetic algorithm.IEE Proc.—Vision and Signal Pro-
cessing 141(3), 175–180.

Watson, A., & Parmee, I.C.~1997!. Steady-state genetic programming with
constrained complexity crossover using species sub-populations.Proc.
Seventh Int. Conf. Genetic Algorithms, 315–321.

I.C. Parmeehas been working in the field of evolutionary
and adaptive computing since 1988. His particular inter-

ests involve the integration of such techniques with cur-
rent design practice and the development of cooperative
evolutionary0adaptive strategies that support and enhance
engineering design abilities. He is Director of the Ply-
mouth Engineering Design Centre at the University of Ply-
mouth and coordinates a research team, all of whom are
involved in evolutionary0adaptive design research. The team
collaborates closely with industry in fields ranging from
large-scale civil engineering to aerospace and electronic
design. Dr. Parmee has approximately 80 journal, confer-
ence, and book publications in this evolutionary design field
and is a Reader in evolutionary0adaptive computing in de-
sign and manufacture within the School of Computing.

Evolutionary strategies for whole system design 445

https://doi.org/10.1017/S0890060498125039 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060498125039

