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Abstract

Evolutionary and Adaptive strategiéES & AS) for diverse multilevel search across a preliminary, whole-system
design hierarchy defined by discrete and continuous variable parameters are described. Such strategies provide high-
level decision support when integrated with preliminary design software describing the major elements of an engineer-
ing system. Initial work involving a Structured Genetic AlgoritisiGA) with appropriate mutation regimes to encourage
search diversity is described and preliminary results are presented. The shortcomings of the stGA approach are iden-
tified and alternative strategies are introduced. A dual agent stra@gnNT) involving elements of an ant colony

search and an evolutionary search concurrently manipulating the discrete and continuous variable parameter sets is
presented. Appropriate communication between the two search agents results in a more efficient search across the
hierarchy than that achieved by the stGA, while also simplifying the chromosomal representation. This simplification
allows the further development of the preliminary design hierarchy in terms of complexity. The technique therefore
represents a significant contribution to configuration design where multilevel, mixed diseti@uous parameter

design problems can be prevalent.

Keywords: Genetic Algorithms; Adaptive Search; Design Hierarchies; Whole System Design

1. INTRODUCTION gree of necessary assumption is therefore required and a
breadth-first approach is evident. The detail of any system
During the initial stages of a large-scale, engineering demodelling must be commensurate with the degree of con-
sign project the engineer will be presented with the task ofidence in the available data and it therefore follows that
identifying initial high-potential system configurations that caution must be exercised when interpreting the results from
best satisfy many performance criteria. Such criteria mayuch preliminary design tools. Engineering judgement based
be qualitative and quantitative in nature and will likely be upon problem-specific knowledge and an understanding of
ill-defined and either incomplete or over emphasized durthe shortfalls of the software plays a significant role.
ing these higher level stages of the design process. Design The hypothesis underlying the research described is that
at this stage is generally a multidisciplinary exercise requirduring these early stages of design, the engineer requires a
ing extensive cooperation of several groups with varyingflexible tool that will provide an efficient search of a high-
goals working concurrently within an uncertain and there-dimensional design space. The search will result in the iden-
fore high-risk design environment. tification of high-performance solutions from diverse regions
The research described in the paper is primarily conof a design hierarchy described by discrete design decisions
cerned with the feasibilif4bid stages of large-scale be- and continuous variables.
spoke design projects. These early stages are characterizedThe genetic algorithmiGA) (Holland, 1975; Goldberg,
by a high degree of uncertainty related to limited available1989 generation of a number of high-performance solu-
data and lack of definition in the initial design brief. A de- tions based upon quantitative criteria can provide sufficient
information for the engineer to form a qualitative judge-
) o ) ment. This benefits the significant requirement for caution
Reprint requests to: I.C. Parmee, Plymouth Engineering Design Centre L -
University of Plymouth, Drake Circus, Plymouth, PL4 8AA, Devon, UK. related to problem uncertainties and allows conflicting qual-
E-mail: iparmee@plymouth.ac.uk itative criteria to be taken into consideration. The selection
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of the most appropriate solutions or design region results imvailable design alternatives. This should result in the iden-
a significant reduction in the size of the design space antification of competitive solution domains that may have
subsequent concentration of further search in high potentidleen overlooked during the problem decomposition pro-
areas. The objective is not to locate the global optimum otesses of traditional heuristic design. A high degree of en-
the space described by the mathematical model but to selegtneer interaction is envisaged in order that qualitative
some local optima that best satisfies all current qualitativecriteria based upon previous design experience can be ap-
and quantitative criteria relating to the current design replied to local, high-performance solutions. Most impor-
quirements. The assessment, through designer interactidqantly the strategies will enable the engineer to rapidly
and off-line processing utilizing problem-specific knowl- survey the potential of diverse regions of a multilevel hi-
edge, of such solutions may lead to the recognition of operarchy. This offers an alternative to compromising the
timal design direction at that stage in terms of least risk andearch space potential by immediately returning to famil-
best performance. iar design configurations from previous studies, which may

The research therefore concerns the utilization of the GAesult in premature concentration of search effort and less
to achieve an efficient concurrent, multilevel search acrosspportunity for the discovery of innovative solutions.
hierarchical structures described by discrete and continu- The GA-based selection of the most appropriate solu-
ous variable parameters. This search should result in the idetions or design regions and subsequent off-line assessment
tification of high-performance solutions from diverse regionsand processing results in a significant reduction in the size
of such a hierarchy. The continuous variables are directlyof the design space and subsequent concentration of further
related to the differing system configurations described bysearch in the most appropriate areas. The research therefore
the selected discrete design options. Continuous design setencerns the utilisation of the GA to achieve an efficient
may therefore differ in terms of number of variables andconcurrent, multilevel search across hierarchical structures
their combination as illustrated by the simple hierarchicaldescribed by discrete and continuous variable parameters.
representation of Figure 1. This results in the creation oMuch of the initial research in this area involved the ma-
many continuous design spaces of differing character, sizeipulation of a design hierarchy for large-scale hydropower
and complexity, each dependent upon specific discrete desystemgParmee, 1995, 1996Fig. 2) and it is this domain
sign configurations. The requirement therefore is for a searcthat provides the case study for the following paper. An-
strategy that can initially maintain a diverse search acrossther similar hierarchy currently under investigation con-
the discrete elements of the hierarchy, while optimally sam<erns the steam cycle of thermal power generation plant,
pling the differing dependent continuous design sets. Thevhere the discrete elements relate to plant configuration and
initial objective is a rapid decomposition of the hierarchy continuous variables include dimensional parameters and
into a small number of high-performance configurationssystem control setting€Parmee et al., 1996; Chen et al.,
through the concurrent identification of high potential, di- 1997). The intention is that the strategies and techniques
verse design domains. described here should be generic in nature being applicable

The overall objective is the development of an explor-across a wide range of whole-system engineering design
atory, high-level, decision support tool, which will signif- problems.
icantly reduce lead times during this “whole-system” stage
of design, while allowing a more extensive search of the

2. THE HYDROPOWER SYSTEM

The paper illustrates the development of appropriate adap-
Al tive searchAS) strategies by concentrating upon the hier-

DISCRETE
DESIGN
OPTIONS
(setA) SITEL.....SITES
B(L.4) B(.4) B4 BU.4 B4 // ‘\
etc etc

CONTINUOUS
VARIABLES (Set B) M=Mode of operation
D=Dam type
\ V1=Tunnel length
. V2=Dam Height
A B cdefghkmn _chromosomal representation V3 = Power House Depth
V4= Material T
Set A SetB VI VS VLVZVIVS Vi..V4 V1.V3 VS = Period of Generation
Fig. 1. Simple hierarchy. Fig. 2. Basic hydropower design hierarchy.
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archy of Figure 2, which simply describes major element2.1. The model

of a large-scale hydropower system. In such a case, the d
sign team will initially be tasked with the identification of
high potential hydropower sites either within a particular
geographic region or within a specific river network. Al-
though a large number of potential sites may exist, engi

neering judgement based upon experience, knowledge, argds

basic analysis will eliminate the majority. However, a small
number of sites with differing topographic characteristics
will remain and further elimination becomes impossible
without a lower-level design and economic analysis to de
termine best configurations of the main structural element
of the hydropower system and appropriate operational cha®
acteristics.

At this prefeasibility stage of the design process, the en-
gineer will be working with limited data relating to ground
conditions, flow regimes, etc. Information concerning such
aspects will be arriving daily as teams carry out preliminary
surveys of the appropriate region. Economic analysis based
upon available data will be concurrently identifying the out-
put requirements and costs of the proposed system to estab-
lish the project’s viability against other power generation
development based upon alternative fuel sources. The pro-
cess is therefore initially characterized by a high degree of
uncertainty and much iteration based upon available data
and related necessary assumption. Iteration will continue un-
til the level of risk is sufficiently low for firm decisions to
be made concerning appropriate design directions. The de-
tail of the system modelling during these preliminary stages
must be commensurate with the degree of confidence in the
available data. Computational expense must be kept to an
acceptable level to allow rapid iteration and comparison of
results. The overall objective is to determine the “best” site
that, when combined with the related optimal overall sys-
tem configuration, will provide maximum power output at
minimum cost.

The establishment of the basic feasibility of such sys-
tems is a time-consuming and therefore costly process. The
degree of design iteration generally carried out in a trial-

%t the current state of development, the model of the hy-
dropower system must be regarded as illustrative as op-
posed to definitive. It is essential, initially, to determine the
feasibility of an efficient adaptive search across a highly
continuous search space described at differing levels by
iscrete and continuous variables. Research has concen-
trated upon the recognition of those characteristics that en-
able the search process to concurrently investigate diverse
regions of the design hierarchy. However, although not de-
;initive, the model represents practical design aspects of most
Of the major subsets of the overall system design. The sub-
sets described by the current model are:

e The SiteFive sites are considered each with differing

dimensional characteristics relating to idealized valley
cross-section and longitudinal valley sections. The lon-
gitudinal sections extend up to two kilometers down-
stream of the dam.

e Mode of OperationTwo distinct modes of operation are

considered: Baseload supply, where all of the available
flow is constantly utilized for power generation and peak
power supply, where generation is restricted to those pe-
riods providing an increased unit price. The peak power
option introduces afurther variable parametéteriod

of Generatior—which sets the number of hours of en-
ergy production per day. This parameter is only active
when the peak power option is selected. Annual energy
output is calculated from:

Baseload supplyyWh= 8760X Q; X Ph, X 9.81x 1073

(13
Tdf
Peak power suppiyWWh = 365X G_IQ X Ph; X Pf
X 9.81x 1073 (1b)

and-error manner under the guidance of domain experts coi!nere
sumes many person-hours. This is unsurprising when one MWh = Megawatt hours produced per annum,

considers a basic representation of the hierarchical struc-
ture of the hydropower problem as shown in Figure 2. This
simple hierarchy, although only involving a few of the main
elements of the system, already describes a complex over-
all design space of some differing site/system config-
urations. Traditionally the hierarchy would be decomposed
down to a level where the dimensionality is sufficiently low
to allow a degree of meaningful search. This approach se-

Q = flow rate at site,
Tdf = total daily flow available at sité,
Gp = total daily generation period at site
Ph = potential head at site and

Pf = unit price factor(circa 1.5.

verely compromises the design potential by restricting in-Peak power generation incurs cost penalties on pressure tun-
vestigation to local subsets of the design hierarchy that ar@iel construction, due to the necessary accommodation of
of a dimension that can be realistically investigated withinsignificantly increased flow rates. Peak energy output is in-
time and budget constraints. The research described in thgeased by the unit price factor to allow for the enhanced
following paper addresses this problem by investigating the/alue of power out.

utilization of AS techniques such as the GA to achieve an
efficient concurrent, multilevel search of these complete hi-
erarchical structures.
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available for the embankment dams resulting in differ-where

ing slope characteristics and varying dam volume. The k = factor relating to overall topology of each
embankment dam model takes into account type of ma- sitei and

terial and calculates dam volurfiEDv) based upon up-

stream and downstream slope and dam heigith). Pda0 Pdmin = upper and lower bounds of Powerhouse
The width of the dam coréEDw) remains constant for depth.

each site. It is assumed that the same material is us

e‘Phe upper and lower bounds of the powerhouse depth can
both upstream and downstream of the core; that is, PP P P

be considered to describe the constraints imposed by the
topological characteristics of each site and a trade-off is re-
quired between powerhouse construction costs, tunnel costs,
and potential head. Overall pressure tunnel cO8T) are
therefore calculated from:

W = b+ [ —EPP®_ 2
Edb = (EDwx EDh) + | gores ), )

where
PTc= PTf X PTI X Urtc, (5)

Am = maximum angle of repose for material

where
Up to thr(_ae grades of f|_|| material are avaﬂgble ateachsite . _ it cost(per metey of tunnel construction. This
with varying haulage distance and extraction cost. Type of cost varies dependent upon mode of operation due
material dlrgctly affects the vplume of the empankment dams to the accommodation of increased flow rates.
due to maximum slope requirements. Haul distances for the
differing materials are also taken into consideration. ThePowerhouse cost$hc) are relative to depth, that is:
model output consists of total codEDc) relating to dam
volume and haulagexcavation costHc per cubic metrg Phe = Phsx ( Pd ) ®
Material type is only considered when the embankment dam (Pdmax— Pdmin) /'
option is selected; that is,

where

EDc = EDv X Hc 3 Phs= cost of surface powerhouse construction.

The concrete gravity dam model at this stage is limited tOVar:jablef paramtgterdeIthltn thedmodﬁl _arﬁt ther;afo_rel:tsne,
the satisfaction of overturning criteria using the standard"09€ O' operation, dam 1ype, dam nheignt, materal type,

“middle third” rule, that is, the resultant force from gravi- Eenod gf %ﬁn?rLat'on’ dprlessurg ttunr;el Iengtlh, ar(;dlpower-h
tational and hydrostatic forces must pass through the “mid- otuse_ epth. ”e m;) ? consists o sever?fmo tt:]es eac
dle third” of the concrete dam base. An iterative procedurere urning overall cost ot a major component from the sim-
determines minimum base width dependent upon dam heigh?le mathematical representations of the factors described

Dam volume(CDv) is calculated from the appropriate val- above. Pressure tunnel length, dgm he.|ght, and power-
ley section and dam heighbh). house depth are common to all configurations, whereas pe-

riod of generation is only included when peak power mode

. is selected and material type is only included upon selec-

o Pressure T“””ejsf’he length of the hez_idrace an_d tail- tion of the embankment ngm optior): as iIIustratgd in Fig-
race tunnelgéPTIl) is represented as a single continuous .« o and the sample chromosomal representations of
variable at each site within the limits of a 2-kilometer lon- Figure 3. Other parameters, the values of that differ be-
gitudinal valley section, that s, point of exit of the tail- 1,00 site but do not vary independently, are: Diversion
race can be at any.pomtwnhln that 2-kilometer sectiony nnel length: spillway cost and a factor applied to the con-
Potential headPh) is measured between dam crestandqe gravity dam option related to ground stabilization re-
tunnel exit. o quirements. These parameters are in addition to those

» Powerhouse Locationt is assumed that tunnel length 5,044y describing the dimensional characteristics of each
Is related to Powerhouse d?m"’!d)’ that s, the deeper site, that is, longitudinal and cross-sectional. The model is
the_power_hpuse the less circuitous _the tunne| route Wherefore an illustrative representation of a real-world sys-
satisfy minimum overburden requirements. POWer-o, “The mathematical simulations of the various ele-
house depth is therefore represented as a CoNtiNUOYRa s of the system provide data relating to tunnel length,
variable between differing upper and lower bounds aty, yolume, powerhouse depth, and energy output. The
each site. Tunnel length is then adjusted by means of @ystem is then costed using data supplied by Knight Pie-

factor (PTf) related to powerhouse depth; thatis, 54 and Partners of Ashford, Kent, and a total capital cost
is thus generated from those elements included in the anal-
_ _ Pd ysis. This cost is then increased by 25% to take into ac-
PTf=1+ |k X , (4) A .
(Pdmax— Pthin count those elements not included such as spillways,
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SITE (1to5)

MD, MD, MD, MD, MD; (MD,=Mode of operation for SITE)

DT, DT, DT, DT, DT, DT,, DT, DT, etc (DT,=dam type for SITE, MD,)
MT,, MT,, MT,, MT, MT, MT, MT,etc (MT;=material type for SITE,, MD,)
PDlll PD112 PDIZI PD]ZZ PDZH etc

TLHI TLHZ TLIZ! etc

DH,,, DH,,, DH,,, etc

GP,,, GP,,, etc

where:

MD = Mode of operation (1 = peak power supply; 2 = baseload supply)
DT =Dam type (1 =embankment; 2 = concrete gravity)

MT = Material type (only applicable to embankment dams)

PD = Powerhouse depth (relates to all sites and configurations)

TL = Tunnel length (relates to all sites and configurations)

DH= Dam height (relates to all sites and configurations)

GP = Generation period (only applicable to peak power generation mode)

Therefore, a chromosome defining site 2, baseload generation and concrete gravity dam would activate
the following parameters:

SITE MD, DT, PD,, TL,, DH,, TL,,

whereas site 4, peaking generation and embankment dam (rockfill) is represented by:

SITE MD, DT,, MT, PD,, TL,, DH,, TL,, GP,,

Fig. 3. Chromosome representation.

generation sets, and transmission. All cost data are basddtionary techniques is evident within the engineering struc-
upon average current costs for hydropower developmertural optimization community. For example, the develop-
in Central Africa. The Net Present Valu&P\,) of the = ment of parallel strategies for large mixed-integer structural
total Capital CostCC,) plus an assumed annual operating problems relating to multimember transmission and radio
cost is calculated over a 25-year period at an annual disowers(Cai & Thierauf, 1996 utilizing evolution strategies

count rate(m) of 15%. The energy output of the system is (Rechenburg, 1984 This large mixed-integer problem is

similarly discounted(NP\;) over the same period and a decomposed into two subproblems consisting of either dis-

unit cost of energy generatiqgyC) calculated; that is, crete or continuous variables and appropriate information
. exchange between the two domains is introduced. This two-
NPV, = 2[ CG } @) stage approach relating to the geometrical layout and the
m | (1+m)" sizing of truss members has also been investigated utilizing
NPV genetic algorithms with applications to trussed-beam roofs
ucC = [ 1] (8) and the design of cable-stayed bridgésnkins, 1991 Hy-
NPV, brid strategies involving a GA search for optimal discrete
17 MWh geometries and a logic-based approach to determine opti-
NP\, = E[W] 9 mum member sizing were introduced by Koumousis and
. Georgiou(1994), whereas Hajela et a11992 adopt a two-
The overall objective is to minimize unit cosdC. stage, constraint relaxation approach. Later work maintains
The range of variation of the eight variables are shown irt tWO-stage approadi1993 involving an initial topologi-
Table 1. cal design for kinematic stability requirements followed by

an optimization for response constraints. Leite and Topping
have proposed an alternative approach first utilising a sim-

3. THE STRUCTURED GENETIC ALGORITHM ulated annealing algorithm to search the space of possible
Previous research concerning the manipulation of intertopological solutions whilst avoiding the generation and de-

related discrete and continuous design variables using evarelopment of non-feasible geometrigdite, 1996.
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Table 1. Variable parameter ranges

Site 1 2 3 4 5

Modes of operation 2 2 2 2 2

Dam types 2 2 2 2 2

Tunnel length 0-2000 m 0-2000 m 0-2000 m 0-2000 m 0-2000 m
Powerhouse depth 0-100 m 0-50 m 0-150 m 0-125m 0-100 m
Dam height 0.8-1Vvd 0.7-0.95 vd 0.6-0.85 vd 0.8-1vd 0.8-1vd
Generation period 4-10 hours 5-10 hours 5-12 hours 4-9 hours 5-10 hours
Material type 3 3 3 3 3

*Vd = Valley depth.

These techniques are primarily sequential in nature, firstadextremely limited, but manageable, design space. The objec-
dressing the discrete space before subsequently searching thee of the initial research is to achieve concurrent process-
continuous space relevant to the identified optimal configuing of the hierarchical levels by utilizing the nonlinear search
ration. The problem domains largely concern routine desigrcapabilities of the stGA.
utilizing well-defined structural models to provide a mea- The initial choice of the stGA was based upon the results
sure of relative fithess for each candidate solution. In addifrom other research within the Plymouth Engineering De-
tion, the continuous design spaces tend to relate to membsign Centre relating to the algorithm’s utilization for the op-
sizing and, although some difference in the upper and lowetimization of finite impulse respons@-IR) digital filters
bounds may exist, the diversity of the different continuous set§Wade et al., 1994; Roberts & Wade, 199%his work in-
of Figure 1 is not evidenced. To achieve the desired concuivestigated the utility of the stGA for the concurrent manip-
rent search of the discrete and continuous spaces, a numbaation of discrete parameters relating to primitive filter type,
of design grammar representations have therefore been itelay information, and coefficient addresses within a three-
vestigatede.g., Antonisse, 1991; Dasgupta, 1992b; Koza layer representation of the FIR filters. Further work in the
1992, 1994; Gero, 1994The fixed-length structure and def- area relates to the use of the stGA for geometry-type repre-
inition of the hydropower design hierarchy does not requiresentation in the application of genetic algorithms to cooling
the flexibility and variable length representations of the ge-hole geometry design of gas turbine bladesy et al., 1996
netic programming paradigm, thus previous experience withirsome significant success has been achieved in these do-
the Center initially led to the incorporation of the Structuredmains although stGA utilization has so far been restricted to
Genetic Algorithm(stGA) (Dasgupta & MacGregor, 1992  problems requiring few levels of representation.

1992, 1994 as an appropriate starting point for the devel-
opment of a suitable global search paradigm. The prelimi-
nary design models introduced in the previous section have
therefore been integrated with an stGA. The stGAallows paThe initial sStGA implementation utilized a binary represen-
rameters defining the characteristics of each site to be ertation of the design parameteiBarmee, 1995 However,
coded inthe same chromosome string. Controlling parameterthis representation immediately presented problems in terms
relating to site, mode of operation, and dam type then “switchof the probabilities of mutation and crossover being di-
on” the relevant parameters within the chromosome stringrectly related to the length of the binary representation of
which relate to the appropriate configuration. The “live” pa- each parameter. The combination of simple binary switches
rameters are subsequently passed to the design models. Otliiee., dam type—embankment or mass congrataultiple-
parameters remain dormant within the string unless actieption discrete parameteii., sitg, and the continuous vari-
vated in a later population as a result of crossover or randorables(e.g., tunnel lengthresults in differing orders of binary
mutation. This process eliminates the possibility of nonfearepresentation. The simple design switches can be repre-
sible parameter combinations being passed to the mathematented by a single binary digit, whereas discrete multiple
ical model. The chromosome structure for the hydropoweoptions must be represented by an appropriate binary order,
system is shown in Figure 3. The stGA is therefore definingthe decoded value of which must then be suitably scaled to
the hierarchical structure consisting of both discrete variprovide the necessary integers. The order of the binary rep-
ables(i.e., site, mode of operation, and dam and materiakesentation of the continuous variables depends upon the
types, which henceforth shall be referred to as set Aand conrequired parameter resolution but is unlikely to be less than
tinuous variablesdam height, tunnel length, powerhouse five and in the research described here a six-digit binary
depth, flow-rate, etg, set B, as shownin Figure 1. Tradition- representation has been used. We therefore have a chromo-
ally, such a design hierarchy would be decomposed to resome string consisting of binary encodings of different or-
duce dimensionality and allow search to take place within arder for each parameter type. The probability of parameter

.1. Binary mapping
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disruption from either random mutation or crossover sitingassociated with mutation and crossover site probability plus
is therefore significantly greater for higher order encodingshe elimination of decodingscaling problems. Single-point

than for the single binary digit representations. crossover is carried out at randomly selected sites located
This problem is addressed by introducing a weighting tobetween parameters and mutation is a simple perturbation
each binary digit: that is, of randomly selected parameters between their upper and

lower boundq Davis, 199).
Wp = ((Omax— Omin) + 1/((Op — Opmin)) + 1),

3.3. Preliminary results
where
Initial runs of the binary stGA and the real-number stGA
show a rapid convergence upon relatively high-performance

O, = the order of the binary representation of the pa-solutions. Knowledge of the discontinuous nat(ireterms
rameter to which the digit belongs, of discretenegsof the search space caused by the discrete
o ) variable parameters introduces a degree of caution when con-
Omin = the order of the minimum length binary repre- sjdering these solutions as being globally optimal. Investi-
sentation, and gation of the number of times the algorithm has visited each
Ohax = the order of the maximum length binary repre- .Of the di§crete brangheézo in numbe}qf the hierarchy dur-
sentation. ing preliminary testing reveals that little search across the
system has taken place. This is illustrated in Figure 4, which
(where “order” defines the number of binary digits describ-shows the average results from 50 runs of a basic real-
ing a parameter number stGA with single-point crossover, 0.02 mutation

. . . . . . probability, roulette wheel selection, and an elitist strategy
Having established a weighted population of binary dlg'(i.e., the best member of each population is always repro-

It?eizlrjllteet(tjet(\)/v sheelgl:ts ter:igtel to gle? ?netj'?a;tégStph(;?r;sb?thlér é]lruced. Each line represents a discrete path through the hi-
fhe weighted value of the gene the reate,r the rc;babilit % rarchy while the number of calls relates to the number of

19 . 9 g prot Y Olimes the paths have been visited over 50 generations with
selection for mutation. Another factor to be taken into con-

sideration, however, is the binary representation of thea Population size of 100 chromosomes,
' ' y rep With the basic representation of Figure 2 we could, of

[ﬂU|et)'p;ﬁ;joptr'gglSﬁgr:;zopca;;?ggjeﬁ:ﬁeih:'tseczl?g n;?tfr:;alde course, decompose the hierarchy to some extent and initiate
c{)pded vaIEes to ensure that each integer desgcribing Siténdependent GA searches within each branch. The overall

. nteg ) objective, however, is to develop a search methodology that
material type has the same probability of selection.

. ._allows concurrent processing of far more complex hierar-
Chromosome length is also a cause for concern. The sim

ple system is described by eight variables: Site, Mode 0Fhles. Such systems will likely involve discrete branching
Operation, Dam Type, Dam Height, Powerhouse Depth,
Generation Period, Tunnel Length, and Material Type. How-

W,, = the weighting applied to the binary digit,

ever, these parameters must be represented, where appro- 1

priate, for each of the branches of the design hierarchy. o.s

This results in a chromosome string containing 96 variable o ff-{{ /- ------- - - - - - - - - - - 7.

parameters. Even by restricting continuous parameter resg o7 |}/ - - - - - - - A

olution to a five-digit binary representation, a chromo- z» P 1 Y N

some length of over 400 genésinary digit9 is required g os WUl . .

to maintain this basic system representation. Itis envis-¢ W[/ .

aged that a realistic preliminary design model of the sys-£

tem will involve several more layers of discrétentinuous R /-

variable parameters with a corresponding significant in- %2~~~ """ oot

crease in chromosome length. Ll B ol
All of the above factors indicate that a binary mapping 0 ‘ " ' ‘

0 200 400 600 800 1,000 1,200

approach may not be the most appropriate. With this in mind,
a real-number representation has also been implemented. _ _ _
Fig. 4. Basic stGA approach. Each line represents one of the possible 20
paths created by the discrete parameter set A. The number of calls relates
to the number of times each discrete set has been passed to the mathemat-
ical model. The graph therefore illustrates the degree of search diversity
exploration across the multilevel representation. Fitness values shown here

An immediate benefit of real-number representationis a reénd in Figure 5 are relative to best fitness achieved in the GAANT appli-

duction in chromosome length, a significant reduction incation of Figure 11. This fitness relates directly to the minimization of unit
stGA coding complexity, and the elimination of problems cost of power output of the system as described in Section 2.1.

Number of calls

3.2. Real number representation
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below levels described by continuous variables. The intro10% of the paths had not been visited at all during each
duction of independent GA search along selected branchasin of the uniform mutationt elitism stGA. Confidence

will rapidly become nonfeasible unless we return to the tra-in this “best” solution actually representing the global op-
ditional approach of decomposition and subsequent seardimum must therefore be low especially when one consid-

of limited regions.

ers the discontinuous natufa terms of discretenes®f

The development of suitable mutation regimes to ensur¢he search space. We must also consider the requirements
that the discrete elements of the hierarchy have a sufficientf the engineer. It is suggested that the identification of a
probability of mutation has been necessary to allow an acsingle optimum solution would not be considered satisfac-
ceptable degree of investigation of the lower-level vari-tory by the designer during these early stages of the design
ables. This has been achieved by assigning independeptocess. More information would be required concerning
variable mutation probabilities to the high-level discrete vari-the performance of various configurations within other sites
ables(Set A). A uniform mutation probability is applied to to instill confidence and to allow other considerations to

the remaining continuous parameté8et B. Typically a

be taken into account. It is likely that various objectives

mutation probability of 0.2 that has been applied to set Agexist in addition to the minimization of unit energy cost.
while a mutation rate of 0.02 has been uniformly applied toCriteria, such as site and design preferences, construction

the remaining continuous parametésst B (Parmee, 1995

aspects, plant and personnel availability and seasonal site

Elitism is not implemented. The effect of this “variable mu- conditions, may have to be considered. The stGA tool must
tation” approach is to promote search across the hierarchtherefore be utilized in a decision support manner and in
with search effort significantly increased along each of thethis respect must provide multiple high-performance solu-
discrete paths and improved solutions obtained from the maions from disparate regions of the hierarchy. Another fac-
jority of the 20 possible system configurations. The optimaltor here relates to confidence in available data—how valid
solution of Figure 4 is not equalled, however, and so a hyis a single optimum solution where uncertainty exists con-
brid approach has been implemented. In this case, varyingerning the validity of currently available site data?

mutation(no elitism) is implemented for the first 25 gener-

The “variable mutation” approach results in a diverse

ations at which point uniform mutation plus elitism takes search process where a much higher proportion of the de-
over for a further 25 generations. The results from the hysign hierarchy has been visited and a number of high-

brid approach are shown in Figure 5.

performance solutions have been located but the optimal

The results shown represent averages from 50 runs of theolution of Figure 4 is not identified. The introduction of
stGA, each run commencing from a different point. Popu-the hybrid approach achieves a diverse search across the
lation size equals 100 chromosomes and single-point cros$terarchy, while also resulting in the identification of better
over with a probability of 0.6 with roulette wheel selection performing solutions than those of Figure 4. Although the

was implemented.

3.4. Discussion of preliminary results

It is apparent from the graph of Figure 4 that although
high-performance solution has been achieved, little searc
across the design hierarchy has taken place. On averag

Fitness measure

0 100 200 300 400 500 600 700
Number of calls

Fig. 5. Hybrid mutation strategy approach.
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results show that it is possible to establish a diverse search
across a complex design hierarchy using an stGA and ap-
propriate mutation regimes, the performance of this ap-
proach for a more complex structure is not known. It is
apparent that an alternative approach with the basic design
ierarchy presented here would be to carry out 20 indepen-
ent searches along each of the discrete paths. Although time-
%nsuming, this would provide optimal solutions across the
entire structure. However, it is envisaged that to develop a
meaningful system model, a more complex hierarchy will
be required involving an increased number of layers and
significantly more variable parameters. This will eliminate
the opportunity for decomposition and independent search.

These initial results show that the appropriate utilization
of the Structured Genetic Algorithm can:

e provide a single high-performance solution from the
design hierarchy described in the text within 50 gen-
erations.

e provide multiple high-performance solutions from the
same hierarchy within 50 generations.

In all cases a real-number representation of the parameters
appears to be adequate and is far less complex than a binary

mapping.


https://doi.org/10.1017/S0890060498125039

Evolutionary strategies for whole system design 439

3.5. Deficiencies of the STGA and mutation and their subsequent improvement. This problem could be
strategies addressed by introducing the variable mutation probability

For the strategies so far discussed, crossover can be potedProach described earlier, that is, introduce a high muta-
tially disruptive to the desired formation of high-performance 0" Probability in set A and a lower probability to set B.
parameter sets particularly in the earlier generations.AhigF[he overall strategy would therefore involve two |nd|V|d_-
diversity of system configuration described by the three mairV_al seargh agents that are operating aqtonomously, thatis, a
discrete parameterset A) in early generations leads to a S|mpI¢ hill ch_mber ma.mpula.\tlng the d|§crete set Aand a
high level of crossover of the continuous variablsst B genetic algorithm manipulating the continuous set B. Com-

between differing configurations. This leaves little oppor-mun'cat'onﬁ hqwgvgr, ISI mfr:erent and eX'S;S ";:t a Iowgr level
tunity for the evolution of better continuous variable setsP€fWeen the individual chromosomes of the continuous

for any particular discrete configuration. Crossover merely>€t B via information exchange during crossover and at a

perturbs either A or B depending upon the location of theh'gher level between the two search agents via the evalua-

crossover site with little relevant improvement in the con-10n Of each string and subsequent selection using roulette

tinuous variables when related to a particular site, mode of/h€€l (Goldberg, 1982 An improvement upon this ap-

operation, or dam type. The situation improves as a degre@roaCh can be achieved by introducing lower-level infor-

of convergence becomes apparent. The probability of crosdlation exchange between the discrete sets, A, of each

over between “like” configurations then increases and therg@€neration by mt_rodugmg eIemepts of an ant cqlqny meta-

is therefore an increased opportunity for an overall reIevanE’hor for the mampylaﬂon of the discrete §et. This introduc-

improvement in parameter set B. This represents a seriof" forms the basis of the GAANT algorithm.

problem in that the opportunities for premature conver-

gence are prevalent. The initial hydropower hierarchy is sim—4.1' The ant colony algorithm

ple and a significant increase in complexity will result from

further development. This is bound to involve additional setsThe ant colony algorithniANT) is analogous to the for-

of discrete parameters at lower levels of the hierarchy, whiclaging strategies of ant coloniéSolorni et al., 1991, 1992;

will likely exacerbate the problem and increase the probaBilchev & Parmee, 1995, 1996The technique relies upon

bility of premature convergence. multiagent cooperation to concentrate the search in those
Another area for concern is the inherent parameter reareas where “food” is abundant. The amount of food avail-

dundancy within each of the stGA’s parameter strings. Taable in this instance being related to the relative fitness of

prevent the generation of nonfeasitflethal) parameter the design solution as defined by the engineering system

combinations, it is necessary to include parameter repremodel. The initial ant resource is initialized by generating

sentations for each of the discrete design options. This reuniformly random starting directions from a virtual “nest,”

quires a string containing 96 parameters of which only 8as shown in Figure 6. The parameter sets defining these

(i.e., those relevant to the discrete configuratianill be  points are sent to the design model and the allocation of

passed to the design model as shown in Figure 2. A higlurther ant resource along each trail is proportional to the

proportion of crossover and mutation could therefore beelative fitness of the returned values from the design model

ineffective unless restricted to those areas of the string curFig. 7). A search radiusR, is defined, which determines

rently active. Added to this are the problems associatethe maximum extent of the subspace to be considered in

with the excessive number of parameters required in an

stGA representation, as the hierarchy is developed and prob-

lem complexity increases.

B =nest vl
4. SIMPLIFYING THE PARAMETER . .
REPRESENTATION /=3nt direction

The ideal representation would be a strategy that ensures
the avoidance of lethal parameter sets, while allowing the
information exchange evident during traditional crossover.
Crossover could be restricted to parameter strings that are v2
identical in terms of the discrete parameter(set, set A.
This would allow an exchange of information relevant to a
particular design configuration and the subsequent evolu-
tion of that configuration in terms of the continuous vari-
ables(set B, while also allowing a straightforward eight-
parameter chromosome representation.

However, this crossing of “like” configurations in terms
of the discrete parameters does not allow their perturbation Fig. 6. Random selection of initial search directions.
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of software “ants” distributed down each “trail” is pro-

portionate to the relative strengthe.

, fitnes$ of that

trail. Each discrete path of the hierarchy represents a

possible “trail.”

evaporation: if the strength of a particular “trail” does

not improve over a preset number

of iterations, then

that “trail” is evaporated and the released “ant” re-
source is redistributed around the better “trails.”

The concepts supporting these two operations have been
adapted slightly and integrated with the manipulation of
the discrete parameter set. The flow chart of Figure 9 il-
lustrates this integration. To further explain the process,
the values of set A are randomly selected in generation 1

and combined with a randomly selected population of
Fig. 7. Fitness proportionate distribution of nest resource. set B. The initial population of discrete parameters sur-
vives for a preset number of generatidng, while the as-

each cycle. Directions are then randomly selected from each
initial point and further ant resource follows these direc-
tions in steps not greater than the radiRisEach ant thus
defines a new point in the design space. Poorly perform-
ing trails are evaporated after some preset number of cy-
cles (Fig. 8 and the ant resource from these trails is
reallocated around the better performing trails. In its sim-
plest form, ANT could be considered to represent a multi-
start hillclimber with communication between each element.
It is this communication aspect that prevents rapid conver-
gence upon local optima and provides the basis for the al-
gorithm’s search capabilities, which result in the
identification of high-performance solutions.

4.2. Gaant

Two particular Ant Colony “operators” are of interest:

o fitness proportionate distribution: similar to fitness
proportionate reproduction—in this case, the number

v2

Fig. 8. Evaporation of poor performance trails.
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Randomly generate initial
population of AB chromosomes.
Generation g =1

Set value of n

Evaluate chromosome fitness and
store. Reproduce accordingly and
speciate reproduced population

in terms of discrete configurations.

v

Apply intra-species crossover and
mutation to set B only ie maintain
discrete variable sets (A).

No

4
<

Calculate:

Mean fitness of each chromosome
over previous n generations (fitn).
Mean fitness of nth generation (fitall).
Relative fitness (rfit)of each chrom-
osome over previous n generations
(rfit=fitn/fitall).

i) Ifrfit <Rfldiscard trail (ie chrom-
osome)

it) If Rf1 < rfit <Rf2 maintain trail but
introduce local perturbation to discrete
set A.

ii)If rfit > Rf2 maintain trail.

v

Make good population deficit by
randomly selecting from set created
from (iii).

Fig. 9. GAANT flow chart.
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frequency .

| 1 1 1
1.7 1.5 1.251.0 1.75 0,'5 0.25 0.25 0’,5 0.7 1.0 125 15 175
-ve ' ' +ve

Rf1 Rf2

Fig. 10. Scaling of rfit and introduction of Rf thresholds.

sociated continuous parameters are manipulated by a simpially, if rfit lies betweerRf, andRf,, the discrete parameters
GA. A combination of like parameter sets during cross-are randomly perturbed to create a new trail.

over and reproduction is controlled by means of the speci-

ation of each chromosome in terms of like configurations

of the discrete parameters. Crossover then only occurs be- RESULTS AND DISCUSSION

twee_n members of the Same Species. Ev_olut|on of set I?’nitial results displayed in the same format as Figures 4 and
continues over each generation, whereas improvements i1 . <1 own in Figure 11 and should be compared to the
set A are achieved as follows: The average fitnessazh hybrid stGA results of Figure 5. All results are based upon

chromosome is calculated overgenerations then com- population size of 100 chromosomes with 5 genera-
pared to the average fitness of the chromosomes afitie /<. nt — 75 andRE. = 0.75 (in terms of standard
g_eneration. Evaporation, (juplication and_ perturbation of thedeviaittio;s from the meanzTabIe 2 shows a more detailed
d|_screte_param_eter_sets IS _then e_stab_llshed n accorqanESmparison between the dual mutation regime approach and
with their rglatlve f|tne_ss(rf|t), which is repres_ented N GAANT. Initial results illustrate the change in performance
terms of thelr_average fitnegsitn) overn generatl_ons _and related to the overall number of calls to the fithess function
the average f|Fness .Of ”.‘embers. of tht generatior( f!t' and the setting of. Fitness is shown relative to that of the
all), that. |s,.rf|t = fitn/fitall. This allows the following initial GAANT implementation withn = 5 and number of
communication: calls= 2500. The results are averaged from 100 runs of the

¢ low-level communication between the chromosomes o%/arious algorithms. Standard deviati@D) of the number

set B resulting in the evolution of the continuous pa- of calls along the b_est path and of the fitness along that path

rameters within the bounds imposed by their discrete’ <" the 100 runs 15 shown. Tab!e 2 also_s_hows the number

system configuration; of times individual runs have failed to visit paths and the
¢ low-level communication everyth generation be-

tween the chromosome sets representing the discrete

parameters, which results in their gradual improve- 1
ment; and 09
¢ high-level communication between the two agents in 0s [ -

the form of relative fitness of an entire string ower ¢

generations. g os b/
Evaporation, duplication, and perturbation are controlled at ; osF
the nth generations by introducing two thresholR§ and o o04f
Rf, (Fig. 10. If rfit is less tharRf;, then the trail is evap- & o3|
orated, that is, the chromosome is not reproduceditlfs 0.2 j§
greater tharRf,, then the trail is maintained.e., the chro- 0.1
mosome is reproducednd further resource is allocated from Y A e
the evaporated trailg.e., the population deficit created by 0 100 200 300 400 500 600 700 800
trail evaporation is made good by randomly selecting chro- Number of calls
mosomes from those with a fitness higher tHRf). Fi- Fig. 11. GAANT implementation.
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Table 2. Comparison of stGA and GAANT approaches

Hybrid stGA Approach GAANT Implementation

n=5 n=10

2500 Calls 5000 Calls 2500 Calls 5000 Calls 5000 Calls 7500 Calls

Max solution 0.95 0.97 1 1.01 1 1.01
No. of solutions> 0.9 3 3 3 3 3 3

No. of solutions> 0.8 5 5 7 9 9 10

No. of calls along best path 611 1727 711 1277 1287 2545
SDof No. of calls(Best path 580 1706 207 460 413 738
SD of Fitness(Best path 0.21 0.26 0.05 0.05 0.05 0.04
No. of missed paths 93 78 0 0 0 0
Max No. of misses of any path 20 26 0 0 0 0

worst case showing the max number of “misses” related t@nts has resulted in totally machine-based design process-
a particular path over the 100 runs. ing that has replaced an engingeachine based process.

It is apparent from Figures 5 and 11 and from the num-Overall design time has been reduced by approximately 75%.
ber of solutions greater than 0.8 in Table 2 that the GAANTThis further work also indicates the generic applicability of
approach can provide improved performance in terms ofhe strategies. Research is now continuing by addressing
maximum fithess across a larger number of paths than theore fundamental issues relating to the structure of the
dual mutatioristGA approach. The standard deviati@D) GAANT strategy, while also improving the generic aspects
of the calls and of the fitness along the best path has beethrough the introduction of the technique and variations to
calculated to give an indication of the robustness of thea wide range of engineering problem domains.
two approaches. The very higD of the hybrid stGA ap- The concepts behind the GAANT representation have also
proach prompted further investigation of the results thabeen applied to the manipulation of variable-length multi-
showed a far from normal distribution, which indicates alevel mathematical function representations. The objective
lack of robustness. This is further supported by the numhere has been to improve the calibration of preliminary de-
ber of paths that are not visited over the 100 generationsign models to empiric data or to results from a more in-
of the test runs. The GAANT approach, however, showsdepth analysiSFEAor CFD). Thisis achieved by identifying
far greater stability from the standard deviations and theéhose areas of coding where insufficient knowledge or the re-
complete cover of the 20 discrete paths. Although both ofjuirement of keeping computational expense to a minimum
the techniques finally converge upon the same configurahas resulted in unavoidable function approximation. A con-
tion (i.e., best discrete paththe GAANT solution from  tributing factor may be the inclusion of empirically derived
that path is significantly better than that found by the stGA.coefficients(i.e., discharge, drag, eicThe objective is to

Other aspects currently under investigation include thesvolve improved coding within these areas to achieve a bet-
values ofRf; andRf, and the redistribution and evaporation ter calibration with existing empiric data or results generated
strategies of the ant colony manipulation of the discrete pafrom a more in-depth, computationally expensive analysis. If
rameters. Extensive experimentation is planned based updhis is possible, then the element of associated risk would be
a number of test hierarchies of varying complexity. correspondingly lessened, while rapid design iteration can still
be achieved utilizing these simple, but more representative
models. Initial research indicated that adaptive techniques and
6. FURTHER WORK genetic programmingGP) (Koza, 1992,199%when uti-

The research has led to the application of GAANT to morelised for system identification can achieve these objectivesto
complex structures relating to the optimization of thermala limited extent. It soon became apparent that the problems
power system configuration. In this case the feed-heater layassociated with the crossover of continuous coefficients be-
out of the steam cycle of nuclear power plant has been adween differing discrete functional structures causes similar
dressedChen & Parmee, 1997 Discrete variables relate problemstothose identified in Section 3.5 relating to the suc-
to steam tapping points and the number and configuratiogessful crossover of useful information within the fixed-

of the feed heaters. Continuous variables include control setength design hierarchies. As previously noted, the exchange
tings and system component dimensions. Preliminary reefinformationfrom continuous design spacesto unrelated dis-
sults show a significant reduction in design lead time increte design configurations does not promote the formation
addition to significant increases in predicted power outpubf high-performance variable parameter combinations. This
(circa 0.3%. The integration of GAANT and GAANT vari- semantic disruption problem has been recognized within the
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GP communityIbaetal., 1998 The success ofthe GAANT not have been possible without the simplification of the chro-
strategy has stimulated experimentation to assess the bemosomal representation offered by GAANT.
efits of a similar approach to the manipulation of the variable- With regard to the hydropower system application, sig-
length hierarchies describing the mathematical functions andificant improvements and additions to the model are re-
engineering representations. Some significant preliminary reguired to provide an acceptable design tool. Areas that must
sults have been achievéd/atson & Parmee, 1997The in-  be addressed include: hydrological and geological consid-
dicationis that further development of the GAANT conceptserations; river diversion; hydraulic characteristics; storage;
and their integration with GP techniques for the manipula-spillway requirements; turbomachinery, generator sets, and
tion of variable-length representations has some considetransmission; and more definitive modelling of the water-
able potential. retaining structures. However, it must be understood that
the resulting design tool is for use during the preliminary
stages of the design procese., prefeasibilitybid stage.
7. CONCLUSION The resulting mathematical representations need not be
overly complex for reasons explained previously. In its
A comparison of the GAANT approach with the previous present form, the GA-driven model may provide some rapid
work involving the stGA shows that the strategy can findinsight relating to site potential in the early days of the
better solutions for a greater number of discrete configuraproject, but it must be considered illustrative only in its
tions. Diversity of search is thus maintained and with fewerpresent form.
calls to the model in some caséBig. 11. The GAANT The computational expense associated with the GAANT
technique is also exhibiting a much greater degree of romanipulation of the hydropower model is low. Runs involv-
bustness than the stGA approach, which is of significant iming 2500 calls to the evaluation function are completed, on
portance in terms of generic applicability of the strategy. average, within a 3-min period on a two-processor, SPARC
Of equal if not more significance during these early stageg.0 workstation. Even considering the basic hierarchy used
of development is that improvement has been achieved usingere, the GAANT processing of the problem would far out-
a basic chromosomal representation of the eight variable pgerform a human designer using either computer-supported
rameters that describe the system. The extensive chroméeuristic techniques or more deterministic gradient-based
somes of the stGA are no longer required, thus problemgptimization tools to independently search each of the con-
concerning redundancy and complexity of implementationtinuous variable domains related to the 20 possible discrete
can be avoided. This allows us to further develop the sysedesign configurations of this illustrative hydropower hier-
tem hierarchy to achieve a more realistic preliminary de-archy. It could be argued that, in this case, an experienced
sign model involving further levels comprising of discrete engineer could eliminate many of the discrete paths with
and continuous variable sets. The complexity of the stGAnigh confidence. However, the purpose of this initial work
representation would have seriously restricted such a devehas been to establish the strategy using a relatively simplis-
opment. The research has therefore established an alterrie test case. The results show that concurrent processing of
tive strategy that can maintain sufficient search diversity andhe different levels of the hierarchy can be achieved and that
improve results, while also allowing the continuation of over-diverse high-performance solutions can be identified. The
all system development. In this respect it can be considererghpid, exploratory aspects of the strategy have therefore been
to represent a significant contribution to the successful inillustrated. These aspects have been further proven from
tegration of adaptive search with whole-system design. application in the thermal system domain introduced in
The results represent an initial basic implementation ofSection 6.
the GAANT algorithm. The implementation of an experi-  The intention has been to develop a strategy that sup-
mental strategy to investigate the main characteristics of thports exploration during the early stages of the design of a
dual-agent approach is likely to result in further improve-large-scale system, where poorly defined initial data and un-
ments in performance. The generic aspects of the work mustertainty are major factors. The research has established such
be considered. The GAANT approach is proving to be apa strategy and therefore offers an exploratory, decision sup-
plicable to a range of whole-system design problems and itport environment that could be of major benefit to such de-
potential could therefore be considerable within the earlysign domains. Itis suggested that large-scale civil engineering
stages of design. Current work investigating the integratiortertainly falls into this category due to the interface with
of these strategies with thermal system plant configuratiomatural systems often remote from the design office. How-
(Section § is indicating that application of the algorithm is ever, recent research involving preliminary airframe design
generic. Significant improvement in predicted power out-is illustrating similar characteristics in this case in terms of
put and design lead time is being achieved by manipulatingong-range forecasting of military airframe requirements.
the whole plant models utilizing basic variations of the Work is now proceeding in this area and the GAANT ap-
GAANT algorithm. The indication is that the current dual proach will likely play a fundamental role. With respect to
agent philosophy will provide a basis for further develop-the far bettter defined thermal system design problem,
ment. Initial application to the thermal system problem wouldGAANT has offered the means to allow extensive experi-
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