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The effect of domain anisotropy on the inverse cascade occurring within the
geostrophic turbulence regime of rapidly rotating Rayleigh–Bénard convection
is investigated. In periodic domains with square cross-section in the horizontal,
a domain-filling dipole state is present. For rectangular periodic domains, a
Kolmogorov-like flow parallel to the short side and consisting of a periodic array of
alternating unidirectional jets with embedded vortices is observed, together with an
underlying weak meandering transverse jet. Similar transitions occurring in weakly
dissipative two-dimensional flows driven by externally imposed small-amplitude
noise and in classical hydrostatic geostrophic turbulence are a consequence of
inviscid conservation of energy and potential enstrophy, and can be understood
using statistical mechanics considerations. Rotating Rayleigh–Bénard convection
represents an important three-dimensional system with only one inviscid invariant
which nonetheless exhibits large-scale structures driven by intrinsically generated
fluctuations.
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1. Introduction

The quintessential paradigm for investigating the fundamentals of rotating thermally
forced flows is provided by rotating Rayleigh–Bénard convection (RRBC) in a
horizontal layer rotating about a vertical axis with constant angular velocity Ω ,
i.e. convection in a layer of Boussinesq fluid confined between flat horizontal rigidly
rotating upper and lower boundaries maintaining a destabilizing temperature jump
1T > 0. Of particular relevance to the dynamics of stellar and planetary interiors,
planetary atmospheres and terrestrial oceans is the regime of geostrophic turbulence
where fluid motions are sufficiently constrained by rotation to enforce pointwise
balance between the pressure gradient and the Coriolis force, otherwise known as
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geostrophic balance. This balance is characteristic of rapidly rotating systems for
which the convective Rossby number is small,

Ro≡
√

gα1T/H
2Ω

=

√
Ra
Pr

E� 1. (1.1)

This number denotes the ratio of the rotation time scale to the free-fall or free-rise
time scale for a parcel of fluid with temperature difference 1T relative to the ambient
fluid. Here, g denotes the acceleration due to gravity, α is the thermal expansion
coefficient and H is the layer depth. The second equality rewrites this definition in
terms of quantities familiar from studies of Rayleigh–Bénard convection: the Rayleigh
number Ra, the Ekman number E and the Prandtl number Pr, given by

Ra=
gα1TH3

νκ
, E=

ν

2ΩH2
, Pr=

ν

κ
. (1.2a−c)

These measure respectively the strength of the thermal forcing, the importance of
viscous diffusion relative to rotation and the thermometric properties of the fluid
through its kinematic viscosity ν and thermal diffusivity κ . Since Ra must be large
to generate turbulence, the presence of geostrophic turbulence requires that E be
correspondingly small. This regime can be accessed by exploring the simultaneous
limits Ra→∞, E→ 0 such that Ro� 1. Unfortunately, this regime is inaccessible
to both direct numerical simulations (DNS) of the Navier–Stokes equations (NSEs)
and laboratory investigations. To date, the lowest achievable Ekman numbers are in
the neighbourhood of E = O(10−7), whereas an adequate exploration of geostrophic
turbulence requires Ekman numbers that are much lower.

An alternative and fruitful approach that has recently been advanced (Julien &
Knobloch 2007) employs an asymptotic reformulation of the NSEs for incompressible
thermal convection valid in the limit Ro ↓ 0 to derive a reduced system of partial
differential equations (PDEs) called the non-hydrostatic quasi-geostrophic equations
(NH-QGEs). This reduced system filters out fast inertial waves and thin Ekman
boundary layers, and is therefore amenable to extensive numerical explorations.
These have been validated qualitatively by DNS studies at moderately low Ro and E
(Favier, Silvers & Proctor 2014; Guervilly, Hughes & Jones 2014; Stellmach et al.
2014; Plumley et al. 2016), and have enabled a comprehensive mapping of the Ra–Pr
space (Julien et al. 2012; Rubio et al. 2014). Figure 1 illustrates volume renderings
of the vorticity and streamfunction fields in the regime of geostrophic turbulence in a
domain of unit aspect ratio in the horizontal. A remarkable feature of this state is the
presence of a strong inverse energy cascade resulting in a box-scale condensate in the
form of a vortex dipole. The feature appears to be barotropic (i.e. depth-independent),
as demonstrated by, and most noticeable in, the barotropic vorticity and streamfunction
fields (b,c). The barotropic dynamics satisfies the two-dimensional (2D) barotropic
vorticity equation forced baroclinically by the underlying depth-dependent geostrophic
turbulence and damped by viscosity (Rubio et al. 2014). The energetics of this process
can be viewed as a two-way barotropic–baroclinic interaction: the barotropic dynamics
is directly forced by and extracts energy from the convective (baroclinic) dynamics.
This interaction can be highly efficient in that the barotropic vortex is capable
of growing to large amplitudes with little impact on the underlying geostrophic
turbulence, as measured by the small adjustment in convective (baroclinic) kinetic
energy when the pathway to exciting the barotropic manifold is switched on at t= 0
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x

y(a) (b) (c)

FIGURE 1. Volume render of geostrophic turbulence at RaE4/3
= 90, Pr = 1. Top view

of (a) the total vertical vorticity ζ , (b) the barotropic vorticity 〈ζ 〉 and (c) the barotropic
streamfunction 〈Ψ 〉.

(Rubio et al. 2014). At the same time, the baroclinic fluctuations are aligned by the
barotropic flow, leading to a self-sustaining process.

The generation of large-scale structure in turbulent flows is primarily investigated in
2D, and focuses on the 2D NSEs with damping (provided by Rayleigh friction) and
dissipation (provided by viscosity), and driven by externally imposed noise, usually
taken to be white (Smith & Yakhot 1994; Bouchet & Simonnet 2009; Frishman,
Laurie & Falkovich 2017). Numerical study of this system in a periodic domain
with a square aspect ratio also realizes condensation into a box-scale vortex structure.
When the aspect ratio becomes elongated, turbulent jets oriented parallel to the short
side form instead of a box-scale vortex. As shown recently (Frishman et al. 2017),
these jets may be populated by large numbers of prominent vortices embedded in
an anisotropic turbulent background state. This type of condensation process has
also been examined using ideas from equilibrium statistical mechanics (Bouchet
& Simonnet 2009; Bouchet & Venaille 2012), which predicts a transition from a
box-scale vortex to a jet state as the aspect ratio increases and the domain becomes
rectangular. Both the simulations and theory find that jets are already present when
the elongation is of order 10 %. However, the statistical approach describes only
box-scale structures and so cannot examine the finer details of the turbulent jets
it predicts. In addition, the 2D system is a driven dissipative system, and any
predictions from equilibrium statistical mechanics have to be treated with caution
despite the similarities between the predictions and the numerical simulations.

In the present paper, we also identify a transition between a box-scale vortex
dipole and jets, and find that jets first appear when the elongation is of order 10 %.
However, our system is quite different from the 2D damped noise-driven NSEs studied
by Smith & Yakhot (1994), Bouchet & Simonnet (2009) and Frishman et al. (2017)
in that our equations are fully three-dimensional (3D) and the fluctuations driving
the condensation process have to be determined self-consistently with the vortices
or jets they produce. Thus, the noise process is both anisotropic and non-white,
and the physics behind the condensation process necessarily differs. Our conclusion,
elaborated further below, is that the condensation process is highly robust, with
respect to both the physics behind the fluctuations and the substantially different
nature of the governing equations themselves.
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2. The non-hydrostatic reduced equations

A complete derivation and discussion of the NH-QGEs is presented in Sprague et al.
(2006), Julien & Knobloch (2007) and Julien et al. (2012). The equations are obtained
as the leading-order reduction of the incompressible NSEs based on a multiscale
asymptotic expansion in Ro = E1/3

≡ ε � 1 employing a small scale L = εH � 1
as well as the large vertical scale H. For the case of stress-free upper and lower
boundaries, the leading-order velocity field u ≡ (u⊥, W) is in geostrophic balance,
i.e. ẑ × u⊥ = −∇⊥p. It follows that the horizontal velocity field is non-divergent,
with u⊥ ≡ (u, v, 0) = (−∂yΨ , ∂xΨ , 0), where the pressure p ≡ Ψ is the geostrophic
streamfunction. The reduced NH-QGEs governing the motion of the fluid are

D⊥t ζ − ∂ZW =∇2
⊥
ζ , (2.1)

D⊥t W + ∂ZΨ =
R̃a
Pr
Θ ′ +∇2

⊥
W, (2.2)

D⊥t Θ
′
+W∂ZΘ =

1
Pr
∇

2
⊥
Θ ′, (2.3)

∂τΘ + ∂Z(WΘ ′)=
1

Pr
∂ZZΘ, (2.4)

capturing respectively the evolution of vertical vorticity ζ =−∇2
⊥
Ψ , vertical velocity

W and temperature Θ = Θ + εΘ ′ at the reduced Rayleigh number R̃a = Raε4 for a
given Prandtl number Pr. The temperature is decomposed into a mean (horizontally
averaged) component Θ evolving on the slow time scale τ = ε2t and a small
fluctuating component Θ ′. Here, D⊥t ≡ ∂t + u⊥ · ∇⊥ denotes the horizontal material
derivative. The system is solved with impenetrable stress-free fixed-temperature
boundary conditions,

Θ = 1,W =Θ ′ = 0 at Z = 0, and Θ = 0,W =Θ ′ = 0 at Z = 1. (2.5a,b)

The NH-QGEs are discretized in the horizontal and vertical spatial directions using
a sparse Fourier–Chebyshev spectral decomposition (Julien & Watson 2009). They are
then time evolved using a third-order semi-implicit explicit Runge–Kutta scheme.

3. Results and discussion

In the following, we present results for RRBC obtained from a series of simulations
of the NH-QGE system (2.1)–(2.5) performed within the geostrophic turbulence
regime at R̃a = 90, Pr = 1. The horizontal aspect ratio 1 :Γ is varied from 1 : 1 to
1 : 6. All cases exhibit similar efficiency in heat transport as measured by the Nusselt
number, namely Nu= 36.84± 1.97.

3.1. Visualizations
Figure 2 depicts the top views of volume renderings of the total vertical vorticity ζ (a),
the barotropic vorticity 〈ζ 〉 (b) and the barotropic streamfunction 〈Ψ 〉 (c). Here, 〈· · ·〉
indicates an average in the vertical. The barotropic vortex dipole present at aspect
ratio 1 : 1 (top row) is replaced by a state of approximately parallel (i.e. banded)
flow consisting of an alternating sequence of cyclonic and anticyclonic vortical bands.
This transition first occurs at an aspect ratio of approximately 1 : 1.1 (second row)
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and is most prominently revealed in the rendering of the barotropic streamfunction;
〈ζ 〉 exhibits greater spatial complexity due to higher spatial derivatives. We see that
strong vortical eddies persist within a band of given cyclonicity and that small-scale
geostrophic turbulence is globally advected and organized by the banded large-scale
flow. The latter resembles the small-scale filamentary structures in figure 1(a). From
a more global perspective, the aspect ratio Γ provides a selection mechanism for the
number of alternating bands or jets. It can be seen that an increase from Γ = 2 to
Γ = 3 results in a doubling of the number of alternating bands from one to two. The
latter persists for Γ = 4 before losing stability to a state of three alternating bands at
an aspect ratio of Γ = 5 and then four at Γ = 6.

Inspection of the horizontal velocity fields offers another viewpoint for interpreting
the large-scale barotropic structure (figure 3). In the following, we refer to the
velocity components u = −∂yΨ and v = ∂xΨ as parallel and transverse respectively.
The parallel velocity field (a,c,e,g) clearly shows a state resembling Kolmogorov
flow, i.e. alternating bands of unidirectional but oppositely directed turbulent flow
(a,e). Averaging along the x direction reveals a jet structure that is sawtooth in shape
in the y or transverse direction (dashed lines, c,g), with small root mean square
(RMS) fluctuations (solid lines, c,g). This unidirectional jet structure is found at all
sufficiently non-square aspect ratios (figure 2). Observations of v (b,d, f,h) indicate
coexistence with a weak meandering transverse jet (b, f ). Averaging in the y direction
(dashed lines, d,h) shows that the transverse mean flow is substantially weaker than
the parallel flow (by a factor of approximately 10). The RMS fluctuations about this
profile are large, indicating that the transverse mean flow is highly oscillatory (solid
lines, d,h). Figure 3(i,j) illustrates the persistence of the parallel and transverse flows
with time through Hovmöller diagrams. Here, we see that after an initial transient,
stable parallel jets are formed while the antisymmetric transverse flow exhibits random
switching.

3.2. Energetics
In the absence of dissipation, and like the incompressible NSEs, all QG systems
conserve the volume-averaged energy E and the pointwise potential vorticity PV . For
the NH-QGEs (2.1)–(2.4), these are given by

E =
〈(

1
2
|∇⊥Ψ |2 +W2

)
+

R̃a
Pr

(
Θ ′2 + ε−2

(
Θ − z

)2
)〉
, (3.1)

PV = ζ − J
[

W,
Θ ′

∂ZΘ

]
+ ∂Z

(
Θ ′

∂ZΘ

)
, (3.2)

where J[ f , g] = ∂xf ∂yg − ∂yf ∂xg. As a consequence of strong vertical motion, with
|W| ∼ |u⊥|, E and PV are not solely functionals of the geostrophic streamfunction Ψ :
the second and third terms in (3.2) represent ageostrophic baroclinic contributions to
PV . Sole functional dependence on Ψ may be recovered from the NH-QGE system
only in the limit of strong stratification where ∂ZΘ→ ε−1, ∂Z→ ε−1 and W→ ε. Here,
hydrostatic balance in (2.2) implies Θ ′→ (Pr/R̃a)∂ZΨ and the classical hydrostatic
quasi-geostrophic equation is recovered. In this case, the volume-averaged potential
enstrophy 〈PV2〉 becomes the second conserved quantity required to guarantee a dual
cascade.
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FIGURE 3. (a–h) Parallel and transverse barotropic velocity fields 〈u〉 (a,c,e,g) and 〈v〉
(b,d, f,h). Aspect ratios of 1 : 2 and 1 : 5 are depicted in (a,b,c,d) and (e, f,g,h) respectively.
Here, f

d
indicates averaging of f in the d direction. The average and RMS fluctuations

of 〈u〉 in the parallel direction, i.e. averaging in the x direction, reveal a Kolmogorov-like
velocity profile, and the fluctuations of 〈v〉 in the transverse direction reveal the presence
of a meandering jet (red dashed lines). The amplitude of the RMS fluctuations about these
profiles is shown by solid black lines. (i,j) Hovmöller diagrams of (i) 〈u〉

x
and ( j) 〈v〉

y

for an aspect ratio of 1 : 5 at time intervals 1t= 0.5.

As already noted, however, the dynamics within the barotropic subspace provides
an alternative pathway for an inverse cascade. Depth-averaging of the vertical vorticity
equation (2.1) gives the barotropic vorticity equation (BVE),

∂t〈ζ 〉 + J[〈Ψ 〉, 〈ζ 〉] =−〈J[Ψ ′, ζ ′]〉 + ∇2
⊥
〈ζ 〉, (3.3)

indicating that the material growth of 〈ζ 〉 depends on the net balance between the two
terms on the right-hand side, i.e. between the baroclinic forcing and the barotropic
viscous dissipation. In the absence of forcing and damping, the conserved quantities
are the volume-averaged barotropic energy and enstrophy,

Ebt =
1
2 〈|∇⊥〈Ψ 〉|

2〉, Zbt = 〈ζ 〉2 = 〈(∇
2
⊥〈Ψ 〉)

2〉. (3.4a,b)

Both are sole functionals of 〈Ψ 〉, suggesting a dual cascade. For all aspect ratios,
we find that the evolution of the volume-averaged kinetic energy is similar to the
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FIGURE 4. (a) Term by term decomposition of the barotropic vorticity equation (3.3)
showing unbounded growth in the barotropic mode for Γ = 6 (black) and Γ = 1 (grey).
(b) One-dimensional barotropic (solid) and baroclinic (dashed) kinetic energy spectra as
a function of k/kLx for Γ = 6, with the corresponding results for Γ = 1 in grey. Here,
kLx=2π/Lx denotes the box wavenumber in the x direction. Peak energy scales k/kLx=4/6
for Γ = 6 and k/kLx = 1 for Γ = 1 characterize the jet scale.

isotropic case. Figure 4(a) illustrates the decomposition of the right-hand side of the
BVE (3.3) as a function of time for Γ = 1 and Γ = 6. The figure clearly demonstrates
that in both cases the convective forcing 〈J[Ψ ′, ζ ′]〉 and damping ∇2

⊥
〈ζ 〉 are saturated

but unbalanced, resulting in unbounded growth of the large-scale barotropic mode.
However, despite this similarity, notable distinctions exist in the energetics. Figure 4(b)
shows the corresponding kinetic energy spectra as a function of the renormalized
horizontal wavenumber k/kLx, where k =

√
k2

x + k2
y and kLx = 2π/Lx are associated

with the box dimension Lx. Here,

E(k)=
∫ 2π

0
E(k)k dφk, (3.5)

where in polar representation k = |k| and tan φk = ky/kx. The spectra have also been
decomposed into barotropic (bt) and baroclinic (bc) components. For both Γ = 1
and Γ = 6 (and indeed all intermediate cases), the barotropic signature (solid curves)
exhibits a steep power law with Ebt(k) ∼ k−3, while the baroclinic signature (dashed
curves) gains dominance at higher wavenumber and exhibits a shallower instantaneous
power Ebc(k)∼ k−5/3 (Rubio et al. 2014). The total kinetic energy spectrum Ebt + Ebc

exhibits a steep to shallow transition in the power law exponents, a result reminiscent
of the Nastrom–Gage spectrum observed in atmospheric and oceanic measurements
(Nastrom & Gage 1985). In the present RRBC case, however, the k−3 barotropic
spectrum is a consequence of the large-scale condensate (Smith & Waleffe 1999). For
Γ = 1 (grey curve), we observe that the most energetic barotropic scale is k/kLx = 1,
indicating that the large-scale condensate (the vortex dipole) has reached the box
scale, the largest scale possible. For anisotropic aspect ratios, the most energetic scale
is that associated with the unidirectional jet occurring at a scale intermediate to the
box dimensions, i.e. kLy < k < kLx. For Γ = 6, where four jets are observed, this
occurs at k/kLx = 4/6 (see the solid line in figure 4b), with a steep decline in power
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from its peak to the largest box scale 2π/kLy. These larger scales are associated with
the weaker meandering transverse jet (see figure 3b, f ). For 2 6 Γ 6 6, we observe
maximal power in the barotropic energy spectra at 1/26 k/kLx 6 4/6, or, equivalently,
3/2 6 L/Lx 6 2.

The flow of energy associated with the generation of large-scale dynamics in the
barotropic subspace can be determined from the nonlinear advection term in (3.3).
Accordingly, we detail how power is transferred to the horizontal wavenumber k
through triadic interactions involving wavenumbers p and q such that p + q + k = 0.
We define the transfer functions

Tkpq = bpqRe[〈Ψ̂k〉〈Ψ̂p〉〈Ψ̂q〉]δp+q+k,0, (3.6)

bpq = bqp =
1
2(p

2
− q2)(pxqy − pyqx), (3.7)

where Re denotes the real part and δp+q+k,0 is the Kronecker delta function. Anisotropy
is handled by replicating a 1 : Γ barotropic field Γ times to form a periodic square
of size (Γ Lx)

2. Owing to this periodic extension, the power map of a 2D Fourier
transform of the barotropic field contains the non-integer wavenumber array (kx, ky)=
(2π/Lx)(i/Γ , j/Γ ), with i, j = 0, 1, . . . , NxΓ . The array is sparse due to zero row
entries corresponding to wavenumbers kx with non-integer values i/Γ that do not fulfil
the periodicity of the (0, Lx) domain. To avoid the impact of these zero entries when
averaging over annular or spherical shells in wavenumber space, we invoke coarse-
graining by averaging over blocks of Γ 2 entries: the block associated with integer
wavelengths (2π/Lx)(p, q) is indexed by

ix = p−
i− 1
Γ

, i= 1, Γ ; iy = q−
j− 1
Γ

, j= 1, Γ . (3.8a,b)

The result of coarse-graining is a power map array that contains integer wavenumbers
(kx, ky)= (2π/Lx)(p, q), with p, q= 0, 1, . . . ,Nx. The coarse-grained transfer map

Tkp =

∫
k dφk

∫
p dφp

∑
q

Tkpq (3.9)

details the transfer of energy from wavenumber p to k. Figure 5 illustrates three
cases: Γ = 1 and the coarse-grained transfer maps for Γ = 3 and 6. The power
signature in the super- and sub-off-diagonal lines in all barotropic self-interaction Tkp
maps indicates the existence of a forward or direct cascade, i.e. direct transfer of
spectral power from low to high k at constant wavenumber p. The non-local inverse
cascade occurs for p� k and corresponds to the direct transfer of power from the
high p wavenumbers to k ≈ 1. Likewise, when p� k, energy is extracted from high
k wavenumbers and transferred to p ≈ 1. It should be recalled that for Γ > 1, the
wavenumber (p, k)= (1, 1) associated with the large-scale structure is associated with
subharmonic wavenumbers identified in (3.8) with p, q= 1.

3.3. Potential vorticity
From the full NH-QGE system, the barotropic and baroclinic potential vorticities are
given by

PVbt = 〈ζ 〉 −

〈
J
[

W,
Θ ′

∂ZΘ

]〉
, PVbc = ζ

′
− J

[
W,

Θ ′

∂ZΘ

]′
+ ∂Z

(
Θ ′

∂ZΘ

)
. (3.10a,b)
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FIGURE 5. Spectral transfer maps of barotropic self-interaction for aspect ratios of 1 : 1
(a), 1 : 3 (b) and 1 : 6 (c), showing how energy is transferred from wavenumbers p to
wavenumbers k. The results in (b,c) have been coarse-grained to manage the non-integer
wavenumbers arising from the anisotropy of the domain.
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FIGURE 6. The barotropic potential vorticity PVbt and its decomposition for aspect ratios
of 1 : 2 (a) and 1 : 5 (b). The 〈ζ 〉 term dominates, suggesting the linear relation PVbt≈〈ζ 〉.

Details of the characteristics of these two quantities are illustrated in figure 6, with
results for aspect ratios of 1 : 2 and 1 : 5. A snapshot of PVbt as a function of y
indicates that it is dominated by the barotropic vorticity 〈ζ 〉. This signal oscillates in
y, reflecting the spontaneous generation of a Kolmogorov-like flow. Consistent with
the inverse energy cascade, we find that the magnitude of this signal is unbounded in
time. In contrast, the baroclinic contribution to PVbt remains bounded and fluctuates
randomly about zero without coherence. This result suggests that the barotropic
dynamics is essentially linear. In contrast, PVbc and its component terms, which
are of roughly equal magnitude, vary rapidly about zero mean and saturate in time
(not shown). The finding that the dissipation and the forcing are both weak suggests
that the barotropic manifold is amenable to the application of equilibrium statistical
mechanics (Bouchet & Venaille 2012).

4. Conclusion

In this paper, we have confirmed, following earlier work (Julien et al. 2012; Rubio
et al. 2014), that geostrophic turbulence is unstable to the formation of large-scale
vortices, and investigated the properties of this state when the doubly periodic domain
we use in the horizontal changes from square to rectangular. We have shown that
with increasing domain anisotropy, the large-scale vortex structure is replaced by a
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shear flow of Kolmogorov type parallel to the shorter side and superposed on the
turbulent state. The flow has jet-like structure with a well-defined characteristic scale
comparable to the short box scale that forms spontaneously. It is neither externally
imposed nor the result of imposed external stirring (Smith & Yakhot 1994; Bouchet &
Simonnet 2009; Frishman et al. 2017) – here, the flow is maintained by 3D turbulent
fluctuations that are determined self-consistently. The jets all have a well-defined mean
separation that depends on the aspect ratio but undergo meander that may be intrinsic
or driven by fluctuations. Evidently, jet formation does not require the presence of a
β term.

These predictions resemble qualitatively the predictions from both numerical
simulations of the damped 2D NSEs driven by imposed white noise (Smith &
Yakhot 1994; Bouchet & Simonnet 2009; Frishman et al. 2017) and those from
equilibrium statistical mechanics for 2D flows (Bouchet & Venaille 2012). Since the
noise is imposed in the simulations, it cannot respond to the box-scale structures
that evolve. This is also the case in the equilibrium statistical description, where
noise must be assumed to be present to drive the system to equilibrium but the
equilibrium reached is independent of the noise. The equilibrium statistical mechanics
approach is based on maximizing the entropy, defined in terms of the vertical vorticity,
subject to constraints derived from the inviscid equations of motion. The variational
problem leads to a monotonically increasing relation between the most probable
values of the vorticity ζ̄ and the streamfunction Ψ̄ . We assume that these values
are those realized by the flow, and hence drop the overbars in the discussion that
follows. Whether the predictions of this type of theory are relevant to a 3D forced
dissipative flow such as geostrophic turbulence remains a question, however. Figure 7
provides evidence that a ζ (Ψ ) relation in fact exists for both Γ = 1 and Γ 6= 1, and
is qualitatively similar to that found in 2D hydrodynamics. Indeed, if we suppose,
following Bouchet & Simonnet (2009) and Bouchet & Venaille (2012), a relation of
the form ζ = a2Ψ + a4Ψ

3
+ · · ·, we conclude from figure 7(a) that in both cases

a2 < 0, a4 < 0. The non-zero value of a4 is important in determining the nature
of the transition from the box-scale dipole present when Γ = 1 to the jet-like flow
parallel to the shorter side present when Γ & 1, a transition whose presence here
accords with both simulations of the damped 2D NSEs driven by noise (Bouchet &
Simonnet 2009; Frishman et al. 2017) and the prediction from equilibrium statistical
mechanics (Bouchet & Simonnet 2009; Bouchet & Venaille 2012). The latter predicts
the presence of a phase transition from the dipole state to a parallel shear flow
already at small values of the elongation Γ − 1 (Bouchet & Simonnet 2009; Bouchet
& Venaille 2012), a result qualitatively similar to both the 2D simulations and our
self-consistent 3D simulations in figure 2 (second row: Γ = 1.1).

While the correspondence between our numerical results and equilibrium statistical
mechanics theory is encouraging, it is also evident that our system is not an
equilibrium system – it is a forced dissipative system. In this case, as already
discussed, we expect to see an inverse energy cascade towards large scales and a
direct entropy cascade to small scales. However, if both the forcing and the dissipation
are appropriately weak on the large scales of interest, which we believe to be the
case, the resulting non-equilibrium states that are observed are nevertheless expected
to be close to the equilibrium states identified in the equilibrium statistical mechanics
approach, a prediction corroborated in DNS of a stochastically driven vorticity
equation in 2D (Smith & Yakhot 1994; Bouchet & Simonnet 2009; Frishman et al.
2017). In particular, the transition from a dipole flow to a parallel shear flow with
increasing elongation, predicted by the statistical mechanics approach, persists into
the non-equilibrium regime (see figure 23 of Bouchet & Venaille 2012).
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FIGURE 7. Scatter plots of 〈ζ 〉 versus 〈Ψ 〉 for aspect ratios of 1 : 1 (a) and 1 : 5 (b),
suggesting a functional relation (black curve) obtained by pointwise averaging. The plots
indicate that a2a4 > 0.

The above theory (Bouchet & Venaille 2012) has been developed for 2D flows.
Our system is, in contrast, fully 3D, at least on small scales. However, the large-scale
barotropic mode studied here obeys 2D dynamics driven by stochastic baroclinic
forcing, and therefore shares many of the properties of these flows discussed by
Bouchet & Venaille (2012) and Frishman et al. (2017). In particular, we expect
that our flows should also undergo a transition with increasing anisotropy from a
dipole flow to a parallel shear flow, a prediction confirmed in our simulations. We
emphasize that these are performed on an asymptotically reduced model valid in the
limit Ro→ 0 (Julien et al. 2012; Rubio et al. 2014). Given that the predictions of
this model have been confirmed in subsequent simulations of the primitive equations
at E= 10−7 (Stellmach et al. 2014), E= 10−6 (Favier et al. 2014) and E= 5× 10−6

(Guervilly et al. 2014), we expect that our findings will also apply to the NSEs
at sufficiently low Ekman numbers. That this is in fact the case is demonstrated by
Guervilly & Hughes (2017), who show that when E= 10−5, jets also appear when the
elongation exceeds 10 %. The characteristic horizontal scales of the multi-jet states
for larger elongations are also comparable. However, there are some differences too,
in that Guervilly and Hughes also observe quite long-lived cyclonic vortices within
their jets, whereas our system exhibits both cyclonic and anticyclonic vortices in
equal numbers. This is a consequence of the reflection symmetries x→−x, y→−y
of the NH-QGE system that are present at leading order in the limit Ro→ 0 (E→ 0).

The above discussion indicates that the formation of large-scale structures, be they
box-scale vortices or jets, is a very robust phenomenon, independent of the details
of the fluctuations driving the system, independent of the specific system studied
and even independent of its dimensionality, provided only that the flow is strongly
anisotropic. Thus, large-scale vortices are also present in 3D non-rotating systems,
provided that the fluid layer is sufficiently thin, thereby forcing the turbulent flow
to be anisotropic on large scales (Xia et al. 2008; Xia, Shats & Falkovich 2009).
We expect that in the presence of doubly periodic boundary conditions, this system
will also undergo a transition with increasing domain anisotropy from the large-scale
vortex state observed in square domains to a parallel shear flow, although this is of
course difficult to confirm in experiments carried out in bounded domains. In thicker
layers, the large-scale vortex reduces vertical motion, rendering the system susceptible
to upscale energy cascade (Xia et al. 2011) and reinforcing the vortex. In this case,
too, we expect a transition to large-scale shear flow with increased anisotropy much
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as occurs in convectively driven turbulence (Goluskin et al. 2014). Both conjectures
are amenable to confirmation by DNS.
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