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D-MAXIMAL SETS

PETER A. CHOLAK, PETER GERDES, AND KAREN LANGE

Abstract. Soare [20] proved that the maximal sets form an orbit in E . We consider hereD-maximal sets,
generalizations of maximal sets introduced by Herrmann and Kummer [12]. Some orbits of D-maximal
sets are well understood, e.g., hemimaximal sets [8], but many are not. The goal of this paper is to define
new invariants on computably enumerable sets and to use them to give a complete nontrivial classification
of theD-maximal sets. Although these invariants help us to better understand theD-maximal sets, we use
them to show that several classes ofD-maximal sets break into infinitely many orbits.

§1. Introduction. Let E denote the structure of computably enumerable (c.e.)
sets under set inclusion. Understanding the lattice-theoretic properties of E and
the interplay between computability and definability in E are longstanding areas of
research in classical computability theory. In particular, researchers have worked to
understand the automorphism group of E and the orbits of E . The orbit of a c.e. set
A is the collection of c.e. sets [A] = {B ∈ E | (∃ Ψ : E ∼−→ E) (Ψ(A) = B)}. One of
the major questions in classical computability is the following.

Question 1.1. What are the (definable) orbits of E , and what degrees are realized
in these orbits? How can new orbits be constructed from old ones?

In seminal work [20], Soare proved that the maximal sets form an orbit using
his Extension Theorem. Martin [18] had previously shown that the maximal sets
are exactly those c.e. sets of high degree, thus describing the definable property of
being maximal in degree-theoretic terms. In addition, Harrington had shown that
the creative sets form an orbit (see [21], Chapter XV). In time, Soare’s Extension
Theorem was generalized and applied widely to construct many more orbits of E .
For example, Downey and Stob [8] showed that the hemimaximal sets, i.e., splits of
maximal sets, form an orbit and studied their degrees. In particular, anymaximal or
hemimaximal set is automorphic to a complete set. On the other hand, Harrington
and Soare [9] defined a first order nontrivial property Q such that if A is a c.e. set
andQ(A) holds, then A is not automorphic to a complete set. These results are the
first partial answers to the following question related to Question 1.1.
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Question 1.2. Which orbits of E contain complete sets?
It turns out that until recently all known definable orbits of E , besides the orbit

of creative sets, were orbits of D-hhsimple sets, generalizations of hhsimple (hyper-
hypersimple) sets (see [6]). (We give extensive background on all definitions and
ideas mentioned here in §2.)
The Slaman–Woodin Conjecture [19] asserts that the set

{〈i, j〉 | (∃ Ψ : E ∼−→ E) [Ψ(Wi ) =Wj ]}
is Σ11-complete. The conjecture was based on the belief that information could be
coded into the orbits of hhsimple sets. Cholak, Downey, and Harrington proved a
stronger version of the Slaman–Woodin Conjecture.

Theorem 1.3 (Cholak, Downey, and Harrington [6]). There is a computably
enumerable set A such that the index set {i ∈ � |Wi ∼= A} is Σ11-complete.
In a surprising twist (again see [6]), the setsAwitnessing Theorem 1.3 cannot be sim-
ple or hhsimple (showing that the original idea behind the conjecture fails). It is still
open, however, if the sets in Theorem 1.3 can beD-hhsimple.Moreover, the behavior
of hhsimple sets under automorphisms is now completely understood. Specifi-
cally, two hhsimple sets are automorphic if and only if they are Δ03-automorphic
[2, Theorem 1.3]. There is no similar characterization of when D-hhsimple sets are
automorphic.
Here we consider D-maximal sets, a special case of D-hhsimple sets but a gen-

eralization of maximal sets, to gain further insight into Questions 1.1 and 1.2. A
c.e. set A is D-maximal if for all W there is a c.e. set D disjoint from A such that
W ⊆∗ A 	D orW ∪ (A 	D) =∗ �. We can understand a given D-maximal set A
in terms of the collection D(A) of c.e. sets that are disjoint from A.
The goal of this paper is to provide a complete nontrivial classification of the

D-maximal sets in terms of how D(A) is generated. In Theorem 3.10, we describe
ten types of ways D(A) can be generated for any c.e. set A. We then show in The-
orem 4.1 that there is a complete and incomplete D-maximal set of each type.
The first six types of D-maximal sets were already well understood ([20], [8], [3],
[5]). Furthermore, Herrmann and Kummer [12] had constructed D-maximal sets
that were not of the first six types (in particular, as splits of hhsimple and atom-
less r-maximal sets). We, however, show that there are four types of examples of
D-maximal sets besides the first six and that each of these types breaks up into
infinitely many orbits. Moreover, we provide an overarching framework for under-
standing and constructing these examples. We discuss D-maximal sets of the first
six types and the type that arises as a split of an r-maximal set in §4. In §5, we
show how the remaining three types are very similar to the construction of splits
of hhsimple sets. For ease of reading, we discuss open questions as they arise. In
particular, open questions can be found in §3.5 and §5.8.

§2. Background and definitions. All sets considered in this paper are computably
enumerable (c.e.), infinite, and coinfinite unless explicitly specified. Let E∗ be the
structure E modulo the ideal of finite sets F . By Soare [20], it is equivalent to work
with E∗ instead of E in the sense that two sets A and B are in the same orbit in E if
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and only if they are in the same orbit in E∗. Given a c.e. set A, we define

L(A) = ({W ∪ A |W a c.e. set},⊆) and
E(A) = ({W ∩ A |W a c.e. set},⊆).

We let L∗(A) be the structure L(A) modulo F , and E∗(A) be the structure E(A)
modulo F . Recall that A is maximal if for all B ∈ L∗(A), if B �=∗ A, then B =∗ �.
If we understand the orbit ofA, we can sometimes understand the orbits of splits
of A.

Definition 2.1.

(i) We call A0 	 A1 = A a splitting of A, and we call A0 and A1 splits of A or
halves of the splitting of A. We say that this splitting is trivial if either of A0
or A1 are computable.

(ii) We callA0	A1 = A a Friedberg splitting ofA if the following property holds
for any c.e.W : ifW − A is not c.e. then neither ofW − Ai are c.e. as well.

(iii) Given a property P of c.e. sets, we say that a noncomputable c.e. set A is
hemi-P if there is a noncomputable c.e. set B disjoint fromA such thatA	B
satisfies P.

Note that if P is a definable property in E or E∗, then hemi-P is also definable
there.

2.1. D-hhsimple and D-maximal sets.
2.1.1. Motivation. Recall that a coinfinite set A is hhsimple if and only if L∗(A)
is a boolean algebra ([14], see also Soare [21]). Hence, A is maximal if and only if
L∗(A) is the two element boolean algebra.
Theorem 2.2 (Lachlan [14]). If a set H is hhsimple, then L∗(H ) is a Σ03 boolean
algebra.Moreover, for every Σ03 boolean algebra B, there is a hhsimple setH such that
L∗(H ) is isomorphic to B.
Given Theorem 2.2, we say that a hhsimple setH has flavorB ifL∗(H ) is isomorphic
to the Σ03 boolean algebra B. Note that the ordering ≤ on a Σ03 boolean algebra is
0′′′-computable.
2.1.2. Working modulo D(A). Given a set A, we define

D(A) = {B : B ∈ L(A) & B − A is c.e.},
and letD∗(A) be the structureD(A) moduloF . SinceD∗(A) is an ideal in the lattice
L∗(A), we can take the quotient lattice L∗(A)/D∗(A). Theorem 2.2 motivates the
following definition.

Definition 2.3. (Herrmann and Kummer [12]) A set A is D-hhsimple if
L∗(A)/D∗(A) is a boolean algebra, and A is D-maximal if L∗(A)/D∗(A) is the
two element boolean algebra.

By unraveling Definition 2.3, we have the following working definition of
D-maximality.
Definition 2.4. A set A is D-maximal if for all W there is a c.e. set D disjoint
from A such thatW ⊆∗ A 	D orW ∪ (A 	D) =∗ �.

Another useful characterization of theD-maximal sets is given in the next lemma.
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Lemma 2.5 (Cholak et al. [5] Lemma 2.2). LetA be a c.e. noncomputable set. The
set A is D-maximal if and only if, for all c.e. W ⊇ A, either W − A is c.e. or there
exists a computableR such that A ⊆ R ⊆W .
Herrmann and Kummer [12] studied the D-hhsimple sets in the context of diag-

onal sets. A set is diagonal if it has the form {e ∈ � | �e(e)} for some computable
enumeration {�i}i∈� of all partial computable functions. In [12], they showed that
a set is not diagonal if and only if it is computable or D-hhsimple. Note that this
result implies that the property of being diagonal is elementary lattice-theoretic.

2.2. Known examples of D-maximal sets. Maximal sets and hemimaximal sets
(which form distinct orbits [20], [8]) are clearly D-maximal. Similarly, a set that
is maximal on a computable set is also D-maximal. In these three cases, for the
D-maximal set A there is a W such A ∪W is maximal. As we will see, this does
not occur for other types of D-maximal sets. Others, however, have constructed
additional kinds of D-maximal sets, in particular, Herrmann and hemi-Herrmann
sets and sets with A-special lists, which we define now. It is easy to check that these
sets are D-maximal from their respective definitions.
Definition 2.6.
(i) We say that a c.e. set A is r-separable if, for all c.e. sets B disjoint from A,
there is a computable set C such that B ⊆ C and A ⊆ C . We say that A
is strongly r-separable if, additionally, we can choose C so that C − B is
infinite.

(ii) We say that a set A is Herrmann if A is both D-maximal and strongly
r-separable.

(iii) Given a set A, we call a list of c.e. sets F = {Fi : i ∈ �} an A-special
list if F is a collection of pairwise disjoint noncomputable sets such that
F0 = A and for all c.e. sets W , there is an i such that W ⊆∗ ⊔

l≤i Fl or
W ∪⊔

l≤i Fl =
∗ �.

(iv) We say a set A is r-maximal if for every computable setR, either R∩A =∗ ∅
(so R ⊆∗ A) or R ∩ A =∗ ∅ (so A ⊆∗ R), i.e., no infinite computable set
splits A into two infinite sets.

(v) A c.e. set B is atomless if for every c.e. set C , if B ⊆ C �=∗ �, then there is a
c.e. set E such that C �∗ E �∗ �, i.e., B does not have a maximal superset.

Herrmann and hemi-Herrmann sets were defined by Hermann and further dis-
cussed in [5]. The main results in [5] for our purposes are that such sets exist
(Theorem 2.5) and that these sets form distinct (Theorem 6.9) definable (Defini-
tion 2.3) orbits (Theorems 4.1, 6.5) each containing a complete set (Theorems 7.2,
6.7(i)).
The notion of a set A with an A-special list was introduced in [3, §7.1]. There,

Cholak and Harrington showed that such sets exist and form a definable Δ04 but not
Δ03 orbit. This orbit remains the only concrete example of an orbit that is not Δ

0
3.

Furthermore, as mentioned earlier Herrmann and Kummer [12] had constructed
D-maximal splits of hhsimple and atomless r-maximal sets in addition to the ones
mentioned above.We will discuss these examples later (see §5.1), but first we explore
the notion of a generating set forD(A) for an arbitrary (not necessarilyD-maximal)
set A.
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§3. Generating sets for D(A). In this section, we only assume that the sets con-
sidered are computably enumerable. In later sections, we will work explicitly with
D-maximal sets. We will use the framework of generating sets to understand and
classify the different kinds of D-maximal sets.
Definition 3.1. We say a (possibly finite or empty) collection of c.e. sets

G = {D0, D1, . . .} generates D(A) (equivalently G is a generating set for D(A))
if each Di is disjoint from A for all i ∈ � and for all c.e. sets D that are disjoint
from A, there is a finite set F ⊂ � such that D ⊆∗ ⋃

j∈F Dj . In this case, we say
that {Dj | j ∈ F } covers D. If G generates D(A), we write D(A) = 〈G〉. We say
{D0, D1, . . .} partially generatesD(A) if there is some collection of sets G containing
{D0, D1, . . .} such that 〈G〉 = D(A).
We list a few basic observations.
Lemma 3.2.
(i) Generating sets always exist forD(A). In particular,D(A) is generated by the
collection of all c.e. sets that are disjoint from A.

(ii) Let Φ be an automorphism of E∗. If for all c.e.W , we set Ŵ := Φ(W ), then
{D0, D1, . . .} generatesD(A) if and only if {D̂0, D̂1, . . . . . .} generatesD(Â).

(iii) D(A) = 〈∅〉 iff A is simple.
3.1. Simplifying generating sets. Generating sets for D(A) are far from unique.
Here we develop some tools for finding less complex generating sets for D(A). We
use different tools based on whether or not D(A) has a finite generating set.
3.1.1. Finite generating sets.
Lemma 3.3. If a finite collection of sets G generates D(A), then D(A) = 〈∅〉,

D(A) = 〈R〉 for some infinite computable set R, or D(A) = 〈W 〉 for some
noncomputable c.e. set W . Moreover, if {D} and {D̃} both generate D(A), then
D =∗ D̃.
Proof. The unionW of the finitely many sets in G is c.e. and disjoint fromA and
clearly generatesD(A). IfW is finite, thenD(A) = 〈∅〉, and otherwise, we are in the
remaining two cases. For the last statement, D̃ ⊆∗ D andD ⊆∗ D̃ by the definition
of generating set. �
The collection of all c.e. sets that have finite generating sets is definable.
Lemma 3.4. The statement “A single set generates D(A)” is an elementarily
definable statement in E∗ under inclusion.

3.1.2. Infinite generating sets. Infinite generating sets can bemuchmore complex,
depending onwhether all (ormany of) the elements can be chosen to be computable
or pairwise disjoint.
Lemma 3.5. If {R0, R1, . . .} ∪ G generates D(A) where Ri is computable for all
i ∈ �, then there exists a pairwise disjoint collection of computable sets {R̃0, R̃1, . . .}
so that {R̃0, R̃1, . . .} ∪ G generates D(A).
Proof. If {R0, R1, . . .} ∪ G generates D(A), we inductively define {R̃0, R̃1, . . .}.
Let R̃0 = R0.Given the pairwise disjoint collection of computable sets {R̃0, . . . , R̃n},
let m be the least index such that Rm − ⊔

i≤n R̃i is infinite. If no such m exists,
{R̃0, . . . , R̃n} ∪ G generates D(A).
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Otherwise, let R̃n+1 = Rm−
⊔
i≤n R̃i = Rm∩

⊔
i≤n R̃i . The collection {R̃0, R̃1, . . .}

satisfies the conclusion of the lemma since for each i ∈ � there is an m such that⋃
j≤i Rj ⊆∗ ⊔

j≤m R̃j . �
Lemma 3.6. If D(A) is generated by an infinite collection of pairwise disjoint

sets, then D(A) is also generated by an infinite collection of pairwise disjoint sets
containing only computable sets, only noncomputable sets, or only computable sets
and one noncomputable set.

Proof. Suppose that the collection G = {D0, D1, . . . , R0, R1, . . .} generatesD(A)
and consists of pairwise disjoint sets such thatDi is noncomputable andRi is com-
putable for all i ∈ �. Suppose that there are both computable and noncomputable
sets in G. We may assume all of these sets are infinite. If G contains only finitely
many Di , the finite union of the Dis together with {R0, R1, . . .} generates D(A). If
G contains infinitely many Dis, then {D̃0, D̃1, . . .}, where D̃i := Di 	Ri , generates
D(A). Note thatDi being noncomputable implies that D̃i is noncomputable. �
Lemma 3.7. If {R0, R1, . . .} and {D0, D1, . . .} are pairwise disjoint generating sets

forD(A) and all sets in {R0, R1, . . .} are computable, then all sets in {D0, D1, . . .} are
computable.

Proof. By definition of generating sets, there is a finite F ⊂ � such that
Di ⊆∗ ⊔

j∈F Rj . It suffices to show that
⊔
j∈F Rj − Di is a c.e. set. There is a

finite H ⊂ � such that ⊔j∈F Rj ⊆∗ ⊔
j∈H Dj . Since the Di are pairwise disjoint,

i ∈ H . Set H̃ := H − {i}. Then (⊔j∈F Rj − Di) ⊆∗ ⊔
j∈H̃ Dj . Since Di and⊔

j∈H̃ Dj are disjoint,⊔
j∈F
Rj −Di =∗ ⊔

j∈F
Rj ∩

⊔
j∈H̃
Dj, which is c.e.

�
We may assume that we have a generating set for D(A) whose union is Ā.
Lemma 3.8. If {D0, D1, . . .} ∪ G generatesD(A) (and {D0, D1, . . .} is a collection

of pairwise disjoint sets), then there exists a (pairwise disjoint) collection of sets
{D̃0, D̃1, . . .} such that A =

⊔
i∈� D̃i and {D̃0, D̃1, . . .} ∪ G generates D(A).

Proof. If X = A − ⊔
i∈� Di and X = {x0 < x1 < . . .}, we can take

D̃i := Di 	 {xi}. �
We can also simplify partial generating sets that are not pairwise disjoint.

Lemma 3.9. Let {D0, D1, . . .} be a list of noncomputable c.e. sets whose union with
G generatesD(A). Then, there is a collection of noncomputable c.e. sets {D̃0, D̃1, . . .}
whose union with G generates D(A) such that all the sets are either pairwise disjoint
or nested so that D̃n+1 − D̃n is not c.e. for all n ∈ �.
Proof. In a highly noneffective way, we build a list {D̃0, D̃1, . . .}, satisfying our

conclusion. To ensure that this list partially generates D(A) as described, we con-
struct this list so that each D̃i is disjoint from A and every Di is contained in the
union of finitely many D̃i ’s.
We attempt to inductively construct the list to consist of pairwise disjoint sets

based on an arbitrary starting point k ∈ �. For each k ∈ �, we inductively define
a function lk : � → �. We set lk(0) := k and D̃0 =

⋃
i≤lk (0)Di . We let lk(n + 1)
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be the least number (if it exists) such that
⋃
i≤lk(n+1)Di −

⋃
i≤lk (n)Di is a c.e. set.

Let D̃n+1 be this c.e. set. Then,
⊔
i≤n D̃i =

⋃
i≤lk (n)Di . If for some initial choice of

k, the function lk has domain �, then the sets in {D̃0, D̃1, . . .} are pairwise disjoint.
Otherwise, the above procedure fails for all initial choices of k. Then, each lk is
a strictly increasing function defined on some nonempty finite initial segment of
�. Let m : � → � be defined so that m(k) is the maximum value of lk . For all
k, m(k) ≥ k. Moreover, for all k and l > m(k), ⋃i≤l Di − ⋃

i≤m(k)Di is never a
c.e. set. We define a strictly increasing function m̃ : � → � inductively by setting
m̃(0) = m(0) and m̃(n + 1) = m(m̃(n) + 1). By construction, the list given by
D̃n =

⋃
i≤m̃(n)Di has the desired nesting property. �

3.2. Standardized Types of generating sets. We use the results from §3.1 to show
that any c.e. set A has a generating set for D(A) of one of ten standardized
types. We can then classify c.e. sets by the complexity of their generating sets
(see Definition 3.11).

Theorem 3.10. For any c.e. setA, there exists a collection of c.e. sets, G, generating
D(A) of one of the following types.
Type 1: G = {∅}.
Type 2: G = {R}, where R is an infinite computable set.
Type 3: G = {W }, whereW is an infinite noncomputable set.
Type 4: G = {R0, R1, . . .}, where the Ri are infinite pairwise disjoint computable
sets.
Type 5: G = {D0, R0, R1, . . .}, whereD0 is the only noncomputable set and all the
sets are infinite and pairwise disjoint.
Type 6: G = {D0, D1, . . .}, where the Di are infinite pairwise disjoint noncom-
putable sets.
Type 7: G = {D0, R0, R1, . . .}, whereD0 is the only noncomputable set, the Ri are
infinite pairwise disjoint computable sets, andD0 ∩Ri �= ∅ for infinitely many i .
Type 8: G = {D0, D1, . . . , R0, R1, . . .}, where the Di are pairwise disjoint
noncomputable sets and the Ri are infinite pairwise disjoint computable sets.
Type 9: G = {D0, D1, . . . , R0, R1, . . .}, where the Ri are infinite pairwise disjoint
computable sets and the Di are infinite nested noncomputable sets such that, for
all l ∈ �,Dl+1−Dl is not c.e. and there are infinitely many j such thatRj −Dl
is infinite.
Type 10: G = {D0, D1, . . .}, where the Di are infinite nested noncomputable sets
such thatDl+1 −Dl is not c.e. for all l ∈ �.

Proof. (1) If there is a finite generating set for D(A), then there is a generating
set of Type 1, 2 or 3 for D(A) by Lemma 3.3.
(2) IfD(A) has an infinite generating set consisting of pairwise disjoint sets, then

D(A) has a generating set of Type 4, 5, or 6 by Lemma 3.6. We remark that, by
Lemma 3.7, if D(A) has a generating set of Type 4, then D(A) does not have a
generating set of Type 5 or Type 6. Note that if D(A) has an infinite generating
set consisting only of computable sets, we can assume these computable sets are
pairwise disjoint by Lemma 3.5 and hence (2) holds.
Assume the antecedents of (1) and (2) fail, and take some generating set for

D(A). By repeatedly taking finite unions of some of the sets, we can assume that
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there are zero, one, or infinitely many computable sets in this generating set. If there
is one computable set R, then we can assume that all other sets are noncomputable
and disjoint fromR (by removing R from each of those sets). We can then take one
of the noncomputable sets,W , and replace it with R 	W . So, we can assume that
the generating set has either no computable sets or infinitely many pairwise disjoint
computable sets (again by Lemma 3.5). Similarly, by taking finite unions, we can
assume the generating set also has zero, one, or infinitely many noncomputable
sets. By the failure of the antecedent of (2) and Lemma 3.5, having zero is not a
possibility.
(3) If there is one noncomputable set, then D(A) has a generating set of Type

7 since the antecedents of (1) and (2) fail. Specifically, there must be infinitely
many disjoint computable sets in the generating set. If only finitely many of these
computable sets intersected with the one noncomputable set W , we could replace
W by its union with these finitely many sets to obtain a Type 5 generating set, a
contradiction.
If the antecedent of (3) fails, the generating set contains infinitely many noncom-

putable sets {D0, D1, . . .}, and, by Lemma 3.9, these noncomputable sets can be
taken to be either pairwise disjoint or nested so that Dn ⊂ Dn+1 and Dn+1 − Dn is
not c.e. for all n ∈ �. If the generating set contains infinitely many computable sets
and the infinitely many noncomputable sets are pairwise disjoint, this generating
set is of Type 8.
(4) If D(A) has a generating set of Type 8 or Type 9, we are done.
Now we will argue that the failure of all the antecedents of (1) though (5) implies

thatD(A) has a generating set of Type 10. Notice that if no computable sets remain
in our generating set, we are done. So, assume otherwise. Hence, the noncomputable
sets are nested, and almost all the computable sets are almost contained in one of
the noncomputable sets. For each noncomputable set Di in this generating set,
we can take the union of Di and the remaining finitely many computable sets to
obtain a new generating set {D̃0, D̃1, . . .} where the D̃i are infinite nested sets. This
generating set cannot contain infinitely many computable D̃i since the collection of
the computable D̃i would be a generating set consisting of only computable sets by
the note after (2). Hence, there are only finitely many computable D̃i . The collection
of noncomputable D̃i also generatesD(A) since the D̃i are nested. If this generating
set is not of Type 10, we can apply Lemma 3.9 to obtain one of Type 10 since the
antecedent of (2) fails. �
Note that D(A) may have generating sets of different Types. However, the Types

are listed in order of increasing complexity. By following the procedure outlined in
the proof of Theorem 3.10, we will always find a generating set for D(A) of lowest
possible complexity. Hence, we can classify the c.e. sets by the Type complexity of
their generating set.

Definition 3.11. We say the c.e. set A is Type n if there is a generating set for
D(A) of Type n but no generating set for D(A) of Type m for all m < n.

In Theorem 4.1, the main result of this paper, we show there is a D-maximal set of
each Type.
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We more closely examine sets of a given Type in §3.4, but it is helpful to first
observe the behavior of generating sets under splitting.

3.3. Splits and generating sets for D(A).
Lemma 3.12. Suppose R is computable, A0 	 R = A, and G ⊆ D(A). Then G
generatesD(A) iff G ∪ {R} generatesD(A0).
Proof. Let D be c.e. and disjoint from A0. Since D − A = D ∩ R is c.e. and
disjoint from A, the set D is covered by R and finitely many sets in G. �
Corollary 3.13. A setA is half of a trivial splitting of a simple set iffD(A) = 〈R〉
for some computableR.
Lemma 3.14. SupposeA0	A1 = A. If G∪{A1} generatesD(A0), then G generates

D(A).
Lemma 3.15. SupposeG generatesD(A) andA0	A1 = A. IfA0	A1 is a Friedberg
splitting of A, then G ∪ {A1} generatesD(A0).
Proof. Let D be a c.e. set. If D − A is not c.e., then D − A0 is not c.e. and D is
not disjoint from A0. So, assume that D − A is a c.e. set. If D is disjoint from A0,
then D is covered by A1 and finitely many sets in G. �
Corollary 3.16. If A is half of a Friedberg splitting of a simple set, then

D(A) = 〈W 〉 whereW is not computable.
Suppose thatA0	A1 = A is a nontrivial splitting that is not Friedberg.We would
like a result describing a generating set forD(A0) similar to Lemmas 3.12 and 3.15,
but such a result is not clear. For the splitting A0 	 A1 = A, there is a setW such
thatW −A is not c.e. butW −A0 is a c.e. set. SinceW −A may not be contained
in a finite union of generators for D(A) (for example, if A is simple), the set A1
and the generators forD(A) may not generateD(A0). Also, the work in Section 4.2
shows that the converse of Lemma 3.15 fails; for a splitting A0 	 A1, the collection
G ∪ {A1} generating D(A0) does not mean that the splitting is Friedberg.
3.4. Understanding the Types. Sets of Types 1, 2, and 3 are particularly well
understood. By Lemma 3.2, S is simple iff S is of Type 1; there are no infinite c.e.
sets disjoint from S. By this fact and Lemma 3.12, A 	 R is simple iff A is Type 2.
By Lemma 3.15, if A is half of a Friedberg splitting of a simple set, then A is of
Type 3. Moreover, sets of these Types are definable.

Lemma 3.17. The statement “A is Type 1 (respectively 2, 3)” is elementarily
definable in E∗ under inclusion.
Proof. The setA is Type 1 iffA is simple, andA is Type 2 iff there is a computable
setR disjoint fromA such thatA	R is simple. The setA is Type 3 iff there a c.e. set
D such thatD is disjoint fromA and for all c.e. setsW disjoint fromA,W ⊆∗ D. �
In §4, we will show that there are D-maximal sets of all ten Types. Moreover, we
will show thatD-maximal sets of Type 4, 5, and 6 are definable, somewhat extending
Lemma 3.17. However, the following question is open.

Question 3.18. Is there a result similar to Lemma 3.17 for the remaining Types of
sets in a general setting?
We finish this section with a remark on the behavior of sets of various Types
under trivial or Friedberg splitting.
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Remark 3.19. Suppose A0 	 A1 = A is a trivial or Friedberg splitting and A0 is
not computable. IfA is Type 1 or 2, then eitherA0 is Type 2 (A0	A1 = A is a trivial
splitting) or Type 3 (A0 	 A1 = A is a Friedberg splitting). If A is Type 3, then A0
is Type 3. If A is Type 4, then A0 is Type 4 (A0 	 A1 = A is a trivial splitting) or
Type 5. If A is Type 5 (6, 7, or 8), then A0 is Type 5 (6, 7, or 8) (replace D0 with the
union of D0 and A1). If A is Type 9 (10), then A0 is Type 9 (10) (replace each Di
with the union of Di and A1).

We now examine the last four types more carefully. First, we explore the subtle
difference between Types 9 and 10, which is encoded in the last clauses of these
Types’ definitions.

3.4.1. Type 10 sets and r-maximality. Type 10 sets can arise as splits of r-maximal
sets.

Lemma 3.20. If A is half of a splitting of an r-maximal set (so not of Type 1) and
A is not Type 2 or 3, then A is Type 10.

Proof. We will show that if A is Type 4, 5, 6, 7, 8, or 9 (and hence not of Type 1,
2, 3, or 10) then A is not half of a splitting of an r-maximal set. Fix some infinite
generating set G for D(A) of Type 4, 5, 6, 7, 8, or 9.
Let B be a c.e. set disjoint fromA (such sets exist since A is not Type 1). We show

that A 	 B is not r-maximal. Since G is a generating set, B is contained in some
finite union of sets in G. Every c.e. superset of an r-maximal set is either almost
equal to � or r-maximal itself. Since A does not have Type 2 or 3, A 	 B �=∗ �
and we can assume B is the union of these finitely many generators. We proceed by
cases. For G of Type 4, 5 or 7, an Ri not part of the union witnesses that A 	 B
is not r-maximal. For G of Type 6, an infinite computable subset of some Di not
part of the union demonstrates that A 	 B is not r-maximal. For G of Type 8 or
9, assume that B ⊆∗ ⋃

j≤i Rj ∪
⋃
j≤i Dj . If G has Type 8, there is some l > i

such thatDl ∩
⋃
j≤i Rj is infinite. An infinite computable subset of this intersection

demonstrates thatA	B is not r-maximal. Finally, suppose G is Type 9. By the last
clause of Type 9, there is an r > i such that Rr −Di is infinite. The computable set
Rr witnesses that A 	 B is not r-maximal. �
Note that we cannot eliminate the assumption thatA is not Type 2 or 3 in Lemma

3.20. If A 	 R is a trivial splitting of an r-maximal set, then A 	 R is simple. By
Corollary 3.13,D(A) = {R} and A is Type 2. Similarly, by Corollary 3.16, if A	B
is a Friedberg splitting of an r-maximal set, A is Type 3.

Question 3.21. If A is Type 10, then is A half of a splitting of an r-maximal set?

We can, however, prove a stronger version of this statement with an additional
assumption.

Lemma 3.22. If A is D-maximal and Type 10, then A is half of a splitting of an
atomless r-maximal set.

Proof. Let G = {D0, D1, . . .} be a Type 10 generating set for D(A). We first
show that A 	 Di is r-maximal for some i ∈ �. Suppose otherwise. We construct
an infinite collection {R0, R1, . . .} of infinite computable pairwise disjoint sets all
disjoint from A such that Ri − Di is infinite for all i ∈ �. As Di+1 ⊇ Di this
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entails that Ri −Dl is infinite for all i > l . Thus G ′ = {R0, R1, . . . , D0, D1, . . .} is a
generating set forD(A) of Type 9 and by Definition 3.11, A has Type at most 9.
We assume inductively that R0, . . . , Rn are infinite computable pairwise disjoint
sets all disjoint from A such that Rj − Dj is infinite for j ≤ n. Suppose that
A∪Dn+1∪

⊔
i≤n Rn = C is not r-maximal. So,C is split by some infinite computable

setR. Since A isD-maximal, by Definition 2.4 there is an infinite c.e. setD, disjoint
from A, such that either A 	 D ⊇∗ R or D ∪ A ∪ R =∗ �. Without loss of
generality, we may assume the former, since in the latter case A 	D ⊇∗ R. Define
Rn+1 = (D ∩R)−⊔

i≤n Ri . Since R splits C and C ∩R ⊆ Rn+1 −Dn+1 it follows
that Rn+1 −Dn+1 is infinite. By definition Rn+1 is disjoint from Ri for i ≤ n and as
D is disjoint fromA so isRn+1. Finally, asD ∩R is the complement of (A∩R)∪R,
Rn+1 = (D ∩R)−⊔

i≤n Ri is also computable.
Since the Di are nested, we may suppose without loss of generality that A 	 D0
is r-maximal. We now show that A 	 D0 is atomless. Suppose W is a superset of
A	D0 such thatW is infinite. Since A is D-maximal and {D0, D1, . . .} is a Type 10
generating set consisting of nested sets,W ⊆∗ A 	Dj orW ∪ (A 	Dj) =∗ � for
some j. The latter case is impossible since W ∪ (A 	 Dj) =∗ � implies there is a
computable set R such thatW ∪ R =∗ �, which contradicts that A is r-maximal.
In the former case,W ⊆∗ A 	Dj+1 and |A 	Dj+1 −W | =∞. �
There are several examples in the literature of sets A that are D-maximal splits
of atomless r-maximal sets (see §4.2). In §4.2, we will construct a splitting of an
atomless r-maximal set that has Type 10.

3.4.2. Types 7, 8 and 9: the hhsimple-like types. In this section, we discuss how
some sets of Types 7, 8, and 9 behave similarly to splits of hhsimple sets. First, we
show that we can further refine generating sets for these Types.

Lemma 3.23. If a set A is Type 7, there exists a Type 7 generating set
{D0, R0, R1, . . .} for D(A) such that:
(1) for all j ∈ �, the set Rj −D0 is infinite, and hence A−D0 is infinite.
(2) D0 ⊆

⊔
i∈� Ri = A.

Proof. Given some Type 7 generating set {D0, R0, R1, . . .} forD(A), ifRj ⊆∗ D0
for some j, we can remove Rj from the list of generators. Infinitely many Rj will
remain since otherwise A would be of lower Type. For the remaining j, Rj −D0 is
infinite. Then, by Lemma 3.8, we can adjust the Rj so thatD0 ⊆

⊔
i∈� Ri = A. �

For sets of Type 8 or 9, for the first time, we will place conditions on the order of
the sets in the generating set. We use this property when we show that Type 8 and
9 D-maximal sets exist. The proof, though more difficult than that of Lemma 3.23
due to this ordering, is similar to the proof of Lemma 3.9.

Lemma 3.24. If a set A is Type 8 (respectively 9), there exists a Type 8 (respec-
tively 9) generating set such that for all j ∈ �:
(1) for all i > j, Di ∩Rj = ∅
(respectively (Di −Di−1) ∩Rj = ∅ for Type 9).

(2) the set Rj −
⋃
i≤j Di is infinite.

(3)
⋃
i∈� Di ⊆

⊔
i∈� Ri = A.

So, A−⋃
i∈� Di is infinite.
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Proof. Suppose that G = {D̃0, D̃1, . . . R̃0, R̃1 . . .} is Type 8 or Type 9 and gener-
ates D(A). By Lemma 3.8, we can assume that A = ⊔

i∈� R̃i . We inductively define
a new generating set {D0, D1, . . . , R0, R1, . . .} for D(A) with the desired properties
and helper functions d and r from � to �.
SetD0 = D̃0 and d (0) = 0. We claim that there exists an i ∈ � such that R̃i −D0

is infinite. This is true by definition if G is Type 9. Suppose G is Type 8. If the claim is
false, then R̃i ⊆∗ D0 for all i ∈ �. So, {D̃0, D̃1, . . .}, a collection of pairwise disjoint
c.e. sets, would generateD(A), andA would be at most Type 6, a contradiction. Let
l be least such that R̃l −D0 is infinite. Let R0 =

⊔
j≤l R̃j and r(0) = l .

Assume that, for all j ≤ i , Dj , Rj , d (j) and r(j) are defined so that Di is not
computable, Ri is computable, and⋃

j≤d(i)
D̃j ∪

⊔
j≤r(i)

R̃j ⊆∗ ⋃
j≤i
(Dj ∪Rj).

We claim there exists some (and hence a least) l > d (i) such that⋃
d(i)<j≤l D̃l −

⊔
j≤i Rj is not computable. If not, for all k > d (i),

D̃k −
( ⊔
j≤i
Rj ∪

⋃
d(i)<j<k

D̃l

)

is computable. These computable sets, the computable sets {R̃r(i)+1, R̃r(i)+2, . . .},
and the noncomputable set

⋃
j≤i(Dj ∪ Rj) generate D(A). Now, we can apply

Lemma 3.5 to the computable sets in this list to show that A is at most Type 7. So,
the desired least l exists. Set d (i + 1) = l andDi+1 =

⋃
d(i)<j≤l D̃l −

⊔
j≤i R̃j . If G

is Type 9, we also add the elements of Di to Di+1 to ensure the nesting property is
satisfied.
Let l > r(i) be least such that R̃l −

⋃
j≤i+1 Dj is infinite. Again, such an l

exists by definition if G is Type 9. If G is Type 8 and l fails to exist, none of the
remaining R̃i are needed to generate D(A). Since the sets in {D̃j | j ≤ i + 1} are
pairwise disjoint (G is Type 8), A is at most Type 6, a contradiction. So, we can set
Ri+1 =

⊔
r(i)<j≤l R̃j and r(i + 1) = l . By construction, {D0, D1, . . . , R0, R1, . . .}

has the desired properties. �
Hence, if A is Type 7, 8, or 9, we obtain the following analogue to Theorem 2.2.

Corollary 3.25. Suppose that A is Type 7, 8, or 9, and let D̆ =
⋃
i∈� Di ∪ A.

UnlessA is of Type 7, D̆ is not a c.e. set. The sets {R0, R1, . . .} and finite boolean com-
binations of these sets form an infinite Σ03 boolean algebra, B, which is a substructure
of L∗(D̆).
Proof. The relation ⊆∗ is Σ03. Each Ri is complemented and infinitely different

from Rj for all j �= i . �
This substructure might be proper if Ri ∩ D̆ is finite for all i ∈ �. If B is not

proper then, for all i , L∗(D̆ ∩Ri) must be a boolean algebra and hence D̆ must be
hhsimple inside Ri . By Lemma 3.24, Ri ∩ D̆ is a c.e. set.
If A is D-maximal, then the converse holds. Assume that A is D-maximal and

D̆ is hhsimple inside Ri for all i . Given a set W , there is a finite set F ⊂ � such
that either W ⊆∗ D̆ ∪ ⊔

i∈F Ri orW ∪ D̆ ∪ ⊔
i∈F Ri =

∗ �. In either case,W is
complemented inside L∗(D̆). So, L∗(D̆) is a boolean algebra.
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In §5, we show thatD-maximal sets of Types 7, 8, and 9 exist. When we construct
these three Types of sets, we will ensure that D̆ is hhsimple inside Ri for all i ∈ �,
and,moreover, for all i ≥ j,Dj∩Ri is infinite andnoncomputable.Our construction
and Corollary 3.25 lead us to call Types 7, 8, and 9 hhsimple-like. For Type 7 we
have the following corollary.

Corollary 3.26. There is half of a splitting of a hhsimple set that is D-maximal
and Type 7.

Again, we can askwhat kind of split is needed. By Lemma 3.12 and 3.15, it cannot
be a trivial or Friedberg splitting. Note that Corollary 3.26 as presented is known,
see Herrmann andKummer [12, Theorem 4.1 (1)]. In fact, Herrmann andKummer
prove something stronger; see §5.1. They also directly prove that these splits cannot
be trivial or Friedberg.

3.5. Questions. First, it is natural to ask as we did in Question 3.18 if all the
Types are definable. In a related vein, it is natural to wonder whether Types 7, 8, 9,
and 10 should be further subdivided. We construct the D-maximal sets of Types 7,
8, and 9 very uniformly; for all i ,

⋃
j≤i Di is hhsimple inside Ri and, for all i ≥ j,

Dj ∩ Ri is infinite and noncomputable. Perhaps one could further divide Types 7,
8, and 9 into finer types determined by whether D̆ is hhsimple inside Ri or not, or,
whether for all i ≥ j, Dj ∩Ri is infinite and noncomputable, or not. It is far from
clear if this is productive. We suggest that the reader look at §5 before considering
these questions.
We also asked in Question 3.21 whether Type 10 sets must be splits of r-maximal
sets.

§4. D-maximal sets of all Types exist. The next theorem is the main result of the
paper.

Theorem 4.1. There are complete and incomplete D-maximal sets of each Type.
Moreover, for any D-maximal set A,
(1) A is maximal iff A is Type 1.
(2) There is a computable setR such thatA∪R is maximal (i.e. Amaximal inside
R) iff A is Type 2.

(3) A is hemimaximal iff A is Type 3.
(4) A is Herrmann iff A is Type 4.
(5) A is hemi-Herrmann iff A is Type 5.
(6) A has an A-special list iff A is Type 6.
So, for each of the first six Types, theD-maximal sets of that Type form a single orbit.
TheD-maximal sets of each of the remaining four Types break up into infinitely many
orbits.
In §4.1, we show that there are D-maximal sets of each of the first six types by
proving the stronger statement in the corresponding subcase of Theorem 4.1. The
orbits of the first five Types are known to contain complete and incomplete sets, so
we only need to address the Type 6 case to finish the proof of Theorem 4.1 for the
first six Types.
In §4.2 we present a construction of D-maximal sets of Type 10 (by taking
advantage of prior work). We also show that these sets break into infinitely many
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orbits and that they can be of any noncomputable c.e. set. In §5, we construct
hhsimple-like D-maximal sets of any noncomputable c.e. degree, i.e., Type 7, 8, and
9 D-maximal sets. We also prove that these sets break up into infinitely many orbits
by defining a further invariant on each of these Types. It remains open, however,
whether every D-maximal set of one of the last four Types is automorphic to a
complete set.

4.1. The first six parts of Theorem 4.1. Recall that A is simple iff D(A) = {∅}.
So, a simple set A is D-maximal iff for all W either W ⊆∗ A or W ∪ A =∗ � iff
A is maximal. Hence, a D-maximal set is Type 1 iff it is maximal. We will need the
following lemma:

Lemma 4.2 (Cholak et al. [5]). Every nontrivial splitting of a D-maximal set is a
Friedberg splitting.

By Lemmas 3.12, 3.15, and 4.2, a set A is D-maximal and {X} generates D(A)
iff for all setsW eitherW ⊆∗ A 	 X orW ∪ (A 	 X ) =∗ � iff A 	 X is maximal.
Hence, the first three subcases of Theorem 4.1 hold.

Lemma 4.3.

(i) A set A is D-maximal and Type 4 iff A is Herrmann.
(ii) A set A is D-maximal and Type 5 iff A is hemi-Herrmann.
Proof. (i) (⇒) SupposeA is aD-maximal Type 4 set. We show thatA is strongly

r-separable. Let B be a set disjoint from A. By assumption and Lemma 3.8, there
exist pairwise disjoint computable sets R1, . . . , Rn,Rn+1 belonging to a generating
set for D(A) such that B ⊆ ⊔

1≤i≤n Ri . The computable set C =
⊔
1≤i≤n+1Ri

witnesses thatA is strongly r-separable. (⇐)Given aHerrmann setA, we inductively
construct a Type 4 generating set for D(A) as follows. Suppose D0, D1, . . . , Dn are
pairwise disjoint computable sets that are all disjoint from A. IfWn is disjoint from
A, set D = Wn ∪

⊔
i≤n Di , and otherwise, set D =

⊔
i≤n Di . Since A is strongly

r-separable, there exists a computable set C such thatD ⊆ C and C −D is infinite.
SettingDn+1 = C −⊔

i≤n Di = C ∩⊔
i≤n Di completes the construction. Also note

that A is not Type 1, 2, or 3, since sets of those Type are not strongly r-separable.
(ii) By Lemmas 3.15, 4.2, and 4.3 (i), the hemi-Herrmann sets are D-maximal of
Type 5. The other direction is straightforward. Recall that hemi-Herrmann and
Herrmann sets each form their own orbit. Hence a hemi-Herrmann set cannot have
Type 4. �
Lemma 4.4. A set A is D-maximal and Type 6 iff A has an A-special list.
Proof. (⇐)Note that if {A,D0, D1, . . .} is anA-special list and a setW is disjoint

from A, thenW ⊆∗ ⊔
l≤i Dl . Otherwise, the condition A 	 (W ∪⊔

l≤i Dl) =
∗ �

would hold, implying that A would be computable. (⇒) Given a c.e. setW , either
W ⊆∗ A 	 D or W ∪ (A 	 D) =∗ � for some c.e. set D disjoint from A by
D-maximality. The set D is contained in finitely many sets from the Type 6 gen-
erating set. So, a D-maximal set A has a Type 6 generating set {D0, D1, . . .} iff
{A,D0, D1, . . .} is anA-special list. Recall that maximal, hemimaximal, Herrmann,
and hemi-Herrman sets, as well as sets with A-special lists form distinct definable
orbits (see §2.2), and that Types of generating sets are invariant. These facts imply
the result. �
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Although it was previously shown that there are complete Herrmann and hemi-
Herrmann sets, it is not explicitly shown in Cholak and Harrington [3] that a
complete or incomplete set with an A-special list exists. In Remark 5.9, we discuss
how the construction found in [3] of sets with A-special lists can be modified to
ensure the resulting set is complete or incomplete.

4.2. D-maximal sets of Type 10 and atomless r-maximal sets. Lerman and Soare
constructed an atomless r-maximal set A and a nontrivial splitting A0 	 A1 = A
so that A1 ∪ (W − A) is c.e. for every coinfiniteW ∈ L∗(A) in[15, Theorem 2.15].
Herrmann and Kummer proved that such a split A0 is D-maximal [12, Proposi-
tion 4.5]. We need the following lemma:

Lemma 4.5. If a noncomputable set A is half of a splitting of an atomless set, then
A is not half of a splitting of a maximal set.
Proof. Assume that A 	 A1 is an atomless set and A 	 A2 is maximal. Since
A 	 A1 is atomless, A 	 A1 cannot be (almost) a subset of A 	 A2. Since A 	 A2
is maximal, (A 	 A2) ∪ (A 	 A1) =∗ �. Therefore, A 	 (A1 ∪ A2) =∗ �, and A is
computable. �
By Lemma 4.5 and the first 3 subcases of Theorem 4.1, A0 does not have Type 1,
2, or 3. Therefore, by Lemma 3.20, A0 is in fact a Type 10 D-maximal set.
The construction ofLermanandSoare is a version of JohnNorstad’s construction
(unpublished) that has been modified several times (see [21, Section X.5]). Here we
briefly discuss how to alter the construction in [4, Section 2] to directly show that
A0 is D-maximal. For the remainder of this section, we assume that the reader is
familiar with [4].
As we enumerate A, we build the splitting A = A0 	 A1. All the balls that are
dumped by the construction are added to A1. Since A0 would be empty without
any other action, we add requirements Se to ensure that A0 is not computable.
Specifically, we have

Se :We �= A0.
We say that Se is met at stage s if there is an x ≤ s such that ϕe,s (x) = 1 but
x ∈ A0,s . We also add a Part III to the construction in [4, Construction 2.5].
Part III : Let x = ds〈e,0〉. If Se is met or x has already been dumped into A at stage s ,
do nothing. Otherwise, if ϕe,s (x) = 1, add x to A0 and realign the markers as done
in Parts I and II.

It is straightforward to show that Se is met and that Part III does not impact
the rest of the construction. So, it is left to show that A0 is D-maximal. By require-
ment Pe and [4, Lemma 2.3], either We ⊆∗ He or A ⊆∗ We . In the latter case,
A0 ∪A1 ∪We =∗ �. So assume thatWe ⊆∗ He . It is enough to show thatWe −A0
is a c.e. set. [4, Definition 2.9, Lemma 2.11] provides a c.e. definition of He . To
guarantee that We − A0 is c.e., we have to slightly alter the definition of s ′ in [4,
Definition 2.9]. In particular, choose s ′ so that if Si will be met at some stage, then
it is met by stage s ′, for all i ≤ e. This change at most increases the value of s ′. This
alteration in s ′, [4, Lemma 2.10], and the construction together imply thatHe ↘ A0
is empty. SinceWe ⊆∗ He ,

((He \ A0) ∩We) ∪ (We ∩ A1) =∗ We − A0.
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Hence,We − A0 is c.e. as required.
This construction ofA0 clearly mixes with finite restraint; rather than using ds〈e,0〉

for Se use the least ds〈e,j〉 above the restraint. To code any noncomputable c.e. set X
into A0, we have to alter the dumping slightly. If a ball x = ds〈e,0〉 is dumped into
A, always add it to A0. All other dumped balls go into A1. Now if e enters X at
stage s , also add ds〈e,0〉 into A0. It is not hard to show that A0 computes X , just
alter the above s ′ in the c.e. definition of He so that X � e + 1 = Xs′ � e + 1).
Since these versions of coding and finite restraint mix, we can construct A of any
noncomputable c.e. degree.
Cholak and Nies [4, Section 3] go on to construct infinitely many atomless

r-maximal sets An that all reside in different orbits. We use the ideas there together
with our modified construction to obtain An = An0 	 An1 . We claim that the sets
An0 also fall into infinitely many distinct orbits. Assume that A

n
0 	 B is an atomless

r-maximal set. SinceAn0 is not computable,A
n
0 	(An1 ∪B) �=∗ �. ATn+1-embedding

of L∗(An+1) into L∗(An0 	 (An1 ∪B)) would provide a Tn+1-embedding of L∗(An+1)
intoL∗(An0	An1). By [4, Lemma 3.5, Theorem 3.6], the latter cannot exisit so neither
can the former. InL∗(An0 	An1),B is contained by someHne , where e = i0m , for some
m (see [4, Theorem 2.12]). By definition of Tn , the tree above 0m is isomorphic to
Tn . So there is a Tn-embedding of L∗(An) into L∗(An0 	 (An1 ∪ B)) and hence into
L∗(An0 	 B). Thus, none of the An0 belong to the same orbit.

§5. Building hhsimple-like D-maximal sets. We continue with the proof of The-
orem 4.1. We construct D-maximal sets of Types 7, 8, and 9 and show that the
collection of sets of each of these Types breaks up into infinitely many orbits.
In §3.4.2, we discussed how sets of Types 7, 8, and 9 are like hhsimple sets.

Lachlan’s construction in the second half of Theorem 2.2 serves as the backbone
of our constructions, but we also use it modularly within these constructions. Our
approach is to treat this theorem as a blackbox.
In §5.3, we describe how to construct a setH that is close to being hhsimple and

is associated with a boolean algebra with a particularly nice decomposition. In §5.4,
we add requirements ensuring that the construction in §5.3 results in a hhsimple-like
set with a D-maximal split of Type 7, 8, or 9.

5.1. Herrmann and Kummer’s Result. It is important to note that Herrmann and
Kummer [12, Theorem 4.1 (1)] already constructed D-maximal splits of hhsimple
sets. In fact, their result is stronger than the result presented here, in the sense that,
given any infinite Σ03 boolean algebraB, they provide a construction of aD-maximal
split of a hhsimple set of flavor B. Although Herrmann and Kummer show that
their split of a hhsimple is, in our language, not of Type 1, 2, or 3, they do not
further differentiate between sets of Type 7, 8, or 9. Furthermore, they do not show
that the collections of such sets break into infinitely many orbits, as we do here.
The proof of [12, Theorem 4.1 (1)] is rather difficult and spans several papers,

including [10] and [11]. These papers together provide a fine analysis of Lachlan’s
result and of decompostions of infinite boolean algebras. This analysis is in terms
of Σ03 ideals of 2

<�, and the proof of [12, Theorem 4.1 (1)] divides into three cases
based on structural properties of the given Σ03 ideal.
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We claim it is possible to obtain Herrmann and Kummer’s result via a modi-
fication of the construction below by translating their work into the language of
boolean algebras. However, since this general approach would increase the com-
plexity of the proof and our goals are different, we focus on sets corresponding to
boolean algebras with especially nice decompositions.

5.2. Background on Small Major Subsets. We need some background on small-
ness and majorness for our construction. These notions will be used in §5.4.3 and
§5.6. One can delay reading this section until then.
Smallness and majorness were introduced by Lachlan in [13] and further
developed in [22]. See also [21, X.4.11], [17], and [2] for more on these concepts.

Definition 5.1. Let B be a c.e. subset of a c.e. set A. We say that B is a small
subset of A if, for every pair of c.e. sets X and Y , X ∩ (A − B) ⊆∗ Y implies that
Y ∪ (X − A) is a c.e. set.
Definition 5.2. Let C be a c.e. subset of a c.e. set B. We say that C is major in
B, denoted C ⊆m B, if B − C is infinite and for every c.e. setW , the containment
B ⊆∗ W implies C ⊆∗ W .

We need the following straightforward results about small major subsets. Note
that any c.e. subset of computable set is small in the computable set.

Lemma 5.3. Let E and F be subsets of D, and let R be a computable set.

(1) (Stob [22]) SupposeE is small inD. IfD ⊆ D̂, thenE is small in D̂. Similarly,
if Ê ⊆ E, then Ê is small in D.

(2) (Stob [22]) If E is small in D, then E ∩R is small in D ∩R.
(3) If E is major in D, then E ∩R =∗ D ∩R or E ∩R is major in D ∩R.
(4) If F is major in E and E is major in D, then F is major in D.
(5) If E is major in D then E is simple inside D.
(6) If E is major in D and D is hhsimple, then every hhsimple superset of E
contains D.

Proof. (1), (2) The proofs of these statements can be found in [2]. (3) If
D ∩R = D ∪R ⊆∗ W , then E ∪R = E ∩R ⊆∗ W .
(4) If D ⊆∗ W , then E ⊆∗ W and, hence, F ⊆∗ W .
(5) Suppose that there is an infinite c.e. setW ⊆∗ (D−E). Then, there is an infinite
computable set R ⊆∗ (D − E) such thatD ⊆∗ R but E �∗ R.
(6) LetH be a hhsimple superset ofE. Then, there is a c.e. setW such thatH ⊆∗ W ,
D ∪W = �, andW ∩ D ⊆∗ H . So, D ⊆∗ W . If D − H is infinite, E �∗ W , a
contradiction. So, D ⊆∗ H . �
The following theorem by Lachlan will be very useful:

Theorem 5.4 (Lachlan [13] (also see [21, X 4.12])). There is an effective procedure
that, given a noncomputable c.e. setW , outputs a small major subset ofW .

5.3. Construction overview. We now construct D-maximal sets A of Type 7,
Type 8, and Type 9. These constructions are very similar to the construction of
splits of a hhsimple setH of a given kind of flavor B. Let B be a Σ03 boolean algebra
with infinitely many pairwise incomparable elements. We call a subset {bi}i∈� of B
a skeleton for B if the elements in {bi}i∈� are pairwise incomparable and, for every
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element of B, either it or its complement is below the join of finitely many elements
in {bi}i∈� . If {bi}i∈� is a skeleton for B and Bb := B � [0, b] for any b ∈ B, then
B = ⊕i∈�Bbi .
For the remainder of §5, we fix an arbitrary Σ03 boolean algebra B that has a

computable skeleton {bi}i∈� . We show how to construct a set H that is hhsimple
(or, at first, close to hhsimple) with flavorB. (Our construction can bemade to work
for any boolean algebra with a 0′′-computable skeleton, but the added complexity
does not gain us a sufficiently better result.)
In the Type 7 case, we intend to build a splitting H = A 	 D so that D(A) is

generated by D =
⊔
i∈� Hi and a list {Ri}i∈� of pairwise disjoint infinite com-

putable sets where Hi ⊂ Ri has flavor Bbi inside Ri for all i ∈ �. Specifically, we
build these objects via Lachlan’s construction (Theorem 2.2) so that E∗(Ri −Hi) is
isomorphic to Bbi . (Note that E∗(Ri −Hi) should be thought of as the collection of
c.e. supersets of Hi that are contained in Ri .) Then, B is isomorphic to a (possibly
proper) substructure of L∗(H ). The structures B and L∗(H ) are isomorphic if, in
addition, for every c.e. setW there exists an n ∈ � so thatW ⊆∗ H ∪⊔

i≤n Ri or
W ∪H ∪⊔

i≤n Ri =
∗ �.

We make two remarks. First, although Lachlan’s construction can be done uni-
formly inside any computable set, the list {Ri}i∈� we construct will not be uniformly
computable. Hence, we must ensure that H is a c.e. set. Second, since L∗(H ) is a
boolean algebra, for every c.e. superset W of H there is a c.e. set W̃ such that
W ∪ W̃ ∪ H = � and W ∩ W̃ ⊆ H . So, there is a computable set R such that
R∩H =W ∩H . Thus, if we constructH and {Ri}i∈� with the properties detailed
above, R or R is contained in the union of a finite subset of {Ri}i∈� for any com-
putable superset R of H . Note that construction of lists like {Ri}i∈� appeared in
some form in many constructions by Cholak and his coauthors and others, e.g.,
Dëgtev [7].

5.4. Requirements.

5.4.1. D-maximal sets of Type 7. We formally state the requirements necessary
to construct aD-maximal setA such thatA	D is a splitting of a hhsimple setH of
flavor B. As mentioned above, we simultaneously construct a pairwise disjoint list
of infinite computable sets Ri that are all disjoint from A and sets Hi contained in
Ri so that the union ofA andD =

⊔
i∈� Hi equalsH . We require that these objects

satisfy the requirements:

Re :We ⊆∗ A ∪D ∪
⊔
i≤e
Ri orWe ∪ A ∪D ∪

⊔
i≤e
Ri =∗ �,

Se : A �=We,
and

Li : E∗(Ri −Hi) is isomorphic to Bbi .
We satisfy the Se requirements as usual, and they imply thatA is not computable.

We satisfy the Li requirements by applying Lachlan’s construction. TheRe require-
ments ensure that A is D-maximal and that {D} ∪ {Ri}i∈� generates D(A) (if D is
a c.e. set). Taken together, the Re and Li requirements guarantee that L∗(A ∪D)
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is isomorphic to B. TheRe requirements take some work, as does ensuring that all
constructed sets are computably enumerable.

5.4.2. D-maximal sets of Types 8 and 9. To construct a D-maximal set of either
Type 8 or 9, we must construct a generating set for D(A) of the proper form
{D0, D1, . . . , R0, R1, . . .}. This generating set contains infinitely many properly c.e.
sets rather than a single properly c.e. set as in the Type 7 case. Hence, we must
modify the D-maximality Re requirements for these cases.

R′
e :We ⊆∗ A ∪

⋃
i≤e
Di ∪

⊔
i≤e
Ri orWe ∪ A ∪

⋃
i≤e
Di ∪

⊔
i≤e
Ri =∗ �.

We still construct the lists {Ri}i∈� and {Hi}i∈� as in the Type 7 case. In the
Type 8 case, we now use the Friedberg Splitting Theorem to break Hi into i + 1
infinite disjoint sets Hi,j for 0 ≤ j ≤ i . Then, we let Dj =

⊔
i∈�,i≥j Hi,j , and we

ensure that Dj is c.e. by construction. Note that Dj ∩ Ri = ∅ if i < j and the list
{Di}i∈� is pairwise disjoint.
In the Type 9 case, we use the Hi to construct the nested list of c.e. sets {Di}i∈�
so that for all i ∈ �:
(1) Di ∩Rj = Dj ∩Rj = Hj for j ≤ i ,
(2) Di ∩

⊔
j≤i Rj is simple inside Di+1 ∩

⊔
j≤i Rj , so (Di+1 − Di) ∩

⊔
j≤i Rj

contains no infinite c.e. sets.

Remark 5.5. Observe that conditions (1) and (2) imply that for any l , either
Di =∗ Di+1 on Rl or Di is simple inside Di+1 on Rl . Hence, (Di+1 − Di) ∩ Rl
contains no infinite c.e. sets.

Let D̆ =
⋃
i∈� Di . In both the Type 8 and 9 cases,

D̆ ∩
⊔
i≤e
Ri =

⋃
i≤e
Di ∩

⊔
i≤e
Ri

by the descriptions above.

5.4.3. Type 9 and small majorness. To ensure that property (2) holds in the Type
9 case, we satisfy the following requirements. (See §5.2 for definitions.)

Ii : Di ∩
⊔
j≤i
Rj is a small major subset of Di+1 ∩

⊔
j≤i
Rj

We use Lachlan’s Theorem 5.4 to modularly to meet Ii (see Lemma 5.7 for the
proof).

5.5. Sufficiency of requirements. If the requirements listed in §5.4 are met as
described, the set A certainly will be a D-maximal set of Type at most 7, 8, or 9
respectively (since D(A) has a generating set of that Type). However, we also must
ensure that D(A) does not have lower Type.
In the following, we examine the Type 7, 8, and 9 cases together as much as
possible. To do so and for notational simplicity, in the Type 7 case, set D0 = D and
Di = ∅ for all i �= 0.
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5.5.1. NotType 1, 2, 3 or 10. First, note that the requirements Si guarantee thatA
is not simple. Therefore,D(A) is not Type 1 by Lemma 3.2. IfA is Type 2 or 3, there
is a c.e. setWe such thatA	We is maximal by Theorem 4.1 ((2)) and ((3)). Assume
thatWe is disjoint from A. By requirement R′

e , eitherWe ⊆∗ ⋃
i≤e Di ∪

⊔
i≤e Ri or

A 	 (We ∪
⋃
i≤e Di ∪

⊔
i≤e Ri) =

∗ �. The latter case implies that A is computable.
Since A is not computable by the requirements Si , the latter case cannot hold. In
the former case, the set Re 	A	We witnesses thatA	We is not maximal (or even
r-maximal). Therefore A is not Type 2 or 3. By definition, the set A is not Type 10
(since D(A) has a generating set of Type 7, 8, or 9). Thus, A is not Type 1, 2, 3,
or 10.

5.5.2. A Technical Lemma. We need the following lemma to show that the sets
we construct are not of lesser Type. Lemma 5.6 is the one place where we use that
these Types are constructed very uniformly, as mentioned in §3.5. It is unclear how
to separate these Types otherwise.

Lemma 5.6. Let D̆ =
⋃
i∈� Di . Let We be disjoint from A. Then, We ⊆∗ D̆ or

We − D̆ is not a c.e. set. Moreover, for the Type 8 and 9 cases, We ⊆∗ ⋃
i≤e Di or

We −Di is not c.e. for all i ≤ e.
Proof. By requirement R′

e , either We ⊆∗ ⋃
i≤e Di ∪ ⊔

i≤e Ri or
A 	 (We ∪

⋃
i≤e Di ∪

⊔
i≤e Ri) =

∗ �. Since requirements Si ensure that A is non-
computable, the latter statement cannot hold. So, We ⊆∗ ⋃

i≤e Di ∪
⊔
i≤e Ri and

thusWe − D̆ ⊆∗ ⊔
i≤e Ri . Suppose thatWe �⊆∗ ⋃

i≤e Di ⊂ D̆.
By requirement Li , the setHi is hhsimple inside Ri . Therefore the set

D̆ ∩
⊔
i≤e
Ri =

⋃
i≤e
Di ∩

⊔
i≤e
Ri

is hhsimple inside
⊔
i≤e Ri . So,We − D̆ =We −

⋃
i≤e Di is not a c.e. set.

For the Type 8 case, recall thatD0, D1, . . . , Di form a Friedberg splitting of their
union inside Ri . Hence,We −Di is not a c.e. set for all i ≤ e.
For the Type 9 case, we argue by reverse induction. Since De =

⋃
i≤e Di (these

sets are nested),We −De is not a c.e. set. SinceWe −De ⊆∗ ⊔
i≤e Ri , there is some

i ′ ≤ e such that (We −De) ∩Ri′ is not a c.e. set. Assume that (We −Dj+1) ∩ Ri′
is not c.e. for j + 1 ≤ e (and, so, is infinite). Suppose (We −Dj) ∩Ri′ is a c.e. set.
Since (We −Dj+1) ∩Ri′ is not c.e., Dj is not almost equal toDj+1 on Ri′ . The c.e.
set (We − Dj) ∩ Dj+1 ∩ Ri′ is infinite and witnesses that Dj is not simple inside
Dj+1 on Ri′ , contradicting Remark 5.5. So, (We −Dj) ∩Ri′ andWe −Dj are not
c.e. sets. Therefore,We −Di is not c.e. for all i ≤ e. �
5.5.3. Not Type 4, 5, or 6. Now assume that the D-maximal set A constructed

has a generating set forD(A) of Type 4, 5, or 6. Since A isD-maximal,D0 is almost
contained in the union of finitely many of these generators. Then, there is another
infinite generatorWe in this generating set almost disjoint from D0. The fact that
We −D0 is c.e. contradicts Lemma 5.6.
5.5.4. Type 8 is not Type 7. Suppose that {D̃, R̃0, R̃1, . . .} is a Type 7 generating

set for D(A), where A is constructed via the Type 8 construction described above.
By construction, there is an e such that D̃ ⊆∗ ⊔

i≤e Ri ∪
⊔
i≤e Di , soDe+1 and D̃ are
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almost disjoint. Then, there is an l such that
⊔
i≤e Ri∪

⊔
i≤e+1Di ⊆∗ D̃∪⊔i≤l R̃i ; so,

De+1 ⊆∗ ⊔
i≤l R̃i . Finally, there is a k such that D̃∪⊔

i≤l R̃i ⊆∗ ⊔
i≤k Ri ∪

⊔
i≤k Di .

Now, by construction,Rk+1− D̆ = Rk+1−Hk+1 is infinite. Hence, there is anm > l
such that R̃m − D̆ is infinite. Observe that R̃m is disjoint from De+1 and A. Thus,
R̃m −De+1 = R̃m is an infinite c.e. set, contradicting Lemma 5.6.
5.6. Small Major Subsets and Type 9 Sets. In order to show that the set A
resulting from the construction outlined for the Type 9 case is not of Type 7 or
Type 8, we need the following lemma.

Lemma 5.7. Suppose we obtain the lists {Di}i∈� and {Ri}i∈� while constructing a
D-maximal setA according to the Type 9 requirements outlined in §5.4. The following
statements hold for j ≤ i .
(1) Either Dj =∗ Di on

⊔
l≤i Rl or Dj ∩

⊔
l≤i Rl is small major in Di ∩

⊔
l≤i Rl .

In the latter case, Dj is simple inside Di on
⊔
l≤i Rl .

(2) For l ≤ i , eitherDj =∗ Di onRl orDj is a small major subset ofDi on Rl . In
the latter case, Dj is simple inside Di on Rl .

Proof. We prove (1) by induction on i ≥ j. The base case i = j holds trivially.
Suppose the statement holds for i ≥ j. Requirement Ii and Lemma 5.3 (1), (4)
imply that Dj ∩

⊔
l≤i Rl is small major in Di+1 ∩

⊔
l≤i Rl . The result follows by

Lemma 5.3 (2), (3).
The proof of (2) is similar but also uses the construction property that
Di ∩ Rj = Dj ∩ Rj for j < i and Lemma 5.3 (3). The second half of both
statements holds by Lemma 5.3 (5). �
5.6.1. Type 9 not Type 7. We now show that the D-maximal set A obtained
via the Type 9 construction is not Type 7. Assume that {D̃, R̃0, R̃1, . . .} is a
Type 7 generating set for D(A). By the R′

e requirements, there is some e such that
D̃ ⊆∗ ⊔

i≤e Ri ∪
⋃
i≤e Di . Since De ⊂ De+1 and (De+1 − De) ∩

⊔
i≤e Ri = ∅, it

follows that De+1 ∩ D̃ ⊆∗ De . By definition of a generating set, there is an l such
that ⊔

i≤e+1
Ri ∪

⋃
i≤e+1

Di ⊆∗ D̃ ∪
⊔
i≤l
R̃i . (1)

Similarly, there is a k such that D̃ ∪ ⊔
i≤l R̃i ⊆∗ ⊔

i≤k Ri ∪
⋃
i≤k Di . By con-

struction, Rk+1 − D̆ is infinite. Since Rk+1 is disjoint from
⊔
i≤e Ri , there is an

m > l such that (R̃m ∩ ⊔
i≤e Ri) − D̆ is infinite. By (1), R̃m ∩ De+1 ⊆∗ D̃. Since

De+1 ∩ D̃ ⊆∗ De , R̃m ∩ (De+1−De) =∗ ∅. By requirement Ie ,De ∩
⊔
i≤e Ri is small

inside De+1 ∩
⊔
i≤e Ri . So, by smallness, the infinite set⎛

⎝R̃m ∩
⊔
i≤e
Ri

⎞
⎠−

⎛
⎝De+1 ∩ ⊔

i≤e
Ri

⎞
⎠ =

⎛
⎝R̃m ∩

⊔
i≤e
Ri

⎞
⎠−De+1

is c.e., contradicting Lemma 5.6. Thus, A does not have Type 7.

5.6.2. Type 9 not Type 8. Lastly, we show that the D-maximal set A obtained
via the Type 9 construction is not Type 8. Assume that {D̃0, D̃1, . . . R̃0, R̃1, . . .} is a
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Type 8 generating set forD(A). We may assume that this generating set satisfies the
properties in Lemma 3.24. By theR′

e requirements and the definition of generating
set, we have the following facts. There is an l such that D0 ⊆∗ ⊔

i≤l R̃i ∪
⊔
i≤l D̃i .

Then, there is a k such that⊔
i≤l
R̃i ∪

⊔
i≤l
D̃i ⊆∗ ⊔

i≤k
Ri ∪

⋃
i≤k
Di .

Next, there is an m > l such that⊔
i≤k+1

Ri ∪
⋃
i≤k+1

Di ⊆∗ ⊔
i≤m
D̃i ∪

⊔
i≤m
R̃i .

Finally, there is a r > k + 1 such that⊔
i≤m
D̃i ∪

⊔
i≤m
R̃i ⊆∗ ⊔

i≤r
Ri ∪

⋃
i≤r
Di .

By construction,Rr+1−D̆ = Rr+1−Dr+1 is infinite. There is also an n > m such that
Rr+1 ⊆∗ ⊔

i≤n D̃i ∪
⊔
i≤n R̃i . Hence, there is an m̃ > m such that R̃m̃ ∩ (Rr+1 − D̆)

is infinite or D̃m̃ ∩ (Rr+1 − D̆) is infinite. In the latter case, D̃m̃ − ⊔
i≤l R̃i is an

infinite c.e. set disjoint from D0 but not contained in D̆, contradicting Lemma 5.6.
So, the former holds. By the choice of l and m, (Dk+1 −Dk) ∩ R̃m̃ ⊆∗ ⊔

l<i≤m D̃i .
Let Y = R̃m̃ ∩ ⊔

l<i≤m D̃i . Since {D̃i}i∈� consists of pairwise disjoint sets, Y is
a c.e. set such that D0 ∩ Y =∗ ∅. Now R̃m̃ ∩ (Dk+1 − Dk) ⊆∗ Y , so certainly
(R̃m̃ ∩Rr+1)∩ (Dk+1 −Dk) ⊆∗ Y . SinceDk ∩

⊔
j≤k Rj is small in Dk+1 ∩

⊔
j≤k Rj

by requirement Ik , the set

Y ∪ [(R̃m̃ ∩Rr+1)−
⎛
⎝Dk+1 ∩ ⊔

j≤k
Rj

⎞
⎠]

is a c.e. set. Note that r + 1 > k. This set is disjoint from D0 since Y is and since
Rr+1 ⊂

⊔
j≤k Rj . Moreover, this c.e. is infinite since it contains R̃m̃ ∩ (Rr+1 − D̆),

contradicting Lemma 5.6. Hence, A is a Type 9 D-maximal set.
5.7. Infinitelymany orbits ofD-maximal sets of Types 7, 8, 9. ByLemma 3.2, two

automorphic sets share the sameType.We show here, however, that the collection of
D-maximal sets of Type 7 (respectively Type 8, Type 9) breaks into infinitely many
orbits. Specifically, for each of these Types, we construct infinitely many pairwise
nonautomorphic D-maximal sets of the given Type. For each of these Types, we
will take two boolean algebras B = ⊕i∈�Bbi and B̃ = ⊕i∈�B̃b̃i (with computable
skeletons {bi}i∈� and {b̃i}i∈� respectively). We then will consider the D-maximal
setsA and Ã obtained via the givenType construction based onB and B̃ respectively.
Each ofA and Ãwill have a generating set of the appropriate Type, denoted as usual
with the sets in the generating set for D(Ã) marked with tildes. We suppose that
Φ : E∗ → E∗ is an automorphism with Φ(Ã) = A, i.e., Ã and A are automorphic.
For notational simplicity, we denote Φ(W̃ ) by Ŵ for any c.e. set W̃ .

5.7.1. Type 7. First, suppose that A and Ã are Type 7. Since A is D-maximal,
there exists an l such that Φ(D̃) = D̂ ⊆∗ D ∪ ⊔

i≤l Ri . By construction and
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Corollary 3.25,⊕i>lBbi is a subalgebra of B̃. This containment is not possible if, for
some i > l , the Cantor Bendixson rank of Bbi is greater than the rank of B̃.
We leave it to the reader to construct, for all j ∈ �, a computable boolean algebra

Bj equipped with a computable skeleton {bj,i}i∈� (i.e., Bj = ⊕i∈�Bbj,i ) such that,
for all i ∈ �, the rank of Bbj+1,i is larger than the rank of Bj . By the argument above,
this collection of boolean algebras gives rise to an infinite collection of pairwise
nonautomorphic D-maximal Type 7 sets.
5.7.2. Type 8. Now suppose that A and Ã are Type 8. Since A is D-maximal,
there is an l such that D̂0 ⊆∗ ⊔

i≤l Di ∪
⊔
i≤l Ri . Similarly, there is an n such that⊔

i≤l
Di ∪

⊔
i≤l
Ri ⊆∗ ⊔

i≤n
D̂i ∪

⊔
i≤n
R̂i .

For m > n, inside R̂m, there is a hhsimple set Ĥ of flavor B̃b̃m such that
Ĥ = R̂m ∩ ⊔

i≤m D̂i . Also, D̂0 is a Friedberg split of Ĥ by construction. Fix a
k > l such that R̂m ⊆∗ ⊔

i≤k Di ∪
⊔
i≤k Ri .

We will explore what Ĥ and R̂m look like. First, note that for all i ≤ l ,
R̂m ∩ Ri ⊆∗ R̂m ∩ ⊔

i≤n D̂i ⊆∗ Ĥ . Similarly, for all i ≤ l , R̂m ∩ Di ⊆∗ Ĥ . Since
D̂0 ∩ R̂m is a Friedberg split of Ĥ and, for l < i ≤ k, D̂0 andDi are almost disjoint,
(R̂m − Ĥ ) ∩⊔

l<i≤k Di =
∗ ∅. Therefore, there is at least one r such that l < r ≤ k

and (R̂m − Ĥ )∩Rr is infinite. Let F be the finite set of all such r. For all r ∈ F and
i ≤ k, we have thatDi ∩Rr ∩ R̂m ⊆∗ Rr ∩ Ĥ . So, B̃bm is a subalgebra of ⊕r∈FBbr .
This is impossible if the rank of B̃bm is greater than the rank of ⊕r∈FBbr .
We again leave it to the reader to construct infinitely many computable
boolean algebras Bj each equipped with a computable skeleton {bj,i}i∈� such that
Bj = ⊕i∈�Bbj,i and the rank of Bbj+1,i is larger than the rank of the join of finitely
many Bbj ,z . In fact, the collection of boolean algebras from the Type 7 case in §5.7.1
suffices.

5.7.3. Type 9. We assume the same setup as for the Type 8 case but for sets of
Type 9. As above, there exist l and n such that

D̂0 ⊆∗ ⋃
i≤l
Di ∪

⊔
i≤l
Ri ⊆∗ ⋃

i≤n
D̂i ∪

⊔
i≤n
R̂i .

For m > n, inside R̂m, there is a hhsimple set Ĥ = R̂m ∩ D̂m of flavor B̃b̃m .
Let k > l be such that R̂m ⊆∗ ⋃

i≤k Di ∪
⊔
i≤k Ri . As before, for all i ≤ l ,

R̂m ∩ (Ri ∪Di) ⊆∗ R̂m ∩⋃
i≤n D̂i ⊆∗ Ĥ .

At this point, the argument differs. By Lemma 5.7 (2), D0 ∩ Rr almost equals
or is small major in Dr ∩ Rr for any r. So, for any r, if R̂m ∩ Rr ⊆∗ Dr ∩ Rr ,
then R̂m ∩ Rr ⊆∗ D0 ∩ Rr . In other words, if (R̂m ∩ Rr) − Dr is finite,
R̂m ∩ Rr ⊆∗ D0 ∩ Rr ⊆∗ Ĥ . By Lemma 5.7 (1), D0 ∩

⊔
i≤j Ri almost equals

or is small major inDj ∩
⊔
i≤j Rj . By choice of k, R̂m ∩⊔

i≤k Ri ⊆∗ Dk ∩
⊔
i≤k Ri .

So, similarly, R̂m ∩⊔
i≤k Ri ⊆∗ D0 ∩

⊔
i≤k Ri , and, hence, R̂m −⊔

i≤k Ri ⊆∗ Ĥ .
Let F be the set of r ≤ k such that (R̂m ∩Rr)−Dr is infinite. The statements in
the previous paragraph together with the fact that R̂m − Ĥ is infinite imply that F
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is nonempty and that R̂m −⊔
r∈F Rr ⊆∗ Ĥ . Recall thatD0 ∩Rr equals Dr ∩Rr or

is small major in Dr ∩Rr . In the latter case, D0 ∩Rr ∩ R̂m equals or is small major
in Dr ∩Rr ∩ R̂m by Lemma 5.3 (3). SinceD0 ∩Rr ∩ R̂m ⊆∗ Ĥ ∩Rr , in any of these
cases, Ĥ ∩Rr must almost contain Dr ∩Rr ∩ R̂m. In particular, if D0 ∩Rr ∩ R̂m is
major in Dr ∩ Rr ∩ R̂m, Ĥ ∩Rr almost contains Dr ∩ Rr ∩ R̂m by Lemma 5.3 (6)
since Ĥ ∩Rr is hhsimple. So, B̃bm is a subalgebra of ⊕r∈FBbr . But if the rank of B̃bm
is greater than the rank of ⊕r∈FBbr this cannot occur. The collection of Boolean
Algebras from the last section demonstrates that the collection of sets of Type 8
breaks up into infinitely many orbits.

5.8. Questions on the orbits of Type 7, 8, 9 D-maximal sets. We know noth-
ing about the structure of the infinitely many orbits containing Type 7, 8, or 9
D-maximal sets. Recall that, by Corollary 3.25, each set of Type 7, 8, or 9 is asso-
ciated with a boolean algebra B (which depends on a choice of generating set). We
think of the input boolean algebra to our construction as a partial invariant for the
resulting D-maximal sets of Type 7, 8, and 9. Suppose B is a computable boolean
algebra with a computable skeleton. If A is the D-maximal set resulting from our
construction with input B and Ã is automorphic to A, Corollary 3.25 and Lemma
3.2 imply that Ã is hhsimple-like but we do not know if the assoicated boolean
algebra is isomorphic to B, only that they are “similar” rank. These observations
lead to the following question.

Question 5.8. Suppose that the D-maximal sets A and Ã, both of Type 7, 8,
or 9, are associated with the boolean algebras B and B̃ respectively. If B and B̃ are
isomorphic (or have the same or “similar” rank), are A and Ã automorphic?

Wemake a few comments about Question 5.8.We begin with the Type 7 case. Let
A and Ã be Type 7 D-maximal sets. Suppose that {D,R0, R1 . . .} is the generating
set for D(A) and that D(Ã) has a generating set of the same form with all sets
marked by tildes. Finally, assume that A 	D and Ã 	 D̃ are both hhsimple sets of
flavor boolean algebra B. So, by Maass [16], A 	 D and Ã 	 D̃ are automorphic,
but we do not know whether A and Ã are automorphic. A direct approach would
be to use an extension theorem to map D to D̃ and the Ri to the R̃i . We can take
computable subsets of D to computable sets of D̃. But it is not clear how to ensure
thatD ∩Ri is taken to D̃ ∩ R̃i . It seems possible that this could be done by directly
building the isomorphism. If an isomorphism could be built in the Type 7 case,
we speculate that an isomorphism could be built in the more complicated Type 8.
However, the Type 9 case seems fundamentally more difficult. In that case, one
needs to ensure that Di+1 automorphic to D̃i+1 via an automorphism taking Di to
D̃i . This is seems beyond the limits of current extension theorem technology.
Note that the above comments only apply toD-maximal sets of Types 7, 8, and 9.

By Corollary 3.25, without the D-maximality assumption, we only know that the
boolean algebra B that corresponds to the sets of Types 7, 8, and 9 is a proper
substructure of L(D̆). Hence, we have no insight into the question of when Type 7,
8, and 9 sets are automorphic.
Finally, given a computable boolean algebra B with a computable skeleton, we

will constructD-maximal setsA0 andA1 of Types 7, 8, and 9 respectively of flavorB
such thatA0 is complete andA1 is not (see Remark 5.9). In addition toQuestion 5.8,
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we also leave unanswered whether the particular sets A0 and A1 we construct are
automorphic.

5.9. The Construction. We give the details of the construction ofD-maximal sets
of Types 7, 8, and 9. We focus on the construction of Type 9 D-maximal sets A as
this case is the most complicated, and we leave the adjustments for the Type 7 and
8 cases to the reader.
We construct the set A using a Π02-tree argument that is very similar to the
Δ03-isomorphism method. In this construction our priority tree will just be 2

<� ,
i.e., each requirement on the tree can be met in one of two possible ways. As
usual we define a stage s computable approximation fs to the true path f so that
f = lim inf s fs where the value of f(n) indicates how the n-th requirement is
satisfied. In our situation, f(n) = 0 will indicate that a certain set related to the
n-th requirement is infinite. The advantage of the tree construction over the usual
priority argument is that our strategy for meeting the n-th requirement can depend
on how the requirements i < n were met. Elements will be placed at nodes on the
tree to aid in meeting these requirements. We intuitively refer to elements as balls,
since their location can change throughout the construction. We view our tree as
growing downward since balls mainly move down through the tree. We say a node
α is visited at stage s if α � fs and α is reset at stage s if fs <L α where <L is the
lexiographic ordering on 2<�.
At each node α ∈ 2<�, we attempt to build a computable set Rα and c.e. set Dα .
For � the empty node, the resulting D� is A, and we set R� = ∅. We build these sets
so that the collection {Dα | � �= α ≺ f} ∪ {Rα | � �= α ≺ f} is a generating set
for D(A). We ensure that Rα is computable for α ≺ f by enumerating the set Rα
as well. Specifically, at each node α ∈ 2<�, we construct a set R̃α so that R̃α =∗ Rα
if α ≺ f. Once an element enters anyRα , Dα , or R̃α , it remains there. So, these are
all c.e. sets. Moreover, no element enters any of these sets before the element has
been placed on the tree.
We recast the requirements Se and R′

e in this tree language. For α ∈ 2<� with
|α| = e, we have the requirements:

Sα : A �=We,
R′
α :We ⊆∗ ⋃

��α
D� ∪

⊔
��α
R� orWe ∪

⋃
��α
D� ∪

⊔
��α
R� =∗ �.

Wewill address the requirements Le and Ie after we describe how to meet the above
requirements. First, we describe the general rules about how balls move down the
tree. The outcomes and action forR′

α also control this movement (andmaintain our
construction guarantees), but we delay these details until §5.9.2. Given � ∈ 2<�, we
let �− denote the node immediately preceding � .
The position function α(x, s) is the location of an element x on the tree 2<� at
stage s . Elements on the tree either move downward from the root � by gravity or
are pulled leftward by action for requirement R′

α . Meanwhile, the requirement Sα
restrains movement down the tree while it secures a witness denoted xα . We say that
x is �-allowed at stage s if x > |� |, x is not in ⊔��� R� ∪⋃

��� D� and x has been

enumerated into R̃� for all � � � . By induction on � ≺ f, almost all balls not in⊔
��� R� ∪

⋃
��� D� are �-allowed.
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Given fs , we determine the position function α(x, s) by the following rules
(defined stagewise). At stage s , the ball s enters the tree and is placed on node �, i.e.,
we set α(s, s) = �, and we enumerate s into R̃�. Hence, s is �-allowed. The node �
may pull any x forR′

� at stage s if � ≤L α(x, s − 1), x is α(x, s − 1) ∩fs -allowed,
and, for all stages t, if x ≤ t ≤ s , then � ≤L ft . In this case, move x to � , i.e., set
α(x, s) = � , and enumerate x into R̃� for all � such that α(x, s − 1) ∩ fs ≺ � ≺ � .
For details on when a ball is pulled and what action is taken with pulled balls, see
Remark 5.10.
On the other hand, suppose that x is �−-allowed for some � � fs , x is not the

current witness x�− for S�− , and, for all stages t, if x ≤ t ≤ s , then � ≤L ft . In this
case, move x to � at stage s so that α(x, s) = � . If an element x on the tree is not
moved by these rules and α(x, s−1) is not reset at stage s , set α(x, s) = α(x, s−1).
If α(x, s − 1) is reset at stage s , let α(x, s) = α(x, s − 1) ∩ fs .
Note that, throughout the construction, we only move x to some node � at stage

s (i.e., set α(x, s) = �) if � � fs or � pulled x (in which case, there was an earlier
stage t such that � � ft , and � has not been reset since stage t) and, after x is
moved to � at stage s , the ball x is (at least) �−-allowed. In addition, by the action
for R′

α described in §5.9.2, we will ensure the following if α ≺ f. First, infinitely
many balls will reach α and be α-allowed. Second, for each ball that is α-allowed at
node α, we add another ball toRα . Third, all but finitely many balls are enumerated
into Rα or R̃α =∗ Rα and each of these sets is infinite. We now describe the details
of each requirement’s action.

5.9.1. Action for S� .
Assigning witnesses to S� .. We meet S� in the usual way. For any � ∈ 2<�, we let
x�,s denote the stage s witness for S� . The witness x�,0 is undefined. Suppose that
W|�|,s ∩D�,s = ∅, witness x�,s is undefined, and there is a stage t > s and an element
x ≥ 2|� | such that � � ft and α(x, t) = � . At the least such stage t > s , define
x�,t to be the least x such that α(x, t) = � . Once x�,t is defined, we let x�,t′ = x�,t
unless ft′ <L � for t′ > t. In this case, we make x�,t′ undefined at that stage. The
node � may not take any action while x�,s is undefined andW|�|,s ∩D�,s = ∅.
Placing witnesses into D�. Suppose α � fs , |α| = e,We,s ∩D�,s = ∅, and there is
an x�,s ≥ 2e such that |� | = |α| = e and x�,s ∈ We,s . Then, enumerate x�,s into
D� and R̃� for all � ∈ 2<� and remove x�,s from the tree. This is the only way balls
enter D�.
Suppose that α ≺ f and D� = We where |α| = e. By the assumption that

infinitely many balls will reach α, it is straightforward to show that some witness
x�,s ∈ We for |� | = |α| = e is enumerated into D� to meet Sα , a contradiction. As
usual, Sα acts at most once (and at most one S� acts for a given e = |� |) and D�
is coinfinite since any witness for � ∈ 2e satisfies x�,s ≥ 2|� | = 2e. Note that a ball
might enter We long before it becomes our witness. So this action does not imply
that A is promptly simple.

Remark 5.9. Our action for S� mixes with both finite permitting and coding.
For permitting, we ask for permission when we want to place a ball into D�. If we
get permission, then we add the ball toD�. While waiting for permission, we set up
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a new ball as another witness x� . If enumerating that ball intoD� would also satisfy
S� , we ask again for permission. Under finite permitting, we will eventually receive
permission to enumerate some witness for S� into D�. Hence, we can construct D�
to be incomplete or computable in any noncomputable c.e. set.
Fix a c.e. set W such as K . To code W into D�, when W changes below e at
stage s , dump all currently defined witnesses x�,s for |� | ≥ e, intoD�. To determine
W below e, wait until there is a witness xα,s not inD� for |α| ≥ e. (Since the empty
set has infinitely many indices and lims xα,s exists for all α ≺ f, we will always find
such a xα,s .) Then,W below e will not change after stage s . So, we can construct
D� to be complete.
These remarks also apply to the construction of a set with an A-special list in
Cholak and Harrington [3, Section 7.2].

5.9.2. Action forR′
α . To meet R′

α , we need to know whether a certain c.e. set is
infinite. For e = |α|, we define the set

W̃e = {x | (∃s)[x is α−-allowed at or before stage s & x ∈We,s ]}.
The action forR′

α depends on whether the c.e. set

Xα− = W̃e�(
⊔
�≺α
R� ∪

⋃
�≺α
D� )

is infinite. Notice that W̃e andXα− depend only on nodes that are proper subnodes
of α. By definition, a ball that is α−-allowed at stage s is not in

⊔
�≺α R� ∪

⋃
�≺α D�

at stage s . Recall our promise that α− ≺ f implies that infinitely many balls will
be α−-allowed at some point. Hence, Xα− is infinite if and only if infinitely many
α−-allowed balls enterWe before they enter

⊔
�≺α R� ∪

⋃
�≺α D� .

Each α in the tree encodes a guess as to whether Xα− is infinite. In particular,
α(|α| − 1) = 0 indicates the guess that Xα− is infinite. The statement that the c.e.
set Xα− is infinite is Π02, so this information can be coded into a tree in the standard
way. Specifically, we can define the true path f and the stage s approximation to
the true path fs so that α encodes a correct guess if α � f. Since these definitions
are standard, we leave them to the reader. Similar constructions with all the details
can be found in [1] and [23].
We define a helper set Pα based on the guess encoded by α. If α
encodes the guess that Xα− is infinite, we let Pα = Xα− . Otherwise, we let
Pα = ��(

⊔
�≺α R�∪

⋃
�≺α D�). IfXα− is in fact finite, thenWe is almost contained

in
⊔
�≺α R� ∪

⋃
�≺α D� , and R′

α is met. We describe the action for R′
α and show

thatR′
α is also met if Xα− is infinite and α ≺ f.

Remark 5.10 (Pulling). If α � fs and xα,s is defined at stage s , then α pulls,
possibly at later stages, the least available balls that are greater than |α| and in Pα
forR′

α until it has secured two such balls x and y. After such a time, α cannot pull
again until α is once more on the approximation of the true path. Any ball may be
pulled at most once by a given node α.

If R′
α has secured two balls x, y ∈ Pα with α(x, s) = α(y, s) = α � fs , we

enumerate x into R̃α , so that x is α-allowed at stage s , and enumerate y into Rα,s .
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If there are any other balls z such that α(z, s) = α, we enumerate these balls into
Rα,s . Some of these balls might be in some D� where � ≺ α. For any � , if a ball
is added to R� , then also add it to R̃� for all � extending � . By construction, if
α ≺ f, the only balls not in Rα or R̃α are the balls x such that α(x, s) <L α or x
is one of finitely many unused potential witnesses for S� with |� | ≤ |α|. Hence, Rα
is computable.
Suppose that α ≺ f. Since Pα is infinite and all but finitely many balls

pass through α, there are infinitely many stages s such that α ≺ fs and the
node α holds two balls in Pα− for R′

α . Hence, infinitely many balls will reach
α and be α-allowed. Moreover, both Rα and R̃α will be infinite. By construction,⊔
��α R� ∪

⋃
�≺α D� ∪Pα =∗ �. So, ifXα− is infinite,

⊔
��α R� ∪

⋃
�≺α D� ∪We =∗

�. Therefore,R′
α is met.

5.9.3. Meeting the other requirements. We divide Rα into two parts: the
balls that enter Rα before being placed in any D� for � ≺ α, specifically
R+α =

⋃
�≺α(Rα�D�), and the remaining balls R

−
α = Rα − R+α . Clearly,

R−
α ⊆ ⊔

�≺α D� . Since the infinitely many pairs of balls pulled for R′
α are not

in D� for any � ≺ α, R+α is infinite if α ≺ f.
Recall Lachlan’s construction (Theorem 2.2) that for Be there is a hhsimple set of

flavorBe . Apply this construction toR+α to getHe andmeet requirement Le . For the
Type 9 case, use Lachlan’s small major subset construction (Theorem 5.4) to satisfy
Ie and the construction assumptions in §5.4.2, i.e., build De so thatDe ∩Rj = Hj
for j ≤ e and De is small major in De+1 on

⊔
j≤e Rj . (For the Type 7 case, add all

balls in He into D�+ . For the Type 8 case, construct a Friedberg splitting
⊔
j≤e He,j

of He and add the balls in He,j into Dj .) This ends the construction. �
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vol. 86, pp. 69–108, Humboldt University, Berlin, 1986.
[11] , Automorphisms of the lattice of recursively enumerable sets and hyperhypersimple sets.

Logic,methodology and philosophy of science, VIII (Moscow, 1987), Studies in Logic and theFoundations
of Mathematics, vol. 126, pp. 179–190, North-Holland, Amsterdam, 1989.
[12] EberhardHerrmann andMartinKummer,Diagonals andD-maximal sets, this Journal, vol.

59 (1994), no. 1, pp. 60–72. ISSN 0022-4812.
[13] Alistair H. Lachlan, The elementary theory of the lattice of recursively enumerable sets. Duke

Mathematical Journal, vol. 35 (1968), pp. 123–146.
[14] ,On the lattice of recursively enumerable sets. Transactions of the American Mathematical

Society, vol. 130 (1968), pp. 1–37.
[15]M. Lerman and R. I. Soare, A decidable fragment of the elementary theory of the lattice of

recursively enumerable sets. Transactions of the American Mathematical Society, vol. 257 (1980), no. 1,
pp. 1–37.
[16]W.Maass,On the orbit of hyperhypersimple sets, this Journal, vol. 49 (1984), pp. 51–62.
[17]W. Maass andM. Stob, The intervals of the lattice of recursively enumerable sets determined by

major subsets. Annals of Pure and Applied Logic, vol. 24 (1983), pp. 189–212.
[18] DonaldA.Martin,Classes of recursively enumerable sets and degrees of unsolvability.Zeitschrift

für Mathematische Logik und Grundlagen der Mathematik, vol. 12 (1966), pp. 295–310.
[19] Theodore A. Slaman andW. Hugh Woodin, Slaman-Woodin conjecture. Personal Communi-

cation, 1989.
[20] Robert I. Soare, Automorphisms of the lattice of recursively enumerable sets I: maximal sets.

Annals of Mathematics (2), vol. 100 (1974), pp. 80–120.
[21] , Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Omega

Series, Springer-Verlag, Heidelberg, 1987.
[22]M. Stob, The Structure and Elementary Theory of the Recursive Enumerable Sets, PhD thesis,

University of Chicago, Illinois 1979.
[23] Rebecca Weber, Invariance in E∗ and EΠ. Transactions of the American Mathematical Society,

vol. 358 (2006), no. 7, pp. 3023–3059.

DEPARTMENT OFMATHEMATICS
UNIVERSITY OF NOTREDAME
NOTRE DAME, IN 46556-5683, USA

E-mail: peter.cholak.1@nd.edu
URL: http://www.nd.edu/∼cholak
E-mail: gerdes@invariant.org

DEPARTMENT OFMATHEMATICS
WELLESLEYCOLLEGE
WELLESLEY,MA 02482, USA

E-mail: karen.lange@wellesley.edu
URL: http://palmer.wellesley.edu/∼klange/

https://doi.org/10.1017/jsl.2015.3 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2015.3

