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Despite the progress made in understanding the ecophysiology of tropical
plants during the past two decades (Lüttge 1997, Mulkey et al. 1996), questions
regarding relationships between the environment and physiological diversity
remain. It is now recognized that tropical climate can be quite variable (see
Coen 1983) which could lead to significant functional diversity (increased vari-
ation in life history traits) among species due to the tight association between
gas exchange physiology and the environment (see Enquist & Leffler 2001,
Guehl et al. 1998, Huc et al. 1994, Martinelli et al. 1998, Sobrado 1993). It
remains unclear, however, how the subtleties of variation in tropical climate
and tree life history traits are related to the functional diversity of tropical
communities (Borchert 1994, 1998).

The stable carbon isotope composition (δ13C) of plant tissue can be used to
quantify certain aspects of functional diversity among species. δ13C has been
suggested as a surrogate for water use efficiency (WUE, the ratio of carbon
gained to water lost during gas exchange) (Farquhar et al. 1988). Generally
plants with high δ13C are thought to have high WUE while those with low δ13C
have low WUE. Several researchers have examined δ13C values in tropical for-
ests (see Martinelli et al. 1998) however, additional studies are necessary to
fully understand the extent of δ13C variation and its correlates.
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In this study, we compare variation in δ13C among co-occurring tropical dry
forest species of north-western Costa Rica (see Enquist & Leffler 2001) in
order to quantify functional diversity. The goals of this study are to (1) present
δ13C data from the dominant species in this region; (2) determine if the δ13C
variation among these species is related to functional differences in phenology
(evergreen or deciduous), canopy position (emergent or understorey), and leaf
morphology (soft or coriaceous); and (3) place our data in the context of other
tropical forest δ13C studies.

We obtained leaf tissue from herbarium specimens collected from June
through August in 1995 and 1996 by B. J. Enquist. These samples were dried
and not treated with any preservative. All individuals came from within a study
plot in San Emilio forest, Area de Conservación de Guanacaste (Enquist et al.
1999). All samples were collected from lower branches (c. 2 m above ground)
within the forest and one mature leaf was taken from each voucher which
corresponded to a separate individual. Twenty-three species from 17 families
were sampled (Table 1). These species possessed both simple and compound
leaves. Simple leaves generally ranged from 6–19 cm with one species, Genipa
americana, having leaves to 40 cm in length. Leaflets ranged in length from 5–
13 cm. Leaf samples were analysed for δ13C at the University of New Mexico
using the methods described by Ehleringer & Osmond (1989). Our data were

Table 1. δ13C and penetrometer values for the 23 species examined. In the ‘Functional groups’ column, D =
deciduous, E = evergreen, Co = coriaceous, S = soft, Ca = canopy, U = understorey. Values are the mean of
all samples for that species with the SE in parentheses, n is the number of individuals from each species
anlaysed for δ13C. The Tukey HSD minimum significant difference for δ13C between two species is 2.72%.

Functional Penetrometer
Species Family groups n δ13C (%) value (g)

Trophis racemosa (L.) Urban Moraceae E, S, U 5 −31.5(0.407) 10.8(3.19)
Tabebuia ochracea Standl. Bignoniaceae D, S, Ca 3 −31.4(0.644) 5.00(2.90)
Piper amalgo L. Piperaceae E, S, U 5 −31.2(0.878) —
Chrysophyllum brenessii Cronquist Sapotaceae E, S, U 6 −31.1(0.591) —
Ateleia herbert-smithii Pittier Fabaceae D, S, Ca 5 −31.1(0.172) 4.74(4.74)
Calycophyllum candidissimum (Vahl) DC. Rubiaceae D, S, Ca 5 −30.7(0.591) 16.6(6.38)
Ocotea veraguensis (Meisn.) Mez Lauraceae E, S, U 5 −30.7(0.235) 23.1(4.23)
Guettarda macrosperma Donn. Sm. Rubiaceae D, S, Ca 5 −30.5(1.081) 9.44(6.49)
Brosimum alicastrum Swartz Moraceae E, S, Ca 4 −30.5(0.402) 57.1(8.81)
Diospyros nicaraguensis Standl. Ebenaceae D, S, Ca 5 −30.4(0.701) 64.3(13.6)
Cupania guatemalensis (Turcz.) Radlk. Sapindaceae E, S, U 5 −30.3(0.331) 8.86(4.02)
Astronium graveolens Jacq. Anacardiaceae D, S, Ca 5 −30.3(0.222) 4.35(3.32)
Bunchosia biocellata Schlecht. Malpighiaceae D, S, Ca 5 −30.0(0.275) 8.64(4.01)
Casearia sylvestris Sw. Flacourtiaceae E, S, U 5 −30.0(0.230) 7.34(4.00)
Genipa americana L. Rubiaceae D, Co, Ca 5 −29.5(0.584) 22.4(5.06)
Guarea glabra Vahl Meliaceae E, S, Ca 5 −29.5(0.325) 30.7(9.59)
Capparis indica (L.) Fawc. & Rendle Capparidaceae E, Co, Ca 6 −29.3(0.575) 228(13.9)
Hymenaea courbaril L. Fabaceae E, Co, Ca 5 −29.0(0.491) 30.6(7.00)
Manilkara chicle (Pittier) Gilly Sapotaceae E, Co, Ca 3 −28.6(0.991) 120(9.66)
Cordia alliodora (Ruiz & Pav.) Oken Boraginaceae D, Co, Ca 5 −28.6(0.221) 13.0(5.85)
Sideroxylon capiri (A. DC.) Pittier Sapotaceae E, Co, Ca 5 −28.5(0.286) 92.8(13.8)
Semialarium mexicanum (Miers) Mennega Hippocrateaceae D, Co, Ca 5 −28.2(0.187) 65.3(7.68)
Zanthoxylum setulosum P. Wilson Rutaceae E, Co, Ca 5 −27.7(0.386) —
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analysed for significant differences among species using ANOVA and among
functional groups using t-tests.

In addition to categorizing species as having soft or coriaceous leaves we also
quantified leaf ‘toughness’ using a penetrometer-type device (Lucas et al. 1991,
Sagers & Coley 1995). Toughness (penetrometer value), is reported as the mass
required to push a 3-mm-diameter rod through a leaf. Depending upon local
abundance, the number of individuals from each species sampled varied from 10
to 60. One leaf, collected from c. 2 m above the forest floor, was measured from
each individual for 20 out of the 23 species examined (Table 1). The relationship
between δ13C and penetrometer value was analysed using a rank regression.

In order to place our results in a broader context, we compiled δ13C and
precipitation data from numerous tropical studies. While many studies report
δ13C, only those which reported annual precipitation and δ13C of several species
with a variety of physiological strategies were utilized (n = 17). The relation-
ship between δ13C and precipitation among studies was then examined using
regression and the best possible curve fit determined.

The mean δ13C value for all species in this study was −29.9‰. Other tropical
ecosystems are more depleted in 13C than ours. Wet tropical ecosystems range
from a low of −32.1‰ (tropical moist forest, Brazil, Martinelli et al. 1998) to a
high of −30.6‰ (subtropical wet/rainforest, Puerto Rico, von Fischer & Tieszen
1995). Values for dry tropical forests are closer to the values observed in our
study (−29.0‰ in Venezuela, Sobrado & Ehleringer 1997 and −26.8‰ in north-
ern Australia, Schulze et al. 1998).

A negative correlation exists between total annual precipitation and δ13C
among tropical sites. This relationship is best fit by a second-order polynomial
(Figure 1) suggesting that δ13C is correlated with water availability in drier
tropical forests but may not be in wetter systems. Hence, a threshold value of
annual precipitation may exist above which additional precipitation has little
impact on δ13C. Such threshold relationships in biological systems are not
uncommon and have been reported in other δ13C/water availability studies (see
Leffler & Evans 1999).

Despite the relationship between δ13C and annual precipitation among trop-
ical sites, unexplained variation remains. Several factors are known to contrib-
ute to δ13C variation among forests, including: variation in canopy density
which alters light regimes (Martinelli et al. 1998), [CO2] and the δ13C of source
air for plants (Buchmann et al. 1997, Sternberg et al. 1989); differences in
vapour pressure deficit among forests (Farquhar et al. 1988); and mineral nutri-
ent availability (Holbrook et al. 1995). There is also a surprising degree of
variation in δ13C among species within San Emilio. δ13C ranged from a low of
−31.5‰ in Trophis racemosa to a high of −27.7‰ in Zanthoxylum setulosum (Table
1), a range of c. 4‰, overlapping with mean values from both wet tropical
forests and dry tropical savannas (Figure 1). Hence, substantial physiological
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Figure 1. Relationship between δ13C and total annual precipitation among study sites throughout the trop-
ics. Note the significant curvilinear relationship (n = 17, δ13C = 7 × 10−7(precip)2 − 0.004(precip) − 25.4, r2 =
0.373, P < 0.05) suggesting the declining importance of precipitation in determining δ13C as precipitation
increases. Data for this figure come from Bonal et al. (2000), Buchmann et al. (1997), Ducatti et al. (1991),
Ehleringer et al. (1987), Guehl et al. (1998), Jackson et al. (1993), Kapos et al. (1993), Martinelli et al. (1998),
Medina & Minchin (1980), Nagy & Proctor (2000), Schulze et al. (1998), Sobrado & Ehleringer (1997),
Sternberg et al. (1998), Victoria et al. (1995), von Fischer & Tieszen (1995).

variation among local species may exist. Martinelli et al. (1998) observed an
even greater 8‰ range variation, from −28 to −36‰, in Brazilian tropical
forests. They attributed variation in δ13C among species to canopy heterogen-
eity and differences among species in carbon assimilation and water use. We
attribute the variation in δ13C observed here to species-specific physiological
diversity rather than canopy heterogeneity because of our sampling protocol
which focused on differences between species found at the same canopy height
and the open nature of the canopy in this forest.

To investigate the life history correlates of the observed interspecific vari-
ation we placed our species into functional groups based on phenology
(deciduous or evergreen), canopy position (understorey or canopy) and leaf
morphology (soft or coriaceous). Deciduous and evergreen trees did not have
significantly different δ13C values, however, significant differences were
observed between canopy and understorey species and between species with
tough, coriaceous leaves and those with soft leaves (Table 2). Leaf penetro-
meter values ranged from 4.35 ± 3.32 g (mean ± SE) in Astronium graveolens to
228 ± 13.9 g in Capparis indica. A rank regression between δ13C and penetro-
meter value is positive and highly significant (Figure 2).

The similar δ13C values in deciduous and evergreen species (Table 2) is in
contrast to the idea that evergreen species maintain higher WUE than decidu-
ous species (Mooney & Gulmon 1982). In fact, WUE in tropical trees appears
more complex than previously thought. Sobrado & Ehleringer (1997) observed
higher δ13C in deciduous species than evergreen species. The lack of variation
between deciduous and evergreen species in our study suggests that the main-
tenance of leaves throughout the dry season does not necessarily require differ-
ences in WUE and may imply that long-term WUE is similar in the two groups.
This relationship, however, could be confounded because, at the landscape
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Figure 2. Relationship between δ13C and penetrometer value. Each data point represents the mean value
for an individual species ± SE. The relationship is statistically significant using Kendell’s rank correlation
(n = 20, r2 = 0.140, P < 0.023).

level, the distributions of evergreen and deciduous species differ due to topo-
graphic and edaphic features of the environment. Additionally, leaf N and P
content differs among evergreen and deciduous tropical tree species (see Hol-
brook et al. 1995) which may play a role in leaf δ13C. Nevertheless, it is import-
ant to note that differences in life history traits are correlated with habitat
affinity and possibly leaf tissue N and P content. This suggests that inherent
physiological differences influence which species can co-occur by influencing
local distribution within a community, a conclusion also reached by Goldstein
et al. (1989, 1996) and Borchert (1994).

We observed significant differences between understorey and emergent
canopy species (Table 2). Numerous studies have examined vertical δ13C gradi-
ents in tropical systems. In all cases, leaves collected from lower canopy levels
were more depleted in 13C than those from the upper canopy (Buchmann et al.
1997, Ehleringer et al. 1987, Medina et al. 1991). This difference is due to the
‘canopy effect’ which Buchmann et al. (1997) explain with light levels and
[CO2]. Our study indicates that leaves collected from multiple species, at the
same canopy position, can also show substantial variation. Since the growth
environment is similar, inherent physiological differences, possibly related to

Table 2. T-test analysis for differences between categories in each functional group. δ13C is the mean value
for each category with the SE in parentheses.

Functional group δ13C (‰) P

Phenology 0.239
Evergreen −29.7(0.323)
Deciduous −30.3(0.280)

Canopy position 0.022
Canopy −29.6(0.263)
Understorey −30.8(0.231)

Toughness 0.001
Soft −30.6(0.144)
Coriaceous −28.7(0.202)

https://doi.org/10.1017/S0266467402002109 Published online by Cambridge University Press

https://doi.org/10.1017/S0266467402002109


A . JOSHUA LEFFLER AND BR IAN J . ENQUI ST156

root distribution (Goldstein et al. 1996, Holbrook et al. 1995), stomatal control
(Meinzer et al. 1993) or vulnerability to cavitation (Sobrado 1993), could exist
between canopy and understorey species within this forest. Nevertheless, it is
important to stress that although our results are consistent with the hypothesis
of functional diversity among species, controlled physiological experiments are
necessary.

We observed significant differences in δ13C between species with tough, cori-
aceous leaves and those with soft leaves (Table 2) and a significant correlation
between leaf δ13C and penetrometer value (Figure 2); soft-leaved species had
more negative δ13C. Variation in δ13C between these species is likely the result
of differences in leaf construction (i.e. lignin and lipid content, Sprent et al.

1996) which stem from inherent differences in physiological strategy. More-
over, since tough leaves are advantageous in water-limited environments
(Turner 1994) this correlation may arise from the high WUE of these trees.
Previous studies have demonstrated that structural composition can impact
δ13C (Broadmeadow & Griffiths 1993, Hubick et al. 1986). Vitousek et al. (1990)
report a positive relationship between δ13C and SLA among ecotypes of Metros-

ideros polymorpha, however Turner et al. (2000) did not find any relationship
between δ13C and leaf toughness in a dipterocarp and heath forest in Brunei.
They did, however, observe a relationship between δ13C and %C, a variable not
measured in this study.

It would be naive to assume that the differences we observed between canopy
and understorey species and between soft- and coriaceous-leaved species are
independent because canopy species often have coriaceous leaves (Table 1).
Within Guanacaste, canopy leaves are exposed to strong, desiccating winds
which can result in high water loss and structural damage and coriaceous
leaves are both resistant to wind damage and also have a high WUE. Addition-
ally, since coriaceous leaves can be an adaptation to water limitation the distri-
bution of these species may be tied to soil water content which also influences
δ13C. Since soil water availability is known to vary throughout San Emilio
(Enquist, unpubl. data) vouchers were collected from individuals throughout
the forest to minimize its impact on our analyses. However, when examined
at the landscape level, many of the species investigated here appear to have
preferences across the mesotopographic gradient. Nevertheless, the strong cor-
relations of δ13C with canopy position and penetrometer value indicate that
intrinsic δ13C variation among species exists.

In conclusion, values of δ13C appear to reflect a surprising degree of func-
tional diversity both within and among tropical forests. At large scales there is
a negative correlation between δ13C and annual precipitation. The negative
correlation provides further evidence that tropical forests experience varying
degrees of water stress. On a local community scale, there is also substantial
variation among dry tropical forest species. While this variation may be con-
founded by numerous factors, differences in life history traits among species
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appear to also play an important role in δ13C variation. These results indicate
that spatial and temporal variation in tropical climate has resulted in a surpris-
ing degree of physiological diversity. These findings have important implica-
tions for understanding species-specific responses to potential climatic change
and for general theories concerning the origin and maintenance of species
diversity both within and across tropical forest communities.
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