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ALGEBRAIC GEOMETRY FOR MV-ALGEBRAS

LAWRENCE P. BELLUCE, ANTONIO DI NOLA, AND GIACOMO LENZI

Abstract. In this paper we try to apply universal algebraic geometry to MV algebras, that is, we study
“MV algebraic sets” given by zeros of MV polynomials, and their “coordinate MV algebras”. We also
relate algebraic and geometric objects with theories and models taken in Łukasiewicz many valued logic
with constants. In particular we focus on the structure of MV polynomials and MV polynomial functions
on a given MV algebra.

§1. Introduction. The spirit of this paper can be summarized by the following
quotation, taken from [12]:

In spite of its geometric origin, topos theory has in recent years some-times been
perceived as a branch of logic, partly because of the contributions to the clarification of
logic and set theory which it has made possible. However, the orientation of many topos
theorists could perhaps be more accurately summarized by the observation that what
is usually called mathematical logic can be viewed as a branch of algebraic geometry,
and it is useful to make this branch explicit in itself.

This paper is a first attempt of applying the concepts of algebraic geometry
over fields to the theory of MV-algebras. According to [15], rational polyhedra are
the genuine algebraic varieties of the formulas of Łukasiewicz Logic, in a precise
sense: zerosets of McNaughton functions coincide with rational polyhedra. Now,
McNaughton functions are functions from [0, 1]n to [0, 1], so that in the theory of
[15], the MV algebra [0, 1] plays a fundamental role. On the other hand, there are
reasons to be interested in other MV algebras, because every MV algebra can be
viewed as the Lindenbaum algebra of some many-valued logic, and as such, it has
logical relevance. This is why we try in this paper to extend somewhat the theory of
[15] to MV algebras as generally as possible.
In order to develop our theory we proceed along lines similar to Plotkin [18],

Sela [20], and Kharlampovich–Myasnikov [8], where an algebraic geometry over
varieties in universal algebra is developed (see also e.g. [1, 5,6,16,17,19]).
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The universal algebraic geometry has proven useful especially for groups, where it
has allowed Sela and, independently, Kharlampovich–Myasnikov, to solve a long-
standing problem of Tarski on the elementary equivalence of finitely generated free
nonabelian groups and the decidability of their theory.
We note that, in classical algebraic geometry over fields, the central notion is that
of polynomial. One has two possibilities:
• considering algebraic geometry without coefficients; this means taking polyno-
mials with integer coefficients (e.g. x2 − 2y) and evaluating them in arbitrary
fields, possibly of fixed characteristic (provided that the difference, zero and
one are admitted as primitive symbols, besides sum and product, so that
polynomials form a ring with unity);

• considering algebraic geometry with coefficients, where polynomials take
coefficients in a field K and are evaluated in field extensions of K .
It turns out that both possibilities can be extended to universal algebra, and
this is done in [18]. Since universal algebra subsumes the equational theory of MV
algebras, we can consider what happens in universal algebraic geometry (coefficient-
free or not) over MV algebras. All what is needed for switching from one kind of
algebraic geometry to the other is a suitable choice of the functional language with
which polynomials are written.

1.1. Overview. This paper is mainly motivated by a desire of understanding MV
polynomials and MV polynomial functions in view of applications to Łukasiewicz
logic. There is an interesting interplay between MV polynomials and MV poly-
nomial functions over arbitrary MV algebras. Moreover, it seems interesting to
see what MV polynomial functions become when we move from [0, 1] (where they
are nicely characterized as continuous, piecewise affine functions by McNaughton
Theorem) to other MV algebras, possibly lacking a natural notion of topology and
continuity. More in detail, the main achievements of this paper are as follows:
• we give a form of Nullstellensatz for MV polynomial algebras A[x1, . . . , xn],
see Theorem 4.12;

• we give a universal algebraic duality between MV algebraic sets and their
coordinate MV algebras (generalizing the duality of [15]), see Theorem 5.6;

• we introduce the definition of “polynomially complete” MV algebra (i.e., one
where MV polynomials and MV polynomial functions coincide) and we give
a characterization of polynomially complete MV chains, see Theorem 6.11;

• we introduce the definition of “strongly complete” MV algebra (i.e., an
MV algebra A where every principal ideal in the polynomial MV algebra
A[x1, . . . , xn] coincides with its radical) and characterize these algebras as the
simple divisible ones, see Theorem 6.18;

• we prove the folklore, but important, result that the MV algebraic subsets of
[0, 1]n coincide with the usual closed sets, see Proposition 6.26;

• we identify MV polynomial functions over any MV algebra with a kind of
truncated functions, (see Theorem 7.2) and we use these functions to represent
coordinate MV algebras (see Corollary 7.7);

• we characterize MV polynomial functions on MV chains, see Corollary 8.5;
• we give a completeness criterion for Łukasiewicz logic with constants in terms
of polynomial completeness, see Proposition 9.2.
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1.2. Related work. Our main source of inspiration is [15], where the Galois
connection between theories and models is fully described for infinite valued
Łukasiewicz logic. Because of the completeness theorem, we can say that all infor-
mation for this connection is already provided by the MV algebra [0, 1]. However,
since we are interested in a Diophantine approach to MV algebraic geometry, we
would like to go beyond [0, 1] and consider anyMV algebraA. This corresponds to
adding to Łukasiewicz logic the complete (first order) diagram of A.
Of course in the generalization we lose something: for instance, we lose the

tight connection between zeros of (single) polynomials and principal polynomial
ideals given by Wójcicki’s Theorem (see [4]) in the case of A = [0, 1]. However,
many concepts of [15] still make sense, like the category of algebraic sets and
Z-maps (here replaced by polynomial maps) and the category of MV algebras and
homomorphisms, as well as the equivalence between them.
A predecessor of this work is [14], where the duality between finitely presented

MV algebras and rational polyhedra is carefully described. The duality is obtained
by specializing the duality between MV algebras and subspaces of cubes, or equiv-
alently, by specializing the duality between semisimple MV algebras and closed
subspaces of cubes.

§2. Preliminaries. In this sectionwe give somepreliminary definitions and results
on MV algebras, the Mundici equivalence, and the McNaughton Theorem.

2.1. MV algebras. In order to make this preliminary subsection not too long, we
give only a quick review of MV algebras, referring to [4] for further details.
AnMV-algebra is a structure (A,⊕,∗ , 0), where ⊕ is a binary operation (called

truncated sum), ∗ is a unary operation (the negation) and 0 is a constant, such that
the following axioms are satisfied for any a, b ∈ A:
i) (A,⊕, 0) is an abelian monoid,
ii) (a∗)∗ = a,
iii) 0∗ ⊕ a = 0∗,
iv) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.
Note that all axiomsofMValgebras are equations between terms, soMValgebras

form a variety.
An example of an MV-algebra is given by the real interval [0, 1] where a ⊕ b =

min{a + b, 1} and a∗ = 1 − a. This MV-algebra is important because it generates
the variety of all MV-algebras, and also because it is one of the basic structures in
fuzzy logic and fuzzy set theory, see [21].
On an MV-algebra A we define auxiliary concepts as follows:

v) 1 := 0∗. (the unit)
vi) a � b := (a∗ ⊕ b∗)∗. (the Łukasiewicz product)
vii) a � b := a � b∗. (the truncated difference)
viii) d (a, b) = (a � b)⊕ (b � a). (the Chang distance)

for any a, b ∈ A.
Sometimes we simply write ab for a � b.
Note that in [0, 1] we have a � b = max(0, a + b − 1), a � b = max(0, a − b),

and d (a, b) = |a − b|.
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If n is a positive integer, it is customary to denote by na for the sum of a with
itself taken n times. The order of an element a ∈ A, written ord (a), is the smallest
n such that na = 1, or∞ if no such n exists.
In anMV algebra we define a partial order by letting a ≤ b if there is c such that
a ⊕ c = b. Every MV algebra is a distributive lattice with this partial order. The
supremum is a ∨ b = (a∗ ⊕ b)∗ ⊕ b and the infimum is a ∧ b = (a∗ ∨ b∗)∗. AnMV
chain is a linearly ordered MV algebra.
There is a notion of divisibleMValgebra quite close to the usual notion of divisible
group. An element a ∈ A is n-divisible if there is b ∈ A such that (n − 1)b = a � b.
Intuitively, b stands for a/n. AnMValgebra is divisible if every element is n-divisible
for every n ≥ 1. For every MV algebra A there is a divisible MV algebra, denoted
by DH (A) (the divisible hull of A), such that DH (A) extends A, and for every
morphism � : A→ E withE divisible, there is a unique morphism � : DH (A)→ E
extending �. We use the notation DH (G) also to denote the divisible hull of a
group G .
Since MV-algebras form a variety, the notions of free MV algebra over a set
of generators and MV-homomorphism are just the particular cases of the corre-
sponding universal algebraic notions. We can also form quotients, but instead of
congruences we use ideals. An ideal of anMV algebraA is a subset J ofA such that
if a, b ∈ J then a ⊕ b ∈ J , and if c ∈ J and d ≤ c then d ∈ J .
Two elements a, b ∈ A are called congruent modulo an ideal J , written a ≡J b,
if d (a, b) ∈ J . Then the quotient set A/ ≡J has the structure of an MV algebra.
If S is a subset of anMV algebraA, we denote by id (S) the ideal generated by S.
We define J1 + J2 = id (J1 ∪ J2). It results that a ∈ J1 + J2 if and only if there are
b1 ∈ J1, b2 ∈ J2 such that a ≤ b1 ⊕ b2. Similarly we define the sum of an arbitrary
set of ideals.
An ideal J is prime if for every a, b ∈ A, either a � b ∈ J or b � a ∈ J . It turns
out that an ideal J is prime if and only if A/ ≡J is linearly ordered.
The radical of an MV algebra A, denoted by Rad (A), is the intersection of its
maximal ideals. The rank of A is the cardinality of A/Rad (A).
A discreteMV algebra is one with minimum nonzero element.
A simple MV algebra is an MV algebra where (0) is the only proper ideal.
Equivalently, by [4], an MV algebra A is simple if and only if it is a subalgebra of
[0, 1]. For instance, the simple finite algebras are given by Sn = {0, 1/n, 2/n, . . . ,
(n − 1)/n, 1} for every n ≥ 1.
2.2. �u-groups, Mundici functors, and good sequences.

Definition 2.1. Recall that a lattice ordered abelian group (�-group) is an abelian
groupG equipped with a translation-invariant, lattice partial order≤. � groups are
often presented as algebraic structures in the language of groups, +,−, 0, plus the
symbols ∧ for infimum and ∨ for supremum.
An � group with strong unit (�u-group) is a pair (G, u), where u (the strong unit)
is a positive element of G , such that for every g ∈ G there is a positive integer n
such that g ≤ nu.
Recall also from [4] that one can construct two functors Γ and Ξ, from the
category of �u-groups and strong unit preserving �-group homomorphisms to the
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category ofMV algebras andMV algebra homomorphisms, and conversely, so that
the pair (Γ,Ξ) is a categorial equivalence.
The construction (on objects) works as follows.
The functor Γ maps an �u-groupG with strong unit u to theMV algebra Γ(G, u)

whose domain is the interval {x ∈ G |0 ≤ x ≤ u}, the sum is x ⊕ y = (x + y) ∧ u
and the negation is x∗ = u − x.
Conversely, the construction of the functor Ξ relies on a technical notion known

as good sequences.

Definition 2.2. A good sequence in an MV algebra A is a finite sequence a =
(a1, . . . , an) of elements of A where the last element is zero, and ai ⊕ ai+1 = ai for
every i < n.

There is a sum of good sequences, where a + b is the sequence c such that

ci = ai ⊕ (ai−1 � b1)⊕ · · · ⊕ (a1 � bi−1)⊕ bi .
So good sequences form a monoid MA, and from this monoid the group Ξ(A)

can be defined via the usual Grothendieck construction: one takes pairs of elements
ofMA, where (a, b) intuitively stands for b−a, and then identifies (a, b) with (c, d )
whenever a + d = b + c. The order in Ξ(A) is defined by (a, b) ≤ (c, d ) whenever
b + c ≤ a + d . The strong unit of Ξ(A) is the pair ((0), (1)), where (0) and (1) are
the good sequences consisting only of a 0 and a 1, respectively.
The following lemma will be useful later:

Lemma 2.3. Let A be any MV algebra. Let g ∈ Ξ(A). Then g is a finite sum of
elements of A with plus or minus signs.

Proof. g = (g ∨ 0) + (g ∧ 0), so we can suppose g ≥ 0. But by definition of the
inverse Mundici functor Ξ, the positive cone of Ξ(A) is given by the good sequences
of elements of A, and every good sequence of elements of A is a finite sum of
elements of A, see [4]. �
2.3. Affine terms and polyhedra.

Definition 2.4. An affine term on anMV algebraA is an expression of the form

f(x1, . . . , xn) = m1x1 + · · ·+mnxn + r,
where mi are integers and r ∈ Ξ(A).
A polyhedron on A is a finite union of subsets of An of the form

⋂
i∈I

{(x1, . . . , xn) ∈ An |fi(x1, . . . , xn) ≥ 0},

where I is finite and each fi is an affine term on A.

We call simply polyhedra the polyhedra on [0, 1]. Note that according to our
definition, the vertices of polyhedra have real, not necessarily rational, coordinates,
and a polyhedron is not necessarily connected or convex.
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2.4. The spectrum sheaf. We introduce somebasic notions of sheaf theory applied
to MV algebras. For more on sheaf theory see [13].
Recall from [7] that the spectrum of an MV algebra A is the set Spec(A) of all
prime ideals of A. The maximal spectrum,Max(A), is the set of all maximal ideals.
Following [7], on the spectrum we can put the co-Zariski topology, i.e., the set of
open subsets generated by the sets Wa = {P ∈ Spec(A)|a ∈ P}, where a ranges
over A.
The spectrum sheaf of A, here denoted by SH (A), is the second projection
function from E(A) to Spec(A), where E(A) is the set of all pairs (a/P,P) such
that P ∈ Spec(A) and a ∈ A. Note that a/P is an element of the quotient MV
algebra A/P. So, SH (A) is a sheaf of MV algebras (actually MV chains) on the
topological space Spec(A), whose stalk at P is A/P for every P ∈ Spec(A).
The topology we put on E(A) has as a subbasis of opens the set of all sets of the
formWa,b = {(a/P,P)|P ∈ Spec(A), b ∈ P} for some a, b ∈ A.
Every element a ∈ A corresponds to a section â of the spectrum sheaf SH (A),
namely the map sending P to (a/P,P). Conversely, in [7] it is shown that every
section of SH (A) is of the form â for some a ∈ A.
2.5. MV polynomial functions and a generalizedMcNaughtonTheorem. We recall
from [4] the notion of McNaughton function and McNaughton Theorem.
A function f from [0, 1]n to [0, 1] is called a McNaughton function if it is con-
tinuous and there are k affine polynomials p1, . . . , pk with integer coefficients (the
constituents) such that for every x ∈ [0, 1]n there is j such that f(x) = pj(x).
Then McNaughton Theorem says that McNaughton functions from [0, 1]n to
[0, 1] form an MV algebra isomorphic to the free MV algebra on n generators.
A slightly generalized version of McNaughton Theorem is in terms of what we
call generalized McNaughton functions.

Definition 2.5. A function f from [0, 1]n to [0, 1] is called a generalized
McNaughton function if it is continuous and there are k affine polynomials with
integer degree one coefficients and real degree zero coefficient (the constituents)
such that for every y ∈ [0, 1]n there is j such that f(x) = pj(x).
Let us specialize to MV algebras the usual notion of polynomial function (see
Subsection 3.3 for more on polynomial functions). Then we can prove:

Proposition 2.6. The set GMn of generalized McNaughton functions from [0, 1]n

to [0, 1], equipped with pointwise operations, forms an MV algebra isomorphic to the
MV algebra PFn([0, 1]) of MV polynomial functions from [0, 1]n to [0, 1].

Remark 2.7. The proof of the proposition is given in the paper [2] which, at the
time of writing, is submitted. So we reproduce it here for completeness.

Proof. PFn([0, 1]) is included in GMn like in [4], 3.1.8.
For the converse inclusion, given an affine function over [0, 1], say f = m0x0 +

· · ·+ mnxn + b, we note that f# = (f ∨ 0) ∧ 1 is an MV polynomial function. In
fact, if b is integer, the result is proved in [4], 3.1.9; otherwise, it is enough first to
write b = b′ +m with m integer and 0 ≤ b′ < 1, then replace b′ with a variable y
and consider the function g = m0x0 + · · ·+mnxn + y +m, where the degree zero
term is an integer, so g fits in the previous case.
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Note that the zerosets of MV polynomial functions on [0, 1] coincide with poly-
hedra (see Definition 2.4): in fact, for polynomials or polyhedra with only integer
coefficients this follows from the decomposition of McNaughton functions given in
[4], 3.3.1; and in the general case, once againwe can take polynomials and polyhedra
with only integer coefficients and then specialize some of its variables to elements
of [0, 1].
The maximal spectrum of PFn([0, 1]) is a dense subspace of the spectrum of

PFn([0, 1]) by the definition of co-Zariski topology, and it is a topological space
homeomorphic to [0, 1]n via the map sending ā ∈ [0, 1]n to {f ∈ PFn([0, 1])|
f(ā) = 0}, see [4], 3.4.3 (it can be shown, however, that there are prime ideals
which are not maximal, and to our knowledge, the spectrum of PFn([0, 1]) is far
from being well understood).
Like in [7], Remark 9.5, the finite open covers of the spectrum of PFn([0, 1])

correspond to the finite covers of the maximal spectrum (i.e., the cube [0, 1]n) by
polyhedra.
Given a function � ∈ GMn with constituents h1, . . . , hk , there are polyhedra

T1, . . . , Tk whose union coincides with [0, 1]n and such that for each i , hi coincides
with � on Ti . Since 0 ≤ � ≤ 1, it follows 0 ≤ hi ≤ 1 on Ti and hi is affine on Ti , so
hi coincides with h#i on Ti and is an MV polynomial function on Ti .
So, every function � ∈ GMn gives a cover of [0, 1]n by polyhedra, Ti = Z(fi),

f1, . . . , fk ∈ PFn([0, 1]), f1 ∧ · · · ∧ fk = 0, and a family g1, . . . gk ∈ PFn([0, 1])
such that � = gi on Ti and gi and gj coincide on Ti ∩ Tj . These two families give
a global section of the spectrum of PFn([0, 1]). By [7], every global section of the
spectrum of PFn([0, 1]) corresponds to an element of PFn([0, 1]), so every element
of GMn corresponds to an element of PFn([0, 1]) as desired. �
In this sense, McNaughton Theorem gives a characterization of MV polynomial

functions on [0, 1].

§3. Terms and polynomials. In this section we recall some notions of universal
algebra which we will apply to the variety of MV algebras.
Often in the sequelwewill use bars to denote tuples, for example, x̄ = (x1, . . . , xn).

The value of n will always be either irrelevant or clear from the context.
We refer to [3] for the concepts of function symbol, arity, functional language,

algebra over a functional language.

3.1. Term algebras and congruences. In this subsection we will give a sketchy
treatment of the matter, for more details see [3].
Let X be a nonempty set of elements, called variables, and let F be a functional

language.
The set of terms over X and F , denoted T (X,F ), is the least set of strings of

symbols such thatX ⊆ T (X,F ), and if t1, . . . , tn ∈ T (X,F ) andf ∈ F has arity n,
then f(t1, . . . , tn) ∈ T (X,F ).
T (X,F ) is called a term algebra.
An equation between terms is an expression p = q, where p, q are terms.
A variety on a type F is a class of algebras of type F defined by a set of equations

between terms.
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A congruence on a term algebra T (X,F ) is an equivalence relation � on T (X,F )
such that, for every n-ary symbol f ∈ F , if ti�ui for i = 1, . . . , n, then

f(t1, . . . , tn)�f(u1, . . . , un).

3.2. Polynomials. We will use polynomials as is customary in universal algebra,
where algebras of polynomials are free objects in certain varieties. Concerning
polynomials, a couple of comments are in order.
First, it seems there is some mismatch between polynomials in usual algebraic
geometry and polynomials in universal algebra. Polynomials in algebraic geometry
are sums of monomials, and monomials are products of constants and variables.
Instead, polynomials in universal algebra are something more abstract: they are
equivalence class of terms. As pointed out by a referee, the point is that in algebraic
geometry, polynomials are normal forms for terms, whereas in universal algebra, in
general, there is no natural normal form for terms, and the variety of MV algebras
is an example of this situation. For this reason, when dealing with MV algebras, we
will be careful in defining polynomials according to universal algebra.
Second, in universal algebra (and also in classical algebraic geometry over fields)
polynomials should not be confused with polynomial functions. Polynomials eval-
uate to functions, but the same function can come from different polynomials.
We believe that the distinction between polynomials and polynomial functions is
crucial, and we will come back to it several times in the paper.
So we introduce polynomials as follows.
LetA be an algebra of any type F . Let FA be the type obtained from F by adding
a constant symbol ca for every a ∈ A. We call atomic diagram of A the set of all
equalities of the form cf(a1,...,an) = f(ca1 , . . . , can ) where f ∈ F is a n-ary symbol
and a1, . . . , an ∈ A.
Let V be a variety of a functional language F and let A ∈ V . Let CV,A be the
congruence on terms of type FA generated by the axioms for V and the atomic
diagram of A.
We will denote by VA the variety of V -algebras with constants in A, that is, the
variety of type FA axiomatized by CV,A.

Definition 3.1. If x̄ is a tuple of variables, we define the algebra of polynomials
with variables in x̄ and constants in A to be the quotient

A[x̄] = T (x̄, FA)/CV,A.

In universal algebra terms, it results that A[x̄] is the algebra freely generated by
x̄ in the variety VA.
Note that the definition of polynomial algebra is relative to a variety: for instance,
xy and yx are the same polynomial on commutative rings, but not on rings.
However, in our case the variety will always be clear, so we omit it from the notation.
Note that it is not a problem to say what are the coefficients of a term (they
are its constants), but it is more difficult to say what are the “coefficients” of a
polynomial, because a polynomial is a congruence class of terms. For this reason
we will be careful not to mention coefficients at all and to speak of constants rather
than coefficients.
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3.3. Polynomial functions. Given an algebra A of a functional language F and a
term p ∈ T (x1, . . . , xn, FA), wemay define a functionpA : An → A “by substitution
of variables” in a standard way. We call pA the polynomial function in n variables
induced on A by p.
Given two terms p, q ∈ T (x1, . . . , xn, FA), we write p ≡A q if pA = qA, that is, p

and q induce the same function on A. Note that ≡A is a congruence.
We note that polynomial functions in n variables on an algebra A form another

algebra, which we will denote by PFn(A).
If two terms p, q over an algebra A are the same polynomial, then they induce

the same function on A, that is p ≡A q, but not conversely. A criterion for equality
of polynomials is given by the following lemma, whose proof is left to the reader:

Lemma 3.2. Two terms p, q in n variables give the same polynomial on an alge-
bra A if and only if there is an extension A′ of A[x̄] such that p, q are congruent
modulo ≡A′ .
In particular, p and q are the same polynomial on A if and only if p ≡A′ q for every

algebra A′ ∈ V extending A.
Other two useful corollaries are the following:

Corollary 3.3. Let V be a variety and let A ∈ V be an algebra. Let p(x̄) =
q(x̄) ∈ A[x̄]. Then p(x̄) = q(x̄) ∈ A′[x̄] for every extension A′ of A.

Proof. This is just because every extension of A′ is also an extension of A. �
Corollary 3.4. Let V be a variety and let A ∈ V be an algebra. Let p(x̄) =

q(x̄) ∈ A[x̄]. Then p(x̄) = q(x̄) ∈ B[x̄] for every subalgebra B of A containing the
constants of p and q.

Proof. This is just because the natural map from B[x̄] to A[x̄] is injective. �
As an example of difference between polynomials and polynomial functions,

consider the MV algebra A = {0, 1} and the MV polynomial p(x) = x ∧ x∗.
Then p(x) induces the zero function onA, but it is not the zero polynomial inA[x],
because e.g. [0, 1] is an extension of A, [0, 1] contains 1/2, and p(1/2) = 1/2 �= 0.

§4. MV Algebraic Sets. The previous section was devoted to arbitrary varieties
of universal algebra. From now onwewill work in the variety ofMV algebras unless
otherwise stated. In this section we focus on “Diophantine” algebraic geometry: that
is, we take the same MV algebra A both to define constants in polynomials and to
evaluate polynomials. Most of the results in this section are analogs of well-known
facts of algebraic geometry over fields.

Definition 4.1. Let A be an MV-algebra. Let S ⊆ A[x1, . . . , xn]. The set
V (S) = {ā ∈ An | p(ā) = 0, ∀p ∈ S}

is called theMV algebraic set determined by S.

Clearly if we let J = id (S), the ideal ofA[x̄] generated by S, then V (J ) = V (S).
Thus algebraic sets are determined by ideals.
Note that for a given subsetS ⊆ A[x̄] wemay haveV (S) = ∅. This would happen

iff for each ā there is p ∈ S such that p(ā) �= 0.
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Definition 4.2. Call an ideal J ⊆ A[x̄] singular if V (J ) = ∅. Otherwise call J
nonsingular.

Notice that if p(x̄) ∈ A[x̄] and has no zero, then id (p(x̄)) is a singular ideal
and conversely. For instance, every nonzero element a ∈ A, viewed as a constant
polynomial, will have no zero in any extension of A.

Definition 4.3. Suppose we have a nonempty X ⊆ An. The set
I (X ) = {p ∈ A[x1, . . . , xn] | p(ȳ) = 0, ∀ȳ ∈ X}

is an ideal, called the zero ideal of X .
By convention we let I (∅) = A[x1, . . . , xn].
Let us give some preliminary results on the operators I and V .
First, for every S ⊆ A[x1, . . . , xn] and X ⊆ An we have

X ⊆ V (S) ⇐⇒ S ⊆ I (X ).
Hence, the pair (I, V ) is a contravariant Galois connection between the powerset
ofA[x1, . . . , xn] and the powerset ofAn. Like in the classical Nullstellensatz, we can
consider the objects of the form I (V (J )). We will derive a Nullstellensatz below.
In partial analogy with standard algebraic geometry over fields, the following is
true:

Proposition 4.4. If A is an MV chain then V (J ∩K) = V (J ) ∪V (K).
Proof. Since J ∩K ⊆ J, K we have that V (J ) ∪ V (K) ⊆ V (J ∩K).
Conversely, suppose for an absurdity ā ∈ V (J ∩K) and ā �∈ V (J )∪V (K). Then
there are p ∈ J, q ∈ K such that p(ā) �= 0 and q(ā) �= 0. But p ∧ q ∈ J ∩ K , so
(p ∧ q)(ā) = 0, and since A is linearly ordered, we have p(ā) = 0 or q(ā) = 0.
So we have a contradiction and the thesis holds. �
Definition 4.5. Call an ideal J ⊆ A[x̄] a point ideal if for some ā =
(a1, . . . , an) ∈ An we have J = I (ā).
Note that A[x̄]/I (ā) is isomorphic to A via the evaluation of polynomials at ā.
Hence, if A is linearly ordered, then I (ā) is a prime ideal; and if A is simple, then
I (ā) is a maximal ideal.

Proposition 4.6. Each point ideal is nonsingular, nonzero and proper.

Proof. Clearly, ā ∈ V (I (ā)) so I (ā) is nonsingular. Moreover 1 /∈ I (ā), thus
I (ā) is proper.
Consider ā = (a1, . . . , an). If ā �= 0̄ let p(x̄) = a1x∗1 ⊕ · · · ⊕ anx∗n . Then p �= 0
and p(ā) = 0. If instead ā = 0̄ then just let p(x̄) = x1. Again p �= 0 and p(ā) = 0.
So in any case, the ideal I (ā) is nonzero. �
Proposition 4.7. For every nonsingular ideal J ⊆ A[x̄], we have I (V (J )) =⋂
ā∈V (J ) I (ā).

Proof. Suppose that p ∈ I (V (J )). Then for each ā ∈ V (J ) we have p(ā) = 0.
Therefore, p ∈ I (ā) so p ∈ ⋂

ā∈V (J ) I (ā). Hence I (V (J )) ⊆
⋂
ā∈V (J ) I (ā).

Conversely, suppose that p ∈ ⋂
ā∈V (J ) I (ā). Then p(ā) = 0 for all ā ∈ V (J ),

that is p ∈ I (V (J )) and so I (V (J )) = ⋂
ā∈V (J ) I (ā). �
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Proposition 4.8. I (ā) = I (b̄) iff ā = b̄.

Proof. Let ā = (a1, . . . , an), b̄ = (b1, . . . , bn). Assume ā �= b̄. Say ai �= bi . Then
p(x1, . . . , xn) = d (xi , ai), where d (x, y) is the Chang distance, is zero on ā and
nonzero on b̄. �
Definition 4.9. For a nonsingular ideal J ⊆ A[x̄], the set

pt

√
J =

⋂
{I (ā) | J ⊆ I (ā)}

is an ideal, called the point radical of J . If J is singular we let pt
√
J = A[x̄].

Observe that if J is nonsingular so that V (J ) �= ∅ then there is an ā ∈ V (J ).
Thus for all p ∈ J we have p(ā) = 0. Hence J ⊆ I (ā). Thus J ⊆ pt

√
J .

As a consequence of Proposition 4.7 we have the following corollary, formally
analogous to the Nullstellensatz of algebraic geometry:

Corollary 4.10. For every ideal J, I (V (J )) = pt
√
J .

Proof. We can suppose J is nonsingular. From Proposition 4.7 we have
I (V (J )) =

⋂
ā∈V (J ) I (ā). Let, then q ∈ I (V (J )) and suppose for some ā that

J ⊆ I (ā). Then p(ā) = 0 for all p ∈ J . Thus ā ∈ V (J ) and it follows that q(ā) = 0
and q ∈ I (ā). Hence q ∈ pt

√
J by definition of point radical.

Conversely suppose q ∈ pt
√
J and that ā ∈ V (J ). Then J ⊆ I (ā). By definition

of point radical we have q ∈ I (ā). So, q ∈ I (V (J )). �
If M ⊆ A[x̄] is maximal and nonsingular, then either I (V (M )) = M or

I (V (M )) = A[x̄].
Suppose I (V (M )) = A[x̄]. Thenwe have that 1 ∈ I (V (M )). That is,V (M ) = ∅.
Proposition 4.11. If J is an ideal,Y ⊆ An and J=⋂

ā∈Y I (ā) then, I (V (J )) = J .

Proof. We claim that Y ⊆ V (J ). Let ā ∈ Y and p ∈ J . Then p ∈ I (ā). Thus
p(ā) = 0 and so ā ∈ V (J ). Now let ā ∈ V (J ). Then for allp ∈ J wehavep(ā) = 0.
Hence p ∈ I (ā) and so J ⊆ ⋂

ā∈V (J ) I (ā). Therefore, we have J ⊆ ⋂
ā∈V (J ) I (ā) ⊆⋂

ā∈Y I (ā) = J . So by Proposition 4.7 we have I (V (J )) = J . �
We summarize the previous results in the following Nullstellensatz theorem:

Theorem 4.12. The ideals J such that I (V (J )) = J are exactly the point-radical
ideals.

Proof. This follows from Proposition 4.11 and Corollary 4.10. �
Proposition 4.13. pt

√
pt

√
J = pt

√
J .

Proof. J ⊆ I (ā) iff pt
√
J ⊆ I (ā) iff pt

√
pt

√
J ⊆ I (ā). �

Corollary 4.14. For every ideal J, I (V (pt
√
J )) = pt

√
J .

Proposition 4.15. If Ji is a family of point-radical ideals, then so is
⋂
i Ji . that is,

pt

√⋂
i Ji =

⋂
i Ji .

Proof. We have
⋂
i Ji ⊆ pt

√⋂
i Ji . Let p ∈ pt

√⋂
i Ji . Let Ji ⊆ I (ā) for some ā.

Then
⋂
i Ji ⊆ I (ā), thus pt

√⋂
i Ji ⊆ I (ā). Therefore, p ∈ I (ā) and so p ∈

pt

√
Ji = Ji . Taking the intersection, p ∈ ⋂

i Ji . �
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Proposition 4.16. If Zi is a family of MV algebraic sets then I (
⋂
i Zi ) =

pt

√
Σi I (Zi ), where Σi Ji is the ideal generated by

⋂
i Ji .

Proof. Let Zi = V (Ji) for some ideals Ji .
Then, ā ∈ ⋂

i V (Ji) iff for all qi ∈ Ji we have qi(ā) = 0.
Therefore, I (

⋂
i Zi) = I (

⋂
i V (Ji)) = I (V (Σi Ji)) = pt

√
Σi Ji . Since we can take

the Ji to be point-radical ideals, we have Ji = I (V (Ji)) = I (Zi ) we conclude
the proof. �
Proposition 4.17. There is a one-one correspondence between point-radical ideals
and MV algebraic sets.

Proof. First we have a map pt
√
J → V (pt

√
J ). This map is one-one since

I (V (pt
√
J )) = pt

√
J .

SupposeW is an MV algebraic set; then for some ideal J we haveW = V (J ).
Moreover byProposition 4.11 andCorollary 4.10we can takeJ to be a point-radical.
Thus the map pt

√
J → V (pt

√
J ) is onto. �

§5. Coordinate MV algebras. Here again we are in Diophantine geometry.
Definition 5.1. Let Z ⊆ An be an MV algebraic set. By the coordinate MV-
algebra of Z we mean the MV-algebra A[x1, . . . , xn]/I (Z).

Now Z = V (J ) for an ideal J . Hence I (Z) = I (V (J )) = pt
√
J . Thus,

Proposition 5.2. For every ideal J the coordinate MV-algebra of V (J ) is
A[x̄]/pt

√
J .

Definition 5.3. Let Z1 ⊆ An, Z2 ⊆ Am be algebraic sets. A mapping φ : Z1 →
Z2 is called a MV polynomial map iff there are MV polynomials p1, . . . , pm ∈
A[x1, . . . , xn] such that

φ(a1, . . . , an) = (p1(a1, . . . , an), . . . , pm(a1, . . . , an))

for every (a1, . . . , an) ∈ Z1.
Definition 5.4. Let V (Ji) be algebraic sets. i = 1, 2. An MV polynomial map
φ : V (J1) → V (J2) is an isomorphism if there is an MV polynomial map � :
V (J2)→ V (J1) such that � ◦ φ = 1V (J1) and φ ◦ � = 1V (J2).
We shall see below that two MV algebraic sets are isomorphic iff their
corresponding coordinate MV algebras are isomorphic.
Let A be an MV algebra and let Z be a MV algebraic subset of An ; let F (Z, A)
be the MV algebra of MV polynomial maps from Z to A. Then:

Proposition 5.5. A[x̄]/I (Z) is isomorphic to F (Z, A).

Proof. For p, q ∈ A[x̄], p = q in F (Z, A) iff p(ā) = q(ā) for all ā ∈ Z.
We then have a morphism � : A[x̄] → F (Z, A) given by �(p) = p|Z .
Thus �(p) = �(q) iff p(ā) = q(ā) for all ā ∈ Z iff d (p, q) = 0 on Z iff
d (p, q) ∈ I (Z). �
Note that for Z = An we have I (Z) = I (An) = pt

√
0 and F (An, A) = PFn(A).

So, it is an interesting question, to be investigated below, which MV algebras enjoy
the property pt

√
0 = 0 (a property we call polynomial completeness). Note that the
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analogous property
√
0 = 0 in algebraic geometry corresponds to reduced rings,

where xn = 0 implies x = 0.
Now fix any MV algebra A. Let

MV (A) = {A[x1, . . . , xn]/J | J = pt
√
J , n = 1, 2, . . .}.

ThenMV (A) is a category having as morphisms the MV-homomorphisms.
Likewise let

Z(A) = {X ⊆ An|X is MV algebraic, n = 1, 2, . . .}.
Then with MV polynomial maps as morphisms, Z(A) becomes a category.
We have the following duality:

Theorem 5.6. For every MV algebra A, the categories MV (A), and Z(A) are
dually isomorphic.

Proof. Let us adopt the abbreviations x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , ym).
The following proposition is the first step towards Theorem 5.6: �
Proposition 5.7. There is a contravariant functorF fromMV (A) toZ(A) acting

on objects as follows: F (A[x̄]/J ) = V (J ).

Proof. We have to define F on the morphisms ofMV (A).
Let f : A[x̄]/J1 → A[ȳ]/J2 be a morphism between the coordinate MV algebras

of V (J1) and V (J2).
Let p1, . . . , pn ∈ A[ȳ] be such that pi/J2 = f(xi/J1). Then the map φ : V (J2)→

V (J1) given by

φ(a1, . . . , am) = (p1(a1, . . . , am), . . . , pn(a1, . . . , am))

is an MV polynomial map.
We claim φ is well defined. In fact, suppose we have qi ∈ A[ȳ] such that

qi/J2 = pi/J2. Then d (qi , pi) ∈ J2. Hence for (a1, . . . , am) ∈ V (J2) we have
qi(a1, . . . , am) = pi(a1, . . . , am) and it follows that φ is well defined.
We define F (f) = φ.
We claim now that if (a1, . . . , am) ∈ V (J2), then φ(a1, . . . , am) ∈ V (J1).
To this end let q(x1, . . . , xn) ∈ A[x̄]. Then f : q/J1 → q(p1, . . . , pn)/J2 and if

q ∈ J1 we have q(p1, . . . , pn)/J2 = 0, thus q(p1, . . . , pn) ∈ J2. Therefore,
q(φ(a1, . . . , am)) = q(p1(a1, . . . , am), . . . , pn(a1, . . . , am))

= q(p1, . . . , pn)(a1, . . . , am) = 0

as q(p1, . . . , pn) ∈ J2. The claim is proved and the proposition follows. �
Conversely we have:

Proposition 5.8. There is a contravariant functorG fromZ(A) toMV (A) acting
on objects as follows: G(V (J )) = A[x]/J .

Proof. Again we have to define G on morphisms of Z(A).
Let V (J1) ⊆ An, V (J2) ⊆ Am beMV algebraic sets and suppose we have anMV

polynomial map φ : V (J1)→ V (J2), φ = (p1, . . . , pm) where the pi ∈ A[x̄].
Define a map f : A[ȳ]/J2 → A[x̄]/J1 by

f(p/J2) = p(p1, . . . , pm)/J1.
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We claim that f is well defined. For let p/J2 = q/J2; then d (p, q) ∈ J2. Let
a ∈ V (J1). Then

d (p, q)(p1, . . . , pm)(a) = d (p(p1, . . . , pm), q(p1, . . . , pm))(a)

= d (p(p1(a), . . . , pm(a)), q(p1(a), . . . , pm(a))).

Now, (p1(a), . . . , pm(a)) = φ(a) ∈ V (J2). As d (p, q) ∈ J2 we have
d (p, q)(φ(a)) = 0.
It follows that p(p1, . . . , pm) = q(p1, . . . , pm) on V (J1), hence

p(p1, . . . , pm)/J1 = q(p1, . . . , pm)/J1,

and we have that f is well defined. We let G(φ) = f.
It’s clear that f is an MV (A) morphism. This yields a contravariant functor
G : Z(A)→MV (A). Hence the proposition follows. �
Consider the composition FG : Z(A) → Z(A). Let Z = V (J ) ∈ Z(A). Then
G(Z) = A[x̄]/J . Hence we have, FG(Z) = F (A[x̄]/J ) = V (J ) = Z. Since we
can take J to be a point-radical ideal, the above is well defined and we see that
FG = idZ(A).
To see that this is indeed the identity functor let’s examine the action on
morphisms.
Again, let V (J1) ⊆ An, V (J2) ⊆ Am be MV algebraic sets and suppose we have
anMVpolynomial map φ : V (J1)→ V (J2), φ = (p1, . . . , pm) where the pi ∈ A[x̄].
Define fφ : A[ȳ]/J2 → A[x̄]/J1 by fφ(p/J2) = p(p1, . . . , pm)/J1. Letting
G(φ) = fφ we have anMVA morphism.
Now start with an MV (A) morphism f : A[ȳ]/J2 → A[x̄]/J1 we let pi =
f(xi/J2). Now set φf = (p1, . . . , pm). Then φf is a morphism φf : V (J1)→ V (J2)
in the category Z(A).
Starting with φ = (p1, . . . , pm) : V (J1) → V (J2), consider now the composed
morphism φfφ . Then fφ(p/J2) = p(p1, . . . , pm)/J1. In particular, fφ(xi/J2) =
xi(p1, . . . , pm) = pi/J1 and we see that φfφ = φ. It now follows that FG is the
identity functor on Z(A).
Similarly, GF = idMV (A) is the identity functor on MV (A) and the theorem
follows.
As a consequence we see that two MV algebraic sets are isomorphic iff their
corresponding coordinate MV algebras are isomorphic.

§6. Polynomial completeness. In this section we introduce a universal algebra
concept related to the distinction between polynomials and polynomial functions.
We have been careful in distinguishing between these two concepts. For some MV
algebras they coincide, for some others they do not. When they coincide, we say
that the MV algebra is polynomially complete.

Definition 6.1. An MV algebra A is polynomially complete if for every n, the
only polynomial p ∈ A[x1, . . . , xn] inducing the zero function onA is the zero poly-
nomial. Equivalently by Lemma 3.2,A is polynomially complete if every polynomial
which induces zero on A induces zero on every MV algebra A′ extending A.

Note that a polynomial pmay induce the zero polynomial inAwithout being the
zero polynomial of A. For instance, p(x) = x ∧ x∗ induces the zero polynomial in
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S1 but it is not the zero element of S1[x], because there are extensions of S1 where
p is not zero, for instance in [0, 1] we have p(1/3) �= 0.
The name suggests that polynomial functions over A describe completely the

polynomials of A, because if A is polynomially complete, then the evaluation
homomorphism from A[x1, . . . , xn] to PFn(A) is an MV algebra isomorphism.
We recall that an MV algebra A is defined to be algebraically closed (in the sense

of Lacava, see [11]) if every polynomial p ∈ A[x1, . . . , xn] which has a zero in some
extension of A has also a zero in A.
As in the classical case, the interplay between algebraic geometry and model

theoryMV algebras seems promising. For instance, in order to answer a question of
a referee, we remark that algebraically closed MV algebras and existentially closed
MV algebras do not coincide because:

• algebraically closed MV algebras can be axiomatized in first order logic,
see [11], but

• existentially closed MV algebras cannot be axiomatized in first order logic,
see [10].

Note also that polynomial completeness is a sort of algebraic closedness the other
way round, in fact:

• A is polynomially complete when every identically zero polynomial in A is
identically zero in every extension, whereas

• A is algebraically closed if every identically nonzero polynomial in A is
identically nonzero in every extension.

In the notation of the previous sections, A is polynomially complete if and only
if pt

√
0 = 0, or I (V (0)) = 0, in A[x1, . . . , xn] for every n. Moreover, polynomial

completeness can be rephrased in universal algebra terms as follows:

Proposition 6.2. Let A be any MV algebra. The following are equivalent:

• A is polynomially complete;
• if two polynomials p, q ∈ A[x1, . . . , xn] induce the same function on A, then
p = q;

• if two polynomials p, q ∈ A[x1, . . . , xn] induce the same function on A, then they
induce the same function in every extension of A;

• A generates the varietyMVA of MV algebras with coefficients in A in the sense
of Subsection 3.2.

The first two points of the proposition are equivalent because p = q holds if and
only if d (p, q) = 0.
Despite our notion of polynomial completeness seems quite a natural universal

algebra notion, we are not aware of previous treatments of this concept in universal
algebra literature.

6.1. Polynomial completeness of divisible MV chains. The result announced in
the title is performed in three steps.

Proposition 6.3. [0, 1] is polynomially complete.

Proof. Let x̄ = (x1, . . . , xn) be variables and d̄ = (d1, . . . , dm) ∈ [0, 1]m.
Let p(x̄, d̄ ) ∈ [0, 1][x̄] and suppose p(x̄, d̄ ) = 0 for every x̄ ∈ [0, 1]n.
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By the Di Nola representation theorem, see [4], 9.5.1, there is an embedding � of
[0, 1][x̄] in a Cartesian power DI , where D is a divisible MV chain (more precisely,
D is an ultrapower of [0, 1]).
Denote by φ the canonical embedding of [0, 1] in [0, 1][x̄] and, for i ∈ I , let 	i
the i-th projection from DI to D.
Let 
i = 	i ◦ � ◦ φ. Then 
i is an MV algebra morphism from [0, 1] to D.
Since D is a nontrivial MV algebra, 
i is an embedding. Moreover, [0, 1] and D
are divisible MV chains and the theory of divisible MV chains is model complete
(it even has elimination of quantifiers, see [9]), so 
i is an elementary embedding.
By definition of elementary embedding, since p(x̄, d̄ ) = 0 for every x̄ ∈ [0, 1]n,
we have also p(ȳ, 
i (d )) = 0 for every ȳ ∈ Dn.
By taking the I -th Cartesian power we have p(z̄, � ◦ φ(d̄ )) = 0 for every z̄ ∈
(DI )n; since DI is an extension of [0, 1][x̄], by restriction p(x̄, d̄ ) induces 0 in
[0, 1][x̄]. That is, p(x̄, d̄ ) is the zero polynomial of [0, 1][x̄]. �
Proposition 6.4. Every ultrapower of [0, 1] is polynomially complete.

Proof. Let [0, 1]∗ = [0, 1]I /U be an ultrapower of [0, 1], whereU is an ultrafilter
on the set I .
Let x̄ = (x1, . . . , xn), d̄ = (d1, . . . , dm) ∈ ([0, 1]∗)m.
Let p(x̄, d̄ ) ∈ [0, 1]∗[x̄] and assume p is not the zero polynomial.
Then there is an extension E of [0, 1]∗ and a tuple ē ∈ En such that p(ē, d̄ ) �= 0.
The components of d̄ are elements of [0, 1]∗, so they are classes modulo U of
sequences indexed by I , let us denote them by (d̄i)i∈I /U .
Let E∗ = EI /U , and let � be the canonical embedding of E in E∗. In particular,
�(ē) is the constant tuple with components in ē.
From p(ē, (d̄i )i) �= 0, since � is an elementary embedding from E to E∗, we have
p(�(ē), (d̄i)i) �= 0. Hence, by Łoś Theorem on ultraproducts, we have p(ē, d̄i) �= 0
where i ranges over a subset J of I belonging to U .
Since [0, 1] is polynomially complete, for every i ∈ J there is r̄i ∈ [0, 1]n such that
p(r̄i /U, d̄i/U ) �= 0.
Taking the sequence (r̄i)i /U in ([0, 1]∗)n, we have thatp is nonzero in this element
of ([0, 1]∗)n. So p does not induce zero in [0, 1]∗.
This means that [0, 1]∗ is polynomially complete. �
In the same way (as pointed out by a referee) one shows:

Corollary 6.5. Every ultrapower of a polynomially complete MV algebra is
polynomially complete.

Proposition 6.6. Every divisible MV chain is polynomially complete.

Proof. Let D be a divisible MV chain.
Let x̄ = (x1, . . . , xn) and d̄ = (d1, . . . , dm), with di ∈ D.
Let p(x̄, d̄ ) ∈ D[x̄] and suppose p(x̄, d̄ ) = 0 for every x̄ ∈ Dn .
Embed D in an ultrapower [0, 1]∗.
Since [0, 1]∗ is polynomially complete, the polynomial MV algebra [0, 1]∗[x̄]
embeds in the algebra of functions ([0, 1]∗)I , where I = ([0, 1]∗)n and the elements
of [0, 1]∗ are mapped to constants.
A fortiori, there is an embedding � of D[x̄] in ([0, 1]∗)I and the elements of D
are mapped to constants. That is, �(d )i = �(d )j for every i, j ∈ I and d ∈ D.
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So, calling φ the canonical embedding from D to D[x̄] and 	i the i-th projection
from ([0, 1]∗)I to [0, 1]∗, the compositions 
i = 	i ◦ � ◦ φ from D to [0, 1]∗ are
embeddings. In fact, suppose 
i(d ) = 
i (d ′) for some i . Then �(d )i = �(d ′)i .
Then �(d )j = �(d ′)j for every j ∈ I . So, �(d ) = �(d ′). But � is injective,
so d = d ′.
Now, since we assume p(x̄, d̄ ) = 0 for every x̄ ∈ Dn, we have p(ȳ, d̄ ) = 0

for every ȳ ∈ ([0, 1]∗)n, and taking the Cartesian power, p(z̄, d̄ ) = 0 for every
z̄ ∈ (([0, 1]∗)I )n, so p induces zero in ([0, 1]∗)I . By restriction, p induces zero in
D[x̄]; so p is the zero polynomial of D[x̄].
This means thatD is polynomially complete. �
6.2. A characterization of polynomially complete MV chains. We do not have an

intrinsic characterization of polynomially complete MV algebras, however in this
paper we give one for MV chains. We introduce a seemingly new concept.

Definition 6.7. A totally ordered group or MV algebra is quasi-divisible if for
every a < b and for every positive integer N there is c such that a < Nc < b.

Note that all divisible MV chains are quasidivisible, and all divisible totally
ordered �-groups are quasidivisible, but not the other way round. For instance, the
MV chain B of the binary rationals of [0, 1], like every simple infinite MV algebra,
is quasidivisible, but it is not divisible, because, e.g., it does not contain any x such
that 2x = x∗.
The following proposition is easy:

Proposition 6.8. A totally ordered group G is order dense in DH (G) if and only
G it is quasidivisible.

Proof. Assume G is order dense in DH (G). Let a < b ∈ G . Let N be an
integer. Then a/N < b/N in DH (G). So there is c ∈ G with a/N < c < b/N ,
so a < Nc < b and G is quasidivisible.
Conversely, let G be quasidivisible. Let d < e ∈ DH (G). There is N such that

d = a/N and e = b/N , with a < b ∈ G . Taking c ∈ G with a < Nc < b and
dividing by N we have a/N < c < b/N , that is, d < c < e. So, G is order dense
in DH (G). �
Proposition 6.9. Let A be an MV chain. Then A is quasidivisible if and only if

Ξ(A) is quasidivisible.

Proof. Assume Ξ(A) quasidivisible. Let 0 ≤ a < b ∈ A. Let N be a positive
integer. Then there is c ∈ Ξ(A) such that a < Nc < b. From a ≥ 0 it followsNc ≥ 0
and c ≥ 0; likewise, we have 0 ≤ c ≤ 1 in Ξ(A). So c ∈ A, and A is quasidivisible.
Conversely, suppose A quasidivisible. Let g < h in Ξ(A). Let N be an integer.

Up to adding an integer multiple of N we can suppose g > 0. So we can write
g = n + a where n is a nonnegative multiple of the unit, a ∈ A and a < 1. Since A
is quasidivisible, A is a fortiori dense, so there is a′ ∈ A with a < a′ < 1. Up to
replacing h with n + a′, we can always suppose h − g < 1.
Now the idea is to approximate “sufficiently well” 1 and a with multiples of N .
More formally, by quasidivisibility we have b ∈ A with

0 < 4nb < h − g,
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in particular b < 1 and
0 < 2b < (h − g)/2n.

We have then c, d ∈ A with
1− b < Nc < 1

and
b < Nd < 2b.

By adding, we have
1 < N(c + d ) < 1 + 2b

and
1 < N(c + d ) < 1 + (h − g)/2n.

Multiplying by n we have

n < nN(c + d ) < n + (h − g)/2.
Likewise one finds e ∈ A with

a < Ne < a + (h − g)/2,
and by adding, we have

g = n + a < N(nc + nd + e) < n + a + (h − g) = h.
So Ξ(A) is quasidivisible. �
In the same vein:

Proposition 6.10. Let A be anMV chain. Then A is order dense inDH (A) if and
only if Ξ(A) is order dense in DH (Ξ(A)).

Proof. AssumeAorder dense in its divisible hull. ThenA is quasidivisible. In fact,
let a < b ∈ A and let N be an integer. Then a/N < b/N ∈ DH (A). Taking c such
that a/N < c < b/N , we conclude a < Nc < b, and A is quasidivisible. Then Ξ(A)
is quasidivisible, and Ξ(A) is order dense in its divisible hull.
Conversely, assume Ξ(A) dense in its divisible hull. Let a < b ∈ DH (A).
Since Ξ(A) is dense in DH (Ξ(A)) and DH (A) is included in DH (Ξ(A)), there
is c ∈ Ξ(A) such that a < c < b. But c ∈ A, so A is dense in its divisible hull. �
Nowwehave the following characterization of polynomially completeMVchains:

Theorem 6.11. For every MV chain A the following are equivalent:

1. A is polynomially complete;
2. A is order dense in its divisible hull;
3. A is quasidivisible.

Proof. 2 and 3 are equivalent because of the following chain of equivalences:
A is quasidivisible if and only if Ξ(A) is quasidivisible if and only if Ξ(A) is order
dense in its divisible hull if and only if A is order dense in its divisible hull.
To prove that 1 implies 3, suppose by contradiction that A is a polynomially
complete MV chain but is not quasidivisible. Then, since A is an MV chain, there
are a < b ∈ A and N such that for every x ∈ A, Nx ≤ a or b ≤ Nx. Then the
polynomial

p(x) = (Nx � a) ∧ (b �Nx)
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is zero on A; and since DH (A) is quasidivisible, we can find a point d ∈ DH (A)
with p(d ) �= 0. So p induces zero onA but not on its extensionDH (A), in contrast
with the assumption 1.
To prove that 3 implies 1, suppose A is quasidivisible. By condition 2, A is order

dense in DH (A).
Let p ∈ A[x1, . . . , xn] and assume p(d ) �= 0 for some d ∈ DH (A)n . Since

DH (A) is a divisible MV chain, it enjoys the same first order properties of [0, 1];
in particular, since p(d ) �= 0, there is a product P of n nontrivial intervals in
DH (A)n where p has no zeros. By order density, P contains a point a ∈ An,
so p(a) �= 0, hence p does not induce the function 0 in A.
Summing up, every polynomial p inducing 0 in A induces 0 in DH (A) as well.
To prove A is polynomially complete, suppose a polynomial p induces zero in A.

We have seen that p induces zero in DH (A). Take any extension E of A. There is
an MV algebra F containing both E and DH (A). Since DH (A) is polynomially
complete, p induces zero on F . Since F extends E, p induces zero on E as well.
So, A is polynomially complete, and 3 implies 1. �
Corollary 6.12. Every MV chain can be embedded in a polynomially complete

MV chain.

Proof. The divisible hull of any MV chain is polynomially complete by the
previous Theorem. �
Corollary 6.13. Every simple infinite MV chain is polynomially complete.

Proof. Any such chain is order dense in [0, 1] which is divisible, so it is order
dense in its divisible hull. �
Corollary 6.14. Let A be an MV chain.

1. If A is discrete, then A is not polynomially complete.
2. If A has finite rank, then it is not is polynomially complete.

Proof. This can be seen directly as follows.

1. Let a be the atom of A. Then every element of A satisfies x = 0 or a ≤ x,
so it is a zero of p(x) = x ∧ (a� x). However, by the Di Nola Representation
Theorem, A embeds in an ultrapower of [0, 1] where a/2 exists, and a/2 does
not annihilate p. So, by Lemma 3.2, p is not the zero polynomial of A.

2. Embed A in an ultrapower U of [0, 1]. Let 1/N be a rational which is not the
standard part of any element of A. Then for every x ∈ A, either x ≤ 1/4N
or x ≥ 1/2N (where the inequalities are taken in U ). So every element of A,
either x verifies (4N −1)x ≤ x∗ or x∗ ≤ (2N −1)x. In any case, x annihilates

p(x) = ((4N − 1)x � x∗) ∧ (x∗ � (2N − 1)x).
ButU is an extension ofAwhere 3/8N exists, and 3/8N does not annihilatep.
So by Lemma 3.2, p is not the zero polynomial of A. �

6.3. Polynomial completeness for general MV algebras. The previous theorem
gives a quite satisfactory characterization of polynomially complete MV chains.
It remains to investigate polynomially complete MV algebras in general. A first step
is the following:
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Lemma 6.15. Let I be a set. If for every i ∈ I an MV algebra Ai is polynomially
complete, then the Cartesian productΠi∈I Ai is polynomially complete as well.

Proof. Let A = Πi∈I Ai . Let p(x̄, d̄ ) ∈ A[x̄] induce zero on A. Then for every
i ∈ I , p(x̄, d̄i) ∈ Ai [x̄] induces zero on Ai . Let E be an extension of A. By the joint
embedding property of MV algebras we can suppose that E extends Ai for every i .
Since Ai is polynomially complete and E is an extension of Ai , we have that, for
every i ∈ I , p(x̄, d̄i ) induces zero in E. By taking the I -th cartesian power, p(x̄, d̄ )
induces zero in EI and also inE, which is embedded inEI via constant maps. So,A
is polynomially complete. �
Corollary 6.16. Every power of [0, 1] is polynomially complete.

Corollary 6.17. Every MV algebra is embedded in a polynomially complete MV
algebra.

Proof. EveryMV algebra is embedded into anMValgebra of the form ([0, 1]∗)I .
Now [0, 1]∗ is polynomially complete by Proposition 6.4. So the result follows from
the previous lemma. �
6.4. Beyond polynomial completeness. The MV algebra [0, 1] enjoys a strong
form of completeness: for every polynomial p, we have I (V (p)) = id (p), the ideal
generated by p. This is essentially Wójcicki’s Theorem, see [4] and Proposition 6.22
below. We generalize this situation as follows.
We say that an MV algebra A is strongly complete if for every polynomial p ∈
A[x1, . . . , xn], we have I (V (p)) = id (p).
Note that every strongly complete MV algebra is also polynomially complete
(take p = 0 in the definition). Moreover we have a sharp characterization of
strongly complete MV algebras:

Theorem 6.18. An MV algebra is strongly complete if and only if it is simple and
divisible.

We divide the proof of the theorem in some propositions.

Proposition 6.19. Every strongly complete MV algebra A is simple.

Proof. Suppose A is not simple. Then A has a nonzero element a of infinite
order. Let p be the constant polynomial a. Then V (p) = ∅ and I (V (p)) = I (∅) =
A[x1, . . . , xn], which is different from id (p) since this last ideal is proper. �
Proposition 6.20. Every strongly complete MV algebra A is algebraically closed
(in the sense of [11]).

Proof. Suppose there is a polynomial p ∈ A[x1, . . . , xn] with no zeros in A but
with some zero in an extension A′ of A. Then p has infinite order, so V (p) = ∅ and
I (V (p)) = I (∅) = A[x1, . . . , xn], which is different from id (p) since this last ideal
is proper. �
Corollary 6.21. Every strongly complete MV algebra is simple and divisible.

Proof. This follows from the previous proposition because every algebraically
closed MV algebra is divisible. �
Nowrecall the definition of generalizedMcNaughton functions in Subsection 2.5.

Proposition 6.22. [0, 1] is strongly complete.
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Proof. By Proposition 2.6, every polynomial in [0, 1][x̄] defines a generalized
McNaughton function.
Now let p, q ∈ [0, 1][x̄] be such that q ∈ I (V (p)). Equivalently, V (p) ⊆ V (q).
Since p and q are piecewise affine functions, we can write [0, 1]n = P1 ∪ · · · ∪Pm,

where Pi are polyhedra and p and q are affine on each Pi . Consider the vertices of
these polyhedra. Since q �= 0 implies p �= 0, and since vertices are finitely many,
there will be k such that q ≤ kp on every vertex. Since the function q − kp is
convex, the inequality q ≤ kp extends to the entire [0, 1]n. So, q � kp induces zero
in [0, 1]n, and by polynomial completeness of [0, 1], q � kp is the zero polynomial
of [0, 1][x̄] and q ∈ id (p) in [0, 1][x̄]. �
Proposition 6.23. Every simple divisible MV chain A is strongly complete.

Proof. We use the fact that the theory of divisible MV chains is model complete
(it even has the elimination of quantifiers), see [9].
Suppose A is a simple and divisible MV chain. Let p(x̄, s̄), q(x̄, t̄) be two poly-

nomials in A[x̄] such that every zero of p in A is also a zero of q. Since the theory
of divisible MV chains is model complete, the unique embedding of A in [0, 1] is
elementary. So, every zero of p in [0, 1] is also a zero of q.
Since [0, 1] is strongly complete, p is in the ideal generated by q as polynomials

in [0, 1]. So, for some n, p ≤ nq as polynomials in [0, 1], that is, p � nq is the zero
polynomial in [0, 1]. By restriction, p � nq is the zero polynomial in A, and p is in
the ideal generated by q as polynomials in A. �
Since every simple MV algebra is a chain, as we have seen, this concludes the

proof of Theorem 6.18.
The situation of radicals of principal ideals in strongly complete MV algebras

is clear: the radical of a principal ideal is the ideal itself. However we have other
algebras, where the radical of a principal ideal is principal. For example:

Proposition 6.24. Let n ≥ 1 be an integer. Let Sn be the MV chain with n + 1
elements. In Sn , every ideal of the form I (V (J )) is principal.

Proof. Let J be an ideal of Sn[x1, . . . , xk ]. Let V (J ) = S. S is a subset of Skn .
By the one dimensional McNaughton theorem, for every a ∈ Sn there is an MV

polynomial pa(x) in one variable whose only root in [0, 1] is a.
For every (b1, . . . , bk) ∈ Skn let pb(x1, . . . , xk) = pb1 (x1)⊕ · · · ⊕ pbk (xk).
There is an MV polynomial pS(x1, . . . , xk) whose roots in [0, 1]k are exactly the

elements of S. This is pS =
∧
b∈S pb(x1, . . . , xk).

Suppose q ∈ I (V (J )) is a polynomial in Sn[x1, . . . , xk ]. Then in [0, 1] we have
V (q) ⊇ V (pS).
Since [0, 1] is strongly complete, in [0, 1] we have that q is in the ideal of pS , that

is, q ≤ mpS for some integer m.
But polynomial inequalities are preserved under passing to subalgebras, so

q ≤ mpS in Sn[x1, . . . , xk ], and I (V (J )) is generated by pS . �
An example where radicals are not principal is [0, 1] itself:

Proposition 6.25. In [0, 1][x] there is an ideal J such that I (V (J )) is not principal.

Proof. Let C ⊆ [0, 1] be the Cantor set. C is closed, so it is MV algebraic,
say C = V (J ). Suppose the ideal I (C ) is principal. Let g be a generator.
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Then C = V (g). But the zeroset of an MV polynomial in [0, 1] is a finite union of
intervals and points. C does not have this shape. �
6.5. An important remark. At this point, a crucial remark has to be made on
the relations between MV algebras and algebraic geometry. We have the following,
somewhat disappointing, collapse result:

Proposition 6.26. The MV algebraic subsets of [0, 1]n coincide with the usual
closed sets.

Proof. MV algebraic subsets are zeros of sets of MV polynomials and everyMV
polynomial is continuous, so every MV algebraic set is closed.
The converse implication follows from the facts below:

• every rational interval of [0, 1] is MV algebraic (this follows fromMcNaughton
Theorem);

• so every product of n rational intervals in [0, 1]n is also MV algebraic;
• MV algebraic subsets of [0, 1]n form the closed sets of a topology;
• the usual topology of [0, 1]n (as a set of closed sets) is generated by products
of n rational intervals;

• hence, every closed subset of [0, 1]n is MV algebraic. �
So, as pointed out by a referee, we can say that MV algebraic geometry over
[0, 1] collapses to usual general topology. This does not mean that we cannot find
any sense in which [0, 1] is interesting from the point of view of algebraic geometry.
For instance, polynomial completeness is a nontrivial property of [0, 1] expressed
in purely algebro-geometric terms.
When [0, 1] is replaced by any other MV chain, algebraic sets still form the
closed sets of a topology, but this topology is not well understood yet (we have
studied the one dimensional topology of MV chains in a paper submitted). Surely
the analogy with classical algebraic geometry can be helpful. However we cannot
expect a complete parallelism. For instance, classical Zariski topology on algebraic
varieties is Noetherian, whereas our MV topologies usually are not.

§7. A characterization of polynomial functions on arbitrary MV algebras. The
aim of this section is to identify polynomial functions on arbitrary MV algebras
with a kind of truncated functions. These functions do not depend on any topology
on the algebra, unlike McNaughton functions, which are continuous in the natural
topology of [0, 1]. What we obtain is Theorem 7.2.
The idea is that, for anyMV algebraA, we can relate truncated infima of suprema
of affine functions from An to Ξ(A) (recall that (Γ,Ξ) is the Mundici functorial
equivalence), with MV polynomial functions on A.

Definition 7.1. Let A be an MV algebra and (G, u) = Ξ(A). For an element
g ∈ G , we define �(g) = (g ∨ 0) ∧ u. This defines a function � : G → A called the
squashing function.
A minimax term over A is a term (in the language of �-groups) of the form

t(x1, . . . , xn) =
∧
i

∨
j

fij(x1, . . . , xn),
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where each fij is affine; that is, t(x1, . . . , xn) is a finite infimum of finite suprema of
affine terms.
A truncated term over A is an expression of the form � ◦ t, where t is a minimax

term over A.
A truncated function in n variables over A is a function from An to A defined by

a truncated term over A.

We let TFn(A) be the set of all truncated functions in n variables over A.
We note that the set TFn(A) is an MV algebra. In fact, we can define t ⊕ u =

� ◦ (t + u) and ¬t = u − t.
Theorem 7.2. Let A be an MV algebra. Then the MV algebras TFn(A) and

PF n(A) coincide.

Proof. One direction is well known, that is:

Lemma 7.3. Let A be anyMV algebra. Every MV polynomial function fromAn to
A can be defined by a truncated term.

Proof. Let f be a polynomial function fromAn toA defined by a polynomial p.
Then there is a truncated term t which defines f. The proof is by induction on p.
The case of variables or constants is easy. The case of a MV algebraic sum holds
because iff is defined by t and g is defined by t′, thenf⊕g is defined by �◦(t+ t′).
The case of the negation holds because if f is defined by t, then ¬f is defined by
� ◦ (u − t). �
Now the following lemma gives a partial converse, in the case of affine functions:

Lemma 7.4. Let A be an MV algebra, (G, u) the associated �u-group and let n be
a positive integer. For every affine function f : An → G there is an MV polynomial φ
such that � ◦ f is the function defined by φ on A.
Proof. We begin with a claim:

Claim 7.5. Let A be an MV algebra. Let X be a set. Let g : X → Ξ(A) and let
h : X → A be functions. Then:

• � ◦ (g + h) = ((� ◦ g)⊕ h)� (� ◦ (g + u)).
• � ◦ (u − g) = u − (� ◦ g).
Proof. If A is an MV chain, a direct inspection is enough.
Now let A be anyMV algebra. By the Di Nola Representation Theorem we have

an embedding A ⊆ Πi∈I Ci , where I is a possibly infinite set of indices, and Ci are
MV chains. Moreover, by construction of the inverse Mundici functor Ξ, we have
the embedding

Ξ(ΠiCi) ⊆ ΠiΞ(Ci ).
Hence we have also the embedding

Ξ(A) ⊆ ΠiΞ(Ci).
Note that both embeddings are morphisms of � groups, but not of �u-groups;

actually the product ΠiΞ(Ci) is an � group, but it will not be in general an �u group
because it may have no strong unit. Note that the strong unit u of the group Ξ(ΠiCi)
is the sequence (ui)i∈I , where ui is the unit of Ci ; hence for every x ∈ Ξ(ΠiCi),
�(x) is the sequence (�(xi ))i∈I ; that is, squashing can be made componentwise.

https://doi.org/10.1017/jsl.2014.53 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2014.53


1084 LAWRENCE P. BELLUCE, ANTONIO DI NOLA, AND GIACOMO LENZI

So we have g(x) = (gi(x))i∈I and h(x) = (hi(x))i∈I , with gi : X → Ci and
hi : X → Ξ(Ci). Write Ξ(Ci ) = (Gi , ui). Now for every i we have gi : X → Ci ,
hi : X → Gi , and the claim can be proved componentwise by reducing it to theMV
chain case. �
Now let A be an MV algebra. Let G = Ξ(A) be the corresponding �u-group
(all intervals in the proof are taken in G).
Let f(x1, . . . , xn) be an affine term. So f(x1 . . . , xn) = g0 +m1x1 + · · ·+mnxn,
where mi ∈ Z and g0 ∈ G .
Since g0 ∈ G , by Lemma 2.3, g0 is a finite sum of elements of A with plus or
minus signs. Likewise, mixi is a sum of variables with plus or minus signs.
So, we can write

f(x1, . . . , xn) = r1 + · · · rp + rp+1yp+1 · · ·+ rmym,
where ri ∈ [−u, u] for 1 ≤ i ≤ p, ri = ±1 for p+1 ≤ i ≤ m, and yi are variables.
We go by induction on m ≥ 1.
Assume m = 1. If f is a constant then � ◦ f is a constant belonging to A.
If f(x) = xi , then � ◦ f is a projection. If f(x) = −xi , then every value of f is
negative, so � ◦ f = 0.
Assume m > 1. Then f = g + h, where g has less summands than f and
h(x) = rxi with r = ±1, or h(x) = s , with s ∈ [−u, u]. By inductive hypothesis,
� ◦ g is defined by a polynomial φ. Now we distinguish two cases according to the
values of r and s .
Case 1: if r = 1 or 0 < s ≤ u then h : An → A, so h is defined by a polynomial�,
and �◦f = ((�◦g)⊕h)�(�◦(u+g)) as in Claim 7.5. Since−g has less summands
than f, � ◦ (−g) is defined by a polynomial 
, and � ◦ (u + g) is defined by ¬
.
So, � ◦ f is defined by (φ ⊕ �)� ¬
.
Case 2: if r = −1 or−u ≤ s < 0 then g+h = (g−u)+(u+h) and u+h : An → A,
so � ◦f = ((� ◦ (g−u))⊕ (u+h))� (� ◦g). Now−h is defined by a polynomial�,
so u+ h is defined by ¬�. We have to find a polynomial 
 which defines � ◦ (g− u).
Now g(x) = r1 + · · ·+ rp + rp+1yp+1 + · · ·+ rmym , where ri ∈ [−u, u] \ {0} for
1 ≤ i ≤ p, ri = ±1 for p + 1 ≤ i ≤ m and yi are variables.
Case 2.1. If all coefficients ri are ≤ 0 then � ◦ (g − u) = 0 and 
 = 0.
Case 2.2. If there is j0 ≤ p with rj0 > 0 then

(g − u)x = r1 + · · ·+ (rj0 − u) + rp + rp+1yp+1 + · · ·+ rmym,
so−u < rj0 − u ≤ 0 and the inductive hypothesis applies to g − u, so � ◦ (g − u) is
defined by a polynomial 
.
Case 2.3. If there is j0 ∈ {p + 1, . . . , m} with rj0 > 0, then rj0 = 1. We set
h0(x) = yj0 and g0(x) = g(x) − yj0 − u. So g − u = g0 + h0 where g0 satisfies
the induction hypothesis and h0 : An → A. We are in the hypothesis of Case 1, so
� ◦ (g − u) is defined by a polynomial 
.
Now � ◦ (g + h) is defined by the polynomial ((
 ⊕ ¬�)� φ).
This proves the lemma. �
The previous lemma can be generalized as follows:
Lemma 7.6. Let A be an MV algebra, (G, u) the associated �u-group and let n be
a positive integer. For every minimax term f : An → G there is an MV polynomial φ
such that � ◦ f is the function defined by φ on A.
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Proof. The lemma follows from the previous one, since every minimax function
is a finite infimum of finite suprema of affine functions, and MV polynomials are
closed under finite infima and finite suprema. �
Now Theorem 7.2 follows from Lemma 7.3 and Lemma 7.6. �
Using the notation f|Z to denote a function f restricted to a set Z, we have:
Corollary 7.7. Every coordinate MV algebra is an MV algebra of truncated

functions restricted to an MV algebraic set.

Proof. Every coordinate MV algebra has the form A[x̄]/I (Z) where Z is an
MV algebraic set. By Proposition 5.5, we haveA[x̄]/I (Z) = F (Z,A) = PFn(A)|Z .
By Theorem 7.2, PFn(A)|Z and TFn(A)|Z coincide. �

§8. GeneralizedMcNaughton theorems forMVchains. Theorem7.2 is a topology
free characterization of MV polynomials with truncated functions, valid for arbi-
trary MV algebras. In this section we give other results in the same vein involving
MV chains.
We can exploit McNaughton Theorem, and the previously defined notion of

affine function, to give the following characterization of zerosets of polynomials in
MV chains.

Proposition 8.1. (McNaughton Theorem for zerosets in MV chains) Let A be
an MV chain. The zerosets in An of polynomials in n variables with coefficients in A
coincide with polyhedra on A.

Proof. Consider a polynomial p(x̄, ā), where ā is a tuple of elements of A.
By McNaughton Theorem, [0, 1] verifies the following first order sentence:

∀x̄, ȳ.p(x̄, ȳ) = 0 ⇐⇒ (x̄, ȳ) ∈ P1 ∪ · · · ∪ Pk, (1)

where Pi =
∧
j∈Ji{(x̄, ȳ)|Σjmijxj + m′

ijyj + nj ≥ 0}, Ji is finite and mij ,m′
ij , nj

are integers.
By elementary equivalence, the formula holds also in every divisibleMV chainD.
Specializing ȳ to any vector ā ∈ Dm we have in D:

∀x̄.p(x̄, ā) = 0
⇐⇒ x̄ ∈ Q1 ∪ · · · ∪Qk,

where Qi =
∧
j∈Ji {x̄|Σjmijxj + Σlm′

il al + ni ≥ 0} and mij ,m′
il , ni are integers.

But Σjm′
ijaj + nj belongs to Ξ(A), so the zeroset has the required form when A

is divisible.
If A is a chain which is not divisible, we can just apply the result to the divisible

hull of A and note that the sentence (1) is universal, so by restriction it holds also
in A.
For the converse, it is enough to show that, in everyMVchainA, every polyhedron∧
i∈I {x̄|Σjmijxij + ri ≥ 0} is the zeroset of a polynomial.
Now, in the case ri = 0, the result follows again from McNaughton Theorem.

If instead r �= 0, we can write r = Σl nl al , where al ∈ A and nl are integers.
So, we can introduce one variable yl for each l , apply the previous case r = 0 to

the polynomial {x̄|Σjmjxj + Σl nl yl ≥ 0} (which has no term of degree zero) and
then specialize each variable yl to al . �
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With the same kind of argument one can prove the following characterization of
polynomial functions for MV-chains.

Definition 8.2. Let A be anMV chain. Call topology free McNaughton function
on A a function f : An → A for which there is a covering of An by finitely many
polyhedra P1, . . . , Pk such that f is affine on each polyhedron.

Note that the definition of topology free McNaughton function on an MV chain
A does not involve any topology on A.
Let TFMn(A) be the MV algebra of all topology free McNaughton functions
from An to A.
First we observe:

Proposition 8.3. TFMn([0, 1]) = GMn .

Proof. The topology free McNaughton functions on [0, 1]n are continuous
because of the following standard fact in topology: if a topological space X is
covered by finitely many closed sets C1, . . . , Cn and a function f with domain X is
continuous on each Ci , then f is continuous on X . In our case, the Ci are polyhe-
dra. Hence every topology free McNaughton function is continuous, and so it is a
generalized McNaughton function.
Conversely, given a generalized McNaughton function, we can suppose that the
domain of all its constituents are polyhedra as is proved in [4], Subsection 3.3,
for McNaughton functions. Hence every generalized McNaughton function is a
topology free McNaughton function. �
Corollary 8.4. PFn([0, 1]) = TFMn([0, 1]).

Proof. By Proposition 2.6, PFn([0, 1]) = GMn . �
Corollary 8.5. (McNaughton Theorem for polynomials in chains) Let A be an
MV chain. Then PFn(A) = TFMn(A).

Proof. If A is divisible, then it is elementarily equivalent to [0, 1] and the thesis
follows from the previous corollary. If A is not divisible, then the thesis holds for
DH (A) and by restriction it transfers to A. �
We note that the previous result implies a characterization of polynomial func-
tions on arbitrary MV chains, but on polynomially complete MV chains, this gives
immediately (by definition) a characterization of polynomials, which is closer to the
spirit of McNaughton Theorem.

Corollary 8.6. In every simple divisible MV chain A, for every ideal J ⊆
A[x1, . . . , xn], the ideal I (V (J )) is principal if and only if V (J ) is a polyhedron
on A.

Proof. If I (V (J )) = id (g) then applying the operator V we haveV (J ) = V (g)
and V (J ) is a polyhedron by Proposition 8.1.
Conversely, if V (J ) is a polyhedron, then V (J ) = V (g) for some polynomial g,

hence I (V (J )) = I (V (g)), and sinceA is strongly complete, I (V (J )) = I (V (g)) =
id (g) is principal. �
Corollary 8.7. In every simple divisible MV chain A, the operator I is a bijection
between polyhedra on A and principal ideals of A[x1, . . . , xn].

The previous corollary generalizes Theorem 3.20 of [15].
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§9. Łukasiewicz logic with constants. In this section, after the algebraic results
of the previous sections, we turn to logic.
Like classical algebraic geometry, MV algebraic geometry can be studied from

three different viewpoints: geometric (the algebraic sets), algebraic (coordinate
algebras) and logical (theories and models). While the first two approaches are
studied in the previous sections of this paper, we are left with giving the basics of
logic for Diophantine MV algebraic geometry. Like [4] defines Łukasiewicz logic,
we must define Łukasiewicz logic with constants in a fixed MV algebra A, which,
according to the Diophantine approach, will be both the MV algebra where the
constants of polynomials are taken and the MV algebra where polynomials are
evaluated.
In order to begin the study of Łukasiewicz logic with constants in a fixed MV

algebra A, denoted by Ł∞(A), we start from the approach of [4], chapter 4, and we
modify it by adding constants denoting elements of A.
Like any other logic we must specify the syntax and semantics of Ł∞(A). First,

formulas are defined inductively as follows:

• variables X1, X2, . . . are formulas;
• constants ca for every a ∈ A are formulas;
• if α is a formula, then ¬α is a formula;
• if α, � is a formula, then α → � is a formula.
The semantics of Ł∞(A) is given in terms of valuation functions v from variables

to elements of A. The value of a formula α in a valuation v is an element v(α) of A
defined by:

• v(Xi) when Xi is a variable;
• a when the formula is the constant ca ;
• v(¬α) = v(α)∗;
• v(α → �) = (v(α)∗)⊕ v(�).

Now the notions of satisfaction,model, tautology, semantic consequence are like [4].
In particular, a model of a formula α is a valuation v such that v(α) = 1.

A formula α is a tautology if v(α) = 1 for every valuation v.
A formula α is a semantic consequence of a set of formulas Θ if every model of

Θ is also a model of α.
Note that Theorem 4.1.4 of [4] says that a tautology on [0, 1] is a tautology

everywhere, and it is not clear how to reformulate this theorem in our setting,
for at least two reasons. First, if we change the MV algebra A, the language of
Ł∞(A) changes. Second, the theorem depends on the fact that [0, 1] generates the
variety of MV algebras, so with respect to an arbitrary MV algebra A, [0, 1] has a
particular status.
In Ł∞(A) we give also a deductive system, extending the one of [4], Section 4.3

with axioms for constants. The axioms are:

• α → (� → α);
• (α → �)→ ((� → �)→ (α → �));
• ((α → �)→ �)→ ((� → α)→ α);
• (¬α → ¬�)→ (� → α);
• ca∗⊕b → (ca → cb);
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• (ca → cb)→ ca∗⊕b ;
• ca∗ → ¬ca ;
• ¬ca → ca∗ .
The only rule is Modus ponens, defined as usual: from α and α → � derive � .
The notions of provable formula, proof, possibly with hypotheses, and theory are
standard. The same holds for LindenbaumMV algebra. We denote by Lind (A) the
Lindenbaum algebra of Ł∞(A): that is, the set of all formulas of Ł∞(A) modulo
mutual provability. However, Lind (A) is simply the polynomial MV algebra in
countably many variables:

Proposition 9.1. For every MV algebra A, the MV algebras Lind (A) and
A[x1, x2, . . .] are isomorphic.

Proof. First, up to rewriting every MV algebra term by means of negation
and implication, we can suppose that MV algebra terms with constants in A and
formulas of Ł∞(A) coincide.
Moreover, up to rewriting every equality α = � as a pair of formulas α → �
and � → α, the MV algebra axioms and the diagram of A are provable in Ł∞(A),
and mutual provability is a congruence.
Even more, every congruence between MV terms which includes theMV algebra
axioms and the diagram of A contains all axioms of Ł∞(A) and is closed under
modus ponens.
Summing up, mutual provability in Ł∞(A) is the smallest congruence between
MV-terms which includes the MV algebra axioms and the diagram of A.
So, recalling the definitions of Lindenbaum MV algebra and MV polynomial
algebra as quotients, Lind (A) and A[x1, x2, . . .] are the same set of terms modulo
the same congruence, and so they are equal. �
We will say that a logic is complete if tautologies coincide with provable formulas
(by logic here we mean any set of strings equipped with a deductive system and a
set of valuation functions taking values in one or more MV algebras).
Clearly, for everyA, every provable formula of Ł∞(A) is a tautology. The converse
implication does not hold in general, but we have a characterization in terms of
polynomial completeness:

Proposition 9.2. For every MV algebra A, the logic Ł∞(A) is complete if and
only if A is polynomially complete.

Proof. Let A be polynomially complete. Let α be a tautology of Ł∞(A).
Let X1, . . . , Xn be the letters occurring in α. Then α can be considered as a
polynomial pα in n variables, which induces the constant function 1 in A. Since
A is polynomially complete, pα induces 1 in every extension of A, including the
LindenbaumMV algebra of Ł∞(A). So, α is provable.
Conversely, assume Ł∞(A) is complete. Let p be a polynomial in n variables
which induces the constant 1 in A. Then p corresponds to a formula αp in n letters
X1, . . . , Xn and αp is a tautology in Ł∞(A). By completeness, αp is provable in
Ł∞(A). But all extensions ofA satisfy the axioms of Ł∞(A). So, αp is valid in every
extension of A, and p induces 1 in every extension of A. Hence, A is polynomially
complete. �
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Finally wemention that one can also consider a “nonDiophantine” logic Ł′∞(A),
which is identical to Ł∞(A), except that formulas are evaluated in an arbitrary
extension of A, rather than A itself. This time we have:

Proposition 9.3. For every MV algebra A, Ł′∞(A) is complete.

Proof. Clearly every provable formula is a tautology.
To prove the converse, note that provability in Ł∞(A) and Ł′∞(A) coincide,

so Lind (A) is also the Lindenbaum algebra of Ł′∞(A). Moreover, Lind (A) is an
extension of A. Now let α be a tautology of Ł′∞(A). Then α induces the function 1
in every extension of A, so also in Lind (A). Hence α is provable. �

§10. Conclusions and further research. The results of this paper lend to several
generalizations.
For instance, we believe that polynomial completeness and related concepts are

worth investigating. In particular, we do not have yet a structural characterization
of polynomial completeness on MV algebras (we have one only for MV chains).
In [15] a study of finitely presented MV algebras is exposed, based on rational

polyhedra in [0, 1]n. It would be interesting to extend the results of [15] as far as
possible to general MV algebras. To this aim one could translate the framework of
[15] in our more general situation, where:

• formulas φ correspond to polynomials p,
• polynomials evaluating to zero correspond to formulas evaluating to one (this
convention is somewhat of a mismatch between algebraic geometry and logic),

• theories Φ correspond to ideals J ,
• finitely axiomatizable theories correspond to principal ideals,
• polynomials may have constants taken from an arbitrary MV algebra A,
• the function Mod on theories corresponds to the function V on ideals of
polynomials,

• the function Th onMV algebraic subsets of [0, 1]n corresponds to the function
I on MV algebraic subsets of An.

Now possible directions for future research are the following.

1) We can ask questions related to composed functions like Th(Mod (T )).
Wójcicki’s Theorem implies that if T is a finitely axiomatized theory in Łukasiewicz
logic, then Th(Mod (T )) coincides with T . In algebraic terms, this corresponds to
I (V (p)) = id (p) for every polynomial p, which we called strong completeness.
Actually this property can be transferred only to very few MV algebras: in fact, we
have seen that it holds only for simple divisible MV algebras.
2) Since Wójcicki’s Theorem does not help when polynomials may have con-

stants, we could consider weakenings of strong completeness. For instance, the fact
that the ideal I (V (p)) is principal for every polynomial p corresponds to stating
that for every finitely axiomatizable theory T , the theory Th(Mod (T )) is finitely
axiomatized. MV algebras with this weakened form of Wójcicki’s Theorem could
be investigated. More generally, one can investigate what are the ideals J such that
I (V (J )) is principal. This corresponds to considering the theories T such that
Th(Mod (T )) is finitely axiomatizable.
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3) As a first step in this program, in this paper we have briefly introduced
Łukasiewicz logic with constants in an MV algebra A, denoted by Ł∞(A), and we
have derived Proposition 9.2 as a first example of transfer of information between
the structure A and the logical properties of Ł∞(A). We hope that many other
examples will be discovered.
4) Finally, the results obtained so far suggest that also nonDiophantine algebraic
geometry forMV algebras deserves to be studied. This will be done in future papers.
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