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In life-critical applications, the real-time detection of faults is very important in Global Position-
ing System/Inertial Navigation System (GPS/INS) integrated navigation systems. A new fault
detection method for soft fault detection is developed in this paper with the purpose of improv-
ing real-time performance. In general, the innovation information obtained from a Kalman filter
is used for test statistic calculations in Autonomous Integrity Monitored Extrapolation (AIME).
However, the innovation of the Kalman filter is degraded by error tracking and closed-loop
correction effects, leading to time delays in soft fault detection. Therefore, the key issue of
improving real-time performance is providing accurate innovation to AIME. In this paper, the
proposed algorithm incorporates Least Squares-Support Vector Machine (LS-SVM) regression
theory into AIME. Because the LS-SVM has a good regression and prediction performance, the
proposed method provides replaced innovation obtained from the LS-SVM driven by real-time
observation data. Based on the replaced innovation, the test statistics can follow fault amplitudes
more accurately; finally, the real-time performance of soft fault detection can be improved. The-
oretical analysis and physical simulations demonstrate that the proposed method can effectively
improve the detection instantaneity.
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1. INTRODUCTION. Global Positioning System/Inertial Navigation System
(GPS/INS) tightly coupled integrated navigation systems have been widely used in both
civil and military applications (Noureldin et al., 2011; Schmidt, 2010). Compared to using
only a GPS or INS, a GPS/INS tightly coupled system can provide higher precision and
better anti-jamming performance by utilising information fusion technology to combine
GPS and INS data (Han and Wang, 2010).
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Soft faults are especially troubling for GPS/INS tightly coupled systems. Soft faults are a
type of fault that changes slowly and accumulates with time. This feature makes such faults
difficult to detect (Feng et al., 2006). In a GPS/INS tightly coupled system, soft faults can
be produced for many reasons. The most important reason is that raw measurements made
using GPS, such as pseudorange and pseudorange rate, are commonly used as observations
for use with a filter. These raw GPS measurements are vulnerable to external disturbance
to the signal generation process on the satellite, signal transmission in space and signal
reception in the receiver. For instance, satellite clock misbehaviour can result in a range
error of thousands of metres; when a GPS satellite comes out of an eclipse, its trajectory
is perturbed due to the effect of, for example, changing solar radiation pressure (Bhatti
et al., 2007a). The vulnerability faced by GPS can lead to different types of faults in raw
measurements and thus can produce inaccurate navigation results and safety hazards.

The speed of soft fault detection is a main influence on the fault tolerance of GPS/INS
tightly coupled systems. Because soft faults are especially difficult to detect, the alert time
of soft faults is significantly longer than that of abrupt faults, which can potentially threaten
navigation in safety of life applications. For instance, an on-orbit GPS satellite experienced
a slowly growing clock drifting error that eventually resulted in a position error of a few
kilometres (Bhatti and Ochieng, 2007b). Therefore, to guarantee safety of life and minimise
economic damage in aviation, it is vital to detect soft faults in GPS/INS tightly coupled
integrated navigation systems as quickly as possible (Xiong et al., 2013).

For fault detection in GPS/INS integrated navigation systems, commonly used methods
include the chi-square test, Multiple Solution Separation (MSS), Optimal Fault Detection
(OFD), and Autonomous Integrity Monitored Extrapolation (AIME) methods (Bhatti et al.,
2012; Bruggemann et al., 2011; Shi et al., 2012). Among those methods, the chi-square test
and MSS methods represent “snapshot” algorithms because they can detect abrupt faults
(jump errors) quickly and accurately. However, snapshot algorithms suffer from serious
time delays in detecting soft faults (Lee et al., 2012; Liu et al., 2011; Zhou and Hu, 2009).
Compared with snapshot algorithms, the AIME and OFD methods exhibit better perfor-
mance in soft fault detection (Liu et al., 2012; Park et al., 2011). In AIME and OFD, a
sliding window method is applied in the test statistic calculation to solve the problem of
slowly changing characteristics in soft fault detection; thus the real-time ability is improved
to a certain extent. However, in AIME, the test statistic construction is based on the innova-
tion obtained from a system filter, which is commonly a Kalman filter in GPS/INS tightly
coupled systems. A Kalman filter can provide high-precision navigation results using error
tracking and closed-loop correction during the prediction and updating processes. How-
ever, for the purpose of fault detection, the innovation used for the test statistic calculation
is degraded by the effect of error tracking and closed-loop correction, thus being unable to
reflect the actual amplitude of occurring faults. As a result, the real-time ability is degraded
due to the decrease of the test statistic. Therefore introducing a test statistic in AIME based
on a more accurate innovation can improve the real-time ability of soft fault detection.

As mentioned above, the error tracking of a filter under soft faults represents a
challenge for fault detection. Thus Support Vector Machines (SVMs), which repre-
sent a powerful methodology for regression and forecasting, are introduced to fault
detection. SVMs have been widely used in the area of pattern recognition and fault
detection (Dandare and Dudul, 2012; Konar and Chattopadhyay, 2011). SVMs were
introduced within the context of statistical learning theory and structural risk minimi-
sation and further investigated by many researchers (Bhavsar and Panchal, 2012; Orrù
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et al., 2012). This method is especially applicable to small sample and high-dimensional
problems due to its good regression and forecasting abilities. Least Squares Support
Vector Machines (LS-SVM) are reformulations of standard SVMs. An LS-SVM obtains
a lower computation cost by solving linear equations instead of the convex Quadratic
Programming (QP) problems solved by classical SVMs (Long et al., 2012). Therefore,
LS-SVMs have been used in INS/GPS integration for bridging GPS outages and fault
detection (Chen et al., 2014; Xu et al., 2010), and LS-SVMs obtain higher accuracy
in short-period prediction in bridging GPS outages. Therefore, LS-SVMs are preferred,
especially in engineering applications where low computation costs are required.

In this paper, a new method of detecting soft faults is proposed for the purpose of
improving real-time performance in GPS/INS tightly coupled systems. The proposed
method combines an LS-SVM with AIME to provide independent test statistics, which
are immune to the effects of error tracking and closed-loop correction in the Kalman filter.
The independent test statistics are based on the innovation obtained from the LS-SVM
through two stages of training and forecasting. The real observations of the GPS/INS tightly
coupled system are taken as the input of the LS-SVM, and the innovation for calculating
independent test statistics is forecasted based on the training stage. Because the forecasted
innovation replaces the effect of error tracking and closed-loop correction, the independent
test statistics can more accurately reflect the real fault amplitudes of observations. As a
result, both the real-time ability and sensitivity of soft fault detection are enhanced. Based
on theoretical research, a simulation is conducted, the results of which show that the pro-
posed LSSVM-AIME method can effectively improve the real-time ability of detecting soft
faults in GPS/INS tightly coupled systems.

2. FAULT-TOLERANT GPS/INS INTEGRATED NAVIGATION.
2.1. Fault-tolerant Navigation Architecture. The system architecture of the GPS/INS

tightly coupled integrated navigation system is illustrated in Figure 1.
The system consists of three main parts: a GPS unit, an INS unit and a data fusion unit.

In the GPS unit, the GPS receiver provides measurements such as the pseudorange, pseu-
dorange rate and position of visible satellites. These measurements are used to establish
the observation equation of GPS/INS system modelling. In the INS unit, vehicle positions,
velocities and attitudes are provided based on inertial solution algorithms. In the data fusion
unit, all the above information provided by the GPS and INS is transmitted to the Kalman
filter to estimate and correct for navigation errors. Therefore the state vector of the Kalman
filter is composed of two parts: one is the state of the GPS, and the other is the state of
the INS.

Before being transmitted to the Kalman filter, the observation information needs to be
processed by fault detection and identification algorithms. When a signal disturbance or
malfunction occurs on a satellite, faults will occur in the pseudorange and pseudorange
rate data. The faults should be identified and not allowed to be transmitted to the Kalman
filter to avoid inaccurate results.

2.2. INS/GPS Integrated Model. The system model of the Kalman filter includes a
state model and an observation model. In the state model, the state vector consists of INS
states and GPS states. The INS states include errors generated by inertial sensors, and
GPS states include errors from raw GPS measurements. The state equation is given in
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Figure 1. System Architecture of a GPS/INS Tightly Coupled System with Fault Detection Function.

Equation (1):
ẋ = Φx + w (1)

where Φ denotes the state transition model built from the INS error analysis equation; w
denotes the process noise vector; x is the state vector, defined as

x = [φE , φN , φU, δvE , δvN , δvU, δL, δλ, δh, εbx, εbx, εby , εbz, εrx, εry , εrz, ∇x, ∇y , ∇z, δρu, δρ̇u]T

(2)
where φE , φN , φU denote the angle errors from the true axes to the platform in the direc-
tions of east, north and up, respectively; δvE , δvN , δvU denote the velocity errors in the
directions of east, north and up, respectively; δL, δλ, δh denote the vehicle latitude, longi-
tude and height position errors in geographic coordinates; εbx, εby , εbz denote the biases of
the gyros; εrx, εry , εrz are the first-order Gauss-Markov processes of the gyros; ∇x, ∇y , ∇z
denote the first-order Gauss-Markov processes of the accelerometers; and δρu, δρ̇u denote
the equivalent pseudorange and pseudorange rate caused by the clock bias and clock drift
of the GPS, respectively.

In the observation model, the observation vector consists of a pseudorange observation
and a pseudorange rate observation. The measurement vector consists of two parts. The
first part is the differences of the pseudorange and pseudorange rate. The difference of the
pseudorange is calculated from pseudorange measurements based on raw GPS information
and the equivalent pseudorange calculated by the INS solution based on the satellite posi-
tion and velocity from ephemeris data. The pseudorange rate observation is calculated in
the same manner. The system measurement observation equation is shown in Equation (3):

z = Hx + v (3)

where z denotes the observation vector, H denotes the observation model, and v denotes
the observation noise vector. The observation vector z is composed of a pseudorange and
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pseudorange rate, as shown in Equation (4):

z =
[

zρ

zρ̇

]
(4)

where

zρ =

⎡
⎢⎢⎣

zρ1
zρ2

· · ·
zρn

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ρI1 − ρG1

ρI2 − ρG2

· · ·
ρIn − ρGn

⎤
⎥⎥⎦ zρ̇ =

⎡
⎢⎢⎣

zρ̇1

zρ̇2

· · ·
zρ̇n

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ρ̇I1 − ρ̇G1

ρ̇I2 − ρ̇G2

· · ·
ρ̇In − ρ̇Gn

⎤
⎥⎥⎦ (5)

where ρIi , ρ̇Ii (i = 1, 2, . . . n) denotes the equivalent observation of the INS, which is derived
from the vehicle position and velocity obtained from the INS and satellite emphasis of
the GPS; n is the number of visible satellites; and ρGi , ρ̇Gi denote the pseudorange and
pseudorange rate measurements of the GPS. In addition, the corresponding observation
model H is shown in Equation (6):

H =

⎡
⎣ 0n×6

... Hρ1

... 0n×9
... Hρ2

0n×3
... H ρ̇1

... 0n×12
... H ρ̇2

⎤
⎦ (6)

where 0 represents the zero matrix, in which the matrix dimension is denoted by the
subscript, and Hρ1 , Hρ2 , H ρ̇1 , H ρ̇2 are matrices that denote the relationship between
observations and states.

2.3. Fault-tolerant Fusion Algorithm. As a classic error estimation algorithm, the
Kalman filter has been widely used in integrated navigation systems (Gross et al., 2010;
Zhong et al., 2011). The recursive estimation process can be summarised as follows:

Predict:

x̂k,k−1 = Φk,k−1x̂k−1 + Wk−1 (7)

Pk,k−1 = Φk,k−1Pk−1Φ
T
k,k−1 + Qk−1 (8)

Update:

rk = zk − H kx̂k,k−1 (9)

K k = Pk,k−1H T
k (H kPk,k−1H T

k + Rk)−1 (10)

x̂k = x̂k,k−1 + K krk (11)

Pk = (I − K kH k)Pk,k−1 (12)

Based on the principle of minimum variance, the Kalman filter produces optimal estimate
results for system states. The state error estimations are directly related to the innovation
vector of the Kalman filter, which is calculated based on observations in state prediction.

When faults occur, the observation vector is selected, and the observation model should
be rebuilt. Assuming that the number of visible satellites is n, the dimension of the observa-
tion vector is supposed to be 2n × 1. Depending on the fault detection method, observations
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having faults will be detected. Later, the observation vector and observation model will be
reconstructed.

3. FAULT DETECTION METHOD BASED ON LS-SVM-ENHANCED AIME.
3.1. Enhanced Fault Detection Scheme. By utilising the forecasting and regression

ability of the LS-SVM, an alternative innovation that is independent of the Kalman
filter is provided to avoid the effects of the error tracking characteristics of the Kalman
filter. The independent innovation will replace the original innovation in AIME to derive
more accurate test statistics. By avoiding the influence of error tracking and closed-loop
correction, the sensitivity and instantaneity of detecting soft faults with the proposed
method will be improved. The fault detection scheme of the proposed method is shown in
Figure 2.

The observation performed by the integrated navigation system is chosen as the training
input of the LS-SVM, and the innovation immune to error tracking of the Kalman filter is
chosen as the training output. The parameters of the LS-SVM regression function can be
calculated based on the training stage. Then, the observation at the current epoch is used
as the regression input, and the forecasted innovation that is used to replace the original
innovation when calculating the new test statistics of AIME can be derived. The new test
statistics are independent of the Kalman filter; therefore, they mitigate the error tracking
effect. The new test statistics are used in fault decision making to select observations. If the
values of the test statistics are smaller than a threshold, the integrated navigation system is
judged as having no faults. If the values are larger than a threshold, the system is judged as
having faults; the fault observation will be identified and isolated by other methods (Patino
and Rohmer, 2010), and the entire observation vector and model will be reconstructed
before being input to the Kalman filter.

3.2. Error Tracking of Filter under Soft Fault. In the fusion filter of the GPS/INS
tightly coupled integrated navigation system, the errors will be corrected based on error
tracking, and the navigation accuracy will be improved. However, in the fault detection
application, the error tracking of the filter may adversely affect the test statistic calculation,

Figure 2. Scheme of soft fault detection based on LS-SVM-enhanced AIME.
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which should accurately reflect the level of the fault. The effect of the error tracking is
analysed as follows.

When faults occur at time k, the observation is described by

z̃k = zk + �zk (13)

where z̃k is the observation with a fault, zk is the expected observation, and �zk is the fault
amplitude.

The innovation of the Kalman filter is usually used for calculating test statistics. When
faults occur, the innovation is described by

r̃k = z̃k − H kx̂k,k−1

= zk + �zk − H kx̂k,k−1 (14)

= rk + �zk

where r̃k denotes the innovation when faults occur. Then the state estimation becomes

ˆ̃xk = x̂k,k−1 + K k r̃k

= x̂k,k−1 + K k(r̃k + �zk) (15)

= x̂k + K k�zk

For the next step k + 1, the innovation can be derived as follows:

r̃k+1 = z̃k+1 − H k+1 ˆ̃xk+1,k

= zk+1 + �zk+1 − H k+1Φk+1,k ˆ̃xk

= zk+1 + �zk+1 − H k+1Φk+1,k(x̂ + K k�zk)

= rk+1 + �zk+1 − H k+1Φk+1,kK k�zk

(16)

which can be expressed as
r̃k+1 = rf (k+1) − �rf (k+1) (17)

In addition,

rf (k+1) = rk+1 + �zk+1

�rf (k+1) = H k+1Φk+1,kK k�zk
(18)

where r̃k+1 denotes the innovation of the Kalman filter, rf (k+1) denotes the real value of the
innovation when faults occur and �rf (k+1) denotes the component of the innovation caused
by the error tracking effect.

From Equations (16) and (17), we can conclude that the increment of the innovation
is decreased by the term H k+1Φk+1,kK k�zk, which will accumulate over time through the
recursive calculation process, leading to a greater reduction in innovation.

In fault detection algorithms for GPS/INS integrated navigation systems, the innovation
used for calculating test statistics is supposed to change accurately with the amplitude of
faults to detect faults quickly and precisely. As a result of the decreased innovation accuracy
caused by the error tracking characteristics of the Kalman filter, the sensitivity and real-time
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performance will be degraded. To resolve the above problem, a substitute innovation that
cannot be affected by error tracking is required. Therefore a new fault detection method
utilising LS-SVMs to forecast a new innovation based on real-time measurements will be
discussed in the next section based on AIME.

3.3. Effect of Error Tracking on AIME. AIME is a classic algorithm proposed by
Diesel (2000) that has been applied to integrated navigation systems for soft fault detec-
tion. AIME represents a sequential algorithm for fault detection, in which the innovation
is averaged over past data of the Kalman filter to weight the test statistics. The two stages
of the Kalman filter are given by Equations (7)–(12). The innovation vector rk and its
covariance matrix Vk at each Kalman filter cycle k is given by

r = zk − H kx̂k,k−1 (19)

V = H kPk/k−1H T
k + Rk (20)

The test statistics are calculated based on the innovation and innovation covariance matrix:

s2
avg = (rT

avg)(V−1
avg)(ravg) (21)

where savg is the test statistic of AIME. ravg is the weighted average of the innovation, and
V−1

avg is the inverse of the estimated covariance matrix mean, which are given by

ravg = (V−1
avg)−1

l∑
k=1

V−1
k rk (22)

V−1
avg =

l∑
k=1

V−1
k (23)

where l is the averaging time, which affects the fault detection performance. For example,
a small l will reduce the sensitivity of soft error detection, whereas a large l will result in a
larger computational complexity. The value of l depends on the integrity requirement. The
test statistics savg follow central chi-square distributions when there are no faults in the inte-
grated navigation system and follow non-central chi-square distributions when faults occur.
When deciding whether faults occur, the test statistics are compared with a threshold that is
derived from chi-square distributions and false alerts based on navigational requirements.

In GPS/INS tightly coupled systems, the error tracking effect will influence the innova-
tion calculation of the Kalman filter, as shown in Equation (16); therefore, the test statistics
of AIME calculated based on the innovation will inevitably be influenced. The test statis-
tics at epoch k when faults occur in GPS/INS integrated systems can be expressed using
Equation (24):

s̃2
avg = (r̃T

avg)(V−1
avg)(r̃avg) (24)

The real test statistics that can reflect the real amplitudes of faults should be

s2
avg = (rT

f (avg))(V
−1
avg)(rf (avg)) (25)

Derived from Equations (17) and (22), we can conclude that r̃avg < rf (avg). Therefore, the
test statistics s̃2

avg < s2
avg. The component caused by error tracking will decrease the value

of the test statistics and eventually result in time delays in fault detection.
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3.4. LS-SVM Regression Algorithm. SVMs represent a type of statistical learning the-
ory developed based on empirical risk minimisation. SVMs provide better performance in
terms of accuracy and stability because more explicit learning and regression algorithms
are applied in SVMs compared to other algorithms such as neural networks. SVMs utilise
empirical data rather than prior information, which makes them similar to a real model.
LS-SVMs are reformulations of standard SVMs. LS-SVMs have lower computation costs
because they solve linear equations instead of convex quadratic programming problems,
as in classical SVMs. For this reason, LS-SVMs are preferred, especially for engineering
applications where low computation costs are highly desired.

We denote the training point collection as D = {(xj ,yj )| j = 1, 2, . . . N }, where xj ∈ Rn

are training inputs, yk ∈ R are training outputs, and N is the number of training sample.
The form of the nonlinear regression function is (Suykens et al., 2002; Mehrkanoon and
Suykens, 2012)

y(x) = (w · ϕ(xj )) + b (26)

where ϕ(·) denotes the feature map, w denotes the weight vector, and b denotes the bias
vector; both are unknown regression parameters.

The regression in LS-SVM can be converted into the problem of minimising the
following expression (Xu et al., 2010):

min J (w, e) =
1
2
‖w‖2 +

1
2
γ

N∑
j =1

e2
j

s.t. yj = w · ϕ(xj ) + b + ej , j = 1, 2, · · · , N

(27)

where e = (e1, e2, . . . , eN )T denotes the error vector and γ denotes the regularisation
constant for improving the generalisation properties.

To solve the above optimisation problem, the Lagrangian function used for finding the
minimum value is (Xu et al., 2010):

L(w, b, e, α) = J (w, e) −
N∑

j =1

αj [(w · ϕ(xj )) + b + ej − yj ] (28)

where α = (α1, α2, . . . αl)T denotes Lagrangian multipliers.
Taking the partial derivatives of L(w, b, e, α),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L
∂w

= w −
N∑

j =1
αj ϕ(xj )

∂L
∂b

= −
N∑

j =1
αj = 0

∂L
∂ej

= γ ej − αj = 0

∂L
∂αj

= (w · ϕ(xj )) + b + ej − yj = 0

(29)
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Equation (29) can be expressed as the matrix⎡
⎢⎢⎣

I 0 0 −Z
0 0 0 −1
0 0 γ I −I
Z 1 I 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

w
b
e
α

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0
0
0
y

⎤
⎥⎥⎦ (30)

where Z = [ϕ(x1), ϕ(x2), · · · , ϕ(xN )]T, y = [y1, y2, · · · , yN ]T, 1 = [1, 1, · · · , 1]T, e =
[e1, e2, · · · , eN ]T, and α = [α1, α2, · · · , αN ]T.

From Equation (29) and Equation (30), by cancelling w and e, the following linear
equation can be derived: [

0 1T

1 ZZT + γ −1I

] [
b
α

]
=

[
0
y

]
(31)

We denote �ij = ZZT = ϕ(xi)Tϕ(xj ) = K(xi, xj ), where K(xi, xj ) is the kernel function,
and let A ≡ Ω + γ −1I . Thus, Equation (31) can be expressed as[

0 1T

1 A

] [
b
α

]
=

[
0
y

]
(32)

If the matrix is invertible, from Equation (32), we can conclude that⎧⎪⎨
⎪⎩

b =
1TA−1y
1TA−11

α = A−1(y − b1)

(33)

From Equation (33) and Equation (29), the regression function can be derived as follows:

y(x) = (w · ϕ(x)) + b

=
N∑

j =1

αj (ϕ(xj ) · ϕ(x)) + b (34)

=
N∑

j =1

αj K(xj , x) + b

where K(xj , x) is defined as the kernel function, which can be set as an RBF kernel, linear
kernel, polynomial kernel or Gaussian kernel. Among those functions, the RBF kernel is
most often used in LS-SVMs.

Based on Equation (34), in GPS/INS integrated navigation systems, regression is used
to forecast the innovation, which is unaffected by the error tracking effects of the Kalman
filter, as shown in Equation (35):

r̄k = (w · ϕ(zk)) + b (35)

where r̄k is the innovation forecasted by the regression function, which is independent of
the Kalman filter and immune to error tracking, and zk is the observation of the GPS/INS
integrated system used as the input of the regression function.
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3.5. Soft Fault Detection Method based on LS-SVM-Enhanced AIME. As mentioned
above, when faults occur in an integrated navigation system, the innovation gradually
decreases as a result of error tracking effects and error correction in the Kalman filter.
To mitigate the impact of decreased innovation, this section proposes a method for util-
ising a forecast innovation via LS-SVM regression instead of the original innovation of
the Kalman filter. To realise the forecast function, the LS-SVM needs to implement two
stages: training and regression. The LS-SVM training and regression procedure is given in
Figure 3.

1. Training
1) Training input collection. At the training stage, the training input should be con-

firmed first. The real-time observation, the measurement of pseudorange and
pseudorange rate in Equation (5) is set as the training input.

2) Training output collection. The innovations of the Kalman filter compensated by
Equation (16), which is immune to the error tracking effect of the Kalman filter,
are used as the output. Thus, a correct relation between measurements and the
innovation can be established.

3) Training parameter setting. In this paper, the kernel function of the LS-SVM is
the Radial Basis Function (RBF) kernel, and the other parameters are obtained
via the parameter optimisation function (Ying and Keong, 2004).

2. Regression
1) Regression input collection. To forecast the innovation free from Kalman filter

error tracking and error correction, the real-time measurements are input into the
regression equation after the training stage.

2) Regression output estimation. Based on the training stage, the type of regression
output is the same as that of the training output. Therefore, the regression output
is the alternative innovation independent of the Kalman filter, which can be used
to detect faults.

Figure 3. The training and regression sequence of the LS-SVM.
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3. Obtain forecasted innovation
r̄k is the forecasted innovation from the LS-SVM regression, which is given by{

Training : ri = fLS-SVM(zi) 1 ≤ i ≤ n,
Regression : r̄j = fLS-SVM(zj ) j ≥ ns + 1

(36)

where ns is the number of training samples. The sample number of the training and
regression process should be chosen for forecasting independent innovations. On the
one hand, the number should be sufficiently large to achieve an acceptable regres-
sion accuracy; on the other hand, the computational cost of regression increases with
sample number, which affects the real-time performance of fault detection.

4. Calculate weighted innovation
The weighted innovation is given by Equations (37) and (38):

r̄avg = (V−1
avg)−1

l∑
k=1

V−1
k r̄k (37)

V−1
avg =

m∑
k=1

V−1
k (38)

5. Calculate test statistics
Based on the LS-SVM and AIME, the normalised test statistics of the proposed
method are given by

s̄2
avg = (r̄T

avg)(V−1
avg)(r̄avg) (39)

The test statistics s̄2
avg of fault detection follow a central chi-square distribution when

measurements are free of faults. If faults occur, the pre-established Kalman filter
model cannot follow changes in measurements, leading to non-central chi-square
distributions of the test statistics. Following hypothesis testing theory, the test statis-
tics are compared with a threshold Tr to judge whether there is a fault occurring in
the integrated navigation system.

4. SIMULATION AND ANALYSIS.
4.1. Simulation Description. A simulation platform of a GPS/INS tightly coupled

integrated navigation system is built based on Figure 1. The proposed method combining
an LS-SVM and AIME (called the LSSVM-AIME below) is applied to the simulation
platform. AIME is also applied to the GPS/INS tightly coupled system, and the results of
the LSSVM-AIME and AIME are compared and analysed.

The parameters of the INS and GPS receiver simulation are shown in Table 1.
The trajectory simulation of the entire navigation procedure is designed as a dynamic

trace, including climbing, cruising and manoeuvring. The simulated trajectory curve is
shown in Figure 4.

4.2. Soft Fault Simulation. To verify the effect of detecting soft faults in AIME
and LSSVM-AIME, ramp-type soft faults are added to a pseudorange measurement with
different slopes. The soft faults are described by Equation (40):

ρfault = ρ + v × (t − tf ) (40)
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Table 1. Simulation parameters.

Sensor Parameter item Value

INS Correlation time of first-order Markov process of gyroscope 200 s
Equivalent accelerator bias 5e-4g
Correlation time of first-order Markov process of accelerator 100 s
Output rate 0·02 s

GPS Receiver Accuracy of pseudorange measurement 10 m
Accuracy of pseudorange rate measurement 0·2 m/s
Visible satellite number 8
Output step 1·0 s

Figure 4. Navigation trajectory simulation.

where ρ denotes the original pseudorange with no faults; ρfault denotes the pseudorange
with ramp errors; v denotes the ramp error slope, set to 0·1, 0·2, 0·5, 1·0, and 2·0 m/s,
respectively; t is the current navigation time; and tf is the time when a fault occurs. The
ramp error amplitude over time is shown in Figure 5, and the corresponding navigation
results are given in Figure 6.

From Figures 5 and 6, we can see that the navigation results are influenced by soft
faults more seriously with increasing ramp error size. In the situation where the ramp error
size is 0·1 m/s, the error in the navigation result is 10 metres, which has minimal effect
on navigation applications. One reason for this is that the ramp error size is small. The
other reason is that the Kalman filter has a low fault tolerance ability. Therefore, when
ramp errors are small over a short time period, the fault measurement in a GPS/INS tightly
coupled system does not need to be isolated. However, in applications demanding high
accuracy, such as precision approaches, this error is too large to be neglected. In addition,
when the ramp error size increases, the navigation error quickly increases, leading to a
dangerous situation and presenting a hazard to humans.

Considering the computational complexity, the averaging time of AIME and LSSVM-
AIME is set to 150 s for fault detection. For the LS-SVM, the RBF kernel is selected as
the kernel function. The length of training window is ten. Because the observations are the
pseudorange and pseudorange rate in a tightly coupled navigation system, the number of
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Figure 5. Fault amplitude under different ramp error sizes.

Figure 6. Navigation position error under different ramp error sizes.

degrees of freedom of the chi-square distribution is twice the number of visible satellites.
The false alarm rate is set to 0·00001.

The test statistics used in AIME and LSSVM-AIME are the original innovation of
the Kalman filter and the alternative innovation obtained from the LS-SVM, respectively.
The results of the two innovation values, which change with measurements, are shown in
Figure 7.
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Figure 7. Comparison between the two innovations from LSSVM-AIME and AIME.

Comparing the results in Figure 7 with Figure 5 for the same epoch, both the inno-
vation of the Kalman filter and the forecasted innovation of LSSVM-AIME can follow
the measurement error. The faster the ramp error increases, the larger the value of the
innovation that can be obtained. In contrast, the LSSVM-AIME innovation demonstrates a
better ability to follow errors in the same situation. Because the LS-SVM has the ability to
forecast based on training and regression, whereas the Kalman filter provides error track-
ing effects and error correction functions, the innovation of the LS-SVM demonstrates a
faster response concerning measurement changes compared to the Kalman filter, as shown
in Figure 7.

The test statistic results of AIME and LSSVM-AIME are provided as follows. The fault
detection result for ramp error sizes of 0·1 m/s and 0·2 m/s are given in Figure 8, and those
of 0·5 m/s and 1 m/s are given in Figure 9.

In Figure 8, the red solid lines represent the values of the test statistics of LSSVM-
AIME, and the blue dotted lines represent classic AIME. The line “Tr” represents the
fault detection threshold, which is calculated using a chi-square distribution. From the
results, we can see that both types of test statistics increase with increasing error. When
the ramp error size increases, the test statistics also increase. It is worth noting that the test
statistics of LSSVM-AIME increase faster and reach the threshold earlier than do those of
AIME. This conclusion can be drawn from Figure 8. This is because the test statistics of the
LS-SVM are free of error tracking effects in the Kalman filter. The times of the fault alarms
are shown in Table 2.

Similar to the results in Figure 8, the test statistics in Figure 9 can further prove the
higher detection performance in LSSVM-AIME. In addition, as a result of the larger ramp
error size, the detection times are both smaller than those in Figure 8. A 50-run Monte
Carlo simulation of LSSVM-AIME and AIME has been conducted to provide statistical
results of the time delay, which are shown in Table 2.
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Figure 8. Test statistics for ramp sizes of 0·1 m/s and 0·2 m/s.

Figure 9. Test statistics for ramp sizes of 0·5 m/s and 1 m/s.

In Table 2, a quantitative comparison of the time delays through Monte Carlo simulation
under the two methods is made. We draw two conclusions from this table. First, LSSVM-
AIME has a smaller time delay than does classic AIME. As listed in Table 2, when the
ramp error size is 0·1 m/s, the LSSVM-AIME is 69·33 s faster than AIME in terms of
fault alarms, and the time delay decreases by 63%; when the ramp error size is 0·2 m/s,
the LSSVM-AIME is 48·36 s faster than AIME and the time delay decreases by 62%;
when the ramp error size is 0·5 m/s, the LSSVM-AIME is 30·4 s faster than AIME, and
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Table 2. Comparison of time delays for LSSVM-AIME and AIME.

Time delay

LSSVM-AIME AIME

Ramp error size Mean standard deviation Mean standard deviation

0·1 m/s 40·70 s 5·97 s 110·03 s 12·06 s
0·2 m/s 29·36 s 3·44 s 77·72 s 6·08 s
0·5 m/s 18·76 s 1·91 s 49·16 s 4·83 s
1·0 m/s 14·24 s 0·77 s 34·50 s 3·91 s

Table 3. Comparison of different lengths of training window of LS-SVM.

Length of training window Time delay

10 40·70s
50 37·80s
100 37·78s

the time delay decreases by 61·8%; when the ramp error size is 1 m/s, the LSSVM-AIME
is 20·26 s faster than AIME, and the time delay decreases by 58·7%. Thus the conclusion
that the LSSVM-AIME has smaller time delay in detecting soft faults can be drawn. Sec-
ond, the result that a larger ramp error size leads to faster fault detection is proven again.
Note that the time delay of both LSSVM-AIME and classic AIME obviously decrease with
the growth of ramp error size. When the error size increases to greater than 0·5 m/s, AIME
also exhibits better detection instantaneity. Therefore, along with the growth of ramp error
size, the time delay gap between LSSVM-AIME and classic AIME decreases.

To compare different lengths of training window, Monte Carlo simulations with 10, 50
and 100 LSSVM-AIME training window length are made. The time delays of LSSVM-
AIME under ramp error size 0·1m/s are shown in Table 3. It is evident from Table 3 that
the time delay is shorter when the training window length is small.

Because it is a complicated algorithm, the extra elapsed time caused by the calculation
count should also be considered. In the simulation, the differences between the elapsed time
of LSSVM-AIME and AIME are also calculated. The simulation tests are conducted under
different ramp error sizes and repeated 50 times. The average elapsed time gap of LSSVM-
AIME and AIME is 4·853 ms. This result shows that the computational complexity of
the proposed method has a finite effect on fault detection in practical applications. With
the rapid development of processing hardware, this computational complexity gap can be
further narrowed.

5. CONCLUSIONS. In this paper, an approach for detecting soft faults based on LS-
SVM-enhanced AIME is proposed. In an attempt to improve the instantaneity performance
of the traditional method, which is determined by the error tracking characteristics and
error correction of the Kalman filter, a new test statistic is derived from a new innovation
forecasted by an LS-SVM. Based on the good training and regression performances, the
forecasted innovation free from error tracking and correction effects leads to a smaller
time delay for soft fault detection. The simulation results demonstrate that the proposed
LSSVM-AIME fault detection method effectively decreases the time delay of soft fault
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detection, especially for faults with small ramp error sizes. This performance is important
for safety-critical applications.
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