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OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS
IN THE DUAL MODEL WITH DIFFUSION
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ABSTRACT

The dual model with diffusion is appropriate for companies with continuous 
expenses that are offset by stochastic and irregular gains. Examples include 
research-based or commission-based companies. In this context, Avanzi and 
Gerber (2008) showed how to determine the expected present value of dividends, 
if  a barrier strategy is followed. In this paper, we further include capital 
injections and allow for (proportional) transaction costs both on dividends 
and capital injections.

We determine the optimal dividend and (unconstrained) capital injec-
tion strategy (among all possible strategies) when jumps are hyperexponential. 
This strategy happens to be either a dividend barrier strategy without capital 
injections, or another dividend barrier strategy with forced injections when the 
surplus is null to prevent ruin. The latter is also shown to be the optimal divi-
dend and capital injection strategy, if  ruin is not allowed to occur. Both the 
choice to inject capital or not and the level of the optimal barrier depend on 
the parameters of the model.

In all cases, we determine the optimal dividend barrier and show its exist-
ence and uniqueness. We also provide closed form representations of the value 
functions when the optimal strategy is applied. Results are illustrated.
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1. INTRODUCTION

1.1. The stability problem

What decisions should a company make in order to ensure ‘stable’ operations? 
Criteria that are used in the actuarial literature to address this ‘stability 
 problem’ (see, for instance, Bühlmann, 1970) include the probability of ruin 
(see Asmussen and Albrecher, 2010, for an excellent broad reference) and the 
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expected present value of dividends (as introduced by de Finetti, 1957). More 
recently, some authors introduced capital injections and proposed to maximise 
the expected present value of  the difference between dividends and capital 
injections.

The expected present value of dividends as an alternative to the probability 
of ruin was fi rst proposed by de Finetti (1957). If  a company makes decisions 
so that the probability of ruin is minimised, then it is implicit that it should 
let its surplus grow to the infi nity. As this behaviour is arguably unrealistic,
de Finetti (1957), in his model, allowed some surplus to be distributed. These 
leakages are likely to benefi t the company’s owners, hence explaining their 
qualifi cation of ‘dividends’. Usually, the way these are distributed (the ‘divi-
dend strategy’) is determined such that the expected present value of dividends 
is maximised; see Albrecher and Thonhauser (2009) and Avanzi (2009) for 
reviews of the related literature.

The time value of  money provides an incentive to distribute dividends 
 earlier and more often. When these are maximised, ruin is usually certain.
In some cases, it may be profi table (or required) to rescue the company by 
injecting some capital. Irrespective of ruin, injecting capital may have a posi-
tive net present value. This idea goes back to Borch (1974, Chapter 20) and 
Porteus (1977), and recent references on capital injections include Avram et al. 
(2007) for spectrally negative processes, Løkka and Zervos (2008) and He and 
Liang (2008) in the Brownian risk model, Yao et al. (2010) in the dual model, 
Dai et al. (2010) in the dual model with diffusion. In the case of the Cramér-
Lundberg model without diffusion, Kulenko and Schmidli (2008) provide a 
proof of the optimality of a barrier strategy under general jump distributions 
when capital injections are forced (that is, when ruin is not allowed to occur).

It is worthwhile noting that the broader issue is relevant to other fi elds
as well, such as corporate fi nance. In their excellent review of the literature
on dividend payout policy, Allen and Michaely (2003, Chapter 7) state:
“We believe that […] how payout policy interacts with capital-structure deci-
sions (such as debt and equity issuance) are important questions and a prom-
ising fi eld for further research.”

In this paper, we are interested in determining the joint optimal dividend 
and capital injection strategy in the dual model with diffusion as described in 
the next section.

1.2. The dual model with diffusion

We consider the dual model with diffusion. In this model, the company surplus 
at time t is described as

 ( (t) (U ) ), 0x ct S t W t t $= - + + s ,  (1.1)

where U (0 –)  =  x  $  0 is the initial surplus, c  >  0 is the expense rate per unit of 
time and where {S(t)} is a compound Poisson process with intensity l . The 
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process {W(t)} is a standard Brownian motion which is independent of {S(t)}, 
with volatility of s per unit of time. Such a model is appropriate for companies 
with stochastic gains and deterministic expenses, such as research-based com-
panies that develop inventions or patents. Such companies make discoveries
at random times, and can crystallise the gain by selling the associated intel-
lectual property to a buyer, or requiring patent licence fees from fi rms using 
the technology (see, for instance, Sharma and Clark, 2008). Other examples 
include commission-based fi rms such as real estate agents. The Brownian 
motion term refl ects additional uncertainty in the fi rm’s expenses and gains.

The dual risk model was fi rst named so by Mazza and Rullière (2004) 
because of  its duality to the Cramér-Lundberg model. Without diffusion, 
Avanzi et al. (2007) and Cheung and Drekic (2008) provide results when a 
dividend barrier strategy is applied, whereas Ng (2009) considers threshold 
strategies. Model (1.1) is dual to the Cramér-Lundberg model with diffusion 
as introduced by Dufresne and Gerber (1991). In this framework, results about 
dividends with a barrier strategy are derived in Avanzi and Gerber (2008).

We will assume that the distribution P of  the jumps in {S(t)} is a mixture 
of exponentials, namely:

 
(

(
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) , for 0dy
dP y

p y w >i
i

n

i
1

i= =
=

b-b ,yye/  (1.2)
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 1,i = 0 for all and 0w w i> < < < < <
i

n

i n
1

1 2 f 3
=

b b b .,/  (1.3)

Mixtures of exponentials can be used to approximate certain long-tailed dis-
tributions such as the Pareto and Weibull. In the case of ‘completely mono-
tone’ probability distribution functions, algorithms are readily available
(see, for instance, Feldmann and Whitt, 1998). The broader class of  combi-
nations of  exponentials (for which wi  >  0 is no more required) is also useful 
to approximate probability distributions (see, for instance, Dufresne, 2007). 
Although the optimality results of this paper do not extend to combinations, 
the closed form solutions for the value functions are still valid under mild 
assumptions (see also Remark 2.1).

Furthermore, note that (1.2) can be interpreted in the following way. If  a 
research and development fi rm has n different departments, each with gains 
distribution being exponential with parameter bi, expenses wi  ·  c, and initial 
investment wi  ·  x (i  =  1,  …,  n), then (1.1) represents its global surplus (because 
of the properties of compound Poisson processes); see also Remark 4.3.

1.3. Formulation of the general optimal control problem

In this paper, we consider two types of controls: dividend payments (surplus 
outfl ows) and equity issuance (surplus infl ows). We assume that a complete 
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 fi ltered probability space (W,  F,  {Ft}t  $  0,  P) is given, such that {U(t)} is adapted. 
The controlled surplus process is 

 ( ( ( (t t t tp) ) ) ), 0.X U D E t $= - +p p  (1.4)

Here, {Dp(t)} represents the aggregate dividends distributed up until time t, 
according to strategy p. A dividend strategy is said to be admissible if  {Dp(t)} 
is a non-decreasing, {Ft}-adapted process with Dp(0 –)  =  0. We assume that 
{Dp(t)} has càdlàg sample paths. In addition, we restrict the possible control 
processes so that a fi rm cannot pay out an amount of dividends that is larger 
than the current surplus. That is, 

 (t) ( ) for all ,X t#D p p t-D  (1.5)

where 
 ( )( (t tp p) ) DD = - p t-D D  (1.6)

represents the size of the dividend paid at time t. On the other hand, {Ep (t)} 
represents the aggregate capital injected up until time t. We assume that {Ep (t)} 
has càdlàg sample paths. A capital injection strategy is admissible if  {Ep (t)} is 
a non-decreasing, {Ft}-adapted process with Ep (0 –)  =  0. An admissible joint 
control strategy is then denoted by p  =  (Dp,  Ep), and the set of  admissible 
control strategies is denoted by P so that p  !  P.

Our objective is to determine the optimal control strategy p that maximises 
the expected present value of dividends less capital injections until ruin, which 
we defi ne to be 

     
- d d( d= s s- - s

t"3
E( ; ) ) (limsupJ x e d s e Ex t t

0
-

/ t
p

t
p

-

-p pp k
/

)D
0-

j: ,c m< F# #  (1.7)

where tp is the time of ruin, a  /  b denotes the minimum of a and b, and where 
Ex is the conditional expectation given the initial surplus x. We assume that 
dividends are paid out of the surplus to the same group of investors that inject 
capital into the surplus, and the force of interest d  >  0 refl ects the time prefer-
ence of  those investors. Proportional costs on dividend transactions are
taken into account through the value of j, with 0  <  j  #  1 representing the net 
proportion of leakages from the surplus received by investors after transaction 
costs have been paid. Proportional transaction costs on capital injections are 
taken into account through the value of k, with 1  #  k  <  3 representing the 
‘total costs’ of injecting a single dollar of capital, where these are defi ned to 
be the amount of capital injected, plus any transaction costs required to inject 
this capital. Given initial capital x  $  0, we defi ne the value of  the optimal 
strategy to be 

 = p( ) ( ) .supV Jp
!p P

*; :x ;x  (1.8)
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 615

It follows from results in the discrete-time setting of  Miyasawa (1962) and 
Takeuchi (1962) that the barrier strategy should be the optimal dividend strat-
egy in the dual model, although it has yet to be formally proven. In the case 
where the dual model is perturbed by a diffusion term, Bayraktar and Egami 
(2008, without capital injections) and Dai et al. (2010) proved that the barrier 
strategy is optimal if  the gains distribution is exponential and has a fi nite right 
endpoint, respectively.

Note that some papers force capital injections when the surplus is null to 
prevent ruin. Such a compulsion may be justifi ed by strictly negative sur-
plus at ruin (because of downwards jumps) or by regulation (in the case of 
insurance companies). These reasons are less relevant in the dual model, which 
gives us grounds for allowing any capital injection strategy as above.

1.4. Structure of the paper

In order to solve the general optimal control problem as described above, we 
need to consider two sub-problems fi rst.

Section 2 restricts the problem to dividends only and shows that a barrier 
strategy is optimal, whether the drift of (1.1) is positive or not. Furthermore, 
a closed form representation of the value function is developed, which did not 
appear in Avanzi and Gerber (2008).

In Section 3, capital injections are forced when the surplus hits 0 to prevent 
ruin. Again, it is shown that a dividend barrier strategy is optimal irrespective of 
the drift of (1.1), and a closed form representation for the value function is given.

The optimal joint strategy p* as well as a closed form for (1.8) are developed 
in Section 4. The solution of the problem is a combination of the two sub-
problems above. Whereas the barrier strategy is always optimal for dividends, 
the decision whether capital should be injected or not and the level of  the 
optimal barrier depend on the parameters of the model. This general solution 
is illustrated in Section 5.

2. OPTIMALITY OF THE BARRIER WITHOUT CAPITAL INJECTIONS

We fi rst examine the optimal dividend problem without equity issuance, such 
that Epd(t)  /  0 for all t. This is a special case of (1.4), where

 ( ( (p pt t t) ) ), 0.X U tD
d d

$= -  (2.1)

An admissible control strategy is then denoted by pd  =  (Dpd
,  Epd 

), such that 
pd  !  P. The time of ruin for such a strategy is defi ned as 

 = -{ : ( ) 0},inf t X
d d

=p p tt :  (2.2)

because of diffusion and because the surplus process is spectrally positive.
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Our objective is to determine the optimal control strategy pd that maxim-
ises the expected present value of dividends until ruin, which we defi ne to be 

 (=
d

E( ) ) .J x e d td
x t

d

dt
p

--p
p; : D

0-
j9 C#  (2.3)

Here the upper limit of the integral is tpd
  –  to refl ect the fact that in general, 

X(t)  !  X(t –) due to the possibility of a jump in the compound Poisson pro-
cess. Given initial capital x  >  0, we consider the expected present value of 
dividends under the optimal strategy, denoted by

 d =( (supV J d
d d!p P

p px x*) : ; );  (2.4)

where the set of admissible strategies is Pd   :=  {pd  =  (Dpd
, Epd

)  !  P}. We will 
identify the form of the value function V(x; pd

*) and the optimal strategy pd
* . 

2.1. Hamilton-Jacobi-Bellman (HJB) equation

Suppose that for a given level of initial surplus x  $  0, the value function under 
pd

*  is denoted by G (x). According to the Hamilton-Jacobi-Bellman (HJB) 
equation for this problem, if  the value function G is twice continuously differ-
entiable then we expect it to satisfy 

 d (x(A( ), ) 0 with (0) 0,max G x G- = =) G�j -" ,  (2.5)

where the operator A is the infi nitesimal generator

 (x l f y) - ( )+(x x
3

� ) ( .f2
1

0
= +s l2A ( ( )f f x dP� )y)x c- f #  (2.6)

The HJB (2.5) can be obtained from the following heuristic argument. Con-
sider the small time interval (0, dt). Suppose that on this time interval, we 
follow an arbitrary strategy whereby surplus is released at a rate l  $  0 to cover 
dividend distribution plus transaction costs, and thereafter, an optimal strategy 
is applied. By conditioning on the number of jumps that occur, the size of the 
jump if  it does occur, and the value of W(dt), we see that the expected present 
value of dividends until ruin under this strategy is (by Taylor expansions)

 (2.7)

G(x

(

)

(

(

( ( (

dt dt

dt

d l

(

G
3

3

E

E

�

( ) ( ) ( ( ) ))

( ) )) ) ( )

( ) ( )

) ( ( ) ) )} ( ) .

l dt l dt W

dt G x y l dt W dP y o dt

G x l G x

G x cG G x x y dP y dt o dt

1

2
1

0

2

0

+ - - + +

+ + - + + +

= + -

+ - - + + + +

l

s l d l�

1

j

s

s

)

x c

c

-dtj

�

7

7

6

A

A

@

$

#

0#

#

 

  
(2.8)
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 617

Since G (x) is the optimal value, its value must be greater than or equal to the 
value of equation (2.8). Thus, it follows that the expression in braces must have 
maximal value of zero, suggesting 

 d( )x (x( ) ) .max l G 0+ - =
l 0$

A�G-j6 @# -  (2.9)

Note that if  G�(x)  <  j we can make the fi rst part of (2.9) unbounded by letting 
l tend to infi nity, so we must restrict the fi rst derivative to 

 (x) $ .G j�  (2.10)

Conversely, when G�(x)  $  j, the fi rst part of (2.9) is less than or equal to zero 
for any l  $  0. Now since (2.9) holds when l  =  0, we must have 

 d (( ) ) 0.G x #-A  (2.11)

Since we allowed the initial surplus x  $  0 to be arbitrary, (2.10) and (2.11) 
must hold for any x  $  0. Thus, we can rewrite (2.9) by splitting it into two 
parts, as given in the HJB equation (2.5). The boundary condition G(0)  =  0 
holds because if  the initial surplus is zero, then by defi nition the fi rm is imme-
diately ruined.

2.2. Construction of a candidate solution

We conjecture that the barrier strategy is optimal. Let 

 d--
(x tE( )G x e dt

b
b

d

d
=

t
) D

0
j

-
9 C#  (2.12)

denote the expected present value of the dividends distributed until ruin using 
a barrier strategy with level bd, given an initial surplus of x. It follows from the 
results in Avanzi a nd Gerber (2008) that G(x) satisfi es the integro-differential 
equation (IDE)

G (d d( ( ( #

3
) ) ( ) ( ) ) ) 0, 0 ,G x x G x x y y x b2

1 2

0
#- + + + =s l dP- lcG� � #

 (2.13)

leading to 

 
dd
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( ) [ , ] and
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G x b

b G b b x b
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d d d 3

!

!j - +

x b

x
:

; ;

;
*  (2.14)

where we defi ne 

 d =( d
r) ( ) , for 0,G x e xC

k

n
x

k
0

1
k

$

=

+

; b b: /  (2.15)
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and where the rk’s are the roots of the characteristic equation 

 wid( ( ) 0.f c2
1

i

n

i

i2 2

1
= - - + +

-
=

=

z z z l b z
b

) ls /  (2.16)

It is easy to show that the rk’s satisfy the following ‘interweaving root’ condition: 

 0 .r r r r< < < < < < <n n n0 1 1 1f +b b  (2.17)

The optimal barrier b*
d  and the associated n  +  2 coeffi cients Ck(b*

d  ) are the 
solution of the following n  +  3 equations:

 d d(* *( ) ) 0,G b C bk
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) e2� k/  (2.20)

 d( d
k

* ) , for , , , .r C b e n1 2
i k

i k

k

n
r

0

1
fj

-
=

=

+

b
b *r bk i =/  (2.21)

Conditions (2.18) and (2.20) are equivalent to Conditions (3.6) and (5.3) of Avanzi 
a nd Gerber (2008), respectively, and Conditions (2.19) and (2.21) are analogous 
to Conditions (3.7) and (3.5) of Avanzi and Gerber (2008), respectively, with the 
incorporation of the transaction costs j. The latter are derived using a similar 
approach. Note that Conditions (2.18), (2.19) and (2.21) hold for any level of 
barrier bd, whereas (2.20) is the condition for the optimal barrier b*

d  only.

Remark 2.1. When the coeffi cients wi in (1.2) are allowed to be negative, that
is, when jumps are distributed according to a combination of exponentials, 
 Condition (2.17) – crucial for optimality – does not necessarily hold any more. 
Nevertheless, closed form expressions for the value functions, throughout the 
paper, hold as long as all rk are real and distinct.

2.3. Explicit form of the value function

In this section, we focus on the optimal strategy b*
d  and fi rst solve equations 

(2.19)-(2.21) to get a closed form representation for the Ck(b*
d )’s. We then show 

that (2.18) leads to a unique optimal barrier b*
d   >  0, and that this one exists if  

and only if  the drift of the process {U(t)}, 

 = E ( )t il( 1) , 0U U c t
ii

n

1
$+ - =

=

m b ,t
w

-: 7 A /  (2.22)
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 619

is strictly positive. If  m  #  0, the optimal barrier is null; this is discussed in Sec-
tion 2.6.

2.3.1. Determining the Ck(b*
d ) coeffi cients

We start by defi ning the rational function Q:

 dk
d

=(
(kz

*

)
)

.Q r
r C b e

k

r

k

n

0

1

-
=

+

z

*bk2

: /  (2.23)

The objective in this section is to fi nd an equivalent representation of Q, and 
to use the fact that 

 d(k )r b d- *( ) ( ) for 1,2, ,lim r C e k
r k k

r b

k
f= =

"z
z

*

Q k2z n (2.24)

to determine the Ck(b*
d ) coeffi cients. We observe that Q satisfi es the following 

properties:

(P1) By factorising the denominator of (2.23), we see that Q is a rational func-
tion with the denominator being a polynomial of  degree n  +  2. The 
numerator is a polynomial of degree n since the coeffi cient of zn + 1 is zero 
due to (2.20).

(P2) Its poles are r0,  r1,  r2,  …,  rn,  rn  + 1;

(P3) Q(0)  =  – j due to (2.19);

(P4) Q(bi)  =  0 for i  =  1, 2, …,  n, by factorising the difference between (2.21) 
and (2.19).

The four points (P1)-(P4) uniquely determine Q. (P1) and (P2) give us the form 
of the denominator, and these can be combined with (P3) and (P4) to determine 
the form of the numerator. Hence, we can write 
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Applying (2.24) we fi nd 
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94838_Astin41-2_12_Avanzi.indd   61994838_Astin41-2_12_Avanzi.indd   619 2/12/11   08:342/12/11   08:34

https://doi.org/10.2143/AST.41.2.2136990 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136990


620 B. AVANZI, J. SHEN AND B. WONG

Because of (2.17), for all b*
d   $  0,

 d d
d

( (* *
*b "3

) 0 andlimC b C b<0 0 3= -, ) ,  (2.27)

 d d
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( (* *
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) 0, 0, 1,2, , 1.limC b C b k>k
b

k f= =
"3

) +n  (2.28)

As a result, (2.15) – with the optimal barrier b*
d , can now be explicitly written 

as 
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=

+

=

+

=
b

b
*

k
k: % %/  (2.29)

where b*
d  is determined by condition (2.18), which can now be rewritten as 

 j
j

j

d

i

i

j k!

.r
e

r r
r r

0
k

r b

k

n

kj

n
k

i

n

0

1

0

1

1
- -

-
=

-

=

+

=

+

=
b

b*
k

% %/  (2.30)

Substituting (2.14), (2.19) and (2.20) into the IDE (2.13) with x  =  b*
d  yields 

 d db( ;* *)G b
j

= d
m

 (2.31)

which is the present value of a perpetuity of jm using force of interest d.

Remark 2.2. From (2.29) we can see that the inclusion of proportional transac-
tion costs on the dividends through j simply scales the size of the value function. 
A heuristic argument for this property is as follows: suppose that there are no 
transaction costs and the optimal barrier is b*

d . Then introduce proportional 
transaction costs on dividends. The introduction of the costs does not affect the 
surplus process, since whenever dividends are paid out, the same amount is 
removed from the surplus, but the investors simply receive less dividends. Thus, it 
is still optimal to use the same barrier b*

d . However, since only j of each dollar 
is distributed as dividends, the value function is scaled by j.

In light of this remark, we note that equation (2.31) is an updated version of 
the analogous formulas from Gerber (1972), Avanzi et al. (2007) and Avanzi and 
Gerber (2008), who found that in the absence of transaction costs on dividends, 

 d d( ;b* *G b = d
m

)

in the Brownian risk model, dual model and dual model with diffusion, respectively. 
Note that it can be shown that m,  d,  the rk and the bi satisfy the following elegant 
relationship,
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1

r
1 1
kk

n

ii

n

0

1
=

=

+

=
d
m

b .-/ /  (2.32)

which does not seem to have any particular interpretation. It is remarkable that 
the weights wi do not appear on the right-hand side.

Remark 2.3. The approach of defi ning a rational function and fi nding an equiva-
lent representation to determine the form of the Ck’s was used in Section 6 of 
Dufresne and Gerber (1991) and Section 4 of Albrecher et al. (2010) to solve 
problems on ruin probabilities and the discounted penalty function respectively.

Remark 2.4. It should be noted that the Ck(b*
d ) derived here is a general form 

which applies to other problems in the dual model with diffusion, provided that 
the gains distribution is a mixture of exponentials, G�(b*

d  – ; b*
d )  =  j and G�(b*

d   – ; 
b*

d )  =  0. This fact will be used in Section 3 (with capital injections), which uses 
a different boundary condition.

2.3.2. Existence and uniqueness of b*
d

Let us fi rst defi ne 

 d d d= (* * *( ,b C b b 0k
k

n

0

1
$x

=

+

) : ),/  (2.33)

such that (2.18) is equivalent to 

 d( *) 0.b =x  (2.34)

The problem is now to show that x(b*
d ) has a unique root. We fi rst note that 

 d d( (* *) ) 0,b r C b <
k

n

k k
0

1
= -

=

+

x� /  (2.35)

because rk and Ck(b*
d ) have the same sign for all k; see (2.17), (2.27) and (2.28). 

Hence, x is a decreasing function in b*
d . Since 

 d d(b* *(0) ; )G b= =x d
jm

 (2.36)

and 
 3

d
d( *

*
lim b

b
= -

"3
x )  (2.37)

because of (2.27), (2.28) and the continuity of x, it follows that (2.30) has a 
unique positive solution that exists if  and only if  m  >  0. This also shows that 
the optimal barrier b*

d  is independent of the initial surplus x.
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2.4. Verifi cation of all the conditions of the HJB equation

By construction, our candidate solution satisfi es G�(x)  =  j for x  !  [b*
d ,  3),  

(A  –  d)G(x)  =  0 for x  !  [0, b*
d ] and the boundary condition G(0)  =  0. Further-

more, 

G (( ) )x y dP y+

d d d

d d d

d d

d (x

b

( ( (

(

(

x x

b b

b

d

* * *

* * *

* *

3

3

( ) ) ) ) ( ) )

( ) ( ) ; )

( ) ; ) ( )

( , .

G G x c G

c G b

x y G b dP y

b x b

2
1

0

0< >

2

0

0

j j

j

j

- = - - + +

= - - + - +

+ + - +

= - -

l d l

d

l

)

l

�G

x

A

x

s �

6

6

@

@

#

#
 (2.38)

where we have used (2.31) to go from the second to the last line. Hence, it only 
remains to show that 

 d(x *) , 0 .x b$ # #jG�  (2.39)

Because G�(b*
d  –;  b*

d )  =  0 and

 (x d d d(k
* * *� ; ) ) 0, 0 ,G b r C b e x b>

k

n

k
r x

0

1
# #=

=

+
k3� /  (2.40)

G�(x) is negative and G�(x) decreasing when 0  #  x  #  b*
d . It follows then from 

(2.19) that (2.39) holds.

2.5. Verifi cation lemma

Lemma 2.1. If non-negative function G  !  C1(R+) is also twice continuously dif-
ferentiable except at countably many points and satisfi es

1. (A  –  d) G(x)  #  0,   x  $  0,

2. G�(x)  #  0,  x  $  0,

3. G�(x)  $  j,  x  $  0,

then

 dx( ( ; ), 0.G x V x$ $p*)  (2.41)

Moreover, if there exists a point b*
d   !  R+  such that G  !  C1(R+)  +  C2(R+  \  {b*

d }) 
with

4. (A  –  d) G(x)  =  0,  G�(x)  $  j for x  !  [0, b*
d ],

5. (A  –  d) G(x)  <  0,  G(x)  =  j(x  –  b*
d )  +  G (b*

d ) for x  !  (b*
d , 3),
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 623

in which the integro-differential operator A is defi ned by (2.6), then 

 x d(( ; ), , ,G x V x andR!= +p*)  (2.42)

 d(t b
X-

d
p (d t

d
+

*
* 1) ( ( ) ) ), ,d X t b L t 0{ ( ) }X t b>d d d d

$= -p p p*-D  (2.43)

is optimal, where 

 b b
X X

td d

d
( (t dX (

* *

) ), 0,L L ts{ }s bd d d
$= pp p = *)1

0
#  (2.44)

is the local time of the process X at the barrier b*
d , representing dividends due to 

oscillations of the Brownian Motion when the surplus is at the barrier, and 

 d d
-p -

* 1( ( ) )b { ( ) }X b>d d
-

p
*X tt  (2.45)

represents the dividend distributed at time t if the surplus process jumps above 
the barrier.

A proof is discussed in Appendix A.

2.6. The case m  ≤  0

In the previous sections, we found that there is a unique positive barrier b*
d 

that maximises the value function G(x) if  and only if  m  >  0. We now consider 
the case when m  #  0 and will show that b*

d   =  0 if  and only if  m  #  0. This means 
that if  the business is not profi table, the optimal strategy is to remove any 
surplus that is available as a fi nal dividend and stop the business. This is not 
necessarily trivial when j  <  1.

2.6.1. Case 1: b*
d   =  0 & m  #  0

Suppose that b*
d   =  0. This means that the value function G(x) is maximised 

when the barrier is at zero, and it is optimal to immediately release the entire 
surplus as dividends. In this case, it follows that 

 (x j) .G x=  (2.46)

However, we know from the HJB equation (2.5) that any optimal strategy 
should satisfy (A  –  d) G(x)  #  0 for all x  $  0. Upon substitution with (2.46), 
this condition reduces to m  #  0. Thus, we see that if  the optimal barrier is 
b*

d   =  0, then the drift m should satisfy m  #  0. Going backwards, it follows that 
if  m  #  0, then G(x)  =  jx satisfi es the HJB equation (2.5).
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2.6.2. Case 2: m  #  0 & b*
d   =  0

Consider an alternative strategy, say pd, whereby the surplus x is immediately 
paid as a dividend, so that ruin occurs immediately. The value under this 
strategy is J(x; pd)  =  jx. However, this strategy must have value less than the 
optimal strategy, so it follows that J(x; pd)  =  jx  #  V(x; pd

* ).
Moreover, we showed that the function G(x)  =  jx satisfi es the HJB equa-

tion in the case when m  #  0. Thus, it follows from Lemma 2.1 that G(x)  = 
jx  $  V(x; pd

* ).
Based on these two arguments, it follows that V(x; pd

* )  =  jx, and so, that 
the optimal barrier is b*

d   =  0.

3. DIVIDEND MAXIMISATION WITH FORCED CAPITAL INJECTIONS

TO PREVENT RUIN

In this section, as a stepping stone in solving the general optimal control problem, 
we fi rst assume that the set of admissible control strategies pe is determined 
such that the surplus Xpe

 is never ruined. This can be achieved by injecting extra 
capital in order to keep the surplus above zero. The surplus process becomes

 ( ( ( (t t t t) ) ) ), 0,X U D E t
e e e

$= - +p p p  (3.1)

where the set of admissible strategies is 

 -= { ( , ) such that ( ) 0 for all 0}.E X te e e e e
! $ $P P= p p pD: p t  (3.2)

In this model, ruin does not occur. The objective function for this problem is

 ( (= d ds d ss s- -
t t

E( ; ) ) .limsupJ x e d e Ee
x

t e e
-

"3
p pk) : Dp

0 0- -
ja k; E# #  (3.3)

Given initial surplus x  >  0, we consider the expected present value of dividends 
distributed less the total costs of equity issuance under the optimal strategy, 
denoted by

 .x =e ;x( ; ) ( )supV e
e e!p P

p p* J:  (3.4)

We will identify the form of  the value function V(x ; pe*) and the optimal 
strategy pe*.

3.1. HJB equation

Suppose that for a given level of initial surplus x  $  0, the value function under 
the optimal joint dividend and capital injection strategy is denoted by H(x). 
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 625

According to the Hamilton-Jacobi-Bellman (HJB) equation for this problem, 
if  the value function H is twice continuously differentiable then we expect it to 
satisfy 

    ( ( (x xxd( ) ), ), ) 0 (0) .max j- - = =k kHA - � withH�H �H" ,  (3.5)

Using the same techniques as described in Section 2.1 and allowing for capital 
injection mkdt, the analogous result to (2.8) is

     d(x ( (x x (d) ) ) ( ) ( ) .H l m H x dt o tA+ + - + - +k )� �H Hj -7 7A A$ .  (3.6)

Since H(x) is the optimal value, it follows that the expression in braces must 
have maximal value of zero, suggesting

 ( (x x k) ) ( ( ) 0.max l m x
0, 0l m

+ - + - =
$

dA
$

)H� �H Hj -7 7A A$ .  (3.7)

We restrict then the fi rst derivative of the value function such that 

 (x)# #j k,H�  (3.8)

otherwise we can make the fi rst or second part of (3.7) unbounded, by letting l 
or m tend to infi nity respectively. Now since (3.7) holds for l  =  m  =  0, we require 

 ) (xd( ) 0A #- .H  (3.9)

Since we allowed the initial surplus x  $  0 to be arbitrary, equations (3.8) and 
(3.9) must hold for any x  $  0, and we can rewrite (3.7) by splitting it into three 
parts, leading to (3.5).

The boundary condition can be explained by the following heuristic argu-
ment. Consider two sample paths of the surplus process: one starting at some 
small e  >  0, and another starting at zero. If  the latter path moves down to – e, 
and the former path moves parallel to this path, we must have 

 (0) (= .H -e eH ) k  (3.10)

Subtracting H(0) from both sides, dividing by e and letting e tend to zero 
shows that H�(0)  =  k. This is also supported by the following discussion.

Consider the representation of the expected present value of dividends less 
capital injections under the arbitrary strategy given in (3.6). The optimal value 
H(x) is obtained when the value of  the expression in braces is maximised.
We now consider the value of  m that will maximise this expression. Since 
(A  –  d) H(x) and l [j  –  H�(x)] are independent of m, we wish to consider 

 (x k) .max m
0m

-
$

�H7 A$ .  (3.11)
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626 B. AVANZI, J. SHEN AND B. WONG

It is clear that the value of m that maximises this expression will depend on 
the value of H�(x). However, because our objective function (3.3) is penalised 
by capital injections, we will minimise m whenever possible. Together with 
j  #  H�(x)  #  k it follows that at any time t  >  0, the appropriate value of m is 
determined by H�(Xpe

(t)) in the following way (with slight abuse of notation):

 (t
then [ , ] .m 0 3!= k

If ( ))X
ep

then m 0< =k ;
�H *  (3.12)

Since we wish to minimise m whenever possible (because of transaction costs), 
then ideally we would like to set m  =  0 at all times. However, in the problem 
formulation outlined at the start of  Section 3, we are required to inject cap-
ital to prevent ruin. With this being the case, the only time when it is possibly 
optimal to inject capital is when H�(Xpe(t))  =  k, and this should only happen 
when the surplus is null. Intuitively, this is because discounting will unneces-
sarily penalise capital injections that are made before they are absolutely
necessary, and these can be absolutely necessary only when the surplus is null 
(to avoid imminent ruin).

3.2. Construction of a candidate solution

We conjecture that the optimal dividend strategy is a barrier strategy be
* . 

Further more, due to the fact that our objective function (3.3) is penalised by 
capital injections, and these capital injections are discounted for time, we con-
jecture that the optimal capital injection strategy is to issue the minimum 
amount of capital, and to delay the injection of capital for as long as possible. 
We will then consider a strategy that only injects capital when the surplus 
process {Xpe(t)} hits the level of zero.

We construct our candidate solution to satisfy j  –  H�(x)  =  0 above the bar-
rier, and (A  –  d) H(x)  =  0 below the barrier, which yields 

 
e e

e e e e

(
(

x =

* *

* * * *b 3
)

( [ , ] and

( ) ; ) ( , ),
H

H x x b

H b b x b

0!

!j - +

;

x
:

;)b
*  (3.13)

where we defi ne

 e e( (=* *x; ) ) , 0H b C b e xk
k

n
r x

0

1
$

=

+

.k: /  (3.14)

Here, the rk’s remain the solutions of (2.16). The Ck(be
*)’s and the optimal barrier 

be
*  have to satisfy the following conditions:

 (0; e e
* *� ) ( )H b r C b

k

n

k
0

1
= =

=

+

kk/  (3.15)
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 ;-( be e e)* * * e(b
*

)H r b e
k

n

k
r b

0

1
k j= =

=

+

� Ck/  (3.16)

 ;- ee e k
* * * e) (b

*

( ) 0H r C b e
k

n

k
r b

0

1
= =

=

+

b k2� /  (3.17)

 e
* e(

i

k i *

) for 1,2, ,r
r

C b e i
kk

n

k
r b

0

1
fj

-
= =

=

+ b k

b , .n/  (3.18)

Condition (3.15) is the boundary condition of the HJB equation. Conditions 
(3.16)-(3.18) are obtained by analogous reasoning to Section 2.3.

As (3.16)-(3.18) are identical to (2.19)-(2.21), with be
*  substituted for b*

d , it 
follows that 

 e
j

j
( *

r e-

i

i
*

j k!

)C b r
e

r r
r r

k
k

b

kj

n
k

i

n

0

1

1
j= - -

-

=

+

=
b

bk

% %  (3.19)

for k  =  0,  1,  …,  n  +  1 and all be
*  >  0. The optimal barrier be

*  is then determined 
by (3.15), as explained in the following section. We have then

 e
j

j
( =*

r-

i

i
*e

j k!

, 0,H r
e

r r
r r

e x
k

b

k

n

kj

n
k

i

n
r x

0

1

0

1

1
$j- -

-

=

+

=

+

=
b

bk

x k; ) :b % %/  (3.20)

where be
*  is determined by (3.15), which can be rewritten as

 
j

jr- *e

i

i

j k!

.e r r
r rb

k

n

kj

n
k

i

n

0

1

0

1

1
- -

-
=

=

+

=

+

=
b

b
j
kk % %/  (3.21)

Remark 3.1. Note that in this problem H(0; be
*) is no longer zero because equity 

is issued to prevent ruin. Given the initial surplus of zero, if the present value of the 
total costs of injecting future capital outweighs the present value of the dividends 
distributed in the future then H(0; be

* ) will be negative. Since b*
d  is defi ned to

be the unique positive solution to the equation G(0; b*
d )  =  0, and G(·; b*

d ) and 
H(·; be

* ) have the same form, it follows that H(0;  be
*)  =  0 if and only if b*

d   =  be
* .

3.3. The optimal dividend barrier be
*

Now that we have determined the form of the Ck(be
* ), we show that there is a 

unique value of  be
*  that solves (3.15) in conjunction with (3.19). Using the 

function x as defi ned in (2.33), we defi ne the related function 

 e e e( (=1
* * *() ) ) .b b r C bk

k

n

k
0

1
=

=

+

x : �-x /  (3.22)
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628 B. AVANZI, J. SHEN AND B. WONG

We want to show that there is a unique solution to (3.15), which is equivalent to

 e
*( )b1 =x k. (3.23)

We fi rst note that 

 ;-e e
* *b� (0) ( ) 0H b1 = =�x  (3.24)

because of (3.17), and that

 e e( k1
* *() )b r C 0>

k

n

k
0

1
=

=

+

b ,3�x /  (3.25)

because rk and Ck(·) have the same sign for all k; see (2.17), (2.27) and (2.28). 
Hence, x1 is an (increasingly) increasing function in be

* . Since

 ;-( )0 e e
* *b1 ( )b j= =x H�  (3.26)

and since 

 e
e

*
*

(1 )lim b
b

3=
"3

x  (3.27)

it follows from (3.8) that there exists a unique non-negative solution to (3.15) 
that is independent of the initial surplus x. Furthermore, this holds for any m 
(positive, null or negative).

Remark 3.2. Note that be
*  =  0 if and only if j  =  k  =  1, and that in this case the 

value function is H(x)  =  x  +  m/d. That is, if there are no proportional transaction 
costs on dividend distributions or capital injections, then the optimal strategy is 
to pay out all of the surplus as a dividend, and to offset all future surplus cash 
fl ows by dividends or capital injections (with present value m/d). As these are not 
penalised, there is no benefi t in holding any surplus.

Remark 3.3. Equation (3.21) shows that the optimal barrier be
*  is now dependent 

on j, which is not the case when only dividends are considered; see Remark 2.2. 
However, as the rk’s are independent of j and k, only the ratio of k to j matters.

3.4. Verifi cation of all the conditions of the HJB equation

By construction, our candidate solution satisfi es H�(x)  =  j for x  !  [be
* , 3) and 

(A  –  d) H(x)  =  0 for x  !  [0, be
* ]. Hence, it only remains to show that

 (3.28)

 

e

e

*

*(x

(

(

x

x

� ) , , andH x b0 <$ #j

�

( ) , ,

) , .

H x b

H x

0

0

>#

# $

- d

k

A )

 (3.29)

  (3.30)
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 629

The proof of (3.28) is similar to the one developed in Section 2.4.
Considering (3.13) with Conditions (3.15) and (3.16) implies that H�(x) 

goes from k to j as x goes from 0 to be
* , and then stays equal to j for x  $  be

* . 
Since k  $  j, in order to show that (3.29) and (3.30) hold, it suffi ces to show that 
H�(x) decreases monotonically over 0  #  x  <  be

* . This follows from H�(be
*)  =  0 

because of Condition (3.17) and from the observation that 

 e e .(x * *(k� ) ) 0, 0r C b e x b> <
k

n

k
r x

0

1
#=

=

+
3H k� /

Remark 3.4. The observation that H�(x)  >  0 for 0  #  x  #  be
*  allows us to deduce 

the concavity of the value function. An alternative proof of the concavity for 
general jump distributions is also provided in Appendix B. Unfortunately, this 
proof does not hold when ruin is allowed, hence the need to explicitly determine 
the sign of G�(x) in Sections 2 and 4.

3.5. Verifi cation lemma

We use the following verifi cation lemma to prove that in the case when ruin is 
not allowed, the optimal joint dividend and capital injection strategy is to 
distribute dividends according to a barrier strategy, and to inject capital only 
when the surplus reaches the level of zero. This verifi cation lemma extends the 
lemma from Section 2.5 by introducing capital injections.

Lemma 3.1. If function H  !  C1(R+) is also twice continuously differentiable except 
at countably many points and satisfi es

1. (A  –  d) H(x)  #  0, x  $  0,

2. H�(x)  #  0, x  $  0,

3. j  #  H�(x)  #  k, x  $  0,

then 

 (x x e() ; ), 0.H V x $p*$  (3.31)

Moreover, if there exists a point be
*   !  R+ such that H  !  C1(R+)  +  C2(R+  \ {be

*}) 
with

4. (A  –  d) H(x)  =  0,  H�(x)  $  j for x  !  [0,  be
* ],

5. (A  –  d) H(x)  <  0,  H(x)  =  j(x  –  be
*)  +  H(be

*) for x  !  (be
* , 3),

in which the integro-differential operator A is defi ned by (2.6), and

6. H�(0)  =  k,

then 

 e(x) ( ; ) ,H V x x R!= +p*  (3.32)
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and the joint strategy 

 e (tb
X

* e(t dp
*

e e
1) ( ( ) ) ), 0,d t b L t{ ( ) }X t b>e e e

$= - - +p pp - *D X  (3.33)

and 

 (tX
0 )(tp ) , 0,E L te e

$= p  (3.34)

is optimal, where 

 ((t sb b
X X

te e

e
d

* *

e e
1) ), 0,L L t{ ( ) }X s be

$=p p p= *
0
#  (3.35)

is the local time of the process X at the barrier be
*, representing dividends due to 

oscillations of the Brownian Motion when the surplus is at the barrier, 

 e
*

e
b )- *( 1( ) )X t { ( }X t b>e e

-p p -  (3.36)

represents the dividend paid at time t if the surplus process jumps above the bar-
rier, and 

 (X X(t s(s
0 0t

p p1) ), 0,L d t{ ) 0}X0e e e
$

p = L= #  (3.37)

represents capital injected when the surplus is at the level of zero.

A proof is discussed in Appendix A.

4. THE OPTIMAL JOINT DIVIDEND AND CAPITAL INJECTION STRATEGY

In this section we consider the general optimal control problem as defi ned
in Section 1.3. Since there are now no restrictions on capital injections, the 
surplus may become negative. The time of ruin for a given control strategy p 
is then defi ned as 

 = (p{ : ) 0 .inf t X <p }t-:t  (4.1)

Note the strict inequality, which is required because of the capital injections. 
In fact, it is possible that tp  =  3.

We consider the value function (1.8). Since V(x; p*) is the optimal strategy 
from the unrestricted set of admissible strategies P, it follows that we must have 

 d e( ( (x x x$; ) ; ), ; )},V V Vp p* * *p {max  (4.2)

where V(x; pd*) and V(x; pe*) are defi ned as in equations (2.4) and (3.4). In this 
section, we determine V(x; p*) and the optimal strategy p*.
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 631

4.1. HJB equation and verifi cation lemma

We fi rst use the following verifi cation lemma to prove the optimality of any 
concave solution of the HJB equation 

V V Vd (x (� � �( ) ), ( ), ) with { ( ), ( ) } .max maxV x x V0 0 0 0j- - - = - - =k kA" ,  
(4.3)

The boundary conditions are explained as follows. If  V�(0)  >  k then capital is 
injected up to a level a such that V�(a)  =  k. This does not make sense because 
if  capital is injected, ruin does not happen and then it is useless to keep the 
surplus at a higher level than 0. We restrict then V�(0)  #  k. However, if  
V�(0)  =  k then capital is injected when the surplus is null to prevent ruin. This 
can only make sense if  V(0)  $  0. Otherwise, the expected present value of 
capital injections would be higher than that of the dividends, and the company 
would then never choose to inject capital, which leads to a contradiction.

Lemma 4.1. If non-negative function V  !  C1(R+) is also twice continuously dif-
ferentiable except at countably many points and satisfi es

1. (A  –  d) V(x)  #  0, x  $  0,

2. V �(x)  #  0, x  $  0,

3. j  #  V�(x)  #  k, x  $  0,

then
 ((x V x) ; ), 0.V x$ $*p  (4.4)

A proof is discussed in Appendix A.

4.2. Characterisation of the optimal strategy

In this section we characterise the optimal strategy to maximise J(x; p) and 
show how it depends on the drift m and the relationship between the barriers 
b*

d  and be
*  determined in the previous sections.

Theorem 4.2. Let {Xp(t)}, p, p* and V(x;  p*) be as defi ned in Section 1, and let 
m be as in (2.22). Furthermore, pd*, b*

d , pe* and be
*  are the optimal strategies and 

associated optimal dividend barriers as developed in Sections 2 and 3, respectively. 
The optimal joint dividend and capital injection strategy p* is then characterised 
as follows:

     p* = pd*  if  m  #  0, (4.5)

     p* = pd*  if  m  > 0 and be
*   >  b*

d , (4.6)

     p* = pe*  if  m  > 0 and be
*   <  b*

d , and (4.7)

p* = pd* or pe*  if  m  > 0 and be
*   =  b*

d . (4.8)
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In the next four sections, we provide a proof of Theorem 4.2 by showing (4.5)-
(4.8) sequentially.

4.2.1. Proof of (4.5)

From Section 2.6 we see that V(x; pd*)  =  jx, and V(x; p*)  $  V(x; pd*) because 
of equation (4.2). If we can show that V(x; p*)  #  V(x; pd*), then we have proved 
that the optimal strategy is to use a barrier of zero. In order to do this, we 
need to verify that V(x; pd*) satisfi es the conditions of the HJB equation (4.3).

We have previously shown that 

 (xd d(xd( ) ; ), ; ) 0max V- =p p* * ,A V�-j$ .  (4.9)

so it remains to show that 

    -d d d(0; ),V V p(x k�{ ; ) } 0 with { (0; } 0.max max V- = - =p p k* * *)�  (4.10)

We have 

 (x d; ) , 0,V x# $=p j k*�  (4.11)

which also means that

 (0; dp ) 0.V #j- = -k k*�  (4.12)

In addition, 

 d(0; ) 0 0,V $j- = - =p*  (4.13)

which completes the proof.

4.2.2. Proof of (4.6)

From Lemma 2.1 we see that G(x)  =  V(x; pd*), and V(x; p*)  $  G(x) because 
of equation (4.2). If  we can show that V(x; p*)  #  G(x) for b*

d   #  be
* , then it 

follows that the optimal joint dividend and capital injection strategy is to use 
a barrier of b*

d  to distribute dividends, and to issue no capital.
In order to do this, we need to verify that G(x) satisfi es the conditions of 

the HJB equation (4.3). By construction, G(0)  =  0; see (2.18). It remains thus 
to show that 

 (x) , 0.x# $kG�  (4.14)

In Section 2.4, we showed that G�(x)  <  0 for x  !  [0, b*
d ), and since G is linear 

on [b*
d , 3), it follows that G(x) is concave. Hence, (4.14) holds if  and only if  

G�(0)  #  k, which follows from 
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   d d e er r* *( ( ( (1 1
* * �) ) (0) ) ) (0)b C b G b C bk

k

n

k k
k

n

k
0

1

0

1
#= = = = =

=

+

=

+

x x k�H/ /  (4.15)

because x1(z) is an increasing function; see Section 3.3.
Due to this result and Lemma 2.1, G(x) satisfi es the conditions of Lemma 4.1. 

Hence G(x)  $  V(x; p*) so that V(x; p*)  =  V(x; pd*), which completes the proof.

4.2.3. Proof of (4.7)

From Lemma 3.1 we see that H(x)  =  V(x; pe*) and V(x; p*)  $  H(x) due to 
equation (4.2), so it is suffi cient to show that V(x; p*)  #  H(x) if  be

*   #  b*
d .

As above, we wish to verify that H(x) satisfi es the boundary conditions in HJB 
equation (4.3), and proceed in a similar way. Due to Lemma 3.1, all conditions 
of the HJB equation (4.3) have been confi rmed except for H(0)  $  0. This fol-
lows from 

 d de e (* *( ( (0) ($
* *) ) ) ) (0) 0b C b b C b Gk

k

n

k
k

n

0

1

0

1
= = = = =

=

+

=

+

x xH/ /  (4.16)

because x(z) is a decreasing function; see Section 2.3.2.
Due to this result and Lemma 3.1, H(x) satisfi es the conditions of Lemma 4.1. 

Hence, H(x)  $  V(x; p*) so that V(x; p*)  =  V(x; pe*), which completes the proof.

4.2.4. Proof of (4.8)

Because of equation (4.2), V(x; p*)  $  max{G(x), H(x)}. Furthermore, it fol-
lows from the proofs of (4.6) and (4.7) that

 d e( ;x *(x *) ) , andG V b b,$ #*p  (4.17)

 de( *(x x *) ; ) .H V b b,$ #*p  (4.18)

But 

 d e
* ( (x x* ) )b b H G,= = ; (4.19)

see Remark 3.1. Hence, V(x; p*)  =  V(x; pd*)  =  V(x; pe*), which completes the 
proof. Note that this means that when the surplus hits 0, management will be 
indifferent between injecting capital to rescue the business and stopping the 
business.

Remark 4.1. There are two alternative representations to the conditions on be
*  and 

b*
d  in Theorem 4.2. From (4.15) and (4.16) it follows that 

     d d de e e(0;* * ** * *� �(0; ) (0; ) 0 (0; ),b b G b H b H b G b< > >, ,= =k)  (4.20)
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and vice versa. This is interpreted using similar arguments to the ones developed 
to explain the conditions in (4.3). If (4.20) holds, then capital injections are 
profi table for low levels of surplus (because G�(0)  >  k), which results in H(0)  >  0 
and p*  =  pe*. Conversely, if G�(0)  <  k then capital will never be injected and 
H(0)  <  0, so that p*  =  pd*.

Remark 4.2. Injecting capital can be considered as a real option (see, for instance, 
Dixit and Pindyck, 1994). This option has an aggregate positive value equal 
to H(x)  –  G(x) when (4.20) is satisfi ed.

Remark 4.3. Gerber and Shiu (2006) consider the merger of two companies when 
their surplus is a pure diffusion. There, merger is considered as profi table when

 ;x 1
* * *
m (W 2( ) ( ; ) ;W b W b x b1 2 1 2+ + ),x>x  (4.21)

where W(x; b) is the expected present value of dividends until ruin when a barrier 
strategy b is applied, where xi and bi* are the initial surplus and optimal barrier 
of company i (i  =  1, 2), respectively, and where b*

m is the optimal barrier of the 
merged surpluses. This work gives rise to two remarks.

Firstly, this approach can easily be extended to the dual model with diffusion 
as the sum of two (independent) compound Poisson processes with mixture of 
exponential jumps is compound Poisson with mixture of exponential jumps again, 
as dependence can still be modeled between the two diffusion components. 
Numerical calculations indicate that capital injections are more likely to be optimal 
for lower levels of dependence.

Secondly, merger can be seen as a ‘cheap’ way of injecting capital, as the 
aggregation of the surpluses is not penalised by (proportional) transaction costs. 
However, the level of the barrier b*

m is likely to change, resulting in an indetermi-
nate net profi t. On the other hand, if one of the companies is comparatively small 
then its impact on the optimal barrier will be negligible, and the merger will be more 
profi table as the surplus is lower (since W�(x; b)  >  1 and decreasing for x  <  b). 
Note also that in practice, a merger would attract transaction costs, but inclusion 
of these is trivial as they only need to be subtracted from x1  +  x2 on the left-hand 
side of (4.21).

5. NUMERICAL ILLUSTRATIONS

5.1. The choice between pd and pe

Let c  =  0.2,  d  =  0.08,  l  =  1,  s  =  5 and 

 ( ) 0.5 0.5p 3
2 2y y3

2 2= +- -y e ec ^m h

such that m  =  0.8  >  0.
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 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 635

We fi rst consider j  =  0.9 and k  =  1.1. In this case, be
*  =  7.8159  <  b*

d   =  9.1045, 
so it is optimal to inject capital and V(x; be

*)  >  V(x; b*
d ) for all x. If  we increase 

the transaction costs so j  =  0.8 and k  =  1.1, then it is no longer optimal to 
inject capital, since b*

d   =  9.1045  <  be
*  =  9.8606. In this case, V(x; b*

d )  >  V(x; be
*) 

for all x. These two cases are shown in Figure 1. Note that this also illustrates 
Remark 3.1.

5.2. The effect of the drift

In this example, we consider the same parameters as in Section 5.1, using 
j  =  0.9 and k  =  1.1, but vary the drift of the process by changing c in order to 
study its impact on the optimal strategy. Figure 2 shows two cases, when s  =  0.5 
and s  =  5, respectively.

FIGURE 1: Value functions when j  =  0.9 and k  =  1.1 on the left and when j  =  0.8 and
k  =  1.1 on the right.

FIGURE 2: Optimal dividend barriers according to p*
d, p*

e and p* when the drift changes, 
for s  =  0.5 and s  =  5.

The impact of  the drift on be
*  is monotone for all levels of  volatility. As the 

drift decreases (c increases), this barrier increases slowly to try to avoid capital 
injections.

In contrast, m has a mixed impact on the barrier b*
d . There, two confl icting 

forces are at work. On one hand, a lower drift increases risk which calls for a 
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higher barrier. On the other hand, when the drift gets closer to 0, it is better 
to distribute a greater proportion of the surplus that is available as a dividend 
because of bad prospects. In the limit m  =  0 (c  =  1), b*

d   =  0. In the case s  =  5, 
the second force dominates.

The optimal dividend barrier according to p*, min{be
* ,  b*

d }, is shown in 
grey. We observe that injecting capital is in general better when the drift is 
high. As risk increases, the optimal strategy p* switches from pe* to pd

* for 
higher levels of drift.

5.3. The effect of the force of interest

We now consider the effects of a change in the force of interest. Increasing the 
force of interest decreases the value of dividends, but also decreases the cost 
of  injecting capital. We plot the levels of  the barriers for the mixture from 
Section 5.1 with parameters k  =  1.1, j  =  0.9, l  =  1 and c  =  0.5. We look at the 
cases when the Brownian motion volatility is s  =  0.5 and s  =  5 as the force of 
interest d varies from 0 to 0.2.

FIGURE 3: Sensitivity of the Optimal Barriers to changes in the Force of Interest d,
for s  =  0.5 and s  =  5.

The two graphs show that the relationship between b*
d  and be

*  (as a function 
of d) depends on the volatility of the surplus. If  the volatility is ‘low’, then be

* 
seems to be always lower than b*

d  as d changes. However, if  the volatility is 
high, then as d increases, the decreased value of dividends is not suffi cient to 
justify further investments, particularly since the high volatility means that 
more capital will need to be injected, and the present value of the capital injec-
tions will far outweigh the present value of the dividends distributed.
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APPENDIX

A. Proofs of Lemmas 2.1, 3.1 and 4.1

This appendix details the proofs of  Lemma 4.1 and the second section of 
Lemma 3.1. Similar approaches to the ones taken here can be used to prove the 
fi rst sections of Lemmas 2.1 and 3.1, and the second section of 2.1, respectively.

We will fi rst prove Lemma 4.1. The fi rst sections of  Lemma 2.1 and
Lemma 3.1 can be proved by making the following modifi cations. For Lemma 2.1, 
set Et as the empty set, and replace V with G. For Lemma 3.1, replace V with 
H and replace t  /  tp with t.

Proof of Lemma 4.1. For a given strategy p  !  P, we defi ne the following sets:

 ( (sp p s{ : ( ) ) and ( ) )};s t D s D S s SDt !#= =- -  (A.1)

 ( (s S s{ : ( ) ) and ( ) )};s t E s E S sEt !#= =p p- -  (A.2)

 .D Dt tt =E , E^ h  (A.3)

That is, Dt is the set containing the jump times of the process {Dp(t)} due to 
dividend distributions that do not occur at the same time as the jumps in the 
compound Poisson process, Et is the set containing the jump times of  the 
process {Ep(t)} due to capital injections that do not occur at the same time as 
the jumps in the compound Poisson process, and (DE)t is the set containing 
the times when the dividend and/or capital injection processes jump, but the 
compound Poisson process does not jump. Also, let Z (c) denote the continuous 
part of arbitrary process Z, defi ned as: 

 ( (t t=) ) [ ( )] .Z Z Z s
s t

-
#

(s( )c
-)Z -: /  (A.4)

By the Itô formula for jump-diffusion processes, we have

   

Ve( (

(

( -

p

d d d- -

d

d

�(x s s

ss

s

-

- s

s s

( ( ))

) ( )) ( )) (

( ))

[ ( ( ) )) ( ( ))] .

e V X
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e V X s X V X s
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+
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/

/

!

#

d
p

t
p

t
p p

t
p

t
p p p

D

-

- -

-

-

p

p p

p

p

p

s

)

-t

)

t

s s

t /
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-
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( )c

�

/

# #

#
 (A.5)

The summation term in (A.5) represents changes due to jumps in the com-
pound Poisson process {S(t)}, the aggregate dividend process {Dp(t)} and the 
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capital injection process {Ep(t)}. Using a similar approach as in Bayraktar and 
Egami (2008, with dividends only), we split these jumps into three categories:

1. Jumps in either or both the dividend process and the capital injection pro-
cess, that do not occur at the same time as a jump in the compound Poisson 
process;

2. All jumps due to the compound Poisson process; and
3. The ‘extra’ jumps due to jumps in either or both the dividend process

and capital injection process that occur at the same time as a jump in the 
compound Poisson process.

Thus, we can write the summation as

      

y

s

s

s

s

d

d

d

d

-

-

-

-

(

(

( y

( ,

( ,

s

s

ds

s ds

e

3

3

[ ( ( ) )) ( ( ))]

[ ( )) ( ( ))]

[ ( ( ) ) ( ( ))] )

[ ( )) ( ( ) )] ) .

e V X s X V X s

V X V X s

e V X s V X s N dy
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( )
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00
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 (A.6)

Noting that Xp
(c), the continuous part of Xp, satisfi es 

 pp p( (t d t( )c( ) ) ( ) ),dX t cdt dW dD t E= - + - +s ( )c( )c  (A.7)

and expressing the fi rst integral in (A.6) with the ‘compensated’ jump measure, 
we can write (A.5) as:

d( ( (

( ( ( (
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Rewriting dDp
(c)(s) and dEp

(c)(s) using the decomposition as in (A.4) yields
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We note that V is a concave function due to point 2 of the verifi cation lemma, 
and in conjunction with point 3, we have j  #  V�(Xp(t))  #  k so that the stochastic 
integral with respect to the Brownian motion in (A.9) is a uniformly integrable 
martingale, because d  >  0 and V�(x) is bounded. In addition, (A  –  d)V(x)  #  0, 
(j  –  V�(Xp(s))  #  0 and (V�(Xp(s)  –  k)  #  0 due to points 1 and 3 of the verifi ca-
tion lemma, and combining V�(x)  #  0 from point 2 of the verifi cation lemma 
with the Mean Value Theorem, we have 
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After applying all of these results to (A.9), taking expectations and rearranging, 
it follows that
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Using the fact that V(0)  $  0 and conditioning on the value of tp, we can then 
write
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Finally, taking limits as t  "  3 in (A.10), we fi nd 
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Since the strategy p is arbitrary, it follows that 

 ( (x) ; ) .V V x$ *p  (A.12)
 ¡

We now proceed by proving the second section of  Lemma 3.1. A similar 
approach to the one taken here can be used to prove the second section of 
Lemma 2.1 by setting Et as the empty set, replacing H with G, replacing pe 
with pd, replacing be

* with b*
d  and replacing t with (t  /  tpd

 –) in the upper limits 
of the integrals.

Proof. We know that (A  –  d) H(Xpe(s))  /  0 because 0  #  Xpe(s)  #  be
* . After tak-

ing expectations on both sides of (A.9), replacing V with H, replacing t  /  tp with 
t and using points 4 and 5 of Lemma 3.1, we can write
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The last three terms are zero due to the defi nition of  the proposed joint 
dividend and equity strategy. By construction there are no jumps in the equity 
process. Hence, the only jumps in the process {Xpe(t)} occur due to jumps in 

94838_Astin41-2_12_Avanzi.indd   64094838_Astin41-2_12_Avanzi.indd   640 2/12/11   08:342/12/11   08:34

https://doi.org/10.2143/AST.41.2.2136990 Published online by Cambridge University Press

https://doi.org/10.2143/AST.41.2.2136990


 OPTIMAL DIVIDENDS AND CAPITAL INJECTIONS IN THE DUAL MODEL 641

the dividend and/or compound Poisson process. The summation term in (A.13) 
is summing over all points in time when there is a jump in the dividend process, 
but no jump in the compound Poisson process. This can only possibly occur 
at time zero, if  the initial surplus x is larger than the barrier be

* , so we have 
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from which it follows that the summation term is zero. The last two integral 
terms in (A.13) apply to the points in time when there is a jump in both the 
dividend process and the compound Poisson process. At these points, the surplus 
rises above the barrier, and the value function is linear, so we have
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so the sum of the last two integral terms is zero.
It follows that (A.13) simplifi es to

 
( (

( (

d

d
p

pp p

p

(t s s

s s

s

s

-

-

t

t

x x

x

E E

E

�

�

( )) ( ) ( )) )

( )) ) .

H H x e H X d

e H X dE

e e e

e e

= -

+

td- X
0

0

-

-

De9 9

9

C C

C

#

#
 (A.14)

Due to the defi nition of the proposed dividend strategy we can write
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Similarly, using point 6 of the verifi cation lemma,
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Substituting these into (A.14), rearranging and letting t  "  3, it follows that 
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B. Proof of Concavity of Value Function

The following proof is an adaptation to the dual model with diffusion of the 
proof of concavity provided in Kulenko and Schmidli (2008, in the Cramér-
Lundberg model). This proof holds for any jump distribution, albeit only when 
ruin is guaranteed not to occur.

Consider two surplus processes Y(t) and Z(t) of  type (1.1) with identical 
parameters but for their initial surpluses y  $  0 and z  $  0, respectively. Furthermore, 
consider the admissible strategies pe, y  =  (Dpe, y,  Epe, y ),  pe, z  =  (Dpe, z,  Epe, z )  !  Pe 
and let ay,  az  !  (0, 1) with ay  +  az  =  1. Defi ne
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Thus the strategy pw  =  (Dpe, w, Epe, w ) is admissible. In addition, we must have
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Let Pe, x denote the set of  admissible strategies for the initial capital x such 
that ruin is guaranteed not to occur. Taking the supremum over all admissible 
strategies we fi nd

 (B.5)
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Remark B.1. When ruin is allowed to occur (such as in Sections 2 and 4), the 
upper bounds in (B.4) become functions of t, tpe, w, tpe, y and tpe, z and the last 
inequality cannot be guaranteed any more.
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