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The importance of the Global Positioning System (GPS) and related electronic systems contin-
ues to increase in a range of environmental, engineering and navigation applications. However,
civilian GPS signals are vulnerable to Radio Frequency (RF) interference. Spoofing is an inten-
tional intervention that aims to force a GPS receiver to acquire and track invalid navigation
data. Analysis of spoofing and authentic signal patterns represents the differences as phase,
energy and imaginary components of the signal. In this paper, early-late phase, delta, and signal
level as the three main features are extracted from the correlation output of the tracking loop.
Using these features, spoofing detection can be performed by exploiting conventional machine
learning algorithms such as K-Nearest Neighbourhood (KNN) and naive Bayesian classifier. A
Neural Network (NN) as a learning machine is a modern computational method for collecting
the required knowledge and predicting the output values in complicated systems. This paper
presents a new approach for GPS spoofing detection based on multi-layer NN whose inputs are
indices of features. Simulation results on a software GPS receiver showed adequate detection
accuracy was obtained from NN with a short detection time.
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1. INTRODUCTION. The importance of applying security to telecommunication and
electronic systems has increased significantly, leading to various signal protection meth-
ods. Global Positioning System (GPS) signals should be protected against attacks and GPS
spoofing attacks attempt to deceive a receiver by broadcasting counterfeit signals. The
spoofing signals are usually slightly stronger than authentic signals. They may be generated
by a delay and re-emission of an authentic reserved GPS signal (Baziar et al., 2015).
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Figure 1. GPS receiver’s deviation from the original path.

Figure 2. Two different spoofing scenarios with the correlation region types in tracking loop: (a) synchronous
spoofing and (b) asynchronous spoofing.

Figure 1 illustrates an in-process spoofing attack. A spoofer can produce incorrect nav-
igation data for the GPS receiver by taking the receiver correlation peak (Jovanovic et al.,
2014). Figure 2 shows the tracking loop of the target receiver at four moments (T1-T4)
during a spoofing process. As can be seen, the spoofer transmits a fake signal to the target
receiver in either a synchronous (row A) or an asynchronous (row B) manner. Multipath
(MP) exists in all parts of the figure. Five correlation taps are investigated (very Early (VE),
Early (E), Prompt (P), Late (L) and very Late (VL)). In a locked condition, the “VE” tap
equals to “VL” and the “E” tap equals the “L” tap. In a synchronised attack, the spoofer is
aware of the phase centre of the receiver antenna. The forged signal remains hidden while
the authentic signal is under control. At first, the amplitude of the spoofing signal (SPOOF)
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is smaller than the original Line-of- Sight (LOS) signal (T1). After a while, the correlation
peak of SPOOF increases slowly (T2) and is finally adapted to the LOS peak (T3). After
that, the SPOOF starts to control the tracking loop (T4).

On the other hand, in asynchronous attacks, SPOOF is not aligned with LOS. SPOOF
power is originally higher than LOS (T1). The LOS peak approaches the SPOOF peak in
steps (T2). After interaction of two peaks (T2) the target receiver ignores the LOS (T3) and
SPOOF starts to direct the receiver (T4). It is worth noting that a synchronous attack is
difficult to implement and an asynchronous attack is a more realistic scenario (Bonebrake
and O’Neil, 2014; Humphreys et al., 2008).

A variety of solutions have recently been presented for detection and reduction of spoof-
ing attacks. One of the methods in this field considers the receiver Carrier-to-Noise (C/No)
ratio for identifying any spoofing by abnormal and sudden changes in the received signal
(Jahromi et al., 2012a). Under standard weather conditions, only ionosphere changes and
satellite movements may make gradual modifications in the received power (Jahromi et al.,
2012b).

Presence or absence of a spoofing attack can also be detected by statistical hypothesis
tests (Cavaleri et al., 2010). For example, the Signal Quality Monitor (SQM) method can
effectively detect abnormal sharp signal peaks and the overlapped peaks which approach
the authentic signal. However, they are not applicable in cases where a spoofing attack
does not affect the shape of the correlation peak. This situation happens when counterfeit
and authentic signals are almost aligned (Pini et al., 2001). To improve the performance
of the SQM method, several approaches, such as Vestigial Signal Defence (VSD), Vector
Based (VB), and a combined technique have been suggested.

VSD is a method based on the supervision of destruction of complex correlation. Per-
formance of this method depends on the weakness of authentic GPS signals during a
spoofing attack (Wesson et al., 2011). In the VB method, the output including five cor-
relator branches are exploited in a statistical hypothesis test to detect spoofing. If all the
correlator branches are less than the threshold, the signal will be authentic. Although this
method is efficient, it increases the complexity of hardware and processing. Two extra
correlation taps in the tracking loop and a feature extraction segment are needed. Addition-
ally, the use of the χ2-test and determining the threshold level have particular complexity
(Lashley and Bevly, 2009; Jahromi et al., 2012c).

Choosing the valid signal based on Signal to Noise Ratio (SNR) characteristics com-
bined with a decision rule is used to counter a spoofing attack. These approaches are simple
to implement, but not reliable. Some types of spoofing attack deceive a victim receiver
into reporting a counterfeit position without significantly changing the SNR of the signal,
such as attacks that distort the received correlation profile or change the pseudo-range of
some satellites. Since generating these attacks are not difficult, achieving a secure GPS
receiver based on only this approach is not possible (Nielsen et al., 2012). Some methods
constantly investigate compatibility of GPS signals by supplementary equipment including
Inertial Measurement Units (IMUs) and the positioning information gathered from wire-
less local network stations or mobile networks for spoofing threat detection. In this way,
auxiliary equipment positioning information can be used to separate the spoofing threat. If
different methods result in incompatible positions, spoofing is probable. The main problem
of this technique is the complexity of hardware and software of GPS receivers. It is obvi-
ous that extra equipment imposes more cost to the navigation process (Niedermeier et al.,
2012). IMU sensors need calibration before use (Petovello, 2003). Wireless positioning
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technology such as cellphone networks requires additional equipment. Besides, the men-
tioned technology does not offer a positioning solution with the same accuracy as a GPS
signal.

Ochin et al. (2012) detected spoofing by recognising statistical incompatibility while
analysing the specifications of satellite signals. The main problem with this technique is
the availability of authentic signal information before starting an attack. In fact, after a
spoofing attack, the specifications of the spoofing signal are placed in the allowed threshold
level. Adaptation and estimation of the input signal is an approach that extracts the GPS
signal characteristics. In this method, any unexpected or significant change represents an
occurrence of a spoofing attack (Humphreys et al., 2006).

Simple and intermediate spoofers transmit multiple spoofing signals from one antenna,
while the valid GPS signals from different satellites arrive from different directions (Nielsen
et al., 2010). This can be used to estimate the effect of Three-Dimensional (3D) spatial pro-
cessing of received signals based on the antenna array (Montgomery et al., 2009a; 2009b).
This technique is reliable but takes more computation, time and results in hardware com-
plexity. Moreover, this method increases the receiver dimensions, and may not be easy to
implement in common civil receivers.

It is apparent that a more accessible low cost and reliable technique with higher accuracy
is required. In recent years, artificial intelligence techniques have been used to control a
broad range of systems (Mosavi and Shafiee, 2016). This paper presents a new spoof recog-
nition method implemented in a GPS Software Defined Receiver (SDR). The proposed
algorithm utilises Neural Networks (NNs) to recognise abnormal distortions of correlation
for spoofing detection. As will be shown later, by applying NN, the signal index moves
beyond the allowed threshold level and spoofing is recognised when the attacker wants to
occupy the receiver’s correlation peak. The offered method needs no extra hardware and
does not increase the receiver size or production cost. In our approach, there is no necessity
for any authentic signal after training.

To better comprehend the proposed algorithm, initially it is required to explain collection
of the utilised data set for feature extraction and classification. This will be explained in the
next section. After that, GPS spoof signal pattern recognition and feature extraction are
discussed in Section 3. The required features for classifier algorithms are provided in this
step. Section 4 explains the proposed method. After a general description of the suggested
algorithm, two conventional approaches are studied. Finally, the detailed description of our
suggested technique is discussed. In Section 5 an evaluation with experimental results and
comparison with other methods are reported. Finally, Section 6 concludes the work.

2. GPS SIGNAL DATA COLLECTION. To test the proposed approach, delay spoofing
is generated. The original data collection process records authentic signals from GPS satel-
lites. These signals are reinforced and sampled in the 5·7 MHz rating at the front-end. After
down-conversion to an Intermediate Frequency (IF), filtering and Analogue-to-Digital
Conversion (ADC), the sampled time-discrete signal is fed into a SDR (Baziar et al., 2015).

Figure 3 shows the hardware equipment used for data collection. As can be seen, signals
received from the GPS antenna are combined with signals generated by a GPS simulator
after an appropriate delay. The resulting signal is applied to a front-end which prepares
the proper two-bit digital signal for the SDR. Then, the sampled spoofing signal enters
the acquisition and tracking sections of the SDR equipped with the proposed anti-spoofing
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Figure 3. GPS hardware used for data collection.

Figure 4. Scheme of delayed spoofing GPS.

algorithm. The following formula is the model of the GPS spoofing signal (Baziar et al.,
2015):

RC/A(t) = AA
C(t)CA

i (t)DA
i (t) sin(wL1t + ϕA

L1) + AD
C(t)CD

i (t)DD
i (t) sin(wL1(t − �tD) + ϕD

L1) (1)

where AC, Ci, and Di represent amplitude, Coarse/Acquisition (C/A) code and navigation
data, respectively. Also, indexes A, D, L1, and i denote the authentic signal, delayed signal,
L1 channel carrier and number of GPS satellites, respectively. wL1 is the angular frequency
of the L1 signal, ϕL1 is L1 signal phase and �tD is the delay of the counterfeit signal. To
hide a valid GPS signal at the receiver, the power of the spoofing signal must be increased.
The deception process generates a delayed signal as shown in Figure 4 (Lo and Enge,
2010). The yellow boxes show a schematic of the hardware in Figure 3.
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3. SPOOF SIGNAL PATTERN RECOGNITION AND FEATURE EXTRACTION.
Spoof signal pattern recognition is a methodology which exploits various categories of fea-
tures. When the spoof signal correlation peaks are close to the original signal correlation
peak, the extracted features of the spoof pattern are used to detect the signal type. As can
be seen in Figure 5, phase and amplitude matching does not occur in spoof and authentic
signals. Multipath signals are delayed with attenuated amplitude. M1 and M2 are the first
and second multipath components, respectively. Other components such as ionospheric
disturbances are not considered since their attenuation is high.

Equations (2) and (3) represent the signals shown in Figure 5. It is difficult for a spoof
attacker to adapt the spoofing signal carrier phase with an authentic signal. If the correlation
of the produced C/A signal is obtained by total input signal, a complex correlation function
x in time t and offset delay τ can be calculated (Wesson et al., 2011).

x(t, τ ) = xd(t, τ ) + xm(t, τ ) + xS(t, τ ) + η(t, τ ) (2)

x(t, τ ) = αd(t)R(τ − τd(t))e j θd(t) +
2∑

k=1

αm,k(t)R(τ − τm,k(t))e j θm,k(t)

+ (αS(t)R(τ − τd(t))e j θs(t))nspoofing + η(t, τ ) (3)

In Equation (2), xd indicates the LOS signal correlation function (original authentic GPS
signal). xm indicates multipath elements (M1 and M2 in Figure 5), xs is a spoofing signal
and η is additive white Gaussian noise. In Equation (3), R(τ ) shows complex correlation
and 0 ≤ α(t) ≤ l is an amplitude factor. τd(t) is the time delay in seconds. Phase θ (t) is
expressed in radians, which vary with time and nspoofing shows the number of the spoofer.

Ignoring η(t, τ ) and xm(t), the discussion that follows in the rest of this section aims at
exploring a way to recognise that the received signal only includes xd(t) or is a collection of
xd(t) and xs(t). In other words, it is assumed that for any input signal there are two classes:
spoofing (xd(t, τ ) + xS(t, τ )) and authentic xd(t, τ ).

The basis of classification in this study is the features of signal vectors. These features
are the phase, energy and correlation distribution function extracted from the output of the
correlator branch. The first step is to obtain a complex correlation function (I-Q vectors) by
data extraction from the output including three correlators. The selected features compose
classes with low correlation and high variance The delta criterion, the coefficient of early
and late phase criterion and the total levels of signal are considered as the features. The first
feature is the delta criterion (X1) calculated as (Wesson et al., 2011):

x1 = �τ (t) =
IE,τ (t) − IL,τ (t)

2Ip (t)
(4)

where IE,τ (t) and IL,τ (t) are the real part of the former and latter correlation indices, respec-
tively which are above and below the main branch Ip (t) in the phase element by τ seconds.
The second input is early and the late phase criterion and is calculated by (Wesson et al.,
2011):

x2 = ELPτ (t) = tan−1
(

QL,τ (t)
IL,τ (t)

− QE,τ (t)
IE,τ (t)

)
(5)
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Figure 5. GPS signal with spoofing and multipath signals (the spoofing attack complex correlation scope,
In-phase and Quadrature plots).

where QE,τ (t) and QL,τ (t) are early and late branches which are earlier and later than Ip (t) in
the square of the element in time t by τ seconds. Finally, the third input is the signal level:

x3 = SL =
1
T

∫
T
|x(t, τ )|2dτ (6)

This equation calculates the normalised value of correlation function integration, which
is the normalised energy of the process. After determining the input indices, the data
features are normalised in equations between −1 and 1.

xscale = xinput · S + O (7)

S =
xhi − xlow

xmax − xmin
, O =

xmax · xlow − xmin · xhi

xmax − xmin
(8)

where S and O are scale and deviation coefficients, respectively. Parameters of xmin and
xmax determine the minimum and maximum of the input data, and xhi and xlow are the range
of scale.

Figures 6 to 8 show the three inputs described above. It is obvious that a spoofing signal
has a different behaviour in comparison with an authentic signal in the early-late phase
since the spoofing signal has failed to keep the phase adaptation with the authentic signal
that requires a spoofer to be close enough to the receiver antenna phase centre. A spoofer
needs a signal level higher than an authentic signal to keep the GPS receiver correlation
peak as shown in Figure 5.

https://doi.org/10.1017/S0373463317000558 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463317000558


176 E. SHAFIEE AND OTHERS VOL. 71

Figure 6. Delta feature (X1) (the difference between early and late phase to In-phase ratio).

Figure 7. Early-late phase feature (X2) (normalised phase in radians).

4. GPS SPOOFING DETECTION METHODS. The classifiers to be explained here
are the K-Nearest Neighbourhood (KNN) classifier, the naive Bayesian classifier, and the
proposed recognition method based on NN.

4.1. K-Nearest Neighbourhood Classifier. KNN is a simple algorithm that stores all
available samples and classifies a new sample based on a similarity measure with a spoof
signal in the delta, early-late and signal level features. By measuring the distance between
the new sample and samples in memory, its class can be estimated (Kantardzic, 2003). A
case is classified by a majority vote of its neighbours, with the case being assigned to the
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Figure 8. Signal level feature (X3).

class most commonly among its K-nearest neighbours measured by a distance function
(Han et al., 2011).

Here, the samples are signal features and two classes exist; spoofing and authentic. The
first issue is introducing proper criteria to recognise the distance of signals. In this case, a
feature vector and Euclidean distance can be used. Each feature determines a dimension and
the sample vector of the signal is the value of each feature in every dimension. The problem
of this method is a slow training process. If this step is implemented without evolutionary
or mathematical algorithms (Hassanat et al., 2014), the complexity will be n2 where n is
the number of samples.

The feature space, training data and K value can influence classification accuracy. K is
constant and should be previously determined. A small K increases noise sensitivity and
with a large K , a neighbour may be included in more than one class (Bhatia and Vandana,
2010). Therefore, after deciding different values for K , we use the validation process.

One method employed in prediction applications is cross-validation which divides the
data into two groups, training and test data. The analysis is implemented on training
data, while validation is implemented on test data. To decrease discrepancies, validation
is usually repeated and the results are averaged.

K-fold is an efficient method for cross-validation (Ma et al., 2014). The KNN algorithm
can be implemented as:

1. The best positive integer K is specified along with a new sample (see Figure 9).
2. Select K entries in our database which are closest to the new sample (see Figure 10).
3. Find the most common classification of these entries.
4. This is the classification given to the new sample.
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Figure 9. Error value by increasing the number of neighbourhoods.

Figure 10. Prediction of new sample class based on delta and level features.

K-fold cross-validation is one way to achieve a better result than the “leave one out”
method. The data set is divided into K subsets, and the leave one out method is repeated K
times (Arlot and Celisse, 2010). Each time, one of the K subsets is used as the test set and
the other K-1 subsets form a training set. The loss value for two methods of K-fold and re-
substitution (resub) is shown in Figure 9 for different numbers of K . K-fold loss is the error
of K-fold cross-validation and resub-loss returns the classification loss by resubstituting.
As can be seen in Figure 9, the minimum loss obtained with K-fold is K = 15, but for
this K the resub-loss is high. Therefore, K = 13 is selected as a number for which both
methods have a low loss equal to 0·02. Because we test the algorithm with replaced data,
the resub-loss method is not as good as K-fold. After repeating the simulation several times,
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0·0467 is selected as the worst achieved loss. 0·0467 is considered to be a high error value.
Moreover, the main problem of the K-fold algorithm is high dependence on the training
data and the value of K . Unpredictable conditions are created for new features, decreasing
the robustness of the KNN algorithm.

4.2. Naive Bayesian Classifier. This classifier is based on Bayes’ theorem with inde-
pendent assumptions between the predictors. A naive Bayesian model is easy to build, with
no complicated iterative parameter estimation which makes it particularly useful for very
large data sets.

Bayesian-based methods are good for recognising the nature of a signal but are sensitive
to the initial parameters. Moreover, they need adequate training based on initial knowledge
about probability values. In the next stages, acquired data is utilised and signal proper-
ties are categorised based on their probability of occurrence. This information should be
approximated if it is not available. For this purpose, prior knowledge from collected data
helps in considering assumptions about probability distribution.

From a mathematical view, this method has a little risk. Bayes’ theorem provides a
way of calculating the posterior probability P(c|x) from P(c), P(x), and P(x|c). The naive
Bayes classifier assumes that the effect of the value of a predictor (x) on a given class (c)
is independent of the other predictor values. This assumption is called class conditional
independence (Burmana, 1989):

P(c|x) =
P(x|c)P(c)

P(x)
(9)

where P(c) is the prior probability of class, P(x) is the prior probability of the predictor,
P(c|x) is the posterior probability of the predictor (class c) given attribute (x) and P(x|c) is
the likelihood and the probability of the predictor given class.

Signal features are important for this classifier. The basis of its operation is that the prob-
ability of some features in a specific signal is higher. This method introduces an example
dataset which acts as a high probability spoofing signal. Three calculated features from the
previous section can be seen in Figure 11. These features are used in the Bayesian classifier
algorithm. x(x1, x2, x3) is a new sample vector feature of the GPS signal whose compo-
nents are classification features. New observation x belongs to class Cj if its probability
of belonging (posterior probability, P(Cj |x)) is greater than the probability of belonging to
other classes. This can be expressed as:

j = arg max
xk

3∏
k=1

P
(

xk| Cj
) · P

(
Cj

) ⇒ xk ∈ Cj (10)

To obtain positioning parameters, 37,000 samples with a 5·7 MHz sampling rate are
required. Classification performance can be analysed in a 2 × 2 confusion matrix includ-
ing True Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives
(TN). In our problem, positive means authentic signals and negative means spoofed sig-
nals. In this way, the (1,1) element, TP, is the number of correctly detected authentic
samples and the (2,2) element, TN, is the number of correctly detected spoofing samples.
The (1,2), FP, reports the number of falsely detected authentic signals Finally, the (2,1)
element, FN, reports falsely detected spoofing samples. It can be concluded that the first
and second rows are respectively related to authentic and spoofed signals and off-diagonal
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Figure 11. 3D plot of features (x1, x2, x3).

elements indicate the classification error. Therefore, as this matrix changes into a diagonal
matrix, better results are achieved in classification (Kantardzic, 2003). The training and test
confusion matrix can be expressed as Equations (11) and (12), respectively. As expected,
classification error in the training set is nearly zero.

CMTrain =
(

36999 1
4 36996

)
(11)

CMTest =
(

28860 8140
925 36075

)
(12)

Here, two sets of the 37,000 samples with known class were used. As can be seen, the
number of errors in the test phase is more than the number of errors in the training phase.

4.3. Design, Training and Validation of NN for Spoof Detection. Figure 12 shows the
tracking loop of the SDR where the proposed detection algorithm based on Multi-Layer-
Perceptron (MLP) NNs is implemented. The features are extracted from correlation outputs
after the tracking loop locks. The NN is trained off-line and then tested and ready to use in
the proposed algorithm. The investigation of the extracted features is done continuously.
Detection of a spoofing signal generates an alarm for the user. While the spoofing exists,
the process is repeated.

To utilise MLP NN, selection of the proper architecture and training algorithm is of great
importance (Visa et al., 2011). Suitable architecture means selecting the optimal number
of layers, the number of neurons in each layer and the proper activation function for each
neuron (Azami et al., 2013). Here, the optimal structure is selected through a trial-and-error
design process. Before applying NN for signal classification, the network should be trained.
The designed NN system for spoofing detection has three criteria as its input space. It is
trained with back propagation, Quasi-Newton, gradient descent and Levenberg Marqurardt
(LM).
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Figure 12. Proposed spoofing detection algorithm based on NN.

The results showed that LM has the best response in this application and is thus selected
as the learning algorithm. The input layer is mapped onto the space of the signal classes
or the output layer (Mosavi et al., 2003). Hidden layers process the received information
from the input layer and deliver it to the output layer. Each network is trained by receiving
authentic and spoofing data. Several conditions are considered to stop the learning process.
Time of learning or number of epochs pass a predetermined limit; gradient of error vari-
ations approaches to zero; error increases for several epochs. In this experience, network
learning is being performed and the weighting coefficients between the layers are modi-
fied so that the difference between the predicted and measured values is acceptable. In this
way, the learning process is completed by achieving this condition. The trained NN may be
exploited for spoofing detection by a new collection of genuine GPS data. The LM training
algorithm is a standard method for non-linear least squares problems with a rapid con-
vergence. The LM algorithm is a combination of Newton-Gauss and maximum gradient
descent and has the benefits of both mentioned algorithms. Therefore, the LM algorithm
is used in this paper. In comparison with other algorithms, it has increased convergence
speed, and lower computation and memory requirements (Mosavi, 2007). Figure 13 shows
a GPS receiver equipped with the anti-spoofing method. As can be seen, there is no change
in receiver structure.

The NN preparation procedure for spoofing detection unfolds as follows:
• First step

Compute complex correlation function of input signal in tracking loop (see Section 2).
• Second step

Three outputs of correlator branches are used by the feature extraction process. The
features, delta criterion, early-late phase criterion coefficient and total level of normalised
signal are extracted and used as the inputs of the MPL NN (see Section 3).
• Third step

The training algorithm is applied for classification according to the statistical properties
of classes. Interpretation of classes is to be performed in this step. Finally, the MLP NN
output analyser ascertains whether a spoofing attack is present or not.
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Figure 13. Vector-based GPS receiver structure with NN method.

5. ANALYSIS AND COMPARISION. To evaluate the designed NN algorithm, train-
ing and test data are sampled from two collections of spoofed and original data. The original
data is authentic and collected in urban areas, while spoofing data is generated in the GPS
laboratory of Iran University of Science and Technology as explained in Section 2.

After the NN is trained, GPS signals are tested to evaluate the classification method.
The performance of the implemented NN is described by a confusion matrix. As described
in Section 4.2, the classification is more effective if TP and TN elements are large. The
Confusion Matrix (CM ) for train and test data is observed as Equations (13) and (14),
respectively.

CMTrain =
(

29517 83
266 29344

)
(13)

CMTest =
(

7362 38
78 7322

)
(14)

From 37,000 samples, 80% are randomly selected for training and 20% for testing. It is
worth noting that usually in algorithms which need to be trained, 70% of data is separated
for training and 30% for testing (Mosavi, 2007). As can be seen, 38 samples of spoofed
signals are falsely selected as authentic signals and 78 authentic samples are falsely selected
as spoofed data.

To evaluate accuracy, a series of indices are used for showing classification results,
containing overall accuracy, Kappa coefficient, product accuracy, user precision, omission,
and commission error. The dependency matrix information is summarised in the Kappa
correlation coefficient. Overall accuracy is calculated by division of total signals which are
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Figure 14. NN performance during training.

classified correctly (TP) into the number of total signals. If the samples that are the true
members of a category (TN and TP), are placed in other categories (FP and FN) while
classifying the data, an omission error will happen. This error occurs when the vectors
which are indeed the members of other classes are selected as members of the related class.
This shows the process of changes of training parameters during training.

Figure 14 shows the variation of training error in each epoch. Until the eleventh epoch,
the Mean Square Error (MSE) error of the NN significantly decreases. Training steps con-
tinue until the MSE error reaches five periods. This is the algorithm stopping condition
selected by the trial-and-error process. Finally, if the slope is zero, the training can be
stopped. As can be seen, the error remains 1·1262 × 10−5 for several epochs. More train-
ing data and epochs can increase the accuracy of classification, but the training time and
over-fitting will probably be increased. After training (with correlation coefficient R value
equal to 0·994), the classification error is extracted and shown in Figure 15 for the test
data. Each circle represents a single sample. If the circles are on the line, the classification
is done well. Circular deviation of the line indicates an error in the classification of the
sample. Concentration of circles on 1 and 0 at the fit line demonstrates correct classifica-
tion of the authentic and spoof groups. Similar to the confusion matrix in condition of false
classification, the related circle inclines to other groups out of the fit line.

The SDR simulation was performed using MATLAB software in a computer with a
dual-core 2·8 GHz CPU and 4 GB RAM. As can be seen in Table 1, the MLP NN was simu-
lated by different architectures and eventually, an optimised structure (3-2-1) was chosen by
a trial-and-error process. In this network, detection time is shorter with approximately equal
error. The number of neurons in the first layer is equal to the number of three input indices.
The number of neurons in the hidden layer and output layer is two and one, respectively.
Thus, the network complexity is calculated using the following equation:

Order = i · j + j · r + j + r = 11 (15)

where i, j , and r are the number of neurons in the input, hidden, and output layers, respec-
tively. MSE in this table refers to the average of recognition mistakes by trained NN output.
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Figure 15. Classification error.

Table 1. The results of applying the proposed approach to detect spoofing based on NN.

MSE True detection probability (%)

Original Spoofed Original Spoofed Detection time
Algorithms data data data data [Second] Complexity

NN structure
(proposed)

3-5-1 0·0068 0·0067 99·3583 99·3729 2·895 26
3-3-1 0·0064 0·0057 99·3250 99·2375 0·631 16
3-2-1 0·0067 0·0058 99·2370 99·3247 0·468 11
2-3-1 0·0094 0·0089 98·7583 98·7583 0·298 13

Naive Bayesian 0·0430 0·0421 61·081 62·312 0·153 –
KNN 0·0331 0·0323 76·826 77·291 0·381 –

Low MSE indicates that the MLP NN usually selects the correct class of the sample. True
detection probability is the ratio of correctly detected samples to all received samples.
Detection time is the period that is needed for the algorithm to decide whether a spoofing
attack is present. Complexity is also the of order of the NN. As can be seen, NN is faster
than the other methods. Increasing the amount of training data always improves the clas-
sification accuracy, although NN achieves the results better than naive Bayesian and KNN
with a lower amount of training data (Mosavi, 2007).

Naive Bayesian and KNN depend on training samples and make large errors in unpre-
dictable conditions. For an effective performance, large memory is needed. The reason is
that for every spoof condition, some samples in training data are required. KNN has more
computational complexity than the naive Bayes method. Computing Euclidean distance
of the new sample with all samples increases the algorithm processing time. In summary,
these methods are faster than NNs but with lower performance. Therefore, we concentrate
on the quality of results rather than the execution time.
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Table 2. Comparing previous methods and proposed algorithm.

Total
Detection Analysed features Required equipment Advantages Limitations mark

Consistency check (Nielsen
et al., 2012)

Results navigation (5) Navigation equipment apart
from GPS (2)

High reliability (5) High cost and limited coverage
of other equipment (3)

15

Input signal compatibility
(Petovello, 2003)

Several parameters
simultaneously (3)

Software upgrade (6) Low cost (4) Need prior data and inefficiency
in multi-attacks (3)

16

Spatial processing (Nielsen
et al., 2010)

The direction of signal entry
to receiver (6)

Array antenna and software
upgrade (2)

High reliability and does not
need prior data (8)

The high cost and inefficiency of
multiple antennae (2)

18

SQM (Pini et al., 2001) Correlation branch (5) Software upgrade (6) Easy detection (5) Inefficiency in multipath and
synchronous attacks, need
prior data (2)

17

VSD (Wesson et al., 2011) Correlation branch (4) Software and hardware
upgrade (3)

Ability for multipath separation
(7)

Inefficiency in synchronous
attacks, need prior data (5)

19

VB (Jahromi et al., 2012c) Correlation branch (3) Additional tracking loop (2) High recognition accuracy (8) High cost and complexity (3) 16
C/N0 (Jahromi et al., 2012a) Carrier-to-noise ratio (5) Hardware for measurement

(2)
Simplicity (5) Unreliable in synchronous

attacks and spoofer power
control (2)

14

Combination (Montgomery
et al., 2009b)

Correlation and power (3) Software upgrade and extra
hardware (2)

High reliability (7) Unreliable in multipath presence,
not real time (4)

16

This work Correlation (5) Software upgrade (6) Does not need prior data, easy to
implement, real-time and
reliable (9)

Algorithm needs training (5) 21

https://doi.org/10.1017/S0373463317000558 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0373463317000558


186 E. SHAFIEE AND OTHERS VOL. 71

There are many efforts to facilitate the convergence and improve the accuracy of the LM
algorithm in NN training such as momentum adaptation and variable learning rate. Some
better results can be derived by artificially making the error greater for neurons operating
in the saturation zone. By using a LM optimisation technique, we observed a considerable
improvement in detection.

Table 2 presents properties of the methods discussed in Section 1 and suggested algo-
rithms. To make a better judgement we assigned a numerical value to each feature. The
worst and the best cases are considered for any feature; score of 0 indicates the worst state
and scores of 10 indicate the best state. After that, depending on the algorithm performance
a number from 0 to 10 is assigned to any feature. For example, with regard to the feature
“necessary equipment”, an algorithm is awarded 10, if no extra equipment is needed. If
there is the need to make basic changes in receiver structure, it earns 0. As can be seen the
proposed algorithm performs better than others, because the offered method needs no extra
hardware and does not increase the receiver size and production costs. Moreover, there is
no necessity for any authentic signal after NN training, and it considers several features of
the input signal. Since the data collection process in this work is done in an urban environ-
ment the authentic signals include multipath signals. Amplitude of multipath signals are
attenuated because of reflection from nearby buildings. However, the spoofing signal in
this study is stronger than the authentic signal. In this way, multipath effect can be ignored
in our spoof detection algorithm, but it will be investigated in position error compensation.
Therefore, in this work, the spoofing signal will be detected reliably after the receiver starts
its operation. A limitation of the algorithm is its need to train before operating in a GPS
receiver. Of course, this is necessary in all intelligent methods, and we need some authentic
and spoofing data to train, test and evaluate the NN in the detection algorithm.

6. CONCLUSION. In this paper, existing spoofing detection methods and their prob-
lems are investigated. A new NN-based approach is then proposed for GPS spoofing
detection. Based on signal pattern recognition methodology, delta criterion, coefficient of
early and late phase criterion and total levels of signal are utilised as the input of a MLP NN.
The structure of (3-2-1) is chosen by trial-and-error process. The least accuracy obtained
by the NN-based SDR simulation is 98·75% correct detection of spoofing signals from
authentic signals. Moreover, the detection time is less than 0·5 seconds. The KNN and
naive Bayesian classifier algorithms are also tested. In comparison with NN, they are very
dependent on the parameters of the processed input data. True detection probability for NN
is 99·3247%, but naive Bayesian and KNN methods detect spoofing with a probability of
62·312% and 77·291%. Smart systems have not yet been used for controlling GPS spoof-
ing and this is a modern process in the GPS spoofing detection field. Previous detection
methods suffer from problems such as high cost and complexity, but this algorithm, after
training, is real-time, low cost, easy to implement and reliable.
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