
Glasgow Mathematical Journal (2022), 64, pp. 716–733
doi:10.1017/S0017089522000027

RESEARCH ARTICLE

The nonclassical diffusion equations with time-dependent
memory kernels and a new class of nonlinearities
Le Thi Thuy1 and Nguyen Duong Toan2

1Department of Mathematics, Electric Power University, 235 Hoang Quoc Viet, Tu Liem, Hanoi, Vietnam
e-mail: thuylephuong@gmail.com
2Faculty of Mathematics and Natural Sciences, Haiphong University, 171 Phan Dang Luu, Kien An, Haiphong, Vietnam
e-mail: toannd@dhhp.edu.vn

Received: 23 March 2021; Revised: 5 December 2021; Accepted: 10 January 2022; First published online: 21 February 2022

2020 Mathematics Subject Classification: Primary - 35B41, 35D30, 76R50; Secondary - 45K05

Abstract
In this study, we consider the nonclassical diffusion equations with time-dependent memory kernels

ut −�ut −�u −
∫ ∞

0

k′
t(s)�u(t − s)ds + f (u) = g

on a bounded domain �⊂R
N , N ≥ 3. Firstly, we study the existence and uniqueness of weak solutions and then,

we investigate the existence of the time-dependent global attractors A= {At}t∈R in H1
0 (�) × L2

μt
(R+, H1

0 (�)). Finally,
we prove that the asymptotic dynamics of our problem, when kt approaches a multiple mδ0 of the Dirac mass at zero
as t → ∞, is close to the one of its formal limit

ut −�ut − (1 + m)�u + f (u) = g.

The main novelty of our results is that no restriction on the upper growth of the nonlinearity is imposed and the
memory kernel kt(·) depends on time, which allows for instance to describe the dynamics of aging materials.

1. Introduction

In this study, we consider the following semilinear nonclassical diffusion equation with time-dependent
memory ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − ∂t�u −�u − ∫ ∞
0

k′
t(s)�u(t − s)ds + f (u) = g, x ∈�, t> τ ,

u(x, t) = 0, x ∈ ∂�, t> τ ,

u(x, τ ) = uτ (x), x ∈�,

u(x, τ − s) = φτ (x, s), x ∈�, s> 0,

(1.1)

where � is a bounded domain in R
N with smooth boundary ∂�. The first equation in (1.1) arises in

the classical diffusion theory when assuming that the diffusing species behaves as a linear viscous fluid,
which leads to include its velocity gradient in the constitutive laws [1, 22, 27]). In the past years, the
existence and long-time behavior of solutions to nonclassical diffusion equations have been studied
extensively, in both autonomous case [20, 24, 25, 28, 31, 32] and non-autonomous case [2–4, 25, 26,
33]. The time-dependent global attractor for the nonclassical diffusion equations was studied in [19, 21].

The convolution term takes into account the influence of the past history of u on its future evolution,
providing a more accurate description of the diffusive process in certain materials, such as high-viscosity
liquids at low temperatures and polymers (see e.g. [16]). In the past years, the existence and long-time
behavior of solutions to nonclassical diffusion equations with memory have been explored in the case
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of the memory kernel independent on the time [5, 6, 9]. In particular, the existence of global attractors
of weak solutions to a class of nonclassical diffusion equations with hereditary memory and nonlinear
terms of exponential type has been studied in [5].

To the best of our knowledge, although there are several results on attractors for evolution equations
with constant-in-time memory kernels, only M. Conti has studied time-dependent memory kernels [7].
In this study, we therefore build on the M. Conti’s results by removing the technical conditions imposed
on the memory kernels. We will prove the existence of weak solutions and existence of a time-dependent
global attractor under a weak assumption on the time-dependent memory kernel kt(s) and a very large
class of nonlinearities that particularly covers both above classes and even exponential nonlinearities.

When kt approaches a multiple mδ0 of the Dirac mass at zero as t → ∞, we prove that the asymptotic
dynamics of our problem is close to the one of its formal limit

ut −�ut − (1 + m)�u + f (u) = g.

This is the main novelty of our paper.
To study problem (1.1), we assume that the initial datum uτ ∈ H1

0(�) is given, and that the nonlinearity
f and the external force g satisfy the following conditions:

(H1) f : R→R is a continuously differentiable function satisfying

f ′(u) ≥ −�, (1.2)

f (u)u ≥ −βu2 − C0, for all u ∈R, (1.3)

where �, β, C0 are positive constants, 0<β < λ1 with λ1 > 0 is the first eigenvalue of the
operator −� in � with the homogeneous Dirichlet condition,

It follows from (1.2) that 0 ≤ ∫ u

0
(f ′(s)s + �s)ds, and therefore by integrating by parts,

we obtain

F(u) ≤ f (u)u + �u2

2
, for all u ∈R, (1.4)

where F(u) = ∫ u

0
f (s)ds is a primitive of f .

(H2) The external force g ∈ H−1(�).
(H3) The convolution (or memory) kernel kt is a nonnegative summable function having the explicit

form

kt(s) =
∫ ∞

s

μt(r)dr, (1.5)

where (t, s) 
→μt(s) : R×R
+ →R

+ is allowed to exhibit (infinitely many) jumps. Moreover,
we require that

(M1) For every fixed t ∈R, the map s 
→μt(s) is nonincreasing, absolutely continuous and
summable.

We denote the total mass of μt by

κ(t) =
∫ ∞

0

μt(s)ds.

(M2) There exists δ > 0 such that

∂tμt(s) + ∂sμt(s) + δκ(t)μt(s) ≤ 0

for every t ∈R and almost every s> 0.
(M3) The function t 
→ κ(t) fulfills

inf
t∈R
κ(t)> 0.
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Remark 1.1. We recall the example of time-dependent memory kernels arising in the physical applica-
tions, already introduced in [7, 8].

Let μ ∈ C1(R) ∩ L1(R+) be a (nonnull and nonnegative) nonincreasing function with μ(0)<∞.
Given a bounded positive function ε ∈ C1(R) satisfying

ε′(t) ≤ 0, ∀t ∈R,

we define the time-dependent rescaled kernel

μt(s) = 1

[ε(t)]2
μ

(
s

ε(t)

)
.

According to (1.5), the corresponding integrated memory kernel reads

kt(s) = 1

ε(t)
k

(
s

ε(t)

)
where k(s) =

∫ ∞

s

μ(y)dy.

Especially, assuming k summable with total mass m> 0, the most interesting situation is when ε(t) →
0 as t → ∞. In this case, we recover the distributional convergence kt → mδ0 to (a multiple of) the
Dirac mass at zero. As shown in [7, 8], this μt complies with (M1)–(M3). Here, we make two further
assumptions: there exists σ such that

μ′(s) + σμ(s) ≤ 0, ∀s;

inf
t∈R
ε′(t)>− δ

2
.

Example For instance, a possible choice is the exponential kernel μ(s) = e−s and

ε(t) = c

[
π

2
− arctan (t)

]
, 0< c<

1

2
.

The study is organized as follows. In Section 3, we prove the existence and uniqueness of weak solu-
tions to problem (1.1) by utilizing the compactness method and weak convergence techniques in Orlicz
spaces [15]. In Section 4, the existence of a time-dependent global attractor for the process associated
to the problem is studied. In the final section, we show the asymptotic closeness to the nonclassical
diffusion equation (without memory term) when the kernel approaches the Dirac mass.

2. Notations and preliminaries

In this section, we review some notations about function spaces and preliminary results.
As in [12], a new variable which reflects the history of (1.1) is introduced, that is

ηt(x, s) = η(x, t, s) =
∫ s

0

u(x, t − r)dr, s ≥ 0,

then we can check that

∂tη
t(x, s) = u(x, t) − ∂sη

t(x, s), s ≥ 0.

Since μt(s) = −k′
t(s), problem (1.1) can be transformed into the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − ∂t�u −�u − ∫ ∞
0
μt(s)�ηt(s)ds + f (u) = g(x), x ∈�, t> τ ,

∂tη
t(x, s) = −∂sη

t(x, s) + u(x, t), x ∈�, t> τ , s ≥ 0,

u(x, t) = 0, x ∈ ∂�, t> τ ,

ηt(x, s) = 0, (x, s) ∈ ∂�×R
+, t> τ ,

u(x, τ ) = uτ (x), x ∈�,

ητ (x, s) = ητ (x, s) := ∫ s

τ
g0(x, r)dr, (x, s) ∈�×R

+.

(2.1)
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Now, let

z(t) = (u(t), ηt), and zτ = (uτ , ητ ).

Unless otherwise specified, it is understood that we consider spaces of functions which are defined on
the domain �. Let 〈·, ·〉 and ‖ · ‖ denote the L2(�)-inner product and L2(�)-norm, respectively.

Let L2
μt

(R+, L2(�)) be the Hilbert space of functions ϕ : R
+ → L2(�) endowed with the inner

product

〈ϕ1, ϕ2〉μt
=

∫ ∞

0

μt(s) 〈ϕ1(s), ϕ2(s)〉 ds,

and let ‖ϕ‖μt be the corresponding norm. In a similar manner, we introduce the inner products
〈·, ·〉1,μt

, 〈·, ·〉2,μt
on L2

μt
(R+, H1

0(�)) and L2
μt

(R+, H2(�) ∩ H1
0(�)) by

〈·, ·〉1,μt
= 〈∇·, ∇·〉μt

, 〈·, ·〉2,μt
= 〈�·,�·〉μt

,

and the corresponding norms are denoted by ‖ · ‖1,μt , ‖ · ‖2,μt .
We now introduce the following Hilbert spaces

Vt = H1
0(�) × L2

μt
(R+, H1

0 (�)),

Wt =
(
H2(�) ∩ H1

0(�)
) × L2

μt
(R+, H2(�) ∩ H1

0 (�)),

which are, respectively, endowed with the inner products

〈w1, w2〉Vt
= 〈∇ψ1, ∇ψ2〉 + 〈ϕ1, ϕ2〉1,μt

,

〈w1, w2〉Wt
= 〈�ψ1,�ψ2〉 + 〈ϕ1, ϕ2〉2,μt

,

where wi = (ψi, ϕi) ∈ Vt, Wt, i = 1, 2.
The norms induced on Vt, Wt, are

‖(ψ , ϕ)‖2
Vt

= ‖∇ψ‖2 +
∫ ∞

0

μt(s)‖∇ϕ(s)‖2ds,

‖(ψ , ϕ)‖2
Wt

= ‖�ψ‖2 +
∫ ∞

0

μt(s)‖�ϕ(s)‖2ds.

The following results will be used to prove the existence of time-dependent global attractors.
For t ∈ R, let Xt be a family of normed spaces, the two-parameter family of operators

U(t, τ ) : Xτ → Xt, t ≥ τ ,

is called a process on time-dependent spaces (see [10, 13]), characterized by the two properties:

(i) U(τ , τ ) is the identity map on Xτ for every τ ;
(ii) U(t, τ )U(τ , s) = U(t, s) for every t ≥ τ ≥ s.

As introduced in [10], we consider the following definitions and theorem.

Definition 2.1. A time-dependent absorbing set for the process U(t, τ ) is a uniformly bounded family
B = {Bt}t∈R with the following property: for every R ≥ 0 there exists θe = θe(R) ≥ 0 such that

τ ≤ t − θe → U(t, τ )Bτ (R) ⊂ Bt.

Definition 2.2. Let K= {K = {Kt}t∈R : Kt ⊂ Xt compact, K pullback attracting}. The family
A= {At}t∈R ∈K is said to be a time-dependent global attractors if A is the smallest element of
K such that

At ⊂ Kt, ∀t ∈R,

for any element K = {Kt}t∈R ∈K.
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We know that the minimal element of K exists (and it is unique) if and only if K is not empty.

Theorem 2.1. If U(t, τ ) is asymptotic compact, that is,

K= {K = {Kt}t∈R : Kt ⊂ Xt compact, K pullback attracting}, K �=∅

then {U(t, τ )} has a unique time-dependent global attractors A= {At}t∈R and

At =
⋂
s≤t

⋃
τ≤s

U(t, τ )Bτ .

Moreover, if U(t, τ ) is a continuous (or norm-to-weak continuous) map for all t ≥ τ , then A is invariant.

3. Existence and uniqueness of weak solutions

Definition 3.1. A function z = (u, ηt) is called a weak solution of problem (2.1) on the interval (τ , T)
with the initial datum z(τ ) = zτ ∈ Vτ if

u ∈ C([τ , T]; H1
0 (�)), f (u) ∈ L1(QT),

∂tu ∈ L2(τ , T;H1
0(�)), ηt ∈ C([τ , T];L2

μt
(R+, H1

0(�))),

and
〈∂tu, ϕ〉 + 〈∂t∇u, ∇ϕ〉 + 〈∇u, ∇ϕ〉 + 〈ηt, ϕ〉1,μt + 〈f (u), ϕ〉L1,L∞ = 〈g, ϕ〉H−1,H1

0
,

〈∂tη
t + ∂sη

t, ξ 〉1,μt = 〈u, ξ 〉1,μt ,

for all test functions ϕ ∈ W = H1
0(�) ∩ L∞(�), ξ ∈ L2

μt
(R+, H1

0(�)), and for a.e. t ∈ [τ , T].

We are now ready to state the existence and uniqueness result for problem (2.1).

Theorem 3.1. Assume that hypotheses (H1)–(H3) hold. Then for any zτ = (uτ , ητ ) ∈ Vτ and T > τ given,
problem (2.1) has a unique weak solution z = (u, ηt) on the interval (τ , T) satisfying

u ∈ C([τ , T];H1
0 (�)), ηt ∈ L2

μt
(R+, H1

0(�)).

Moreover, the weak solutions depend continuously on the initial data.

Proof. We use the Faedo–Galerkin method. As argued in [5], because of the separability of H1
0 (�),

one can choose a sequence {ωj}∞
j=1 which forms a smooth orthonormal basis in both L2(�) and H1

0(�)
spaces. For instance, one can take a complete set of normalized eigenfunctions for −� in H1

0(�), such
that −�ωj = νjωj, where νj is the eigenvalue corresponding to ωj. Next, we want to choose an orthonor-
mal basis {ζj}∞

j=1 of L2
μt

(R+, H1
0(�)) which also belong to D(R+, H1

0 (�)), where D(I, X) is the space of
infinitely differentiable X-valued functions with compact support in I ⊂R. For this purpose, we select
vectors of the form lkωj (k, j = 1, . . . , ∞), where {lj}∞

j=1 is an orthonormal basis in both L2
μt

(R+) and
D(R+) spaces.

(i) Existence. Given an integer n, denote by Pn and Qn the projections on the subspaces

span(ω1, . . . ,ωn) ∈ H1
0(�) and span(ζ1, . . . , ζn) ∈ L2

μt
(R+, H1

0 (�)),

respectively. We look for a function zn = (un, ηt
n) of the form

un(t) =
n∑

j=1

aj(t)ωj and ηt
n(s) =

n∑
j=1

bj(t)ζj(s)
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satisfying 〈
(∂tun −�∂tun, ∂tη

t
n), (ωk, ζj)

〉
Vt

=
〈
(�un +

∫ ∞

0

μt(s)�ηt
n(s)ds + g − f (un), un − ∂sη

t
n), (ωk, ζj)

〉
Vt

un(τ ) = Pnuτ → uτ =
∞∑

j=1

αjωj in H1
0(�), as n → ∞,

ηt
n(τ ) = Qnητ → ητ =

∞∑
j=1

βjζj(s) in L2
μt

(R+, H1
0 (�)), as n → ∞, (3.1)

for a.e. τ ≤ t ≤ T , for every k, j = 0, . . . , n, whereω0 and ζ0 are the zero vectors in the respective
spaces. Taking (ωk, ζ0) and (ω0, ζk) in (3.1), and applying the divergence theorem to the term〈∫ ∞

0

μt(s)�ηt
n(s)ds,ωk

〉
,

we get a system of Ordinary Differential Equation (ODE) in the variables ak(t) and bk(t) of the
form

d

dt

(
(1 + νk)ak

)
= −νkak −

n∑
j=1

bj

〈
ζj,ωk

〉
1,μt

+ 〈g,ωk〉 − 〈f (un),ωk〉 ,

d

dt
bk =

n∑
j=1

aj

〈
ωj, ζk

〉
1,μt

−
n∑

j=1

bj

〈
ζ ′

j , ζk

〉
1,μt

, (3.2)

subject to the initial conditions

ak(τ ) = 〈uτ ,ωk〉H1
0 (�) ,

bk(τ ) = 〈ητ , ζk〉1,μτ . (3.3)

According to standard existence theory for ODEs, there exists a continuous solution (ak, bk) of
(3.2)–(3.3) on some interval (τ , Tn) for each n. The a priori estimates below imply that in fact
Tn = +∞.

Multiplying the first equation of (3.2) by ak and the second by bk, then summing over k and
adding the results, we get

1

2

d

dt
‖zn‖2

Vt
= −‖∇un‖2− 〈

∂sη
t
n, η

t
n

〉
1,μt

+ 〈g, un〉H−1,H1
0

− 〈f (un), un〉 +
∫ ∞

0

∂tμt(s)‖∇ηt
n(s)‖2ds.

(3.4)

Using (1.3) and the Cauchy inequality, we have

〈g, un〉H−1,H1
0
− 〈f (un), un〉 ≤ ε‖∇un‖2 + 1

4ε
‖g‖2

H−1(�) + β‖un‖2 + C0|�|, (3.5)

where ε > 0 will be chosen later. From (3.4) and (3.5) we have

d

dt
‖zn‖2

Vt
+ 2

〈
∂sη

t
n, η

t
n

〉
1,μt

− 2
∫ ∞

0

∂tμt(s)‖∇ηt
n(s)‖2ds + 2

(
1 − β

λ1

− ε

)
‖∇un‖2

≤ 1

2ε
‖g‖2

H−1(�) + 2C0|�|.
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Integrating by parts and using (M2), we get

2
〈
∂sη

t
n, η

t
n

〉
1,μt

− 2
∫ ∞

0

∂tμt(s)‖∇ηt
n(s)‖2ds

= − 2
∫ ∞

0

(∂sμt(s) + ∂tμt(s))‖∇ηt
n(s)‖2ds ≥ 0.

(3.6)

Thus,
d

dt
‖zn‖2

Vt
+ 2(1 − β

λ1

− ε)‖∇un‖2 ≤ C(‖g‖2
H−1(�) + 1).

Choosing ε > 0 small enough so that 1 − β

λ1

− ε > 0 and integrating on (τ , t), t ∈ (τ , T), lead
to the following estimate

‖zn(t)‖2
Vt

+ 2

(
1 − β

λ1

− ε

) ∫ t

τ

‖∇un(r)‖2dr ≤ ‖zn(τ )‖2
Vτ + CT(‖g‖2

H−1(�) + 1).

Hence, in particular, we see that

{un} is bounded in L∞(τ , T; H1
0(�)),

{ηt
n} is bounded in L∞(τ , T; L2

μt
(R+, H1

0 (�))).
(3.7)

Therefore, by the Banach–Alaoglu theorem, there exists a function z = (u, ηt) such that

un ⇀ u weakly star in L∞(τ , T; H1
0 (�)),

ηt
n ⇀ηt weakly star in L∞(τ , T; L2

μt
(R+, H1

0(�))), (3.8)

and

�un ⇀�u weakly in L2(τ , T; H−1(�)),

�ηt
n ⇀�ηt weakly in L2(τ , T; L2

μt
(R+, H−1(�))), (3.9)

up to a subsequence. Now, we estimate ∂tzn. From (3.4) and (3.6), we get

d

dt
‖zn‖2

Vt
+ ‖∇un‖2 + 2

∫
�

f (un)undx ≤ ‖g‖2
H−1(�). (3.10)

Integrating (3.10) from τ to T , we obtain

‖zn(T)‖2
VT

+
∫ T

τ

‖∇un(t)‖2dt + 2
∫

QT

f (un)undxdt ≤ ‖zτ‖2
Vn(τ ) + T‖g‖2

H−1(�).

In particular, ∫
QT

f (un)undxdt ≤ C. (3.11)

Multiplying the first equation of (3.2) by ak + εa′
k and the second by bk, then summing over k

and adding the results, we get

1

2

d

dt

(
‖un‖2 + (1 + ε)‖∇un‖2 +

∫ ∞

0

μt(s)‖ηt
n‖2ds + 2ε〈F(un), 1〉

)
+ ‖∇un‖2

+ ε
(‖∂tun‖2 + ‖∇∂tun‖2

) + 〈f (un), un〉 −
∫ ∞

0

(∂sμt(s) + ∂tμt(s))‖∇ηt
n(s)‖2ds

= −
∫ ∞

0

μt(s)〈∇ηt
n(s), ∇∂tun〉ds + 〈g, un + ε∂tun〉H−1,H1

0
.

(3.12)
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Using Young inequality and κ(t) = ∫ ∞
0
μt(s)ds, we have

−
∫ ∞

0

μt(s)〈∇ηt
n(s), ∇∂tun〉ds ≤

∫ ∞

0

μt(s)‖∇ηt
n(s)‖‖∇∂tun‖ds

≤ √
εδκ(t)

∫ ∞

0

μt(s)‖∇ηt
n(s)‖2ds + ε

√
ε

δ
‖∇∂tun‖2,

and

〈g, un + ε∂tun〉H−1,H1
0
≤ 1

2
‖∇un‖2 + ε

2
‖∂t∇un‖2 + C(ε)‖g‖2

H−1(�). (3.13)

Combining (3.12)–(3.13), and owing to (M2) and (1.4), we get

d

dt

(
‖un‖2 + (1 + ε)‖∇un‖2 +

∫ ∞

0

μt(s)‖ηt
n‖2ds + 2ε〈F(un), 1〉

)
+ ‖∇un‖2

+ 2

(
ε− ε

√
ε

δ

) (‖∂tun‖2 + ‖∇∂tun‖2
) + 2〈f (un), un〉

+ 2(1 − √
ε)δκ(t)

∫ ∞

0

μt(s)‖∇ηt
n(s)‖2ds ≤ C(ε)‖g‖2

H−1(�).

(3.14)

Integrating (3.14) from τ to t and using (1.4), (3.11) and (3.7), we can deduce that

{∂tun} is bounded in L2(τ , T; H1
0(�)),

so, up to a subsequence,

∂tun ⇀∂tu weakly in L2(τ , T; H1
0 (�)),

∂t�un ⇀∂t�u weakly in L2(τ , T; H−1(�)). (3.15)

We now prove that {f (un)} is bounded in L1(QT) where QT =�× (τ , T). Putting h(s) = f (s) −
f (0) + γ s, where γ > �. Note that h(s)s = (f (s) − f (0))s + γ s2 = f ′(c)s2 + γ s2 ≥ (γ − �)s2 ≥ 0
for all s ∈R, we have∫

QT

|h(un)| dxdt ≤
∫

QT ∩{|un|>1}

|h(un)un| dxdt +
∫

QT ∩{|un|≤1}

|h(un)| dxdt

≤
∫
QT

h(un)undxdt + sup
|s|≤1

|h(s)| |QT |

≤
∫
QT

f (un)undxdt + |f (0)|‖un‖L1(QT ) + γ ‖un‖2
L2(QT )

+ sup
|s|≤1

|h(s)| |QT |

≤ C,

where we have used (3.7), (3.11) and the boundedness of {un} in L∞(τ , T; H1
0 (�)). Hence it

implies that {h(un)}, and therefore {f (un)} is bounded in L1(QT).
Using the Aubin–Lions lemma in [18], we can suppose that un → u strongly in

L2(τ , T; L2(�)). Hence un → u a.e. in QT , up to a subsequence. Besides, using the definition of
h(s) and (3.10), (3.7), we have ∫

QT

h(un)undxdt ≤ C.
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Therefore, by Lemma 6.1 in [14], we obtain that h(u) ∈ L1(QT) and for all test functions ϕ ∈
C∞

0 ([τ , T]; H1
0 (�) ∩ L∞(�)), ∫

QT

h(un)ϕdxdt →
∫

QT

h(u)ϕdxdt.

Hence, f (u) ∈ L1(QT) and∫
QT

f (un)ϕdxdt →
∫

QT

f (u)ϕdxdt, for all ϕ ∈ C∞
0 ([τ , T]; H1

0(�) ∩ L∞(�)). (3.16)

We are now ready to show that the limit z = (u, ηt) is a weak solution of (2.1). Choose an
arbitrary test function

φ = (ϕ, ξ ) ∈D([τ , T], H1
0(�) ∩ L∞(�)) ×D([τ , T], D(R+, H1

0(�)))

of the form

ϕ(t) =
m∑

j=1

aj(t)ωj and ξ (t) =
m∑

j=1

bj(t)ζj,

where m is a fixed integer, {aj}m
j=1 and {bj}m

j=1 are given functions in D((τ , T)). Then (3.1) holds
with (v(t), ξ (t)) in place of (ωk, ζj). Integrating the resulting equation over (τ , T) and passing to
the limits, in view of (3.8), (3.9), (3.15) and (3.16), we get∫ T

τ

[
〈∂tu, ϕ〉 + 〈∂t∇u, ∇ϕ〉+〈∂tη

t, ξ 〉1,μt

]
dt

= −
∫ T

τ

[
〈∇u, ∇ϕ〉 + 〈ηt, ϕ〉1,μt

]
dt

−
∫ T

τ

[ ∫
�

f (u)ϕdx − 〈g, ϕ〉H−1,H1
0

]
dt

+
∫ T

τ

[
− 〈∂sη

t, ξ 〉1,μt + 〈u, ξ 〉1,μt

]
dt.

Using a density argument, we conclude that z = (u, ηt) satisfies the equation in the weak sense.
By standard arguments, we can check that z satisfies the initial condition z(τ ) = zτ . This implies
that z(·) is a weak solution of problem (2.1).

(ii) Uniqueness and continuous dependence on the initial data. We assume that z1 = (u1, ηt
1) and

z2 = (u2, ηt
2) are two solutions of (2.1) with initial data z1τ and z2τ , respectively. Denote w =

z1 − z2 = (u3, ηt
3), then

∂tu3 − ∂t�u3 −�u3 −
∫ ∞

0

μt(s)�ηt
3(x, s)ds + (f̂ (u1(t) − f̂ (u2)) − �u3 = 0, for all t> 0,

(3.17)
where f̂ (s) = f (s) + �s. Here, because u3(t) does not belong to W = H1

0(�) ∩ L∞(�), we cannot
choose u3(t) as a test function. Consequently, the proof will be more involved than that in [9,
29, 30].

We use some ideas in [15]. Let

Bk(s) =

⎧⎪⎪⎨
⎪⎪⎩

k if s> k,

s if |s| ≤ k,

−k if s<−k.

Consider the corresponding Nemytskii mapping B̂k : W → W defined as follows

B̂k(u3)(x) = Bk(u3(x)), for all x ∈�.
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By Theorem 4.7 in [17] (see also Lemma 2.3 in [15]), we have that ‖B̂k(u3) − u3‖W → 0 as
k → ∞. Now multiplying (3.17) by B̂k(u3), then integrating over � we get

d

dt

( ∫
�

u3B̂k(u3)dx +
∫
�

∇u3∇B̂k(u3)dx − 1

2

(‖B̂k(u3)‖2 + ‖∇B̂k(u3)‖2
))

+
∫
�

∇u3∇B̂k(u3)dx +
∫ ∞

0

μt(s)
∫
�

∇ηt
3∇B̂k(u3)dxds

+
∫
�

(f̂ (u1) − f̂ (u2))B̂k(u3)dx − �

∫
�

u3B̂k(u3)dx = 0.

Thus,

d

dt

( ∫
�

u3B̂k(u3)dx +
∫
�

∇u3∇B̂k(u3)dx − 1

2

(‖B̂k(u3)‖2 + ‖∇B̂k(u3)‖2
))

+
∫

{x∈� : |u3(x,t)|≤k}
|∇u3|2dx +

∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}
∇ηt

3∇u3dxds

+
∫
�

f̂ ′(ξ )u3B̂k(u3)dx = �

∫
�

u3B̂k(u3)dx.

(3.18)

Note that f̂ ′(s) ≥ 0 and sBk(s) ≥ 0 for all s ∈R, we have∫
�

f̂ ′(ξ )u3B̂k(u3)dx ≥ 0.

Moreover, ∫
{x∈� : |u3(x,t)|≤k}

|∇u3|2dx ≥ 0,

and ∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}
∇ηt

3∇u3dxds

=
∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}
∇ηt

3∂t∇ηt
3dxds

+
∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}
∇ηt

3∂s∇ηt
3dxds

=
∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}
∇ηt

3∂t∇ηt
3dxds

− 1

2

∫ ∞

0

∂sμt(s)
∫

{x∈� : |u3(x,t)|≤k}
|∇ηt

3|2dxds.

From the above inequalities we deduce from (3.18) that

d

dt

( ∫
�

u3B̂k(u3)dx +
∫
�

∇u3∇B̂k(u3)dx − 1

2

(‖B̂k(u3)‖2 + ‖∇B̂k(u3)‖2
))

+ 1

2

∫ ∞

0

μt(s)
∫

{x∈� : |u3(x,t)|≤k}

d

dt
|∇ηt

3|2dxds

≤ �
∫
�

u3B̂k(u3)dx + 1

2

∫ ∞

0

∂sμt(s)
∫

{x∈� : |u3(x,t)|≤k}
|∇ηt

3|2dxds.
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Integrating from τ to t, where t ∈ (τ , T), then letting k → ∞, we obtain
‖u3(t)‖2 + ‖∇u3(t)‖2 + ‖ηt

3‖2
1,μt

≤ ‖u3(τ )‖2 + ‖∇u3(τ )‖2 + ‖ητ3‖2
1,μτ

+ 2�
∫ t

τ

‖u3(s)‖2ds

+
∫ t

τ

(∫ ∞

0

(∂sμr(s) + ∂rμr(s))‖∇ηt
3‖2ds

)
dr

≤ ‖u3(τ )‖2 + ‖∇u3(τ )‖2 + ‖ητ3‖2
1,μτ

+ 2�
∫ t

τ

(‖u3(s)‖2 + ‖∇u3(s)‖2 + ‖ηs
3‖2

1,μs
)ds.

By the Gronwall inequality of integral form, we get
‖w(t)‖2

Vt
≤ ‖w(τ )‖2

Vτ e
2�(t−τ ) ≤ ‖w(τ )‖2

Vτ e
2�(T−τ ), for all t ∈ [τ , T].

Hence we get the continuous dependence on the initial data of the solutions, and in particular,
the uniqueness when w(τ ) = 0. �

4. Existence of a time-dependent global attractor

Theorem 3.1 allows us to define a process on time-dependent spaces U(t, τ ):Vτ → Vt associated to
problem (2.1) by the formula

U(t, τ )zτ := z(t),

where z(·) is the unique global weak solution of (2.1) with the initial datum zτ ∈ Vτ .

4.1. Existence of a time-dependent absorbing set

Lemma 4.1. Under assumptions (H1)–(H3), there exists a time-dependent absorbing set in Vt for the
process U(t, τ ).

Proof. Multiplying the first equation of (2.1) by u(t) and integrating over �, we obtain
1

2

d

dt

(‖u‖2 + ‖∇u‖2
) + ‖∇u‖2 +

∫
�

f (u)udx +
∫ ∞

0

μt(s)〈∇ηt(s), ∇u〉ds

= 〈g, u〉H−1(�),H1
0 (�).

(4.1)

Using the hypothesis (1.3) and the Cauchy inequality, we have∫
�

f (u)udx ≥ −β‖u‖2 − C0|�|,

〈g, u〉H−1(�),H1
0 (�) ≤ ε0‖∇u‖2 + 1

4ε0

‖g‖2
H−1(�).

(4.2)

Recalling that u(t) = ∂tη
t(s) + ∂sη

t(s), we have∫ ∞

0

μt(s)〈∇ηt(s), ∇u〉ds

=
∫ ∞

0

μt(s)〈∇ηt(s), ∇∂sη
t(s)〉ds +

∫ ∞

0

μt(s)〈∇ηt(s), ∇∂tη
t(s)〉ds

= − 1

2

∫ ∞

0

∂sμt(s)‖ηt(s)‖2ds + 1

2

d

dt
‖ηt(s)‖2 − 1

2

∫ ∞

0

∂tμt(s)‖ηt(s)‖2ds

= − 1

2

∫ ∞

0

(∂sμt(s) + ∂tμt(s)) ‖ηt(s)‖2ds + 1

2

d

dt
‖ηt‖2

1,μt
.

(4.3)
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From (4.3) and (M2), we get∫ ∞

0

μt(s)〈∇ηt(s), ∇u〉ds ≥ 1

2
δκ(t)‖ηt‖2

1,μt
+ 1

2

d

dt
‖ηt‖2

1,μt
. (4.4)

Combining (4.2), (4.4) and (4.1), we get

d

dt

(‖u‖2 + ‖∇u‖2 + ‖ηt‖2
1,μt

) + 2

(
1 − β

λ1

− ε0

)
‖∇u‖2 + δκ(t)‖ηt(s)‖2

1,μt

≤ 1

2ε
‖g‖2

H−1(�) + 2C0|�|.
Using hypothesis (M3), we deduce ∃δ0 > 0, so that κ(t) ≥ δ0 > 0 ∀t ∈R. Therefore

d

dt

(‖u‖2 + ‖∇u‖2 + ‖ηt‖2
1,μt

) + γ
(‖u‖2 + ‖∇u‖2 + ‖ηt‖2

1,μt

)
≤ C

(‖g‖2
H−1(�) + 1

)
.

By the Gronwall inequality, we get

y(t) ≤ e−γ (t−τ )y(τ ) + C

(
‖g‖2

H−1(�) + 1

)
,

where

y(t) = ‖u‖2 + ‖∇u‖2 + ‖ηt‖2
1,μt

.

Hence, there exists ρ0 > 0 such that

‖z(t)‖2
Vt

≤ ρ0, (4.5)

for all zτ ∈ B and t ≥ tτ = tτ (B), where B is an arbitrary bounded subset of Vt. This completes the
proof. �

4.2 Asymptotic compactness

Recall that in this paper we only assume the external force g ∈ H−1(�). However, we know that for any
g ∈ H−1(�) and ε > 0 given, there is a gε ∈ L2(�), which depends on g and ε, such that

‖g − gε‖H−1(�) < ε. (4.6)

Now, in order to show that the process is asymptotically compact, we shall exhibit a pullback
attracting family of compact sets. To this aim, the strategy classically consists in finding a suitable
decomposition of the process in the sum of a decaying part and of a compact one.

4.2.1 Decomposition of the equation
Since B = {Bt(R)}t∈R is a time-dependent absorbing set for U(t, τ )zτ , then for each initial data zτ ∈Bt(R),
we decompose U(t, τ )zτ as follows

U(t, τ )zτ = U1(t, τ )zτ + U2(t, τ )zτ ,

where U1(t, τ )zτ = z1(t) and U2(t, τ )zτ = z2(t), that is, z = (u, ηt) = z1 + z2, the decomposition is of the
following form

u = vε + wε, ηt = ζ tε + ξ tε,

z1 = (vε, ζ tε), z2 = (wε, ξ tε),
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where z1(t) is the unique solution of the following problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tvε − ∂t�vε −�vε + f (u) − f (wε) − ∫ ∞
0
μt(s)�ζ tε(s)ds + λvε = g − gε, λ> �,

∂tζ
tε = −∂sζ

tε + vε,

vε(x, t)|∂� = 0, vε(x, t)|t=τ = uτ (x),

ζ tε(x, s)|∂� = 0, ζ τ (x, s) = ζτ (x, s) :=
s∫
τ

g0(x, r)dr,

(4.7)

and z2(t) is the unique solution of the following problem⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂twε − ∂t�wε −�wε + f (wε) − ∫ ∞
0
μt(s)�ξ tε(s)ds − λ(u − wε) = gε, λ> �,

∂tξ
tε = −∂sξ

tε + wε,

wε(x, t)|∂� = 0, wε(x, t)|t=τ = 0,

ξ tε(x, s)|∂� = 0, ξ τ (x, s) = ξτ (x, s) = 0.

(4.8)

By using similar arguments as in the proof of Theorem 3.1, one can prove the existence and uniqueness
of solutions to problems (4.7) and (4.8). Moreover, for problem (4.8), because the external force gε ∈
L2(�) and the initial data are zero (so it belong to Wt := (

H2(�) ∩ H1
0(�)

) × L2
μt

(R+, H2(�) ∩ H1
0(�))),

we can show that the solution (wε, ξ tε) is in fact a strong solution. In particular, we will have wε ∈
C([0, T]; H2(�) ∩ H1

0 (�)) for any T > 0. This will be used in the proof of Lemma 4.3 below.
We begin with the decay estimate for solutions of (4.7).

Lemma 4.2. For any ε > 0, the solutions of equation (4.7) satisfy the following estimates: there is a
constant d0 which depends on λ1, �, such that for every t ≥ 0,

‖U1(t, τ )zτ‖2
Vt

≤ Q(‖zτ‖Vt )e
−d0 t + ε.

Proof. Multiplying the first equation of (4.7) by vε we get
1

2

d

dt

(‖vε‖2 + ‖∇vε‖2
) + λ‖vε‖2 + ‖∇vε‖2 +

∫ ∞

0

μt(s)
∫
�

∇ζ tε∇vεdxds

+〈f (u) − f (wε), vε〉 = 〈g − gε, vε〉H−1,H1
0
.

Applying Cauchy inequality, we get

〈g − gε, vε〉H−1,H1
0
≤ 1

2
‖∇vε‖2 + 1

2
‖g − gε‖2

H−1(�).

Noting that ∂tζ
tε = −∂sζ

tε + vε and reasoning exactly as in (4.3), (4.4), we obtain∫ ∞

0

μt(s)〈∇ζ tε(s), ∇vε〉ds ≥ 1

2
δκ(t)‖ζ tε(s)‖2

1,μt
+ 1

2

d

dt
‖ζ tε(s)‖2

1,μt
. (4.9)

Therefore, because f ′(ξ ) ≥ −�, we have
d

dt

(
‖vε‖2 + ‖∇vε‖2 + ‖ζ tε‖2

1,μt

)
+ ‖∇vε‖2 + 2(λ− �)‖vε‖2 + δκ(t)‖ζ tε(s)‖2

1,μt

≤ ‖g − gε‖2
H−1(�).

Using hypothesis (M3), we deduce ∃δ0 > 0, so that κ(t) ≥ δ0 > 0 ∀t ∈R.
Thus, similarly to the proof of Lemma 4.1, we obtain for some d0 > 0,

‖U1(t, τ )zτ‖2
Vt

≤ Q(‖zτ‖Vt )e
−d0t + 1

C
‖g − gε‖2

H−1(�).
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Taking ε2 ≤ Cε in (4.6) we have
‖U1(t, τ )zτ‖2

Vt
≤ Q(‖zτ‖Vt )e

−d0 t + ε.
�

About the solution z2(t) of (4.8), we have the following lemma.

Lemma 4.3. For any ε > 0, there is M > 0 such that for any zτ ∈Wt, there exists T > 0 large enough,
which depends on ‖g‖2

H−1(�), ε, such that

‖U2(t, τ )zτ‖2
Wt

≤ M, for all t ≥ T . (4.10)

Proof. Multiplying the first equation of (4.8) by −�wε, then using (1.2), (M2) and the Cauchy
inequality, we have

d

dt

(
‖∇wε‖2 + ‖�wε‖2 + ‖ξ tε‖2

2,μt

)
+ ‖�wε‖2 + 2(λ− �)‖∇wε‖2

+ δκ(t)‖ξ tε(s)‖2
1,μt

≤ 1

2

(
‖gε‖2

H−1(�) + ‖u‖2
H1

0 (�)

)
≤ C(‖gε‖2

H−1(�) + ρ0)

when t ≥ t0(B). Note that we used the estimate (4.5) for this expression.
Hence, similarly to the proof of Lemma 4.1, we obtain a number T > 0 large enough such that

‖U2(t, τ )zτ‖2
Wt

≤ M, for all t ≥ T .

The proof is complete. �

Remark 4.1. From Lemma 4.3, we immediately have the following regularity result: At is bounded in
Wt (with a bound independent of t).

Since B = {Bt}t∈R is a time-dependent absorbing set, collecting Lemmas 4.2 and 4.3 we infer that the
family of Wt-ball K = {Kt(r)}t∈R is pullback attracting provided that r> 0 is sufficiently large, for

distVt (U(t, τ )Bτ , Kt(r)) ≤ sup
zτ∈Bτ

‖D(t, τ )zτ‖Vt ≤ Ce− γ
2 (t−τ ).

Unfortunately, there are not enough conditions to conclude the existence of the unique time-
dependent global attractor. Indeed, although closed balls ofWt are uniformly bounded by the embedding
constant of Wt ↪→ Vt is independent of t, they fail to be compact in Vt due to the lack of compactness
of the embedding L2

μt
(R+, H1

0(�)) ↪→ L2
μt

(R+, H2(�) ∩ H1
0(�)). The argument as in the proof of [30,

Theorem 3.13], where the same model is considered for a constant-in-time memory kernel, we get that
the process U(t, τ ) is asymptotically compact, which proves the existence of the unique time-dependent
global attractor in below.

Theorem 4.4. Assume that (H1)–(H3) hold. Then the process {U(t, τ )}t≥τ generated by problem (2.1)
admits an invariant time-dependent global attractor A= {At}t∈R.

5. Recovering nonclassical diffusion equation

In the last section, using the idea of Conti et al. in [7], we discuss the case when kt → mδ0 for some
m> 0, that is,

lim
t→∞

∫ ∞

ε

kt(s)ds =
{

m if ε= 0,

0 if ε > 0.
(5.1)

Then, for long times our problem becomes the nonclassical diffusion equation (without memory kernel)

ut −�ut − (1 + m)�u + f (u) = g. (5.2)
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Equation (5.2) generates a C0-semigroup of solutions

S(t) : H1
0 (�) → H1

0 (�),

possessing the global attractor Â in the classical sense. Besides, Â is a bounded subset of H2(�) ∩ H1
0 (�),

and coincides with the sections at (any) time t0 ∈R of the set of all complete bounded trajectories (CBT)
of S(t) (see, [28]). Namely, for any fixed t0 ∈R,

Â = {ẑ(t0) : ẑ CBT of S(t)},
where a CBT the semigroup S(t) is a map

t 
→ ẑ(t) = û(t) ∈ H1
0 (�)

satisfying

sup
t∈R

‖ẑ(t)‖H1
0 (�) <∞ and ẑ(t) = S(t)ẑ(τ ) ∀t ≥ 0, ∀τ ∈R.

On the other hand, according to Theorem 4.4 and [11, Theorem 3.2], the invariant time-dependent
global attractor is characterized as the set of all CBT of the process, that is,

A = {z(t) : z CBT of U(t, τ )},
where a CBT of U(t, τ ) is a map

t 
→ z(t) = (u(t), ∂tu(t), ηt) ∈ Vt

satisfying

sup
t∈R

‖z(t)‖Vt <∞ and z(t) = U(t, τ )z(τ ) ∀t ≥ τ ∈R.

Using ideas as in [7], we have the following theorem which establishes the closeness of the long-term
dynamics of (1.1) to the one of the “limit problem” (5.2) when kt → mδ0.

Theorem 5.1. Assume that (5.1) hold. Then, for any sequence (un, ηt
n) of CBT of U(t, τ ) and any tn → ∞,

there exists a CBT û of S(t) such that the convergence

sup
t∈[−T ,T]

‖un(t + tn) − û(t)‖H1
0 (�) → 0 (5.3)

holds up to a subsequence as n → ∞ for every T > 0.

Defining the canonical projection Pt : Vt → H1
0 (�) by Pt(u, η) = u, and denoting the Hausdorff

semidistance of two (nonempty) sets B, C ⊂ X by

distX(B, C) = sup
x∈B

inf
x∈C

‖x − y‖X ,

then we have an immediate corollary.

Corollary 5.1. Assume that (5.1) hold. Then, we have the convergence

lim
t→∞

[
distH2(�)∩H1

0 (�)(PtAt, Â)
]
= 0.

Indeed, from (5.3), we deduce that for every tn → ∞ the convergence

distH2(�)∩H1
0 (�)(PtAt, Â) → 0

holds (up to a sequence) as n → ∞. This is clearly enough to draw the desired conclusion.

Proof of Theorem 5.1.Let wn(·) = un( · +tn), for every n. Then the function wn fulfills the equation

∂twn(t) −�∂twn(t) −�wn(t) −
∫ ∞

0

kt+tn (s)�wn(t − s)ds + f (wn(t)) = g. (5.4)
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From the estimates of Lemmas 4.2 and 4.3, we get that

wn is bounded in L∞(R; H2(�) ∩ H1
0(�)). (5.5)

Then, there exists û ∈ L∞(R; H2(�) ∩ H1
0 (�)) such that, up to a subsequence,

wn ⇀ û weakly-star in L∞(R, H2(�) ∩ H1
0 (�)).

Since limn→∞ kt+tn = mδ0 in the sense of (5.1), we can see that, for every T > 0,

sup
t∈[−T ,T]

∫ ∞

0

kt+tn (s)ds ≤ 2m,

for every n sufficiently large (depending on T ).
Multiplying equation (5.4) by wn + ∂twn then integrating from −T to T we conclude that

∂twn is bounded in L∞(− T , T; H1
0(�)). (5.6)

From (5.5) and (5.6) and applying the classical Simon-Aubin Theorem [23], the strong convergence

wn → û in C([− T , T], H1
0(�))

holds (up to a subsequence), implying in particular (5.3).
Now, we are left to prove that û solves the nonclassical diffusion equation, namely

∂tû −�∂tû − (1 + m)�û + f (û) = g.

Indeed, we will prove that the equality above is recovered when passing to the limit as n → ∞ in (5.4),
the only nonstandard convergence being

−
∫ ∞

0

kt+tn (s)�wn(t − s)ds → −m�û(t).

Let φ be fixed, and

�n(t) =
∫ ∞

0

kt+tn (s)〈wn(t − s), −�φ〉ds.

Then, we decompose the function �n(t) into the sum

�n(t) =�1
n(t) +�2

n(t) +�3
n(t),

where

�1
n(t) =

∫ 1

0

kt+tn (s)〈û(t − s), −�φ〉ds,

�2
n(t) =

∫ 1

0

kt+tn (s)〈wn(t − s) − û(t − s), −�φ〉ds,

�3
n(t) =

∫ ∞

1

kt+tn (s)〈wn(t − s), −�φ〉ds.

Since 〈wn, −�φ〉 ∈ L∞(R) uniformly with respect to n, and 〈wn, −�φ〉 → 〈û, −�φ〉 in C(I) for every
closed interval I , and using (5.1) once again

|�2
n(t) +�3

n(t)| ≤ ‖〈wn − û, −�φ〉‖C([t−1,t])

∫ 1

0

kt+tn (s)ds

+ ‖〈wn, −�φ〉‖L∞(R)

∫ ∞

1

kt+tn (s)ds → 0,

while

�1
n(t) → m〈û, −�φ〉.
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Therefore, we conclude that

�n(t) =
∫ ∞

0

kt+tn (s)〈wn(t − s), −�φ〉ds → m〈û, −�φ〉,

for any sufficiently regular φ. Thus

−
∫ ∞

0

kt+tn (s)�wn(t − s)ds → −m�û(t).

This completes the proof. �
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