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A minimum feedback arc set of a directed graph G is a smallest set of arcs whose removal

makes G acyclic. Its cardinality is denoted by β(G). We show that a simple Eulerian

digraph with n vertices and m arcs has β(G) � m2/2n2 + m/2n, and this bound is optimal

for infinitely many m, n. Using this result we prove that a simple Eulerian digraph contains

a cycle of length at most 6n2/m, and has an Eulerian subgraph with minimum degree at

least m2/24n3. Both estimates are tight up to a constant factor. Finally, motivated by a

conjecture of Bollobás and Scott, we also show how to find long cycles in Eulerian digraphs.
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Secondary 05C38

1. Introduction

Extremal problems related to the existence of various types of cycles in graphs are some

of the most basic and well-studied problems in graph theory. Somewhat surprisingly,
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in many cases it turns out that problems that are very easy to solve in the setting of

undirected graphs become much more challenging in the setting of digraphs. A prime

example is the well-known Caccetta–Häggkvist conjecture [4] (see below for more details).

In some other cases, a result that holds for undirected graphs might fail completely for

general digraphs, and so it is natural to find families of digraphs for which the result still

holds. Motivated by a conjecture of Bollobás and Scott [3], we consider in this paper

extremal problems of the above two types.

It is well known that an undirected graph G with n vertices and m edges has a

subgraph with minimum degree at least m/n, and so if m � n such a G also contains

a cycle of length at least m/n + 1. It is natural to ask whether results of this type can

be extended to digraphs. However, it turns out that these statements are often trivially

false even for very dense general digraphs. For instance, a transitive tournament does

not contain any cycle, and its subgraphs always have zero minimum in-degree and out-

degree. Therefore, in order to obtain meaningful results as in the undirected case, it

is necessary to restrict to a smaller family of digraphs. A natural candidate one may

consider is the family of Eulerian digraphs, in which the in-degree equals the out-degree at

each vertex. In this paper we investigate several natural parameters of Eulerian digraphs,

and study the connections between them. In particular, the parameters we consider are

minimum feedback arc set, shortest cycle, longest cycle, and largest minimum degree of any

subgraph. Throughout this paper, we always assume the Eulerian digraph is simple, i.e.,

it has no multiple arcs or loops, but arcs in different directions such as (u, v) and (v, u) are

allowed. For other standard graph-theoretic terminology involved, the reader is referred

to [2].

A feedback arc set of a digraph is a set of arcs whose removal makes the digraph

acyclic. Given a digraph G, denote by β(G) the minimum size of a feedback arc set.

Computing β(G) and finding a corresponding minimum feedback arc set is a fundamental

problem in combinatorial optimization. It has applications in many other fields such as

testing of electronic circuits and efficient deadlock resolution (see, e.g., [8, 10]). However,

computing β(G) turns out to be difficult, and it is NP-hard even for tournaments [1, 5].

One basic question in this area is to bound β(G) as a function of other parameters of

G, and there are several papers (see, e.g., [6, 7, 11]) studying upper bounds for β(G) of

this form. However, much less is known about lower bounds for β(G), perhaps because

a general digraph could be very dense and still have a small minimum feedback arc set.

For example, a transitive tournament has β(G) = 0. Nevertheless, it is easy to see that

any Eulerian digraph G with n vertices and m arcs has β(G) � m/n, since the arcs can be

decomposed into a disjoint union of cycles, each of length at most n, and any feedback

arc set contains at least one arc from each cycle. In this paper we actually prove the

following much stronger lower bound for β(G), and show that it is tight for an infinite

family of Eulerian digraphs.

Theorem 1.1. Every Eulerian digraph G with n vertices and m arcs has β(G) � m2/2n2 +

m/2n. Furthermore, if n|m then there exists an Eulerian digraph G with n vertices and m

arcs with β(G) = m2/2n2 + m/2n.
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As mentioned earlier, many problems related to cycles in undirected graphs are much

harder to solve in the setting of digraphs. One of the most famous problems of this type

is the celebrated Caccetta–Häggkvist conjecture [4]: every directed n-vertex digraph with

minimum out-degree at least r contains a cycle with length at most �n/r�, which is not

completely solved even when restricted to Eulerian digraphs (for more discussion, we

direct the interested reader to the surveys [9, 12]). In this paper we study the existence of

short cycles in Eulerian digraphs with a given order and size. The girth g(G) of a digraph

G is defined as the length of the shortest cycle in G. Combining Theorem 1.1 and a result

of Fox, Keevash and Sudakov [7] which connects β(G) and g(G) for a general digraph G,

we are able to obtain the following corollary.

Corollary 1.2. Every Eulerian digraph G with n vertices and m arcs has g(G) � 6n2/m.

We also point out that the upper bound in Corollary 1.2 is tight up to a constant, since

the construction of Theorem 1.1 also provides an example of Eulerian digraphs with girth

at least n2/m.

A repeated application of Corollary 1.2 gives an Eulerian subgraph of the original

digraph G, whose arc set is a disjoint union of Ω(m2/n2) cycles. Using this fact we can

find an Eulerian subgraph of G with large minimum degree.

Theorem 1.3. Every Eulerian digraph G with n vertices and m arcs has an Eulerian sub-

graph with minimum degree at least m2/24n3. This bound is tight up to a constant for

infinitely many m, n.

In 1996, Bollobás and Scott ([3], Conjecture 6) asked whether every Eulerian digraph G

with non-negative arc-weighting w contains a cycle of weight at least cw(G)/n, where w(G)

is the total weight and c is some absolute constant. For the unweighted case, i.e., w = 1,

this conjecture becomes: ‘Is it true that every Eulerian digraph with n vertices and m arcs

contains a cycle of length at least cm/n?’ Even this special case is still wide open after 15

years. An obvious consequence of Theorem 1.3 is that every Eulerian digraph contains a

cycle of length at least 1 + m2/24n3. This can be slightly improved to 1 + m2/2n3 using

Theorem 1.1 and the simple fact that any digraph has a cycle of length at least β(G)/n

(see Section 4). When the digraph is dense, i.e., m = cn2, our theorem provides a cycle

of length linear in n, which partially verifies the Bollobás–Scott conjecture in this range.

However, observe that when m is small, in particular when m = o(n3/2), Theorem 1.3

becomes meaningless. Nevertheless, we can always find a long cycle of length at least

�
√
m/n� + 1, as shown by the following proposition.1

Proposition 1.4. Every Eulerian digraph G with n vertices and m arcs has a cycle of

length at least 1 + �
√

m/n�. Together with Theorem 1.1 and the fact that any digraph

1 This proposition was also obtained independently by Jacques Verstraete.
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has a cycle of length at least β(G)/n, this implies that G has a cycle of length at least

1 + max{m2/2n3, �
√

m/n�}.

The rest of this paper is organized as follows. In Section 2, we obtain our bounds for

feedback arc sets by proving Theorem 1.1. Section 3 contains the proofs of our results for

the existence of short cycles, long cycles, and subgraph with large minimum degree. The

final section contains some concluding remarks and open problems.

2. Feedback arc sets

This section contains the proofs of Theorem 1.1. Consider some linear order of the vertex

set of an Eulerian digraph G = (V , E) with n vertices and m arcs. Let vi be the ith vertex

in this order. We say that vi is before vj if i < j. An arc (vi, vj) is a forward arc if i < j, and

is a backward arc if i > j. Observe that every cycle contains at least one backward arc.

Hence, β(G) is precisely the minimum number of backward arcs over all linear orderings.

We prove Theorem 1.1 by showing that any linear order of V has at least as many

backward arcs as the amount stated in the theorem. We first require the following simple

lemma. Here a cut is defined as a partition of the vertices of a digraph into two disjoint

subsets.

Lemma 2.1. In any cut (A,V \ A) of an Eulerian digraph, the number of arcs from A to

V \ A equals the number of arcs from V \ A to A.

Proof. The sum of the out-degrees of the vertices of A equals the sum of the in-degrees

of the vertices of A. Each arc with both endpoints in A contributes one unit to each of

these sums. Hence, the number of arcs with only one endpoint in A splits equally between

arcs that go from A to V \ A and arcs that go from V \ A to A.

Proof of Theorem 1.1. First we construct an infinite family of Eulerian digraphs that

achieves the bound in Theorem 1.1. For any positive integers n, m such that t := m/n is an

integer, we define the Cayley digraph G(n, m) to have vertex set {0, 1, . . . , n − 1} and arc

set {(i, i + j) : 1 � i � n, 1 � j � t}, where all additions are modulo n. From the definition,

it is easy to verify that G(n, m) is an Eulerian digraph. Consider an order of the vertex

set such that vertex i is the ith vertex in this order. We observe that for n − t + 1 � i � n,

vertex i has backward arcs (i, j), where 1 � j � t − (n − i) and there is no backward arc

from vertex i for i � n − t. Therefore,

β(G(n, m)) �
n∑

i=n−t+1

t − (n − i) =

t∑
j=1

j =

(
t + 1

2

)
=

m2

2n2
+

m

2n
.

Next we prove the bound for arbitrary Eulerian digraph. Fix an Eulerian digraph G

with |V | = n and |E| = m. We claim that it suffices to only consider Eulerian digraphs

which are 2-cycle-free, i.e., between any pair of vertices {i, j} there do not exist arcs in two

different directions. Suppose there are k different 2-cycles in G. By removing all of them,

we delete exactly 2k arcs. Note that the resulting 2-cycle-free digraph G′ is still Eulerian

https://doi.org/10.1017/S0963548313000394 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000394


Large Feedback Arc Sets and Long Cycles in Eulerian digraphs 863

and contains m − 2k arcs. Therefore if Theorem 1.1 is true for all 2-cycle-free Eulerian

digraphs, then

β(G′) � (m − 2k)2

2n2
+

m − 2k

2n
.

Obviously, in any linear order of V (G), exactly half of the 2k arcs deleted must be

backward arcs. Therefore,

β(G) � β(G′) + k � (m − 2k)2

2n2
+

m − 2k

2n
+ k =

(
m2

2n2
+

m

2n

)
− 2k(m − k)

n2
+ k − k

n

�
(
m2

2n2
+

m

2n

)
−

2k
(
n
2

)
n2

+ k − k

n
=

m2

2n2
+

m

2n
.

The last inequality follows from the fact that m − k �
(
n
2

)
, since m − k counts the number

of pairs of vertices with one arc between them.

From now on, we always assume that G is a 2-cycle-free Eulerian digraph. In order

to prove a lower bound on β(G), we fix a linear ordering v1 < v2 < · · · < vn with the

minimum number, β(G), of backward arcs. It will be important for the analysis to

consider the length of an arc (vi, vj), which is |i − j|. Observe that the length of any arc

is an integer in {1, . . . , n − 1}. Moreover, we call an arc short if its length is at most n/2.

Otherwise, it is long.

Partition the arc set E into two parts, S and L, where S contains the short arcs and L

contains the long arcs. For a vertex vi, let si denote the number of short arcs connecting

vi with some vj where j > i. It is important to note that at this point we claim nothing

regarding the directions of these arcs. Since G is 2-cycle-free, si � n − i. As each short arc

(vi, vj) contributes exactly one to either si or sj , we have that

n∑
i=1

si = |S |.

We now estimate the sum of the lengths of the short arcs. Consider some vertex vi.

Since G is 2-cycle-free, the si short arcs connecting vi to vertices appearing after vi must

have distinct lengths. Hence, the sum of their lengths is at least 1 + 2 + · · · + si =
(
si+1

2

)
.

Thus, denoting by w(S) the sum of the lengths of the short arcs, we have that

w(S) �
n∑

i=1

(
si + 1

2

)
. (2.1)

Next we calculate the sum of the lengths of the long arcs, which is denoted by w(L).

There is at most one long arc of length n − 1. There are at most two arcs of length n − 2,

and, more generally, there are at most n − i arcs of length i. Thus, if we denote by ti the

number of long arcs of length i for i � �n/2� + 1 and set ti = 0 for i � �n/2�, we have

that ti � n − i, and

w(L) =

n∑
i=1

i · ti. (2.2)
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Obviously,

n∑
i=1

ti +

n∑
i=1

si = |L| + |S | = m.

Let Ai = {v1, . . . , vi} and consider the cuts Ci = (Ai, V \ Ai) for i = 1, . . . , n. Let ci denote

the number of arcs crossing Ci (and notice that cn = 0). Since an arc of length x crosses

precisely x of these cuts, we have that

n∑
i=1

ci = w(S) + w(L). (2.3)

Consider a pair of cuts Ci, Ci+�n/2� for i = 1, . . . , �n/2�. If an arc crosses both Ci and

Ci+�n/2� then its length is at least �n/2� + 1. Hence, a short arc cannot cross both of these

cuts. Let yi denote the number of long arcs that cross both of these cuts. By Lemma 2.1,

ci/2 backward arcs cross Ci and ci+�n/2�/2 backward arcs cross Ci+�n/2�, and we have

counted at most yi such arcs twice. It follows that the number of backward arcs is at least

1

2
(ci + ci+�n/2�) − yi.

Averaging over all �n/2� such pairs of cuts, it follows that the number of backward arcs

is at least

1

�n/2�

�n/2�∑
i=1

(
1

2
(ci + ci+�n/2�) − yi

)
. (2.4)

As each long arc of length j crosses precisely j − �n/2� pairs of cuts Ci and Ci+�n/2�, we

have

�n/2�∑
i=1

yi =
∑

j��n/2�

tj(j − �n/2�) = w(L) − |L| · �n/2�.

This, together with (2.3) and (2.4), gives

β(G) � 1

�n/2�

(
1

2
(w(S) + w(L)) − (w(L) − |L| · �n/2�)

)

� w(S) − w(L)

2�n/2� + |L|. (2.5)

Note that when n = 2k is even, the above inequality becomes

β(G) � w(S) − w(L)

n
+ |L|.

Next we show that when n = 2k + 1 is odd, the same inequality still holds. To see this, first

assume that w(S) � w(L). Then, applying inequality (2.5), we have that for n = 2k + 1,

β(G) � w(S) − w(L)

2k
+ |L| � w(S) − w(L)

n
+ |L|.

Next suppose that w(S) < w(L). Instead of considering the cuts Ci and Ci+k , we look at

the pair Ci and Ci+k+1 for i = 1, . . . , k. Moreover, denote by zi the number of long arcs
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that cross both of these cuts. By an argument similar to that used earlier, the number

of backward arcs is at least 1
2
(ci + ci+k+1) − zi for 1 � i � k, and ci/2 for i = k + 1. This

provides k + 1 lower bounds for β(G), and we will average over all of them. Since each

long arc of length j crosses precisely j − (k + 1) pairs of cuts Ci and Ci+k+1, we again

have that

k∑
i=1

zi =
∑

j�k+1

tj(j − (k + 1)) = w(L) − (k + 1)|L|,

and we have

β(G) � 1

k + 1

( k∑
i=1

(
1

2
(ci + ci+k+1) − zi

)
+

ck+1

2

)

� 1

k + 1

(
1

2
(w(S) + w(L)) − (w(L) − (k + 1)|L|)

)

� w(S) − w(L)

2k + 2
+ |L| � w(S) − w(L)

n
+ |L|,

where we use the fact that w(L) > w(S).

Using our lower bound estimate (2.1) for w(S) and the expression (2.2) for w(L), we

obtain

β(G) � w(S) − w(L)

n
+ |L|

� 1

n

( n∑
i=1

(
si + 1

2

)
−

n∑
i=1

i · ti
)

+

n∑
i=1

ti (2.6)

=
1

n

( n∑
i=1

(
si + 1

2

)
+ (n − i)ti

)
.

Define

F(s1, . . . , sn; t1, . . . , tn) :=

n∑
i=1

(
si + 1

2

)
+ (n − i)ti.

In order to find a lower bound of β(G), we need to solve the following integer optimization

problem:

F(m, n) := minF(s1, . . . , sn; t1, . . . , tn)

subject to si � n − i, ti � n − i,

n∑
i=1

si +

n∑
i=1

ti = m.

Lemma 2.2 below provides a precise solution to this optimization problem, which gives

that F(m, n) = tm − (t2 − t)n/2, where t = �m/n�. Hence, if we assume that m = tn − k
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with 0 � k � n − 1, then

β(G) � 1

n
F(m, n) =

tm

n
− t2 − t

2
=

t(tn − k)

n
− t2 − t

2

=
t2 + t

2
− tk

n
� t2 + t

2
− tk

n
+

(
k2

2n2
− k

2n

)

=
(tn − k)2

2n2
+

tn − k

2n
=

m2

2n2
+

m

2n
.

The last inequality is because 0 � k � n − 1, so 0 � k/n < 1 and k2/2n2 � k/2n. Note that

equality is possible only when m is a multiple of n.

Lemma 2.2. F(m, n) = tm − (t2 − t)n/2, where t = �m/n�.

Proof. The proof of this lemma consists of several claims. We set ai = si + ti. Then

0 � ai � 2(n − i), si � n − i, and
∑

i ai = m, and the objective function becomes(
si + 1

2

)
+ (n − i)ti =

1

2
s2i − (n − i − 1/2)si + (n − i)ai.

Since si is an integer, this function of si is minimized when si = n − i if ai � n − i, and

when si = ai if ai < n − i. Therefore, subject to
∑

i ai = m and ai � 2(n − i), we want to

minimize

F =
∑

ai<n−i

(
ai + 1

2

)
+

∑
ai�n−i

((
n − i + 1

2

)
+ (n − i)(ai − (n − i))

)

=
∑

ai<n−i

(
ai + 1

2

)
+

∑
ai�n−i

(
(n − i)ai −

(
n − i

2

))
. (2.7)

For convenience, define A = {i : ai < n − i}, and B = {i : ai � n − i}.

Claim 1. For any i ∈ A, if we increase ai by 1 then F increases by ai + 1, and if we

decrease ai by 1 then F decreases by ai. For any j ∈ B, if we increase (decrease) aj by 1

then F increases (decreases) by n − j.

Proof. Note that when ai = n − i or ai = n − i − 1,
(
ai+1

2

)
= (n − i)ai −

(
n−i
2

)
, therefore

if we increase ai by 1 for any i ∈ A, the contribution of ai to F always increases by(
ai+2

2

)
−

(
ai+1

2

)
= ai + 1. When we decrease ai by 1, F decreases by

(
ai+1

2

)
−

(
ai
2

)
= ai. It is

also easy to see that for any j ∈ B, if we increase or decrease aj by 1, the contribution of

aj to F always increases or decreases by n − j.

Claim 2. F is minimized when A = {1, . . . , l − 1} and B = {l, . . . , n} for some integer l.

Proof. We prove Claim 2 by contradiction. Suppose this statement is false. Then F is

minimized by some {ai}ni=1 such that there exists i < j, i ∈ B and j ∈ A. Now we decrease

ai by 1 and increase aj by 1, which can be done since aj < 2(n − j). Then by Claim 1,
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F decreases by (n − i) − (aj + 1) � n − (j − 1) − (aj + 1) = (n − j) − aj > 0 since j ∈ A,

which contradicts the minimality of F .

We have
∑n

i=1 ai = m, which is fixed. The next claim shows that in order to minimize

F , we need to take the variables whose index is in B to be as large as possible, with at

most one exception.

Claim 3. F is minimized when A = {1, . . . , l − 1} and B = {l, . . . , n} for some integer l.

Moreover, ai = 2(n − i) for all i � l + 1.

Proof. First note that for i ∈ B, its contribution to F is (n − i)ai −
(
n−i
2

)
. The second term

is fixed, and ai has coefficient n − i which decreases in i. Therefore, when F is minimized,

if i is the largest index in B such that ai < 2(n − i), then all j < i in B must satisfy

aj = n − j; otherwise we might decrease aj and increase ai to make F smaller. Therefore,

if i > l, we have ai−1 = n − i + 1. Note that if we increase ai by 1 and decrease ai−1 by

1, by Claim 1 the target function F decreases by ai−1 − (n − i) = 1. Therefore the only

possibility is that i = l, which proves Claim 3.

Claim 4. There is an extremal configuration for which ai = n − l or ai = n − l + 1 for

i � l − 1, al is between n − l and 2(n − l), and ai = 2(n − i) for i � l + 1.

Proof. From Claim 3, we know that in an extremal configuration, ai < n − i for

1 � i � l − 1, n − l � al � 2(n − l), and ai = 2(n − i) for i � l + 1. Among all extremal

configurations, we take one with the largest l, and for all such configurations, we take

one for which al is the smallest. For such a configuration, if we increase aj by 1 for

some j ∈ A and decrease al by 1, then by Claim 1, F increases by (aj + 1) − (n − l), which

must be non-negative. Suppose aj + 1 = n − l. If j is changed to be in B, it contradicts

Claim 3 no matter whether l remains in B or is changed to be in A; if j remains in A, it

contradicts the maximality of l if l is changed to be in A or contradicts the minimality of

al if l remains in B. Therefore aj � n − l for every 1 � j � l − 1. We next consider two

cases: either al is equal to 2(n − l), or strictly less than 2(n − l).

Case 1: al = 2(n − l). From the discussions above, we already know that aj � n − l for

every 1 � j � l − 1. In particular al−1 = n − l, since it is strictly less than n − (l − 1). If,

for some j � l − 1, aj � n − l + 2, then we can decrease aj by 1 and increase al−1 by 1,

since aj is strictly greater than 0 and al−1 is strictly less than 2(n − l + 1). By Claim 1, F

decreases by aj − (n − l + 1) � 1, which contradicts the minimality of F . Hence we have

that n − l � aj � n − l + 1 for every j � l − 1.

Case 2: al < 2(n − l). If we decrease aj by 1 and increase al by 1, F decreases by aj − (n − l)

by Claim 1. Therefore aj � n − l by the minimality of F , and hence aj = n − l for all

1 � j � l − 1.

In both cases, the extremal configuration consists of n − l or n − l + 1 for the first l − 1

variables, al is between n − l and 2(n − l), and ai = 2(n − i) for i � l + 1.
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By Claim 4, we can bound the number of arcs m from both sides:

m =

l−1∑
i=1

ai +

n∑
i=l

ai � (l − 1)(n − l) + (n − l) +

n∑
i=l+1

2(n − i) = (n − l)(n − 1),

m =

l−1∑
i=1

ai +

n∑
i=l

ai < (l − 1)(n − l + 1) +

n∑
i=l

2(n − i) = (n − l + 1)(n − 1).

Solving these two inequalities, we get

n − m

n − 1
� l < n + 1 − m

n − 1
.

Let m = tn − k, where t = �m/n� and 0 � k � n − 1. It is not difficult to check that if

t � k, l = n − t and if t < k, l = n − t + 1.

Now let x be the number of variables a1, . . . , al−1 which are equal to n − l + 1. Since

ai = 2(n − i) for i � l + 1, we have that

x + al = m − (l − 1)(n − l) −
∑
i�l+1

ai = m − (n − 2)(n − l). (2.8)

When t � k, then l = n − t and

x + al = m − (n − 2)t = 2t − k < 2t = 2(n − l),

and hence al < 2(n − l). By the analysis of the second case in Claim 4, aj = n − l = t

for all j � l − 1, and therefore x = 0 and al = 2t − k. Since l = n − t, then using the

summation formula
∑n

k=1 k
2 = k(k + 1)(2k + 1)/6, we have from (2.7) that (with details

of the calculation omitted)

F =

(
t + 1

2

)
(n − t − 1) + t(2t − k) −

(
t

2

)
+

∑
i�l+1

(
2(n − i)2 −

(
n − i

2

))

= tm − (t2 − t)n/2.

Now we assume t < k, and so l = n − t + 1. Then, using (2.8) again,

x + al = m − (n − 2)(t − 1) = n − k + 2(t − 1) > 2(t − 1) = 2(n − l).

The only possibility without contradicting the second case in Claim 4 is that al = 2(n − l)

and x = n − k. Thus there are n − k of a1, . . . , al−1 which are equal to n − l + 1 = t, and

the rest of k − t are equal to t − 1. Again by (2.7),

F =

(
t + 1

2

)
(n − k) +

(
t

2

)
(k − t) +

∑
i�l

(
2(n − i)2 −

(
n − i

2

))
= tm − (t2 − t)n/2.

As we have covered both cases, we have completed the proof of Lemma 2.2.

3. Short cycles, long cycles, and Eulerian subgraphs with high minimum degree

In this section, we prove the existence of short cycles, long cycles, and subgraphs with

large minimum degree in Eulerian digraphs. An important component in our proofs is the
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following result by Fox, Keevash and Sudakov [7] on general digraphs. We point out that

the original Theorem 1.2 in [7] was proved with a constant 25, which can be improved to

18 using exactly the same proof if we further assume r � 11.

Theorem 3.1. If a digraph G on n vertices has β(G) > 18n2/r2, with r � 11, then G contains

a cycle of length at most r, i.e., g(G) � r.

Applying this theorem and Theorem 1.1, we can now prove Corollary 1.2, which says

that every Eulerian digraph G with n vertices and m arcs contains a cycle of length at

most 6n2/m.

Proof of Corollary 1.2. Let r = 6n2/m. Given an Eulerian digraph G with n vertices

and m arcs, if G contains a 2-cycle, then g(G) � 2 � 6n2/m. So we may assume that G is

2-cycle-free and thus m �
(
n
2

)
. By Theorem 1.1,

β(G) � m2

2n2
+

m

2n
>

m2

2n2
=

18n2

(6n2/m)2
.

Since r = 6n2/m > 6n2/
(
n
2

)
> 11, we can use Theorem 3.1 to conclude that

g(G) � r =
6n2

m
.

To see that this bound is tight up to a constant factor, we consider the construction of

the Cayley digraphs in Theorem 1.1. It is not hard to see that if k = m/n, the shortest

directed cycle in G(n, m) has length at least �n/k� � n2/m.

Next we show that every Eulerian digraph with n vertices and m arcs has an Eulerian

subgraph with minimum degree Ω(m2/n3).

Proof of Theorem 1.3. We start with an Eulerian digraph G with n vertices and m arcs.

Note that Corollary 1.2 implies that every Eulerian digraph with n vertices and at least

m/2 arcs contains a cycle of length at most 12n2/m. In every step, we pick one such cycle

and delete all of its arcs from G. Obviously the resulting digraph is still Eulerian, and

this process will continue until there are less than m/2 arcs left in the digraph. Therefore

through this process we obtain a collection C of t arc-disjoint cycles C1, . . . , Ct, where

t � (m − m/2)/(12n2/m) � m2/24n2. Denote by H the union of all these cycles, where

obviously H is an Eulerian subgraph of G.

If H has minimum degree at least �t/n� � m2/24n3, then we are already done. Otherwise,

we repeatedly delete from H any vertex v with degree d(v) � �t/n� − 1, together with all

the d(v) cycles in C passing through v. This process stops after a finite number of steps.

In the end we delete at most n(�t/n� − 1) � t − 1 cycles in C , so the resulting digraph H ′

is non-empty. Moreover, every vertex in H ′ has degree at least �t/n� � m2/24n3. Since H ′

is the disjoint union of the remaining cycles, it is also an Eulerian subgraph of G, and we

conclude the proof of Theorem 1.3.
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Figure 1. The Eulerian digraph H(s, t) with s = 3.

Remark. The proof of Theorem 1.3 also shows that G contains an Eulerian subgraph

with minimum degree Ω(m2/n3) and at least Ω(m) arcs.

To see that the bound in Theorem 1.3 is tight up to a constant, for any integers s, t > 0,

we construct an Eulerian digraph H := H(s, t) such that:

• V (H) = (U1 ∪ · · · ∪ Us) ∪ (V1 ∪ · · · ∪ Vt), |Ui| = |Vj | = s for 1 � i � s, 1 � j � t,

• for any 1 � i � t − 1 and vertices u ∈ Vi, v ∈ Vi+1, the arc (u, v) ∈ E(H),

• for any 1 � i � s and every vertex u ∈ Ui, there is an arc from u to the ith vertex in

V1, and another arc from the ith vertex in Vt to u.

It can be verified that H(s, t) is an Eulerian digraph with (s + t)s vertices and s2(t + 1)

arcs. Moreover, every cycle in H(s, t) must pass through a vertex in U1 ∪ · · · ∪ Us, whose

degree is exactly 1. Therefore any Eulerian subgraph of H(s, t) has minimum degree at

most 1. Next we define the δ-blowup H(s, t, δ): for any integer δ > 0, we replace every

vertex i ∈ V (H(s, t)) with an independent set |Wi| = δ, and each arc (i, j) ∈ E(H(s, t)) by

a complete bipartite digraph with arcs directed from Wi to Wj . The blowup digraph

H(s, t, δ) is still Eulerian, and has n = s(s + t)δ vertices and m = s2(t + 1)δ2 arcs. Taking

t = 2s, we have that for H(s, 2s, δ),

m2

n3
=

(s2(2s + 1)δ2)2

(s(s + 2s)δ)3
=

1

27

(
2 +

1

s

)2

δ � 4

27
δ.

Note that, similarly to the previous discussion on H(s, t), every cycle in the blowup

H(s, 2s, δ) contains at least one vertex with degree δ. Therefore, the minimum degree of

any Eulerian subgraph of H(s, 2s, δ) is at most δ � 27
4

m2

n3 . This implies that the bound in

Theorem 1.3 is tight up to a constant factor for infinitely many m, n.

Before proving Proposition 1.4, let us recall the following easy fact.
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Proposition 3.2. If a digraph G has minimum out-degree δ+(G), then G contains a directed

cycle of length at least δ+(G) + 1.

Proof. Let P = v1 → v2 → · · · → vt be the longest directed path in G. Then all the

out-neighbours of vt must lie on this path, otherwise P will become longer. If i < t

is minimal with (vt, vi) ∈ E(G), then vi → · · · → vt → vi gives a cycle of length at least

d+(vt) + 1 � δ+(G) + 1.

This proposition, together with Theorem 1.3, shows that an Eulerian digraph G with

n vertices and m arcs contains a cycle of length at least 1 + m2/24n3. As discussed in

the Introduction, this can be slightly improved to 1 + m2/2n3, but these bounds become

meaningless when the number of arcs m is small. However, we may use a different

approach to obtain a cycle of length at least �
√
m/n� + 1.

Proof of Proposition 1.4. To prove that any Eulerian digraph G with n vertices and

m arcs has a cycle of length at least �
√

m/n� + 1, we use induction on the number of

vertices n. Note that the base case when n = 2 is obvious, since the only Eulerian digraph

is the 2-cycle with �
√
m/n� + 1 = 2. Suppose the statement is true for n − 1. Consider an

Eulerian digraph G with n vertices and m arcs. If its minimum degree δ+(G) is at least

�
√
m/n�, by Proposition 3.2, G already contains a cycle of length at least 1 + �

√
m/n�.

Therefore we can assume that there exists a vertex v with �
√
m/n� > d+(v) := t. As G is

Eulerian, there exist t arc-disjoint cycles C1, C2, . . . , Ct passing through v. If one of these

cycles has length at least �
√
m/n� + 1, then again we are done. Otherwise, |Ci| � �

√
m/n�

for all 1 � i � t. Now we delete from G the vertex v together with the arcs of the cycles

C1, . . . , Ct. The resulting Eulerian digraph has n − 1 vertices and m′ arcs, where

m′ = m −
t∑

i=1

|Ci| � m − t�
√

m/n� � m

(
1 − 1

n

)
.

By the inductive hypothesis, the new digraph (therefore G) has a cycle of length at least

1 +
√
m′/(n − 1) � 1 +

√
m

(
1 − 1

n

)
/(n − 1) � 1 + �

√
m/n�.

4. Concluding remarks

We end with some remarks on the Bollobás–Scott conjecture whose unweighted version

states that an Eulerian digraph with n vertices and m arcs has a cycle of length Ω(m/n).

The ‘canonical’ proof for showing that an undirected graph with this many vertices and

edges has a cycle of length m/n proceeds by first passing to a subgraph G′ with minimum

degree at least m/n and then applying Proposition 3.2 to G′. We can then interpret the

second statement of Theorem 1.3 as stating that when applied to Eulerian digraphs, this

approach can only produce cycles of length O(m2/n3).

There is, however, another way to show that an undirected graph has a cycle of length

m/n using depth-first search (DFS). Recall that the DFS is a graph algorithm that visits
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all the vertices of a (directed or undirected) graph G as follows. It maintains three sets of

vertices, letting S be the set of vertices which we have completed exploring them, T be

the set of unvisited vertices, and U = V (G) \ (S ∪ T ), where the vertices of U are kept in

a stack (a last-in first-out data structure). The DFS starts with S = U = ∅ and T = V (G).

While there is a vertex in V (G) \ S , if U is non-empty, let v be the last vertex that was

added to U. If v has a neighbour u ∈ T , the algorithm inserts u into U and repeats this

step. If v does not have a neighbour in T then v is popped out from U and is inserted

into S . If U is empty, the algorithm chooses an arbitrary vertex from T and pushes it to

U. Observe crucially that all the vertices in U form a directed path, and that there are no

edges from S to T .

Consider any DFS tree T of an undirected graph G rooted at some vertex v. Recall

that any edge of G is either an arc of T or a back arc, that is, an edge connecting a

vertex v to one of its ancestors in T . Hence, if G has no cycle of length at least t, then

any vertex of T sends at most t − 1 arcs to his ancestors in T . This means that m � nt or

that t � m/n. Note that this argument shows that any DFS tree of an undirected graph

has depth at least m/n. For directed graphs, however, not all arcs are tree arcs or back

arcs. Nevertheless, the set of back arcs form a feedback arc set, and hence, if the longest

cycle of a digraph G has length t, then tn � β(G). It is natural to try and adapt the DFS

approach to the case of Eulerian digraphs. Unfortunately, as the following proposition

shows, this approach fails in Eulerian digraphs.

Proposition 4.1. There is an Eulerian digraph G with average degree at least
√
n/20 such

that some DFS tree of G has depth 4.

Proof. We first define a graph G′ as follows. Let t be a positive integer and let G′ be

a graph consisting of 2t vertex sets V1, . . . , V2t, each of size t. We also have a special

vertex r, so G′ has 2t2 + 1 vertices. We now define the arcs of G′ using the following

iterative process. We have t iterations, where in iteration 1 � j � t we add the following

arcs; we have t arcs pointing from r to the t vertices of Vj , then a matching from the t

vertices of Vj to the vertices of Vj+1, and in general a matching from Vk to Vk+1 for every

j � k � 2t − j. We finally have t arcs from V2t−j+1 to r. We note that we can indeed add

a new (disjoint from previous ones) matching between any pair of sets (Vk, Vk+1) in each

of the t iterations by relying on the fact that the edges of the complete bipartite graph

Kt,t can be split into t perfect matchings. Observe that in iteration j we add t(2t − 2j + 3)

arcs to G′. Hence G′ has

t∑
j=1

t(2t − 2j + 3) � t3

arcs. Moreover it is easy to see from construction that G′ is Eulerian. To get the graph

G we modify G′ as follows. For every vertex v ∈
⋃2t

i=1 Vi we add two new vertices vin, vout

and add a 4-cycle (r, vin, v, vout, r). We get that G has 6t2 + 1 vertices and more than t3

arcs, so setting n = 6t2 + 1 we see that G has average degree at least
√
n/20.
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Now consider a DFS tree of G which proceeds as follows. We start at r, and then for

every v ∈ V2t go to vin, then to v, and then to vout. Next, for every v ∈ V2t−1 we go to vin,

then to v, and then to vout. We continue in this way until we cover all the vertices of G.

The DFS tree we thus get has r as its root, and 2t2 paths of length 3 (of type r, vin, v, vout)

attached to it.

Observe that the above proposition does not rule out the possibility that some DFS tree

has depth Ω(m/n). We note that proving such a claim will imply that an Eulerian digraph

has a path of length Ω(m/n). It appears that even this special case of the Bollobás–Scott

conjecture is still open, so it might be interesting to investigate this problem further. In

fact, we suspect that if G is a connected Eulerian digraph then for any vertex v ∈ G there

is a path of length Ω(m/n) starting at v. This statement for undirected graphs follows

from the DFS argument at the beginning of this section.
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