
TLP 14 (3): 363–377, 2014. C© Cambridge University Press 2012

doi:10.1017/S1471068412000361 First published online 30 October 2012

363

Technical Notes

Redundant Sudoku rules

BART DEMOEN

Department of Computer Science, KU Leuven, Belgium

(e-mail: bart.demoen@cs.kuleuven.be)

MARIA GARCIA DE LA BANDA

Faculty of Information Technology, Monash University, Australia

(e-mail: Maria.GarciaDeLaBanda@monash.edu)

submitted 15 February 2012; revised 17 July 2012; accepted 17 July 2012

Abstract

The rules of Sudoku are often specified using 27 all different constraints, referred to as

the big constraints. Using graphical proofs and exploratory logic programming, the following

main and new result is obtained: Many subsets of six of these big constraints are redundant

(i.e., they are entailed by the remaining 21 constraints), and six is maximal (i.e., removing

more than six constraints is not possible while maintaining equivalence). The corresponding

result for binary inequality constraints, referred to as the small constraints, is stated as a

conjecture.

KEYWORDS: Sudoku, all different constraints, inequalities, maximal redundancy

1 Introduction

On the 18th of May 2008, the following question was posted on rec.puzzles:

“What’s the minimum amount of checking that needs to be done to show that a

completed 9×9 grid is valid?”. We prove that the short answer is: “21 all different

constraints.” The complete answer shown here is the result of a set of theorems

whose proofs are presented in an intuitive graphical representation, together with a

set of Prolog programs1 whose help was welcomed for guiding our intuition, and

for dealing with some of the combinatorial explosion resulting from the symmetries

of the Sudoku puzzle.

A very common formulation of the Sudoku (Jussien 2007; Wikipedia n.d.) puzzle

is as follows: Each 3×3 box, as well as each row and each column, must contain all

the numbers from 1 to 9. As a constraint satisfaction problem (CSP), the Sudoku

1 The relevant programs are available at http://people.cs.kuleuven.be/bart.demoen/sudokutplp. We have
used different Prolog systems, including SICStus Prolog, B-Prolog, and hProlog. These programs run
in other systems with little change.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

364 B. Demoen and M. Garcia de la Banda

puzzle can be modeled using a set of 81 variables xij , one per row i ∈ [1..9] and

column j ∈ [1..9], 81 domain constraints indicating that the domain of each xij is

[1..9], and 27 all different constraints with 9 variables each (9 constraints for the

variables in each of the rows, another 9 for each of the columns, and a final 9 for

each of the boxes). We refer to these 27 constraints as the big constraints and use the

word Sudoku in italics to denote the associated CSP model, i.e., the one containing

all 27 big constraints together with the 81 domain constraints. An all different

constraint can also be formulated as the pairwise binary inequality constraints of

its input variables. For example, all different({y1, y2, y3}) is logically equivalent to

the conjunction of the constraints y1 �= y2, y1 �= y3, and y2 �= y3. We refer to these

binary �=–constraints as the small constraints. When Sudoku is modeled using small

constraints, it is easy to see that each cell is involved in 20 small constraints: 8 in the

same box, 6 in the same row, and 6 in the same column. Since there are 81 cells, and

each constraint is posted twice, there are in total 810 different small constraints (as

opposed to 27 big ones). Whenever a CSP model M specified using (big or small)

constraints, together with the 81 domain constraints, is equivalent to Sudoku (i.e., it

has the same set of solutions), we say M is Sudoku.

It was always intuitively clear to us that some of the small constraints must be

redundant, i.e., entailed by the others. However, the questions “which and what is

the size of the largest redundant set of small constraints?” remained to be answered.

The situation was even worse for big constraints: when we started this research, it

was not even clear to us whether any single big constraint is redundant. Both issues

are attacked here: we give a complete answer for the big constraints, and a partial

answer for the small constraints.

We begin by recalling some common Sudoku-related terminology in Section 2.

Section 3 introduces our graphical representation of Sudoku modeled with big

constraints. This representation significantly simplifies the reasoning required for

showing that some sets of big constraints with six or less elements are redundant

(Section 4). We then describe a Prolog program that systematically applies these two

positive lemmas to find all sets of redundant big constraints with six or less elements

(Section 5). While doing this, we discover seven negative lemmas (Section 5.1). The

combination of positive and negative lemmas results in a complete classification of

all sets of 21 (27 – 6) big constraints (Section 5.2). We then turn to the study of sets

of seven big constraints and show that none of them are redundant (Section 5.3).

As before, our Prolog program discovers a new negative lemma, whose proof is also

presented graphically. We then show that at least 20% of the small constraints can be

redundant (Section 6), and conjecture that no more is possible. Finally, in Section 7

we conclude and discuss related work and possible extensions.

2 Terminology

The 27 big constraints in Sudoku correspond to the 27 regions in which its board

is usually divided (see the attached picture): the 9 rows, 9 columns, and 9 boxes,

whose big constraints will be denoted as R1, . . . , R9, as C1, . . . , C9, and as B1, . . . , B9

respectively. We use the word horizontal (vertical) chute to refer to three horizontal

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 365

(vertical) boxes. For instance, the boxes associated to constraints B2, B5, and B8

denote a vertical chute.

9B

2B1B 3B

4B 5B 6B

7B 8BR8
R9

R7
R6
R5
R4
R3
R2
R1

C C2 C3 C4 C5 C6 C7 C8 C91

As mentioned above, we are interested in exploring Sudoku models where some

big constraints are missing. In the following, we will use Missing(n) to denote the

set of Sudoku models that have 27 − n big constraints. For example, every model in

Missing(5) has 22 big constraints (plus, of course, the usual 81 domain constraints).

3 A graphical representation of sets of big constraints

The standard set notation is not visually clear once the number of elements in the

set is high. Since we will be dealing mostly with sets of more than 20 big constraints,

we have developed a graphical representation of the Sudoku model that we find

more useful. This graphical representation always shows the borders of the boxes

of a Sudoku board and assumes that all 81 domain constraints are specified in the

model. Further, all 27 big constraints are also specified unless they are explicitly

represented as missing in the figure. A column, row, or box constraint is represented

as missing if it is shaded. Figure 1 shows an example.

The pictures provide a quick and intuitive view into which big constraints are

present and not present in the model. Note that the absence of a big constraint does

not mean it is violated, simply that it has not been specified in the associated model.

Using the same idea, we can represent a set of big constraints applicable only to

a chute (any chute): this is illustrated in Figure 2.

Fig. 1. The left-hand side of the figure shows Sudoku, i.e., a CSP model with all domain

constraints and all big constraints; the right-hand side shows a model with all domain

constraints as usual, but with only 22 out of the 27 big constraints, since C2, R5, B2, B5, and

B7 are marked as missing.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

366 B. Demoen and M. Garcia de la Banda

Fig. 2. The left-hand side represents a chute where all row constraints (R1, R2, and R3) and

box constraints (B1, B2, and B3) are present, while the middle one is missing B2 and the right

one is missing both B2 and R2. Note that, as before, the 27 domain constraints associated to

the cells in the chute are assumed to be present in all three pictures.

4 Two constructive lemmas

Let us now prove two positive lemmas, i.e., how a subset of big constraints can be

shown to entail another big constraint.

Lemma 4.1

The conjunction of big constraints in {R1, R2, R3, B1, B3} entails B2. This is repre-

sented graphically by means of the following picture:

Proof

Let us fill the chute with 27 numbers so that the constraints in are

satisfied. To do so, let us try to place any value N ∈ 1..9 in the chute. Since R1, R2,

and R3 are present, there must be exactly one N in each row, which means there

must be three Ns in the chute. Since B1 and B3 are also present, exactly one of these

three Ns must be in box 1 and exactly another one in box 3. This leaves exactly one

(the third) N in box 2. Since this holds for any N ∈ 1..9, B2 also holds. �

The dual of Lemma 4.1 is Lemma 4.2.

Lemma 4.2

Proof

Let us fill the chute with 27 numbers so that the constraints in are

satisfied. To do so, let us again try to place any value N ∈ 1..9 in the chute. Since

B1, B2, and B3 are present, there must be exactly one N in each box, which means

there must be three Ns in the chute. Since R1 and R3 are also present, exactly one

of these three Ns must be in row 1 and exactly another one in row 3. This leaves

exactly one (the third) N in row 2. As before, this means R2 also holds. �

From now on we assume that the graphical representation is clear enough not to

require accompanying text. Together with the trivial lemma ,

the above two lemmas form the building blocks of a corollary and a whole set of

theorems: We simply glue several applications of these lemmas to form a new one,

as exemplified in the following picture:

+ =

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 367

We are now ready for our corollary.

Corollary 4.3

and are both Sudoku.

Proof

Glue together twice the trivial lemma with Lemmas 4.1 and 4.2 respectively, and

obtain the result immediately. �

Taking into account the symmetries of the puzzle, it follows that every single big

constraint is (by itself) redundant, i.e., every model in Missing(1) is Sudoku! We will

see later that this is not true for any other Missing(n) with n > 1.

Note that the two lemmas really are constructive, i.e., they show how to infer one

new big constraint from a set of big constraints. The following two theorems exploit

that constructive power to reason further about redundancy.

Theorem 4.4

is Sudoku.

Proof

We prove this by repeatedly using Lemmas 4.1 and 4.2 as follows:

where the first five rewrites use Lemma 4.1, and the last step uses Lemma 4.2. �

Theorem 4.5

is Sudoku.

Proof

We prove this by repeatedly using Lemma 4.2 as follows:

�

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

368 B. Demoen and M. Garcia de la Banda

classify_each([], [], []).
classify_each([Model|MissingN], Stuck, Reducibles) :-

exhaustively_apply_lemmas(Model, NewModel),
(has_all_bigs(NewModel) ->

Reducibles = [Model|Tail],
classify_each(MissingN, Stuck, Tail)

;
Stuck = [NewModel|Tail],
classify_each(MissingN, Tail, Reducibles)

).

exhaustively_apply_lemmas(Model, NewModel) :-
(apply_lemmaI(Model, ModelI) ->

exhaustively_apply_lemmas(ModelI, NewModel)
; apply_lemmaII(Model, ModelII) ->

exhaustively_apply_lemmas(ModelII, NewModel)
;

NewModel = Model
).

Fig. 3. Program I.

Each of the above two theorems shows a model in Missing(6) that is Sudoku.

While there are many symmetric versions of these theorems, we have chosen those

that are visually most pleasing to us. The next section fully classifies Missing(6).

5 A full classification of Missing(6)

Lemmas 4.1 and 4.2 allow us to add a new big constraint to a set of big

constraints while retaining equivalence, as shown in the proof of Theorem 4.4.

We use this to implement a Prolog program that attempts to classify all models in

Missing(6) as either Sudoku or not, and whose simplified form is shown Figure 3.

Intuitively, the program receives as input in MissingN a list with all models in

Missing(n), for some particular n. Then for each model Model of MissingN, it

exhaustively applies Lemmas 4.1 and 4.2 computing the (possibly reduced) model

in NewModel. If NewModel contains the 27 big constraints (and, thus, it is Sudoku) it

adds Model to the Reducible list, and otherwise it adds NewModel to the list Stuck

of models with less than 27 big constraints at which it got stuck. These latter models

need special attention.

While the number of models in Missing(6) is relatively small (296,010), we can

further reduce it by eliminating the spatially symmetric models. We have run2

complete the Program I over the (reduced) set of Missing(n) for n = 6 (from which

we can also derive the results for n ∈ 2..5). Surprisingly, the program only failed to

prove equivalence to Sudoku for the following models:

2 See file classify.pl at the already mentioned website; the actual Prolog code has an extra argument
collecting the models shown in Appendix B.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 369

Note that while the last two are models in Missing(6), the others (from right

to left) are models in Missing(5),Missing(4),Missing(3), and Missing(2), which were

obtained during the proving process by applying Lemma 4.1 or 4.2 to some model

in Missing(6). As we prove in the next section, none of these seven models is Sudoku,

and thus none of the models in Missing(6) whose proof got stuck is Sudoku either.

This is because if a model M in Missing(n) is not Sudoku, then any model M ′ in

Missing(n′) where n′ > n and the constraints in M ′ are a subset of those in M,

cannot be Sudoku either.

5.1 Seven negative lemmas

We proceed by proving seven negative lemmas, stating that each of the seven models

shown above is not Sudoku. The proof to each lemma consists of two pictures:

the left picture represents a solution to the Sudoku puzzle where the circled cells

have the specified value of 4 or 5 (note that there might be many solutions that

satisfy this). For example, in the first lemma, the left picture represents any solution

where cell x11 has value 4 and cell x13 has value 5. The right picture in any proof

represents the result of changing every circled 4 in the left picture by a circled 5,

and vice versa. In all cases the result is a non-solution (to Sudoku) with the violated

big constraints depicted as shaded. These violated constraints are exactly those that,

if removed, the lemma claims cannot yield Sudoku. Since the picture proves that if

the big constraints in question are removed then the non-solution is accepted as a

solution, lemma is proved.

Lemma 5.1

is not Sudoku.

Proof

4 5 5 4

�

The other six negative lemmas follow the same schema. We expect readers to work

out the details for them after convincing themselves that such an initial solution

exists for each proof (some such solutions are provided in Appendix C).

Lemma 5.2

is not Sudoku.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

370 B. Demoen and M. Garcia de la Banda

Proof

4 5

�

Lemma 5.3

is not Sudoku.

Proof

4 5 5 4

�

Lemma 5.4

is not Sudoku.

Proof

4
4

5
545

54

�

Lemma 5.5

is not Sudoku.

Proof

45

4

4 5

5

�

Lemma 5.6

is not Sudoku.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 371

Proof

4
4

4

5
5

5 5

5

5

4
4

4

�

Lemma 5.7

is not Sudoku.

Proof

54 5

45 54

4

�

5.2 Making use of negative lemmas

The above positive and negative lemmas give us a complete method for determining

whether any model in Missing(6) is Sudoku or not: If the application of the

constructive lemmas results in Sudoku, then the model is Sudoku, otherwise it will get

stuck in one of the seven negative models, and thus is known not to be Sudoku. In

this sense, the two constructive lemmas are complete (and also confluent). This can

be used to render our first program more useful by changing the classify each/3

predicate to also check whether the models that do not have all 27 big constraints

are one of the seven negative lemmas. If so, it ignores them, otherwise, as before,

it adds them to Stuck. Note that, for the case of Missing(6), Stuck is then empty.

We refer to the modified version of Program I by Program II, and we have further

modified it to generate the pictures3 that can be found in Appendices A and B:

We run this modified program with n = 6, and for each model in (the reduced)

Missing(6) a picture is output. Interestingly, there are 39 different models in (the

symmetry reduced) Missing(6) that are Sudoku, and 70 that are not.

5.3 No model in Missing(7) is Sudoku

When we run Program II with n = 7, every model gets stuck either in one of the

previous seven lemmas, or in a model with a new set of big constraints. This model

results in one more negative lemma, which is not implied by any of the previous

negative lemmas.

3 See file genfigs.pl at the website.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

372 B. Demoen and M. Garcia de la Banda

Lemma 5.8

is not Sudoku.

Proof

4 5
5 4

4

4
4 5

5

5

�

Readers can easily check that none of the models in Lemma 5.1 up to Lemma 5.7

is contained in the above model. As a result, no model in Missing(7) is Sudoku. Or

put otherwise, no redundant set of big constraints has more than six elements.

5.4 Generalizing to puzzles of size N

Our techniques can be readily applied to the investigation of Sudoku puzzles of

different sizes. Up to now, we have dealt with puzzles of size 3, i.e., there are 34 cells,

in a 32 by 32 board, with 32 rows, columns, and boxes. Clearly, Lemmas 4.1 and 4.2

easily generalize to other sizes. For example, for size 4, one just needs to add one

non-shaded block constraint to the pictures to ensure that the lemmas remain true.

This suggests that for size n, no model in Missing(2×n + 1) is Sudoku. Proving

this, however, is outside the scope of the current paper.

6 Redundancy for small constraints

For each of the models in Missing(6) one can easily count the number of different

small constraints it represents: for the ones that are Sudoku, the highest count is 690,

and the lowest count is 648. This lowest count occurs only for the set of Theorem

4.5, and we denote the model with this set of small constraints by Small4.5.

It seems worth trying to remove small constraints from Small4.5 and check whether

the resulting model is still Sudoku. To achieve this, we have implemented a Prolog

program4 that selects every small constraint x �= y in Small4.5, creates a new set

Rest = Small4.5 \ {x �= y}, and then tries to prove Rest is not Sudoku by posting

all constraints in Rest plus constraint x = y to a constraint solver and running the

solver on a set of Sudoku puzzles. If a solution is found, then Rest cannot be Sudoku,

since x cannot be equal to y in it. Note that this is similar to our manual treatment

of the set of models classified as stuck by Program I, where each model is proved

not to be Sudoku by finding a solution to the model that is not a solution of Sudoku.

The (simplified) Prolog program is provided in Figure 4. The set of Sudoku puzzles

that we have used comes from Royle’s (2006) website and consists of more than

4 See file sudoku648.pl at the website.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 373

try_each_inequality(Model):-
remove(X#\=Y,Model,Rest),
(gordonRoyle(Givens), solve([X#=Y|Rest],Givens) ->

writeln(is_not_Sudoku(Rest))
;

writeln(maybe_Sudoku(Rest))
).

Fig. 4. Program III.

50,000 minimal Sudoku puzzles, each containing 17 given entries: their minimality

was proven recently in McGuire et al. (2012). We refer to this set as GR.

Interestingly, the above program determines that every strict subset Rest of Small4.5
is not Sudoku: for each Rest, there is indeed a puzzle in GR which has a solution

that makes the two variables in the removed inequality equal. This proves that the

set Small4.5 forms a locally minimal set of small constraints for Sudoku. This was

independently verified by Michael Codish (Private communication, 2012) by running

a CNF-encoding of that statement using the BEE-compiler described in Metodi and

Codish (2012). Moreover, using the same technology, we were jointly able to prove

that each of the 39 models M of Missing(6) that are Sudoku (see Appendix A) has

the following property:

M has a subset of inequalities of size 648 that is Sudoku and is also a locally

minimal set of small constraints.

We were not able to reduce those Ms any further, i.e., beyond 648. Although these

results do not allow us to conclude that Sudoku models with a smaller set of small

constraints are not possible, we dare to conjecture the following:

Conjecture. No model with less than 648 small constraints is Sudoku.

7 Discussion and conclusion

The message in rec.puzzles mentioned in the Introduction also refers essentially to

our Corollary 4.3, i.e., that in every chute, one row (or column) constraint needs no

checking if the other constraints in that chute are validated.5 Clearly, other people

have wondered about redundant big constraints in Sudoku, and our main result –

many sets of six big constraints are redundant – often surprises people. It is all the

more interesting that the popular (Ist et al. 2006) refers to the “minimal encoding”

as one containing all big rules: our results clearly indicate that such encoding is

not minimal at all. Further, while redundant rules can strengthen propagation and,

thus, reduce the search space, it has already been noted (Kwon and Jain 2006)

that the classical Conjunctive Normal Form encodings for Sudoku in SAT generate

too many redundant clauses, and compact encodings (which eliminate redundant

clauses) are more efficient. Our work can be used to inform such encodings.

5 At the time of that post, we had already completed our classification of big constraints.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

374 B. Demoen and M. Garcia de la Banda

Our conjecture that no model with less than 648 small constraints is Sudoku

remains to be proven. While the combinatorial challenge is great, we are currently

investigating the use of unavoidable sets as in McGuire et al. (2012). We have also

obtained a full classification of models that use small constraints for the more

restricted problem of Latin Squares (Demoen and Garcia de la Banda 2012).

Apart from our novel results themselves, and the use of exploratory (Constraint)

Logic Programming, this paper also introduces a powerful graphical representation

of sets of constraints that renders the proofs easy to understand, and can be reused

for larger Sudoku puzzles.

Exploratory programming was essential in this research: it helped us discover

potential theorems and lemmas which we subsequently turned into hard general

proofs. Further, the use of Prolog has been critical: as can be seen from the website,

the programs are small, fast, and easy to read and modify. This would have been

very difficult without the combined power of backtracking (for almost everything,

particularly finding all solutions satisfying a set of conditions), constraint solving

(to easily define Sudoku and test the satisfiability of many of its subsets), and logic

variables (to easily identify and access the variables in the model).

Redundant constraints are very often good for the performance of constraint

solving systems, and indeed all solvers that we checked perform much slower

(about a factor 2000) with a minimal set of big constraints. So it might seem

counterproductive to try to find redundant constraints if the aim is to remove them.

However, our work gives some insight into the construction of new (redundant)

inequality constraints: while deriving new equalities from a set of equalities is easy

because equality is transitive, this does not hold for inequalities. The difficulty

and possibility of deriving new inequalities depends crucially on the domains of

variables. For instance, from a chain of inequalities x1 �= x2 �= . . . �= xn between

boolean variables, one may conclude that x1 �= x4 (among others), but if the domains

have a larger cardinality, this is no longer true. Since our work provides a complete

set of rewrite rules on sets of all different constraints (together with the domain

constraints) for a particular CSP, it forms the first step in the development of a

more general inequality inference framework.

Finally, note that our result on big constraints completes in some sense the result

in McGuire et al. (2012): 17 clues are necessary, and so are 21 big constraints. It

would be interesting to have the corresponding result for small constraints.

Acknowledgements

The main results reported here were obtained while the first author was on a research

visit at Monash University in April 2008, and enjoying the Stuckey hospitality in

Apollo Bay and Elwood, Australia. Many thanks for the most enjoyable stay. We are

grateful to Michael Codish for his help for obtaining some of the results related to the

conjecture. This research was partly sponsored by the Australian Research Council

grant DP110102258, by the Brussels-Capital Region through project ParAps, and

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 375

by the Research Foundation Flanders (FWO) through projects WOG: Declarative

Methods in Computer Science and G.0221.07.

Appendix A: All Sudoku models in Missing(6) up to symmetry

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

376 B. Demoen and M. Garcia de la Banda

Appendix B: All non-Sudoku models in Missing(6) up to symmetry

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

Redundant Sudoku rules 377

Appendix C: Initial solved puzzles for Lemma 5.1 up to Lemma 5.8

4 1 5 2 3 6 7 8 9
2 3 6 7 8 9 1 4 5
7 8 9 1 4 5 2 3 6
1 2 3 4 5 7 6 9 8

45 7 6 9 8 3 1 2
6 9 8 3 1 2 4 5 7
3 5 2 8 6 1 9 7 4
8 6 1 9 7 4 5 2 3
9 7 4 5 2 3 8 6 1

1 2 3 4 8 9
5 8 9

3
2 1 3 5 9

9

4 3 9
1 9 4

9 7 5 3 1

4 32176
987 21 654
4 6 8 7

3 5 7 8 1 62 4
6 9 8 2 14 7 3 5

5 6 1 2 7
8

8
6 7 5 3 2

2 8 46

5 76 1 4 2 3 5 6 7 8 9
3 5 6 7 8 9 1 2 4
7 8 9 1 2 4 3 5 6
2 1 3 4 6 5 8 9 7

5 8 9 7 2 1 3
8 9 7 2 1 3 4 6 5
5 2 4 6 3 1 9 7 8
6 3 1 9 7 8 5 4 2
9 7 8 5 4 2 6 3 1

4 6

1 2 3 6 4 7 5 8 9
5 6 7 1 8 9 2 3 4
8 9 4 5 2 3 1 6 7
2 1 5 4 3 6 7 9 8

8 7 9 1 6 2 5
6 7 9 2 5 8 3 4 1
4 3 1 8 6 5 9 7 2
7 8 6 9 1 2 4 5 3
9 5 2 3 7 4 8 1 6

3 4

1 2 3 4 6 7 5 8 9
5 6 7 1 8 9 2 3 4
8 9 4 2 5 3 1 6 7
2 1 6 3 4 5 7 9 8

5 7 9 8 6 1 2
7 8 9 6 1 2 3 4 5
4 3 2 8 7 1 9 5 6
6 5 1 9 2 4 8 7 3
9 7 8 5 3 6 4 2 1

3 4

1 2 3 6 4 7 8 5 9
5 6 7 1 8 9 2 3 4
8 9 2 3 1 6 7
2 1 3 7 6 9 8

43 6 8 9 1 7 2 5
7 8 9 2 5 4 3 1 6
9 3 1 6 8 7 2
4 7 2 9 1 5 6 8 3
6 5 8 7 3 2 9 4 1

4 5
5 4

4 5

1 2 3 5 6 7 4 8 9
4 6 7 1 8 9 2 3 5
8 9 2 3 1 6 7
2 1 6 3 5 4 7 9 8

53 8 7 9 1 6 2 4
9 7 6 2 8 3 1
5 3 1 8 7 2 9 4 6
6 4 2 9 1 5 8 7 3
7 8 9 4 3 6 5 1 2

5 4

4 5

1 2 3 6 4 7 5 8 9
5 6 7 1 8 9 2 3 4
8 9 2 3 1 6 7
2 1 3 7 6 9 8

43 6 8 9 1 7 2 5
7 8 9 2 5 4 3 1 6
4 3 1 7 6 5 8 9 2
9 5 2 1 8 6 7 3
6 7 8 9 3 2 4 5 1

4 5
5 4

4

References

Demoen, B. and Garcia de la Banda, M. 2012. Maximal Sets of Redundant Constraints in

Latin Square. Monash University, no. 2012/269. Technical Report.

Ist, I. L., Lynce, I. and Ouaknine, J. 2006. Sudoku as a SAT problem. Proceedings of the 9th

International Symposium on Artificial Intelligence and Mathematics (AIMATH 2006), Fort

Lauderdale, FL, USA. Springer, New York, USA.

Jussien, N. 2007. A to Z of SUDOKU. ISTE, London.

Kwon, G. and Jain, H. 2006. Optimized CNF encoding for Sudoku puzzles. In Short

paper presentation at the 13th International Conference on Logic for Programming Artificial

Intelligence and Reasoning (LPAR 2006).

McGuire, G., Tugemann, B. and Civario, G. 2012. There is no 16-clue Sudoku: Solving the

Sudoku minimum number of clues problem. CoRR abs/1201.0749.

Metodi, A. and Codish, M. 2012. Compiling finite domain constraints to SAT with BEE.

Theory and Practice of Logic Programming 12, 4–5, 445–464.

Royle, G. Minimum Sudoku. Accessed September 2012. URL: http://school.maths.uwa.edu.

au/∼gordon/sudokumin.php.

Wikipedia. n.d. Sudoku. Accessed September 2012. URL: http://en.wikipedia.org/wiki/

Sudoku.

https://doi.org/10.1017/S1471068412000361 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068412000361

