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The effects of nanoscale nuclei on cavitation

Zhan Gao1, Wangxia Wu2 and Bing Wang1,†
1School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
2School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China

(Received 16 November 2019; revised 9 October 2020; accepted 19 November 2020)

Under certain conditions, experimental values of the tensile strength of water are found
to be much lower than theoretical values, even when the water is purified and degassed
as much as possible. The discrepancy could be ascribed to stabilized nanobubbles
or nanoparticles suspended in the liquid, as such contaminants cannot be eliminated
completely from a substantial liquid volume. Thus, the present study aims at elucidating
the effects of such nanoscale nuclei on cavitation. A parameter-free mathematical model
is derived to predict the cavitation arising from nanoscale nuclei, based on classical
nucleation theory. To verify the model, molecular dynamics is used to simulate cavitation
at nuclei of different sizes, embedded either in water or in liquid copper at different
temperatures. The cavitation pressures calculated from the molecular dynamics results are
compared with the predictions of the present mathematical model, with a good agreement
between them. The results show that nanoscale nuclei significantly promote cavitation, i.e.
the tensile strength is reduced notably by the presence of nanoscale nuclei. The tensile
strength decreases when the size of nuclei increases, and the change rule of cavitation
pressure is also affected by the liquid properties, such as liquid temperature. The present
study may provide an acceptable explanation of the discrepancy between theory and
experiment on the cavitation pressure in liquids purified and degassed as much as possible.

Key words: cavitation

1. Introduction

Cavitation is the process of rupturing a liquid by decrease in pressure at roughly constant
liquid temperature (Brennen 1995), which can cause significant consequences in nature
and technological applications. For instance, cavitation in a snapping shrimp’s claw
shutting can cause intense flashes of light (Lohse, Schmitz & Versluis 2001), and cavitation
around a turbine’s vanes may induce their severe erosion (Li 2015). For its application,
cavitation enables surface cleaning (Ohl et al. 2006) as well as non-invasive drug delivery
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(Coussios & Roy 2008). Cavitation in practical situations commonly occurs at pre-existing
cavitation nuclei within the liquid, which has been studied in a considerable amount of
research (Greenspan & Tschiegg 1967; Caupin & Herbert 2006). To the best knowledge
of the authors, Harvey et al. (1944) were the first to demonstrate the effect of pre-existing
gas cavities on cavitation, and attributed the measured low tensile strength of plain water
to gaseous nuclei, a view since shared by many other researchers. For a detailed review
concerned with pre-existing gaseous nuclei, the reader should refer to Jones, Evans &
Galvin (1999). In general, these gaseous nuclei are stabilized micrometre-sized bubbles
located on container walls (Andersen & Mørch 2015) or particle surfaces (Arora, Ohl &
Mørch 2004; Borkent, Arora & Ohl 2007; Borkent et al. 2008; Zhang et al. 2014), or
freely suspended within the liquid (Yount, Gillary & Hoffman 1984). However, under the
condition that the liquid is purified and degassed as much as possible and away from any
walls, where the existence of micrometre-sized gaseous nuclei is greatly suppressed, like
in the experiments by Herbert, Balibar & Caupin (2006), the obtained tensile strengths
(less than 30 MPa) are still far away from about 140 MPa, which is expected theoretically
and reached in the inclusion experiments by Zheng et al. (1991) and Azouzi et al. (2012).
The reason for such a discrepancy still remains unclear.

To explain this discrepancy, this study concentrates on the nanoscale nuclei providing
preferential sites for cavitation, like nanobubbles and nanoscale particles, since dissolved
gases as well as nanoscale contaminants are virtually impossible to eliminate completely
from any substantial liquid volume. Mørch (2018) discussed the possibility of nanoscale
gas bubbles and/or droplets serving as cavitation nuclei, which can be stabilized by the
surface tension forces of the bounding water molecules, and can be in gas diffusion
balance with the surrounding liquid. The stabilization of a nanobubble on a heterogeneous
substrate is studied by molecular dynamics simulations (Zhou 2020). Li, Gu & Chen
(2018) simulated cavitation from particles of 0.5 to 2 nm, indicating that both hydrophobic
and hydrophilic nanoparticles can promote cavitation, and cavitation with hydrophobic
nanoparticles is promoted to a greater extent than that with hydrophilic nanoparticles.
However, the evaluation of the influence of such nanoscale nuclei on cavitation is still
limited. It is hard to observe cavitation nuclei at the nanoscale, and thus it is challenging
to quantify their effects on cavitation through experimental research. In the present
study, theoretical analysis (by extending the classical nucleation theory) and numerical
simulation (by the molecular dynamics method) are considered. Classical nucleation
theory (CNT) is a theoretical model widely used to study homogeneous cavitation, and
its reliability in predicting homogeneous cavitation has been verified by experiments
(Azouzi et al. 2012) and numerical simulations (Menzl et al. 2016). It is the basis of
modern nucleation theory such as the density functional method (Oxtoby & Evans 1988)
and kinetic nucleation theory (Shen & Debenedetti 2003). The concepts and practical
application method of CNT have been developed to cover heterogeneous cavitation, such
as cavitation at a smooth rigid surface (Blander & Katz 1975). The present study further
models the cavitation arising from nanoscale nuclei, allowing evaluation of their effects
on cavitation.

Molecular dynamics (MD) simulation could capture the microscopic dynamics of the
cavitation process. Thus, it is an important supplement and verification to the theoretical
analysis. It has been utilized successfully to simulate homogeneous cavitation in water
(Abascal et al. 2013) and liquid copper (Cai, Wu & Luo 2014) and heterogeneous cavitation
(Okumura & Itoh 2014; Li et al. 2018). The present study performs non-equilibrium
MD simulations of cavitation in liquids (including water and liquid copper) suspended
with nanoscale nuclei, and the effects of nuclei size and liquid properties are discussed
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in detail. The aim is to verify whether the present model could be used for different liquids
through simulating two kinds of liquids, and the selection of liquid copper is following the
previous simulation (Cai et al. 2014), which gives a guideline for simulation configuration
and references to the liquid properties. For the simulations, ultrasonic waves are used to
stimulate the cavitation, referring to prior research (Okumura & Itoh 2014).

This paper is organized as follows. Section 2 describes in detail the physical model,
and then gives a brief mathematical derivation; the detailed derivation is provided in
appendix A. Section 3 describes the simulation methods employed to stimulate cavitation
and demonstrates the estimation of the cavitation pressure from the simulation results. The
finite-size effect verification conducted to confirm the reliability of the MD simulations
is provided in appendix B. The comparison between simulations containing an actual
nanoparticle and an equivalent void is provided in appendix C. Section 4 presents and
discusses the results obtained in the MD simulations, and the effects of the nanoscale
nuclei size and liquid properties are analysed. Section 5 summarizes the conclusions.

2. Cavitation at nanoscale nuclei: physical and mathematical models

2.1. Physical model
There has already been a wide array of existing models about cavitation. The so-called
classical model, dating back to Volmer & Weber (1926) and many other researchers,
describes cavitation in a homogeneous solution or that catalysed by the presence of
another material (Jones et al. 1999), from the thermodynamic point of view. Harvey et al.
(1944) regarded the pre-existing gas cavities adhering to surfaces as potential cavitation
nuclei, whose stabilities are determined by the surface geometry and the gas–surface
contact angles, etc. The circumstances of skin-stabilized micrometre-sized gas bubbles
freely suspended in liquid (Yount 1979) or attached on solid walls (Andersen & Mørch
2015) are also representative as gaseous nuclei. Although the aforementioned models
have great significance for understanding cavitation in most scenarios, they still could
not explain the discrepancies of the tensile strength of highly purified water (purified and
degassed as much as possible) between the experimental measurements and theoretical
predictions. It is just the speculation that such discrepancies could be ascribed to nanoscale
nuclei suspended in the highly purified water, which are virtually impossible to eliminate
completely, that motivates the present research.

To study cavitation arising from nanoscale nuclei, this subsection proposes the present
physical model, and a schematic diagram is shown in figure 1. Nanoscale nuclei in highly
purified water may be suspended nanoscale gas bubbles and/or droplets as proposed
by Mørch (2018), which could be stabilized by a ‘densely populated shell of liquefied
gas molecules’. On the other hand, they could also be suspended nanoparticles. The
numerical simulations by Li et al. (2018) suggested that both hydrophilic and hydrophobic
nanoparticles promote cavitation in pure water, due to their destabilizing the hydrogen
bond network.

Some issues have been addressed in the way to model cavitation at nanoscale nuclei.
Firstly, the stability mechanism of bulk nanobubbles, as well as their internal and
interfacial properties (like the ζ potential (Cho et al. 2005)) are not clearly understood yet
(Alheshibri et al. 2016). This will lead to difficulty in precisely quantifying the effects of
nanobubbles on cavitation. Secondly, the irregular shapes and different hydrophobicity of
nanoparticles can complicate the objects of study. Finally, gas cavities may also adhere to
nanoparticles as long as the stability condition is satisfied (Sun et al. 2016), and thus their
effects on cavitation inception become highly coupled. The aforementioned will bring a
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Figure 1. Schematic diagram of the study subject: (a) same-sized nanoscale nuclei (spherical voids) evenly
suspended in liquid; (b) close-up of the study subject, which is cut out from the liquid.

difficulty of quantitative analysis. To simplify the analysis and avoid a cumbersome model,
some simplifications should be considered.

On the one hand, the aforementioned nuclei could be represented by equivalent voids,
in terms of their effects on promoting cavitation. The equivalent size of the void is
unnecessarily the same as that of the original nucleus, and it may change accordingly
to be representative when different kinds of effects are considered. On the other hand, the
water in the study exists with a high degree of metastability (the tensile stress is more
than 30 MPa). Under such conditions, thermal fluctuations may dominate the inception of
cavitation rather than other effects. Thus, the simplification of the nanoscale nuclei taken
as equivalent voids may be feasible to some extent.

The present physical model is then derived based on the equivalent voids. For simplicity,
it is assumed that these voids are the same size (with an equivalent radius r0) and evenly
distributed in the pure liquid, so attention can be focused on one cube of liquid with volume
V containing only one single void, which simplifies the study subject and corresponding
derivation. Since the liquid is highly purified, it is reasonable to assume that the volume
of the liquid cube is much larger than that of the nanoscale void. To exclude the effects of
the container walls, this model assumes that the liquid is far away from the wall. Thus in
the present model, the nanoscale spherical void at the centre is the only preferential site
for cavitation.

Under these conditions, when the liquid moves from liquid–vapour equilibrium into a
metastable state (the liquid pressure Pl is lower than its saturated vapour pressure Pe) and
reaches a particular degree of metastability, cavitation will arise at the nanoscale nuclei
(spherical voids) due to the system’s thermal fluctuations. In the next subsection, we will
derive the mathematical model that predicts the variations in the cavitation pressure with
the equivalent size of nuclei and liquid properties.

2.2. Mathematical model
In this subsection, we briefly derive the mathematical model that describes the cavitation
occurring at the nanoscale voids. A detailed derivation is provided in appendix A. The
derivation could be regarded as a development of CNT. The so-called CNT dates back
to the work of Volmer & Weber (1926), Farkas (1927), Zeldovich (1943) and others, and
was originally for droplet condensation from supercooled vapours. It is widely used to
analyse homogeneous cavitation, from a thermodynamic point of view. For a detailed
description of CNT, the reader could refer to the monograph by Debenedetti (1996), and
for a concise derivation to the monograph by Brennen (1995). CNT has been developed to
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cover heterogeneous cavitation, such as cavitation at a smooth rigid surface (see Blander
& Katz 1975). Following their methodology, we further study the cavitation arising at
nanoscale voids, and the derivation is provided below.

In the context of CNT, cavitation is an activated process: a free energy barrier must be
overcome to form a critical nucleus, beyond which the bubble grows spontaneously. In
this derivation, a superscript asterisk denotes the properties related to a critical nucleus;
for instance, W∗ denotes the energy barrier that must be overcome for cavitation to occur.
Exceeding the energy barrier (the formation of the critical nucleus) is ascribed to thermal
fluctuations in the metastable liquid. Its rate per unit volume and time is defined as the rate
of cavitation J, which could be expressed as

J = J0 exp
(

−W∗

kT

)
, (2.1)

where k is the Boltzmann constant, T is the liquid temperature and J0 is a prefactor whose
expression varies (Brennen 1995). The exact value of energy barrier W∗ is much more
important than that of J0 due to the exponential. In this model, J0 = 4

√
2σ/πm r2

0N2/3
0 /V

(its derivation is provided in appendix A), where σ is the surface tension of the liquid–gas
interface, m is the molecular mass, r0 is the radius of the void, N0 is the molecular number
density of the liquid and V is the volume of the object in figure 1. As Brennen (1995,
p. 23) describes:

surface tension is the macroscopic manifestation of the intermolecular forces that tends to hold
molecules together and prevent the formation of large holes . . . it is assumed that its concept
can be extended down to bubbles or vacancies a few intermolecular distances in size. Such an
approximation is surprisingly accurate.

To calculate W∗, the work W required to form a bubble with radius r from a nanoscale
void with radius r0 could be expressed as

W = 4π(r2 − r2
0)σ + 4π

3
(r3 − r3

0)(Pl − Pv), (2.2)

where Pl and Pv are the liquid and vapour pressure, respectively. Given Pl, Pv can
be approximated using the Poynting correction Pv − Pl = δ(Pe − Pl), where δ = 1 −
Pe/N0kT and is called the Poynting correction factor (Blander & Katz 1975). The first
term in (2.2) is the energy cost associated with the increase in the liquid–gas interface
area, which is denoted by WS. The second term is the energy gained due to the increase in
the bubble volume, which is denoted by WV . Figure 2 shows the contributions of the two
terms to W. Because the first term is quadratic and the second term is cubic, the energy
barrier increases at the early stage and then decreases. When the bubble grows to a critical
nucleus, W reaches its maximum.

The critical nucleus size can be derived through dW/dr = 0 and is expressed as

r∗ = 2σ

(Pv − Pl)
= 2σ

δ(Pe − Pl)
, (2.3)

which is identical to Laplace’s law (Brennen 1995). This demonstrates that the critical
nucleus is in an unstable mechanical equilibrium: bubbles smaller than the critical nucleus
shrink spontaneously, while those larger than the critical nucleus grow spontaneously. As
is the case in CNT, r∗ is dependent on the surface tension and the degree of metastability
(Pv − Pl). If the surface tension and the degree of metastability are kept constant, then r∗
will not change, no matter whether a void (smaller than r∗) is included or not. The effect of
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r
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Figure 2. Energy barrier to overcome for the formation of a bubble with radius r from a nanoscale void with
radius r0. The red line is the energy barrier, and the black lines are the two terms that constitute it.

the added void is just to reduce the energy barrier for the thermal fluctuations to overcome
as a critical nucleus is formed, and cavitation is then promoted. Under this condition, the
cavitation inception process could be briefly described as follows: the thermal fluctuations
cause the void to grow from r0 to r∗, and then the bubble grows spontaneously. Substituting
the expression of r∗ in (2.2), the energy barrier for a critical nucleus is derived as

W∗ = 16πσ 3

3δ2(Pe − Pl)
2

(
1 −

(
3 − r0δ(Pe − Pl)

σ

)(
r0δ(Pe − Pl)

2σ

)2
)

. (2.4)

Regarding the rigorous derivation of (2.4), please refer to appendix A. Equations (2.3)
and (2.4) demonstrate that, as the liquid pressure Pl decreases (the degree of metastability
of the liquid increases), the size of the critical nucleus and the energy barrier decrease and
will eventually become low enough to be overcome by thermal fluctuations. Combining
(2.1) and (2.4), the formula for predicting the rate of cavitation arising at nanoscale voids
is expressed as

J = J0 exp

[
−16π

3kT
σ 3

δ2(Pe − Pl)
2

(
1 −

(
3 − r0δ(Pe − Pl)

σ

)(
r0δ(Pe − Pl)

2σ

)2
)]

,

(2.5)
which can be utilized to predict the cavitation pressure in experiments. Assuming that the
liquid pressure is sustained at Pl, the time of application of the tensile stress is Δt, and the
probability Σ of cavitation is

Σ = 1 − exp(−JVΔt). (2.6)

In this study, we use the definition of cavitation pressure Pcav (the magnitude of Pv −
Pcav is the tensile strength) following Caupin et al. (2012): the cavitation pressure Pcav

is defined as the liquid pressure Pl at which Σ = 1/2. Then combining (2.5) and (2.6),
the only unknown quantity is the cavitation pressure, which can be solved through the
algebraic equation.

A demonstration follows utilizing the present model to predict the cavitation pressure in
highly purified water suspended with nanoscale nuclei (represented by voids). Referring
to Herbert et al. (2006), we calculate the cavitation pressure with the parameters V =
2.1 × 10−4 mm3 and Δt = 4.5 × 10−8 s using the present derived model as well as CNT.
The results are shown in figure 3. The formula for predicting the homogeneous cavitation
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Figure 3. Comparison of the water cavitation pressure predicted using the present model and CNT. Here
V = 2.1 × 10−4 mm3 and Δt = 4.5 × 10−8 s. (a) Effect of the nanoscale void size on the cavitation pressure.
(b) Effect of the water temperature on the cavitation pressure.

rate is taken from the review of Blander & Katz (1975) and expressed as

J = N0

√
2σ

πm
exp

[
−16π

3kT
σ 3

δ2(Pe − Pl)
2

]
. (2.7)

Figure 3(a) shows that a nanoscale nucleus with an equivalent radius around
4 nm reduces the tensile strength to 30 MPa, which is commonly obtained in previous
experiments in highly purified water. This indicates that the present model could give
a possible explanation for the discrepancy between the experimental results of highly
purified water (Herbert et al. 2006) and theoretical predictions as well as that reached
in the inclusion experiments by Zheng et al. (1991). Figure 3(a) indicates that even
nanoscale nuclei with an equivalent radius of 1 nm decrease the tensile strength drastically
and larger nuclei decrease it more; and the decrease decelerates as the equivalent size
increases. This can be explained using (2.5): under certain conditions, r3

0(P
e − Pcav) is

approximately equal to a constant, that is, Pcav ≈ −(C/r3
0 + Pe), where C is a constant.

Thus, ∂Pcav/∂r0 ∝ 1/r4
0, so when r0 increases, the decreasing tendency of the tensile

strength is mild. Figure 3(b) shows that when the equivalent size is fixed, the promotion
effect of nuclei on cavitation is reduced at high temperatures and eliminated as the
temperature approaches a critical point.

To verify the present model, MD simulations of cavitation at nanoscale nuclei are
performed in this study, which could capture the microscopic dynamics of the cavitation
process. The following section presents the detailed simulation methods.

3. Molecular dynamics simulation of cavitation at nanoscale nuclei

3.1. The MD method
To verify the mathematical model proposed in § 2.2, non-equilibrium MD simulations
on cavitation at nanoscale nuclei are conducted with an imposed sinusoidal pressure.
This section introduces the simulation method. The simulations are carried out using the
LAMMPS open-source code (Plimpton 1995).

Following the physical model in § 2.1, the object of the simulation is an L-length
cube filled with water or liquid copper, with a spherical nanoscale nucleus embedded
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Figure 4. Schematic diagram of the object of simulation. (a) Diagram of the cubic simulation configuration
and close-up of the embedded nanoscale void. (b) Diagram of the liquid pressure temporal variation.
(c) Illustration of the method used to calculate the mean bubble radius.

at the centre. Periodic boundary conditions are employed and the simulation time step is
set as 1 fs. Figure 4 shows a schematic diagram of the simulation object. The gas–liquid
interface is determined using six detectors in different directions (Fu et al. 2015), which
start from the centre of the bubble and detect the nearest molecule in that direction, as
illustrated in figure 4(c). The distances are denoted as r1 to r6, and their average value r̄ is
the bubble radius.

The nanoscale nucleus with a diameter 2r0 is created by a spherical force field expressed
as

F(r) =
{

−K(r − r0)
2, r < r0,

0, r ≥ r0,
(3.1)

where K is the force constant. The force field repels atoms at a distance smaller than r0
from the centre of a sphere, creating a spherical void which acts as a nanoscale nucleus.
The approach of imposing force field is an equivalent method, not like that placing a
realistic nanoscale nucleus in physics. Different kinds of nuclei could be built by potential
models describing different interatomic interactions, while the complexity of the nuclei
makes it hard to realize. Therefore, the present simulations utilize a void created by the
force field to represent the nucleus, in terms of its effects on promoting cavitation. The
void here is similar to that proposed in the theoretical model, and its size may change
accordingly when different effects are included, which is not always the same as that of
the original nucleus. To demonstrate the reliability of representing the nucleus with a void
created by the force field, we also conduct simulations considering an actual nucleus as
comparison; please refer to appendix C.

In the cavitation process, the liquid–gas surface tension σ is significant. The TIP4P/2005
potential model (Abascal & Vega 2005) is used in water simulations due to its ability to
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mimic water’s properties, including surface tension (Vega & de Miguel 2007; Alejandre
& Chapela 2010). The embedded atom method (EAM) potential model (Mishin et al.
2001) is used in simulations of homogeneous cavitation in liquid copper (Cai et al. 2014,
2016) and is utilized herein. The EAM potential files are distributed online, and the
TIP4P/2005 model is also accomplished in LAMMPS. The interatomic interactions of
water include the Lennard-Jones (LJ) potential and the Coulombic interaction. The LJ
potential is expressed as

VLJ(R) = 4εI

[(σI

R

)12 −
(σI

R

)6
]∣∣∣∣

R≤RC

, (3.2)

where VLJ(R) is the LJ potential energy between two non-bonding atoms with a separation
R, RC is the cutoff radius, εI is the depth of the potential well, σI is the interatomic
distance at which the potential energy is zero, and the subscript I represents the atom
type. The LJ parameters (εI and σI) for different types of atoms are obtained using the
Lorentz–Berthelot combination rule. In simulations of water, the cutoff radius of the LJ
potential is set as 9 Å, and long-range calculations (including the LJ 1/R6 dispersion term
and the Coulombic interaction) are calculated using the particle–particle particle–mesh
(PPPM) method (Eastwood, Hockney & Lawrence 1980).

To construct the object of simulation for the non-equilibrium MD simulation, Packmol
(Martinez et al. 2009) is first used to add liquid molecules/atoms randomly in the cube. The
cube in water simulations contains approximately 1.56 million atoms, and in liquid copper
simulations it contains approximately 4 million atoms. To relax the system to equilibration,
the constant volume–temperature (NVT) ensemble MD simulation is performed for
10 ps, and then the constant pressure–temperature (NPT) ensemble MD simulation is
conducted for 0.5 ns. The equilibrium configuration is then employed for the following
non-equilibrium MD simulation to simulate cavitation. In the simulation, temperature
is controlled by the use of a Nosé–Hoover thermostat and pressure is controlled via the
Andersen barostat (Okumura & Itoh 2014). What should be noted is that it is impossible
to simulate the cases in practical experiments because the computational cost of MD
simulation is very expensive. Taking the simulation case of water as an example, one case
simulating 0.1 ns needs around 14 h on 120 cores of the supercomputer.

As discussed in § 2.2, as the liquid pressure Pl decreases, the energy barrier becomes
low enough to be overcome by thermal fluctuations. Thus, by imposing high-intensity
sinusoidal pressure (ultrasonic waves), cavitation will occur if the liquid pressure becomes
lower than the cavitation pressure during the pressure evolution. Using this method, we
fix the period of sinusoidal pressure to constrain the tension duration, then progressively
increase the pressure amplitude to trigger cavitation. The cavitation pressure can then be
easily estimated, which is described in detail in the next subsection. The sinusoidal liquid
pressure is

Pl(t) = P0 + A sin
(

2π

τ
t
)

, (3.3)

where A is the ultrasonic wave pressure amplitude, the first term P0 is the original pressure
without imposing the ultrasonic wave and is 0.5A, and the second term is the superimposed
ultrasonic wave pressure. Figure 4(b) shows a schematic diagram illustrating the liquid
pressure temporal variation. When P0 = 0.5A, the liquid minimum pressure is −0.5A,
and the duration of liquid under tension is τ ′ = 1

3τ . Thus, the liquid minimum pressure
can be decreased by gradually increasing A while its duration remains constant due to the
constant ultrasonic period.
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Figure 5. Bubble radius–time evolution in a series of water simulations. The ultrasonic period τ = 0.2 ns,
and the other simulation parameters are listed. (a) The raw data and data filtered via the LOESS smoothing
method are presented. (b) Only the filtered data are presented for different pressure amplitudes.

This section describes the ultrasonic waves in the MD simulation. The following
conditions apply to all of the simulations in the present study. The wave speed Vs in the
liquid has an order of magnitude of 103 m s−1. The ultrasonic wave period τ has an order
of magnitude of 1 ns. According to the relationship between the wavelength and period
λ = τVs, the wavelength λ has an order of magnitude of 1 μm. The cubic side length L
has an order of magnitude of 10 nm (L = 25 nm in our water simulations and L = 38
nm in our liquid copper simulations, which was determined after the verification of the
finite-size effect, which is provided in appendix B), which is far less than λ, so the liquid
pressure Pl in the cube is regarded as uniform, and is controlled with an Andersen barostat
in the MD simulation.

3.2. Cavitation inception and cavitation pressure
In the MD simulations of the present study, the ultrasonic amplitude is increased gradually
to investigate the cavitation inception process. First, a series of water simulations are
analysed; see figure 5. The time t = 0 is set when the liquid is under tension (Pl − Pv < 0).
Figure 5(a) presents the temporal variation of the liquid pressure and bubble radius when
r0 = 1 nm, T = 298 K, τ = 0.2 ns and A = 200 MPa. The bubble radius fluctuates, and
the fluctuation is at its maximum when the liquid pressure is minimal at t = 0.033 ns. As
discussed in § 2.2, a bubble larger than the critical nucleus grows spontaneously, but here
no spontaneous growth is observed, not even if the liquid pressure reaches its minimum.
Thus, the bubble remains smaller than the critical nucleus and no cavitation inception
occurs.

Figure 5(b) can be analysed in a similar manner. The simulation conditions are the
same as previously described except that A = 220, 240 and 260 MPa, respectively. The
maximum bubble radius when A = 260 MPa is far larger than the others, which is ascribed
to the bubble’s spontaneous growth after it crosses the cavitation energy barrier. The
aforementioned is a qualitative analysis of cavitation inception, and we also quantitatively
analyse it as follows.

The changes in the maximum bubble radius can be quantified by defining δA as
δA = ((r̄max − r0)/r0)|A. As previously discussed, δA stems from the thermal fluctuation
when the energy barrier is not overcome; but, if the fluctuation exceeds the energy
barrier, the bubble will grow spontaneously and δA will be much larger. Figure 5(b) is
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Figure 6. Bubble radius–time evolution in a series of water simulations. The ultrasonic period τ = 0.2 ns,
and the other simulation parameters are listed.

an example when δ200 = 0.23, δ220 = 0.33, δ240 = 0.4 and δ260 = 0.88. The first three
values increase consistently due to the steady increase in the ultrasonic amplitude (which
causes an increase in the thermal fluctuation), while the last value surges, which is
ascribed to the bubble’s spontaneous growth after cavitation inception. Thus, under these
simulation conditions, when the amplitude of the ultrasonic pressure increases to 260 MPa,
cavitation inception is triggered. Since the minimum liquid pressure equals −0.5A, in the
aforementioned case, the cavitation pressure is between −0.5 × 240 = −120 MPa and
−0.5 × 260 = −130 MPa. As an approximation, we use the average of the two values
as the cavitation pressure under the corresponding conditions, that is, Pcav = −125 MPa.
This kind of approximation is acceptable. Firstly, cavitation pressure predicted by CNT as
well as the present model are generally of the order of −100 MPa, and thus the incremental
step of the amplitude chosen in the water simulations has an appropriate accuracy (the
error is less than 5 MPa). To distinguish the cavitation pressure within an acceptable
range, there is no necessity to adopt an incremental step such as of the order of 1 MPa.
Secondly, the MD simulations are conducted to verify the mathematical model, while
its computational cost is expensive. Thus, choosing a moderate incremental step of the
amplitude is also a trade-off for expense.

We also present a case with a smaller incremental step, 10 MPa, of the ultrasonic
pressure amplitude, shown in figure 6. Similarly, when A = 80 MPa, the maximum bubble
radius is far larger than those under the three other conditions, which is ascribed to the
inception of cavitation. The simulation results (including those in the following sections)
show that the spontaneous growth of the bubble is more pronounced at high temperature,
which may be ascribed to the low surface tension and liquid density (resisting spontaneous
growth of the bubble) in corresponding conditions. In other words, a lower surface tension
and liquid density (when the liquid temperature is raised) generally corresponds to a more
pronounced cavitation inception.

4. Effects of nanoscale nuclei on cavitation

4.1. Cavitation at nanoscale nuclei in water
In the previous subsection, we analysed the cavitation inception process and estimated
the cavitation pressure from the MD results. In this subsection, we present MD water

911 A20-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1049


Z. Gao, W. Wu and B. Wang

0

1

1

3

2

2

3

1

2

2

2

3

3

0

0

1

1

2

3

4

4

2

2

3

4

4

4

6

3

0

0

2

2

A = 40 MPa
A = 60 MPa
A = 80 MPa
A = 100 MPa

A = 60 MPa
A = 80 MPa
A = 100 MPa
A = 120 MPa

A = 80 MPa
A = 100 MPa
A = 120 MPa
A = 140 MPa

A = 70 MPa
A = 90 MPa
A = 110 MPa
A = 130 MPa

A = 150 MPa
A = 170 MPa
A = 190 MPa
A = 210 MPa

A = 10 MPa
A = 30 MPa
A = 50 MPa
A = 70 MPa

A = 30 MPa
A = 50 MPa
A = 70 MPa
A = 90 MPa

A = 40 MPa
A = 60 MPa
A = 80 MPa
A = 100 MPa

A = 30 MPa
A = 50 MPa
A = 70 MPa
A = 90 MPa

A = 110 MPa
A = 130 MPa
A = 150 MPa
A = 170 MPa

0.02 0.04 0.06 0.08
t (ns)

0.10 0 0.02 0.04 0.06 0.08
t (ns)

0.10

r0 = 2 nm, T = 400 K

r0 = 1 nm, T = 400 K

r0 = 1 nm, T = 500 K

r0 = 3 nm, T = 298 K

r0 = 3 nm, T = 353 K

r0 = 3 nm, T = 400 K

r0 = 2 nm, T = 353 K

r0 = 2 nm, T = 298 K

r0 = 1 nm, T = 450 K

r0 = 1 nm, T = 353 K

r̄ 
(n

m
)

r̄ 
(n

m
)

r̄ 
(n

m
)

r̄ 
(n

m
)

r̄ 
(n

m
)

(e)

(b)(a)

(c) (d )

(g) (h)

(i) ( j)

( f )

Figure 7. Bubble radius–time evolution in sets of water simulations under ultrasonic waves with different
amplitudes; r̄ is smoothed via the LOESS smoothing method. All of the ultrasonic periods are 0.2 ns, and the
other simulation parameters are listed.

simulations with different equivalent sizes of nanoscale nuclei within a range of liquid
temperatures, and estimate the dependence of the cavitation pressures on these two
parameters. The equivalent radius ranges from 1 nm to 3 nm, and the water temperature
ranges from 298 K to 500 K. The simulation results of bubble radius are shown in figure 7.
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Figure 8. The cavitation pressure versus the temperature in water when V = (25 nm)3 and Δt = 0.01 ns. The
blue crosses are CNT predictions, the filled black dots and triangles show the estimated cavitation pressure
from the MD results, and the open red circles and triangles are predictions of the theoretical model derived in
§ 2.2.

In each set of simulations, the ultrasonic amplitude is gradually increased with an
incremental step of 20 MPa until cavitation is triggered. When the amplitude is low, the
bubble radius fluctuates randomly, but no spontaneous growth occurs. When the pressure
amplitude is increased beyond a certain limit, the maximum bubble radius is far larger
than before, which is ascribed to cavitation inception. From the qualitative and quantitative
analysis exemplified in § 3.2, it is easy to determine the tensile stress at which cavitation
first occurs with the increase of the pressure amplitude, and corresponding cavitation
pressures are shown in figure 8.

Figure 8 shows that the predictions of the cavitation pressure Pcav by the mathematical
model proposed in § 2.2 are consistent with the MD prediction results for different
equivalent sizes of nuclei and liquid temperatures. To highlight the effect of the nanoscale
nuclei, the numerical results are also compared to the CNT predictions (without nuclei).

The present mathematical model makes a good prediction on the cavitation pressure
under the given study condition. The tensile strength of the liquid (Pv − Pcav) drops
strongly if the equivalent radius of the nucleus is increased from 1 nm to 3 nm, and
it converges towards zero if increased further, as shown in figure 3(a). Likewise, the
tensile strength is reduced if the liquid temperature is increased from 298 K to 500 K.
Thus, the results present that nanoscale nuclei can promote cavitation. The discrepancy
between the CNT predictions (without nuclei in the liquid) and the present mathematical
model suggests that nanoscale nuclei, even with an equivalent radius of the order of
1 nm, are responsible for the reduced tensile strength of ultra-pure water observed at
room temperature. What should be noted is that the prediction results by CNT in figure 7
are about twice those in figure 3, which is ascribed to the difference of VΔt used in the
respective calculations. In the context of CNT, the tensile strength of a liquid is dependent
not only on the waiting time Δt, i.e. the duration of the liquid tension, but also on the
volume of liquid V subjected to the tension (Brennen 1995). From (2.6) and (2.7) one
can get the relation between VΔt and Pcav , and normally VΔt does not affect Pcav too
much, because it is in the logarithm term. As shown by Zheng et al. (1991), the predicted
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Figure 9. Bubble radius–time evolution in sets of liquid copper simulations under ultrasonic waves with
different amplitudes; r̄ is smoothed via the LOESS smoothing method. All of the ultrasonic wave periods
are 0.2 ns, and the other simulation parameters are listed.

tensile strength varies by less than 5 % for Δt ranging between 10−3 s and 103 s, while V
is kept constant. However, the VΔt in figure 7 is 20 orders of magnitude smaller than that
in figure 3, which causes the difference shown in figures 3 and 7. The large gap in VΔt
between practical experiments and our simulations is due to the expensive computational
cost of MD simulations, which has been noted previously.

4.2. Effects of liquid properties
The effects of nanoscale nuclei on cavitation by ultrasonic waves in water was investigated
in § 4.1. To generalize the conclusions, a similar study with liquid copper is presented in
this subsection.
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Figure 10. The cavitation pressure versus the temperature in liquid copper when V = (38 nm)3 and
Δt = 0.01 ns. The blue crosses are the CNT predictions, the filled black dots and triangles show the estimated
cavitation pressure from the MD results, and the open red circles and triangles are predictions of the present
derived model.

In the simulations of liquid copper, the equivalent radius also ranges from 1 nm to
3 nm, and the temperature ranges from 1400 K to 2000 K. The incremental step of the
ultrasonic amplitude is 50 MPa here, considering that the surface tension and density of
liquid copper are far larger than those of water. Results for liquid copper obtained by MD
simulation are shown in figure 9. In figure 10 cavitation pressures estimated from these
results (exemplified for water in § 3.2) and those obtained with the present mathematical
model are compared with the predictions by CNT.

The cavitation pressures of liquid copper obtained by MD simulations agree with those
by the present mathematical model. The results show that the present mathematical model
can be used to analyse the cavitation at nanoscale nuclei in different liquids. Similar to
cavitation in water, cavitation in liquid copper is facilitated by the nuclei: the more, the
larger the equivalent size of nuclei. The difference between the predictions of the CNT
and the present model becomes smaller if the temperature is increased, which is similar to
the tendency in the simulations for the water case. In other words, the ability of nanoscale
nuclei to reduce tensile strength is also affected by the liquid properties: it is suppressed
at high liquid temperature. This could be ascribed to the decrease of the surface tension,
since the surface tension is reduced with increasing liquid temperature.

5. Conclusions

To explain the discrepancy between the tensile strength obtained with highly purified
liquids used in experiments and that predicted by CNT, this study has conducted theoretical
and numerical analyses to clarify the effects of nanoscale nuclei on cavitation in different
liquids, taking water and liquid copper as examples.

Firstly, we derive a theoretical model to predict cavitation pressure, describing cavitation
at nanoscale nuclei, which is a development of CNT. For simplification, a liquid cube
suspended with one equivalent nanoscale void is established, based on the fact that
the nuclei can be solid nanoparticles or stabilized nanobubbles contained in highly
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purified liquids. The size of voids can be changed due to mobility and aggregation, and any
other complex properties of the nanoscale nuclei. Then, MD simulations are performed for
the cavitation at nanoscale nuclei in water and liquid copper triggered by ultrasonic waves,
and the cavitation pressures are obtained from the simulation results and compared with
predictions by the present model. The agreement verifies the present model, indicating
that the model could provide insight into cavitation at nanoscale nuclei. The simulations
of water and liquid copper suggest that the present model has the capacity to be applied
to different liquids. Finally, the analyses are performed to study the influences of nuclei
sizes and liquid properties. The results show that the tensile strength always decreases
as the nuclei size or liquid temperature increases under the study condition. The change
rule of cavitation pressure is also affected by the liquid properties such that the ability of
nanoscale nuclei to reduce tensile strength is suppressed at high liquid temperature.

Both the derived model and MD simulations function well for describing the cavitation
at nanoscale nuclei in a highly purified liquid. The results supply an explanation of the
reported difference between experimental values of tensile strength of highly purified
water and theoretical ones. Also, they can deepen the understanding of the effects of the
smallest cavitation nuclei present in liquids, even if purified and degassed as much as
possible.

The properties of bulk nanobubbles remain yet unclear, and therefore some
simplifications have been taken in the study. The stability mechanism of bulk nanobubbles
should also be studied in the future, and the authors regard that the MD method is a feasible
way, since MD simulations can capture well the internal and interfacial properties of bulk
nanobubbles.
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Appendix A

To develop CNT to cover the cavitation at nanoscale nuclei (nanoscale impurities such as
nanobubbles and nanoparticles), a physical model is proposed in § 2.1 and a mathematical
model is derived briefly in § 2.2. A detailed derivation of the mathematical model is
presented in this appendix.

According to CNT, cavitation is an activated process: a free energy barrier must be
overcome to form a critical nucleus, beyond which the bubble grows spontaneously. For
the model proposed in § 2.1, the energy barrier decreases because of the nanoscale nuclei
(spherical voids) suspended in the liquid, and thus cavitation occurs preferentially at the
voids.

In this derivation, a superscript asterisk is used to denote properties related to a critical
nucleus; n is the number of vapour molecules in a nucleus caused by the void (called the
void nucleus), and n∗ denotes the number of vapour molecules in a critical nucleus that
arise from the void. Referring to Debenedetti (1996), the rate of formation of critical nuclei
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per unit liquid volume and time, that is, the rate of cavitation J, is expressed as

J = 1
n∗∑

n=2

1
βF(n)N(n)

, (A1)

where β is the number of vapour molecules leaving the void nucleus into the liquid per
unit nucleus surface area and time. According to the kinetic theory of gases, it is expressed
as β = Pv/

√
2πmkT , in which Pv is the vapour pressure in the nucleus, m is the molecular

mass, k is the Boltzmann constant and T is the bulk liquid temperature. Above, F(n) is the
surface area of the n-molecule void nucleus; and N(n) is the equilibrium concentration of
the n-molecule void nucleus in the liquid. The latter is expressed as

N(n) = aN2/3
0 exp

(
−W(n)

kT

)
, (A2)

where a = 4πr2
0/V is the surface area of nuclei per unit liquid volume, N0 is the molecular

number density of bulk liquid and W(n) is the energy barrier that must be overcome to
form the n-molecule void nucleus. In the above, aN2/3

0 is the number of molecules on the
void surface per unit liquid volume. When n = 1, W(1) = 0, so N(1) is the number of
molecules on the void surface.

Referring to Debenedetti (1996), if we use the radius r of the void nucleus instead of its
vapour molecule number n to identify its size, the energy barrier that must be overcome
for its formation is expressed as

W(r, Pv) = 4π(r2 − r2
0)σ − 4π

3
(r3 − r3

0)(Pv − Pl) + 4πPv

3
(r3 − r3

0) ln
Pv

P∗
v

, (A3)

where r0 is the radius of the nanoscale void, σ is the surface tension of the liquid–gas
interface, Pl is the liquid pressure and P∗

v is the vapour pressure in the critical nucleus. The
first term in (A3) is the energy cost associated with the increase in the liquid–gas interface
area, the second term is the energy gained due to the increase in the bubble volume, and
the third term is the change in the chemical potential due to the phase transition. When the
nucleus increases to a critical nucleus, the third term will equal zero, and P∗

v − Pl = 2σ/r∗
(Brennen 1995). Thus, the energy barrier of a critical nucleus can be derived from (A3)
and is expressed as

W∗ = 4πσ r∗2

3

(
1 −

(
3 − 2r0

r∗

)( r0

r∗
)2
)

. (A4)

For small departures from the critical nucleus, we can expand the energy barrier in (A3)
in a Taylor series, which is expressed as

W(r, Pv) ≈ W∗ + 1
2 Wrr(r − r∗)2+1

2 WPvPv (Pv − P∗
v)

2 + WrPv (r − r∗)(Pv − P∗
v), (A5)

where the first-order derivatives vanish at a critical state, and Wrr, WPvPv and WrPv are the
second-order partial derivatives evaluated at stated departures from the critical nucleus.
Evaluating these partial derivatives from (A3) and introducing the assumption that Pv
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equals P∗
v (Debenedetti 1996), (A5) then becomes

W(r) ≈ 4πσ r∗2

3

(
1 −

(
3 − 2r0

r∗

)( r0

r∗
)2
)

− 4πσ(r − r∗)2. (A6)

Combining (A1), (A2) and (A6), replacing the summation by an integral, and changing
the integration variables from n to r and from r to δr and the integration limits to
[−∞, +∞], we can derive the equation predicting the rate of cavitation at nanoscale
nuclei J, expressed as

J = J0 exp

[
−16π

3kT
σ 3

(Pv
∗ − Pl)

2

(
1 −

(
3 − r0(Pv

∗ − Pl)

σ

)(
r0(Pv

∗ − Pl)

2σ

)2
)]

, (A7)

where J0 = 4
√

2σ/πm r2
0N2/3

0 /V . In (A7) P∗
v is unknown, so the Poynting correction

(Blander & Katz 1975) is introduced: Pv − Pl = δ(Pe − Pl) and δ = 1 − Pe/N0kT , where
δ is the Poynting correction factor. We can then derive the equation describing the
relationship between the cavitation rate J and the pressure of the liquid Pl as

J = J0 exp

[
−16π

3kT
σ 3

δ2(Pe − Pl)
2

(
1 −

(
3 − r0δ(Pe − Pl)

σ

)(
r0δ(Pe − Pl)

2σ

)2
)]

.

(A8)

Appendix B

The bubble radius–time evolution in the simulation could be non-reproducible due to the
finite size of the simulated systems. To determine that the finite-size effect in simulations
could be negligible, we conduct two typical simulations in a larger simulation domain (Fu
et al. 2015; Man et al. 2018) for water and liquid copper. In both cases, the final results
are similar to those of the original simulation. The behaviour of the cavitation bubble is
observed and recorded in figures 11 and 12.

Figure 11 shows the bubble radius and liquid pressure evolution in two water simulation
cases. Initially, the bubble radius equals that of the nanoscale void. When the liquid
pressure drops below the cavitation pressure, cavitation inception occurs. Moreover,
cavitation occurs before the liquid pressure reaches its minimum, suggesting that the
cavitation pressure is higher than this minimum pressure. The bubble grows until positive
pressure forces it to shrink, and the time when the bubble reaches its maximum size is far
later than the time when the pressure reaches its minimum, which agrees with CNT (after
cavitation inception, the cavitation bubble will grow spontaneously, so even if the liquid
pressure is higher than the cavitation pressure, the bubble will grow after inception). The
cavitation bubble grows slowly in the negative pressure cycle but collapses drastically in
the positive pressure cycle, indicating the energy-focusing effect of cavitation. (This can
be analysed intuitively: when the bubble grows, the pressure difference between the liquid
and vapour supports it but the surface tension obstructs it; when the bubble collapses,
the pressure difference and surface tension support it. That is why the bubble grows
slowly but collapses drastically.) The interface radii r1 to r6 are consistent with each
other, suggesting that the bubble grows isotropically under the simulation conditions. The
simulation domain shown in figure 11(a) contains approximately 1.56 million atoms, and
a larger simulation domain in figure 11(b) contains approximately 4.29 million atoms.
Comparing the two simulations, the maximum r̄ in figure 11(a) is almost identical to
that in figure 11(b), and their relative difference is 0.4 %. Thus, the simulation domain

911 A20-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

10
49

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.1049


The effects of nanoscale nuclei on cavitation

0

3

6

9

0

3

6

9
Maximum r̄

r̄

r1
r5 r6

r2 r3 r4
p

12

0.02 0.04 0.06
t (ns)

0.08 0.10
–150

L =35 nm

L = 25 nm

150

P
1 

(M
Pa

)
P

1 
(M

Pa
)150

300
(0.0698, 8.49)

(0.0705, 8.52)
–150

0

0

(b)

(a)
r 

(n
m

)
r 

(n
m

)

Figure 11. Bubble radius and liquid pressure evolution in two water simulations. The ultrasonic pressure
amplitude A = 240 MPa, the ultrasonic period τ = 0.2 ns, the nanoparticle radius r0 = 3 nm, and the liquid
temperature T = 298 K. (a) The simulation domain L = 25 nm. (b) The simulation domain L = 35 nm.
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Figure 12. Bubble radius and liquid pressure evolution in two liquid copper simulations. The ultrasonic
pressure amplitude A = 2000 MPa, the ultrasonic period τ = 0.2 ns, the nanoparticle radius r0 = 3 nm, and
the system temperature T = 1400 K. (a) The simulation domain is L = 38 nm. (b) The simulation domain is
L = 53 nm.

L = 25 nm of water embedded with the nanoscale void (with a radius smaller than 3 nm)
is large enough to ignore the finite-size effect of the MD simulation.

Figure 12 shows the bubble radius and liquid pressure evolution in two liquid copper
simulation cases. The ultrasonic amplitude is far larger than that used in figure 11, which is
because the surface tension of liquid copper is far larger than that of water. The simulation
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Figure 13. Schematic diagram of the object of simulation. The red and grey points represent water molecules,
and the black points represent hydrophobic LJ particles composing a spherical nucleus embedded at the centre
of the domain.

domain in figure 12(a) contains approximately 4 million atoms, and the simulation domain
in figure 12(b) contains approximately 11 million atoms. The maximum r̄ in figure 12(a)
is in line with that in figure 12(b), and their relative difference is 1 %. Thus, the simulation
domain L = 38 nm of the liquid copper is large enough to ignore the finite-size effect.
Because there are more atoms in the liquid copper simulation than in the water simulation,
the statistical fluctuations will also be lower, as reflected in figure 12 (the bubble radius
curves are smoother than in figure 11).

The simulation domain L = 25 nm of the water and L = 38 nm of the liquid copper
are large enough to ignore the finite-size effect and are adopted in our MD simulations.
Comparing the simulation scales between water and liquid copper, since the water and
liquid copper potentials vary, they also have different simulation scales to diminish the
finite-size effect.

Appendix C

To verify the reliability of representing actual nuclei with voids created by the force field in
the MD simulations, two sets of simulations considering an actual nucleus are conducted,
shown in figures 13 and 14.

Figure 13 shows the schematic diagram of the object of simulation. The nucleus
embedded at the centre of the domain is composed of hydrophobic LJ particles. The LJ
parameters are εC = 0.0289 kcal mol−1 and σC = 3.28 Å, and the cutoff radius of the LJ
potential between these LJ particles and water molecules is set as 10 Å, following Zhou
(2020). Except for the actual nucleus, other simulation settings are the same as those in
§ 3.1.

Figure 14 presents the bubble radius evolution in two sets of simulations. The initial
radius in figure 14 is a little bit larger than its counterpart in figure 7, which is attributed to
the dewetting effects. On the other hand, the corresponding cavitation pressure could be
estimated as about −45 MPa and about −30 MPa, which are the same as those adopting
a void as nucleus (referring to figure 7f,j). This suggests that the nucleus here has nearly
the same effect on promoting cavitation as that of the void and could be represented by a
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Figure 14. Bubble radius–time evolution in two sets of water simulations with an actual nucleus under
ultrasonic waves with different amplitudes; r̄ is smoothed via the LOESS smoothing method. All of the
ultrasonic periods are 0.2 ns, and the other simulation parameters are listed.

same-sized void. Therefore, the cavitation is dominated by thermal fluctuations, and the
dewetting and other effects of the particle do not dominate cavitation under the simulation
condition. To some extent this case provides the reassurance that the nanoscale nucleus
can be represented by an equivalent void.
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