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Downstream and upstream influence in river
meandering. Part 1. General theory and

application to overdeepening

By G. Z O L E Z Z I† AND G. S E M I N A R A

Dipartimento di Ingegneria Ambientale, Università di Genova, Via Montallegro 1,
16122, Genoa, Italy

(Received 20 July 1999 and in revised form 10 December 2000)

Perturbations of channel geometry (like variations of channel curvature or channel
width) in meandering rivers give rise to morphodynamic effects which display them-
selves through the development of large-scale perturbations of bottom topography in
the form of stationary bars developing in the longitudinal direction. The latter may
then drive the lateral migration of the channel by enhancing bank erosion at bar
pools: through this mechanism local perturbations of channel geometry may affect
the planimetric development of meandering rivers on large timescales. The problem
tackled herein is whether such morphodynamic influence is invariably felt downstream
as the commonly employed model of river meandering would suggest.

In order to solve this problem, we derive the exact solution of the linearized form of
the mathematical problem of river morphodynamics. Linear analysis had pointed out
the existence of a resonance phenomenon: in a linear (hence ideal) context, resonance
occurs when the meander wavenumber and the width ratio of the channel take values
(λR and βR , respectively) such as to force free spatial modes of the system consisting
of free bars which neither grow nor decay either in time or in space. Channels
characterized by values of the width ratio β larger (smaller) than βR are called
super- (sub-)resonant. The present solution, which applies to channels with constant
width and arbitrary curvature distribution, shows that two distinct scenarios may
occur: downstream influence is associated with sub-resonant channels and vice versa
dominant upstream influence occurs in super-resonant channels. Small-amplitude
waves of bottom topography are shown to migrate downstream in the former case
and may migrate upstream in the latter, as resonance also defines the threshold
conditions below (above) which small-amplitude alternate bar perturbations (may)
migrate downstream (upstream).

These results have several implications. In the present paper we examine the
overdeepening phenomenon whereby abrupt variations of channel curvature, as in
sequences of straight and constant curvature reaches, lead to sequences of station-
ary alternate bars with amplitude decaying in the longitudinal direction. We show
that, along with downstream overdeepening, an upstream overdeepening scenario is
predicted in the super-resonant regime.

Implications of the upstream influence on planimetric development of meandering
rivers are investigated in Part 2.

† Present address: Dipartimento di Ingegneria Civile e Ambientale, Università di Trento, Via
Mesiano 77, 38050, Trento, Italy.
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184 G. Zolezzi and G. Seminara

1. Introduction

Rivers are self-formed features which develop as a result of bed and bank erodibility.
The ability to predict such development is then strictly dependent on the capability
of modelling flow field, bottom topography and bank erosion conveniently.

A number of models have been proposed in the recent past for meandering rivers.
Among them the model of Ikeda, Parker & Sawai (1981), more recently corrected by
Johannesson & Parker (1989), is the most popular and will hereinafter be referred to
as the standard model. Most numerical simulations of the planimetric evolution of
meandering rivers published since 1984 have been based on the use of the above model
(Beck 1984; Beck, Melfi & Yalamanchili 1984; Parker & Andrews 1986; Furbish 1988;
Howard 1996; Sun et al. 1996; Stolum 1996). Crosato (1990) employed a numerical
model based on the solution of the full De St Venant equations.

In the context of the standard model, the local value of the rate of lateral channel
shift at some specified cross-section is determined by the perturbation of the flow-
field bottom topography evaluated at the banks and is found to consist of two
contributions:

(i) the first is proportional to some measure of the local curvature of the channel
axis;

(ii) the second accounts for the effect of the spatial distribution of channel curva-
ture upstream of the given cross-section.

In the context of the standard model, the morphodynamic influence invariably
acts in the downstream direction. Let us think of the following simple channel
configuration: a curved reach with constant curvature of the channel axis connected to
two straight reaches located upstream and downstream the curved reach, respectively.
Under such conditions, the standard model predicts that the presence of the curved
reach is invariably felt morphodynamically only in the curved reach itself and in
the straight reach located downstream. This is in agreement with the observations of
Struiksma et al. (1985), who showed that at the entrance region of a curved reach,
bottom topography adjusts to the new equilibrium, asymptotically characterized by a
longitudinally uniform transverse bed profile, through a sequence of damped steady
oscillations of transverse bed slope occurring downstream of the abrupt change
of channel curvature. The development of such non-migrating spatially decaying
bars at the bend entrance represents the clearest example of downstream influence
in river morphodynamics. This phenomenon, called overdeepening, was explained
theoretically by Struiksma et al. (1985) and later confirmed by Johannesson & Parker
(1989).

Yet, a natural question arises: are there any conditions such that the morphody-
namics of meandering rivers is characterized by upstream influence? In the particular
case of the overdeepening phenomenon the above question can be rephrased by asking
whether upstream overdeepening ever occurs.

The type of influence we are discussing here does not arise in the context of one-
dimensional modelling of river morphodynamics. The critical conditions correspond
to the unit Froude number, which acts as the crucial parameter; it is well known,
since the work of de Vries (1969), that an upstream influence may indeed occur in
supercritical streams on the slow timescale associated with bottom evolution.

We are concerned here with two-dimensional steady perturbations of bottom
topography.

Revisiting the analysis of river meandering, we show that the picture arising from
the classical findings based on the standard model is not complete. In fact, the exact

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

42
7X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100427X


Downstream and upstream influence in river meandering. Part 1 185

solution of the linearized problem of river meandering shows that two scenarios
may occur. For channels characterized by width to depth ratios (2β) smaller than
a threshold value (2βR), downstream influence dominates the morphodynamics and
the picture is qualitatively similar to that arising from the standard model. On the
contrary, if β exceeds βR , upstream influence dominates the morphodynamics, and
the picture is drastically different from that arising from the standard model.

The value of βR coincides with the resonant value of Blondeaux & Seminara
(1985), hence, upstream influence is associated with super-resonant conditions whereas
downstream influence occurs in sub-resonant channels. The occurrence of upstream
influence is strictly associated with the ability of sufficiently long two-dimensional
bottom perturbations of the alternate bar type to migrate upstream (see § 7).

These results are based on a linearized treatment of flow and bed topography in
meandering channels. We are aware of its validity limits. However, the importance
of such an approach arises from its relative simplicity which makes it amenable to
an analytical treatment allowing us to disclose some basic mechanisms operating in
river morphodynamics. Such mechanisms may then be quantitatively evaluated in a
more refined way with the help of numerical solutions of the full nonlinear problem.

In this paper we derive a two-dimensional formulation of the mathematical problem
governing flow and bed topography in erodible channels with an arbitrary distribution
of curvature of the channel axis. Such derivation involves some novel features as it
accounts for the dispersive transport of momentum by the secondary flow calculated
through the approach of Seminara & Solari (1998) which is not restricted to the case
of small perturbations of flow and bed topography. We then derive the exact general
solution of the linearized form of the above differential problem and discuss the
implications of such solutions as regards the problem of upstream and downstream
influence in river morphodynamics.

An application of the linear solution is then proposed to the problem of overdeep-
ening. Comparison with the experimental observations of Struiksma et al. (1985)
is performed and shows that the phenomenon of downstream overdeepening is cor-
rectly reproduced by the present model. The conditions for the occurrence of upstream
overdeepening are also examined and exemplified, while preliminary experimental ob-
servations (Guala et al. 1999) are strongly suggestive of the actual occurrence of such
a phenomenon.

In Part 2 (Seminara et al. 2001) the solution derived here is set as the basis of a
model of planimetric evolution of meandering rivers.

2. Formulation of a three-dimensional model
The starting point for the derivation of a two-dimensional model of river morpho-

dynamics is an appropriate three-dimensional form of the continuity and momentum
equation for the fluid phase, which must be coupled to an evolution equation for bed
topography. Reynolds equations for the fluid phase and a two-dimensional version
of the Exner equation for the solid phase along with appropriate dynamic equations
for the solid phase accounting for effects associated with a sloping topography fit our
needs.

Let us then consider a meandering river characterized by a cohesionless bed and
constant width 2B∗ (figure 1). The latter assumption may be readily relaxed but is
maintained here in order to keep the algebraic work at the lowest level of complexity.
We refer the flow field and bed topography to an orthogonal reference system
(s∗, n∗, z∗) where s∗ is the longitudinal coordinate of the channel axis assumed to lie on
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Figure 1. Sketch of a meandering channel and notation. The regions of influence of the five
different contributions in the exact solution (6.6) are also indicated.

a plane, n∗ is the transverse coordinate defined along a horizontal axis orthogonal to
s∗, and z∗ is the coordinate of the axis orthogonal to s∗ and n∗ and pointing upwards.

Notice that hereinafter an asterisk denotes a dimensional quantity. Let C∗(s∗) = r∗−1
0

be the distribution of curvature of the channel axis. Moreover, we denote by (u∗, v∗, w∗)
the mean velocity vector (averaged over turbulence) in the same reference frame, by
h∗(s∗, n∗) the local value of the free-surface elevation relative to some horizontal
datum, and by D∗(s∗, n∗) the local value of the flow depth.

It is convenient to make the above quantities dimensionless as follows:

(s∗, n∗) = B∗(s, n), z∗ = D∗0z, (2.1a, b)

(h∗, D∗) = D∗0(h, D), (u∗, v∗, w∗) = U∗0 (u, v, w), (2.1c, d)

having denoted by D∗0 and U∗0 some typical flow depth and average speed. The simplest
choices for D∗0 and U∗0 are the values of flow depth and average cross-sectional speed
of a uniform flow characterized by the same value of flow discharge and channel
width as for the meandering river considered herein and channel slope equal to the
average slope of the meandering reach.

We may then write Reynolds equations in dimensionless form in terms of the above
coordinate system to find:

N(u2),s + (uv),n + β(uw),z + 2ν0NCuv = −N
(

1

F2
0

h,s − βCf0

)
+ β

√
Cf0(νTu,z),z ,

(2.2)

N(uv),s + (v2),n + β(vw),z + ν0NC(v2 − u2) = − 1

F2
0

h,n + β
√
Cf0(νT v,z),z , (2.3)

Nu,s +

(
∂

∂n
+ ν0NC

)
v + βw,z = 0, (2.4)

where N−1 is the longitudinal metric coefficient of the coordinate system, β is the
half width to depth ratio, F0 and Cf0 are the Froude number and friction coefficient
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Downstream and upstream influence in river meandering. Part 1 187

of the reference uniform flow and νT is a dimensionless eddy viscosity. The above
parameters read:

β =
B∗

D∗0
, ν0 =

B∗

R∗0
, F0 =

U∗0√
gD∗0

, (2.5a–c)

νT =
ν∗T√

Cf0U
∗
0D
∗
0

, N = [1 + ν0nC(s)]−1, (2.5d, e)

having denoted by R∗0 a typical value of channel curvature, say its minimum value in
the meandering reach.

Notice that in (2.2)–(2.4) we have already incorporated the hydrostatic distribution
of mean pressure predicted by the z-component of Reynolds equations for shallow
motions i.e. motions characterized by longitudinal and lateral scales much larger than
a typical flow depth. Furthermore in (2.2)–(2.3) we have neglected normal Reynolds
stresses and the tangential stress Tsn. The latter assumption is again justified by
the assumed slowly varying character of the flow field. In fact, river cross-sections
are typically fairly wide, and meandering occurs typically on spatial scales of the
order of several channel widths. Hence, the slowly varying assumption appears to be
reasonable, although it may possibly fail within the side boundary layers when the
banks are steep and close to sharp fronts of the type associated with bar migration. We
will assume that the side boundary layers play a passive role and exclude them from
our analysis of the flow field which will be restricted to the central region of the flow.
Again, we deliberately ignore the possible coexistence of free migrating and forced
steady bars of the type observed by Whiting & Dietrich (1993) in large-amplitude
meanders which is still an unsettled question (but see Tubino & Seminara 1990).
However, it is a fact that the typical shape of meanders can be predicted by ignoring
the possible presence of migrating features (Parker, Diplas & Akiyama 1983). This
suggests that the latter are likely to enhance the process of bank erosion driven by
forced features (maybe triggering the process when migrating and forced features
are in phase with each other) but they do not alter the essential characteristics of
meander development which occurs, anyway, on timescales which largely exceed the
timescale associated with free bar migration.

The boundary conditions to be associated with (2.2)–(2.4) require:
no slip at the bottom, hence

u = v = w = 0 (z = h− D + z0), (2.6)

with z0 dimensionless conventional reference elevation taken to coincide with local
conditions;

stress continuity at the free surface, hence

u,z = v,z = 0 (z = h), (2.7)

where the free surface has been approximately taken to coincide with its tangent
plane;

impermeable sidewalls.
Having ignored the sidewall boundary layers the latter condition is reinforced by
requiring that the net flux exchanged between sidewall layers and the central region
must vanish. Hence, ∫ h

h−D+z0

v dz = 0, (2.8)
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188 G. Zolezzi and G. Seminara

The formulation of the three-dimensional problem is completed by the equations
of sediment continuity along with a dynamic equation for sediment motion. Let
q ≡ (qs, qn) be the unit volumetric sediment discharge vector made dimensionless in
the form

q =
q∗√

(s− 1)gd∗3s
, (2.9)

where s is the relative density of the sediments, d∗s is some typical grain size (say d∗50)
and g is acceleration due to gravity.

For uniform plane beds, we may write

q = q0(τ∗, Rp)
t∗

|t∗| , (2.10)

where t∗ is the tangential component of the stress vector acting on the bed, Rp is

the particle Reynolds number (defined as
√

(s− 1)gd∗3s /ν) and τ∗ is the Shields stress
which reads:

τ∗ =
|t∗|/%

(s− 1)gd∗s
. (2.11)

Several proposals for the discharge predictor q0 are available in the literature. In the
following, we have employed two different predictors. The formula of Parker (1990)
refers to bedload transport only and has the advantage of behaving smoothly as the
Shields stress tends to zero. Notice that (2.10) predicts that the average direction of
bedload transport coincides with the direction of the average bottom stress.

The simplest way to extend (2.10) to bed topography fields slowly varying in space
is to assume that

q = q(τ∗, Rp,∇hη), (2.12)

where ∇h ≡ (∂/∂s, ∂/∂n). Taking advantage of the assumption of slow spatial vari-
ations of flow and bed topography, we linearize (2.12) subject to the constraint that q
must tend to the form (2.10) as ∇hη tends to vanish. On purely dimensional grounds
we then readily find:

q = q0(τ∗;Rp)
[
t∗

|t∗| + G · ∇hη
]
, (2.13)

where G is a 2× 2 matrix which describes how gravity, acting on particles moving on
a sloping surface, affects the direction and intensity of bedload motion, driving some
deviation of the average particle trajectory from the direction of mean bottom stress.

It is known through both theoretical and experimental works (see in particular
Sekine & Parker 1992; Kovacs & Parker 1994; Talmon, Struiksma & Van Mierlo
1995) that in a linearized context the diagonal elements of G may be assumed to
vanish whereas Gσσ and Gνν may be estimated in the form:

Gσσ = − τ∗c
µq0

dq0

dτ∗
, Gνν = − r

τm∗
, (2.14)

where τ∗c is the critical value of Shields stress, µ is the dynamic friction coefficient
and (σ, ν) is an orthogonal coordinate system such that the σ direction coincides with
the direction of mean bottom stress. Various fairly equivalent suggestions have been
made for the exponent m and the empirical coefficient r. We follow Talmon et al.
(1995) and take m = 1

2
with r in the range of 0.5–0.6 approximately.

We have also employed Engelund & Hansen’s (1967) formula for q0, concerning
the total load. However, for the relatively small values of the Shields stress considered
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below (τ∗ 6 0.3), transport occurs dominantly as bedload for grain sizes as small as
0.2 mm. The use of Engelund & Hansen’s (1967) approach allows us to account for
the effects of bedforms on flow resistance.

The formulation of the problem of meander morphodynamics is then completed
by the two-dimensional Exner equation which, under steady conditions and in the
coordinate system (s, n), reads

∇h · q = Nqs,s +

(
∂

∂n
+ ν0NC

)
qn = 0 . (2.15)

The boundary conditions to be associated with (2.15) are:

qn|n=±1 = 0, (2.16)

along with the value of the total sediment discharge carried by the stream.

3. An extension of Kalkwijk & De Vriend (1980) flow decomposition
and the general structure of secondary flow

It is well known, since the pioneering work of Rozovskij (1957), that, in constant-
curvature channels, centrifugal effects lead to the establishment of a secondary flow
with vanishing depth average. When curvature varies in the longitudinal direction, a
second component of the secondary flow with non-vanishing depth average is induced
by topographic and inertial effects. The nonlinear character of the governing equations
implies an interaction between the two components of the secondary flow. Odgaard
(1986) first attempted to analyse flow and bed topography in channels with spatially
varying curvature; his approach involves a number of heuristic approximations which
prevented his model from predicting the possibility of upstream influence, which is
the subject of the present investigation.

We now wish to derive a depth-averaged form of the governing equations where the
memory of the centrifugally induced secondary flow with zero average is preserved.

In order to achieve this goal, we extend the flow decomposition originally proposed
by Kalkwijk & De Vriend (1980) for the fixed-bed case. Hence, we write

v = ν0v0(ζ, n, s) + V (n, s)F0(ζ), (3.1)

h = ν0h0(n, s) + Ĥ(n, s), (3.2)

u =F0(ζ)U(n, s). (3.3)

In (3.1)–(3.3) ζ is the z-coordinate made dimensionless in the form:

ζ =
z − η(s, n)

D(n, s)
, (3.4)

and F0(ζ) is the velocity distribution of the uniform flow with local flow charac-
teristics. Furthermore, v0(ζ, s, n) is the local distribution of the centrifugally induced
secondary flow, hence ∫ 1

ζ0

v0(ζ, n, s) dζ = 0, (3.5)

where ζ0 is equal to ζ(z0; s, n).
In order to be able to employ (3.1)–(3.3) as the starting point for the derivation

of two-dimensional governing equations for U,V and Ĥ , we must determine the
form of v0 and h0 appropriate to channels with arbitrary distribution of curvature

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

01
00

42
7X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211200100427X


190 G. Zolezzi and G. Seminara

of the channel axis. An appropriate extension of Seminara & Solari’s (1998) analysis
referring to constant-curvature channels will fulfil our aim.

Equation (2.3), rewritten in terms of the coordinate system (ζ, s, n), becomes:

β
√
Cf0[N(ζ)v,ζ],ζ = DF0v,s +F0v,ζ[(1− ζ)D,s − h,s]− ν0CDUF2

0 +
D

U

h,n

F2
0

, (3.6)

having used flow continuity and assumed the following slowly varying structure of
the eddy viscosity:

νT = UDN(ζ). (3.7)

The solution for v0 and h0 can then be determined by means of an iterative procedure.
We assume, as a first approximation, that secondary flow is in phase with curvature,
and neglect in equation (3.6) the convective term and the topographic term originating
from the coordinate transformation. We then readily find

v0 =
DU

β
√
Cf0

C(s)G0(ζ), (3.8)

h,n = ν0h0,n = ν0

F2
0U

2C(s)a0

β
√
Cf0

, (3.9)

where the function G0(ζ) (describing the vertical distribution of secondary flow)
and the constant a0 (describing the transverse slope of the free surface) satisfy the
following differential system with i = 0:

[NGi,ζ],ζ = Pi(ζ); (3.10)

Gi|ζ0
= Gi,ζ |ζ=1 = 0,

∫ 1

ζ0

Gi dζ = 0; (3.11)

P0(ζ) = a0 −F2
0(ζ), P1(ζ) =F0G0 + a1, P2(ζ) = (1− ζ)F0G0,ζ − a2. (3.12)

The reader may have noticed that the structure of secondary flow, as given by
(3.6), adapts the classical solution for secondary flow in constant-curvature channels
to channels with arbitrary curvature distribution.

Once the function G0 and the constant a0 are determined, we may proceed to
evaluate the corrections induced on v0 and h0,n by longitudinal convection and
shoaling effects (first and second term in the right-hand side of (3.6)). We readily find
that such corrections may be given a similarity structure of the form

v0 =
DU

β
√
Cf0

C(s)G0(ζ) +
D2

β2Cf0

(UC),sG1(ζ) +
DU

β2Cf0

CD,sG2(ζ), (3.13)

h0,n =
UF2

0

β
√
Cf0

[Ua0C(s) +Ua1(DC),s + Da2CU,s], (3.14)

where the vertical distribution of the corrections of secondary flow, namely the
functions G1(ζ) and G2(ζ), and the constants a1, a2 are solutions of the ordinary
differential problems (3.10)–(3.12) where i = 1 and i = 2, respectively.

The procedure could be extended to a higher approximation, at least in principle.
Provided curvature is slowly varying in space, such effort is not worthwhile as the
level of algebraic complexity would rapidly become prohibitive.

The functions G0, G1 and G2 and the constants a0, a1 and a2 have been calculated,
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1

0
–1 0 1

f

Figure 2. Vertical distributions of the functions G0(ζ), G1(ζ) and G2(ζ) describing the various
components of secondary flow. The value of the friction coefficient Cf0 has been assumed to be
equal to 0.008.

solving each of the differential systems analytically in terms of solutions of initial-
value problems obtained numerically. The procedure is identical with that employed
by Seminara & Solari (1998). In the calculations we have assumed the following form
for N(ζ) (Dean 1974):

N(ζ) =
k(ζ)(1− ζ)

1 + 2Aζ2 + 3Bζ3
, (3.15)

hence, F0(ζ) reads:

F0 =

√
Cf0

k

[
ln
ζ

ζ0

+ A(ζ2 − ζ2
0 ) + B(ζ3 − ζ3

0 )

]
, (3.16)

with A = 1.84 and B = −1.56.
The solutions for G0(ζ), G1(ζ) and G2(ζ) are plotted in figure 2.
Notice that the signs of both G1 and G2 are opposite to the sign of G0. Hence,

equation (3.13) suggests that the centrifugally induced secondary flow is damped in
reaches where curvature and/or longitudinal velocity and/or flow depth experience
growth and vice versa.

4. A depth-averaged model for flow in meandering rivers
We now substitute from the decomposition (3.1)–(3.3) and the solution (3.13) and

(3.14) into the governing differential problem (2.2)–(2.4) written in terms of the
normalized variable ζ, and perform a depth integration.

In order to clarify the procedure let us consider a typical convective term of the
three-dimensional equations, say the left-hand side of (2.2). Substituting from (3.3)
and (3.1) into such a term, performing depth averaging and recalling the kinematic
conditions both at the bed and at the free surface we find:

NIuu,s +

(
∂

∂n
+ 2ν0NC

)
Iuv, (4.1)

Iuu = DU2, Iuv = DUV + ν0ϕ0(s, n),

ϕ0(s, n) = DU

∫ 1

ζ0

v0(ζ, n, s)F0(ζ) dζ, (4.2)

as
∫ 1

ζ0
F0(ζ) dζ ' 1.
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The function ϕ0(s, n) involves the redistribution coefficients k0, k1 and k2, defined
by (4.15), and takes the form:

ϕ0(s, n) =
DU

β
√
Cf0

[
DUC(k0 + k2D,s) + k1

D2(UC),s

β
√
Cf0

]
. (4.3)

Taking into account the depth averaged form of the continuity equation, the left-hand
side of (2.2) then gives:

UU,s + VU,n + ν0ϕ1(s, n) + ν2
0ϕ2(s, n), (4.4)

ϕ1(s, n) =
ϕ0,n

ND
+ VC(s)[nU,n +U], ϕ2(s, n) = 2C(s)

ϕ0

D
. (4.5)

The function ϕ1(s, n) contributes to the term f11, whose expression is reported in
Appendix A, and ϕ2(s, n) is part of O(ν2

0 ) terms which will be neglected in the context
of the present linear theory.

We do not pursue the derivation of the depth-averaged form of all equations which
would require a considerable amount of tedious algebra. The latter eventually leads to
the following modified shallow-water equations for the average quantities U,V ,H,D
coupled with the two-dimensional form of the Exner equation:

UU,s + VU,n +H,s + β
τs

D
= ν0f11 + O(ν2

0 ), (4.6)

UV,s + VV,n +H,n + β
τn

D
= ν0g11 + O(ν2

0 ), (4.7)

(DU),s + (DV ),n = ν0m11, (4.8)

(F2
0H − D),t + Q0[qs,s + qn,n] = ν0n11. (4.9)

In equations (4.6)–(4.9), H is a free-surface elevation which may be written as follows:

H =
h

F2
0

− βCf0s, (4.10)

where h is given by (3.2). Moreover, τs and τn are the components of the bottom
stress vector. Employing the decomposition (3.1) and the solutions for G0,G1 and G2

we find:

(τs, τ
′
n) = Cf(U,V )|U |, |U | = (U2 + V 2)1/2, τn = τ′n + τH, (4.11)

τH = ν0Cf |U |
[
DUC
β
√
Cf0

(
k3 +

D,s

β
√
Cf0

k5

)
+
D2(UC),s
β2Cf0

k4

]
. (4.12)

Here k3, k4 and k5 are defined by the relationships:

k3 =
G0,ζ

F0,ζ

∣∣∣∣
ζ0

, k4 =
G1,ζ

F0,ζ

∣∣∣∣
ζ0

, k5 =
G2,ζ

F0,ζ

∣∣∣∣
ζ0

. (4.13a–c)

Finally, Q0 is a dimensionless parameter defined as

Q0 =

√
(s− 1)gd∗3s

(1− p)U∗0D∗0 , (4.14)

and qs and qn are obtained from (2.13) and (2.14) by deriving the form of the matrix
G in the (s, n) reference frame through a simple linear transformation.
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Figure 3. Dependence of the dispersive coefficients k0–k5 on the relative roughness ds. The scale for
k0–k2 is given on the right-hand vertical axis. The scale for k3–k5 is given on the left-hand vertical
axis.

The quantities f11, g11, m11 and n11 which appear in the right-hand sides of
equations (4.6)–(4.9) are given in Appendix A. They involve the coefficients k0, k1 and
k2 which account for the dispersive effects due to the nonlinear interactions between
the centrifugal and topographic components of secondary flow. The coefficients k0, k1

and k2 read:

ki =

∫ 1

ζ0

F0Gi dζ (i = 0, 1, 2). (4.15)

The dependence of the coefficients k0–k5 on the relative roughness ds is plotted in
figure 3. The boundary conditions to be associated with equations (4.6)–(4.9) impose
that the lateral walls must be impermeable both to fluid and to sediments, hence:

V = qn = 0 (n = ±1). (4.16)

Furthermore, boundary conditions must be imposed at the upstream and downstream
end cross-sections. They are discussed in § 5 in relation to the problem of upstream
and downstream influence in river morphodynamics.

We note that the above formulation is fully nonlinear. In this respect, it generalizes
previous formulations adopted in linear (Johannesson & Parker 1989) as well as
weakly nonlinear contexts (Tubino & Seminara 1990; Seminara & Tubino 1992).
However, note that the centrifugal component of the secondary flow enters the
formulation through its significant effect on bottom stress (see equation (4.12)). On
the contrary, the redistribution coefficients k0, k1 and k2 are sufficiently small to justify
neglecting momentum redistribution in the governing equations (4.6)–(4.9).

In the next section, we derive the linearized form of the problem formulated above
and solve it exactly for an arbitrary distribution of channel curvature.
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5. The linearized form of the problem of river morphodynamics
We now assume that flow and topography perturbations originating either from

deviations of the channel configuration from the straight configuration or from the
existence of non-uniform end conditions are small enough to allow for lineariza-
tion of the mathematical problem formulated in § 4. We note that this is a fairly
restrictive assumption. However, the recent contribution of Seminara & Solari (1998)
referring to constant-curvature channels suggests that linearity is likely to be a rea-
sonable approximation, at least in the case of dominant bedload, as long as the
parameter (ν0

√
τ∗/rCf0) attains values which do not exceed roughly 10. Moreover,

a linear theory fulfils various other aims. First, it allows for an analytical solution
which clarifies the fundamental issue of upstream and downstream influence in the
morphodynamics of meandering rivers, which is the main subject of the present
paper. Secondly, a linear solution can be set as the basis of a fully nonlinear
treatment of the problem the solution of which may be obtained by successive
approximations.

Let us then set:

(U,V ,D,H) = (U0, 0, D0, H0) + ν0(u, v, d, h) + O(ν2
0 ). (5.1)

Furthermore, assuming that perturbations superimpose on a uniform flow configura-
tion (a useful but inessential assumption), we may set

(U0, 0, D0, h0) = (1, 0, 1, h0), (5.2)

where the reader will note that quantities are scaled by their uniform counterparts.
Substituting from (5.1) and (5.2) into (4.6)–(4.9) and retaining only linear terms

in the perturbation parameter ν0, with the help of some algebraic manipulation we
derive the following linear system of partial differential equations:(

∂

∂s
+ a1

)
u+

∂h

∂s
+ a2d = nb1C(s), (5.3)

(
∂

∂s
+ a3

)
v +

∂h

∂n
= b2C(s) + b3C′(s) + b5C′′(s), (5.4)

∂u

∂s
+
∂v

∂n
+
∂d

∂s
= 0, (5.5)

a4

∂u

∂s
+
∂v

∂n
+

(
a5

∂

∂s
+ a6

∂2

∂n2

)
d− F2

0a6

∂2h

∂n2
= 0, (5.6)

with boundary conditions

v = 0 (n = ±1), (5.7)

(F2
0h− d),n = b4C(s) + b6C′(s) (n = ±1). (5.8)

The coefficients a1 − a6 and b1 − b6 in equations (5.3)–(5.8) read:

a1 =
2βCf0

1− CfT , a2 = βCf0

(
CfD

1− CfT − 1

)
, a3 = βCf0, (5.9a–c)

a4 =
2ΦT

1− CfT , a5 = ΦD +
CfDΦT

1− CfT , a6 =
r

β
√
τ∗0
, (5.9d–f)
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b1 = −βCf0, b2 = 1−√Cf0k3, b3 = − k0

β
√
Cf0

− k4

β
, (5.9g–i)

b4 =
k3
√
τ∗0

r
√
Cf0

, b5 = − k1

β2Cf0

, b6 =
k4
√
τ∗0

βCf0r
, (5.9j–l)

where

CfD =
Cf,D|0
Cf0

, CfT =
τ∗0
Cf0

Cf,τ∗ |0, ΦD =
Φ,D|0
Φ0

, ΦT =
τ∗0
Φ0

Φ,τ∗ |0. (5.10a–d)

In the above equations, the subscript 0 refers to the uniform equilibrium conditions
and the approach implicitly assumes that both the friction coefficient and the intensity
of bedload transport can be evaluated in terms of local values of flow and sediment
parameters, a quasi-equilibrium assumption which is justified by the slowly varying
character of both flow field and sediment dynamics.

The above linear system of partial differential equations can be easily transformed
into a linear system of ordinary differential equations. It is first convenient to perform
the following decomposition:

(u, v, h, d) = [0, 0, (h̄1C+ h̄2C′ + h̄3C′′), (d̄1C+ d̄2C′ + d̄3C′′)]n+ (û, v̂, ĥ, d̂), (5.11)

with

h̄1 = b2, h̄2 = b3, h̄3 = b5, d̄1 = F2
0 h̄1 − b4, d̄2 = F2

0 h̄2 − b6, d̄3 = F2
0 h̄3.

(5.12a–f)

This enables us to transform the original system into a linear non-homogeneous partial

differential system with homogeneous boundary conditions for the functions û, v̂, ĥ

and d̂. We then remove the partial differential character of the governing differential
problem by expanding the dependent variables in Fourier series as follows:

(û, ĥ, d̂) =

∞∑
m=0

(um, hm, dm) sin (Mn), v̂ =

∞∑
m=0

vm cos (Mn), (5.13a, b)

where

M ≡ 1
2
(2m+ 1)π. (5.14)

Note that the boundary conditions at n = ±1 are satisfied by the latter expansions
which also respect the symmetric character of v and the antisymmetric character of u, h
and d. By substituting from (5.11)–(5.13) into the system (5.3)–(5.8), straightforward
algebraic manipulations lead to a system of four ordinary differential equations
with constant coefficients, which can be solved in cascade, for each of the Fourier
components. We find:(
σ4

d4

ds4
+ σ3

d3

ds3
+ σ2

d2

ds2
+ σ1

d

ds
+ σ0

)
um = −Am

6∑
j=0

%j+1

d(j)C
ds(j)

(m = 0, 1, 2, . . .),

(5.15)

(dm, vm, hm) =

4∑
j=1

(dmj, vmj , hmj)
d(j−1)um

ds(j−1)
+ Am

9∑
j=5

(dmj, vmj , hmj)
d(j−5)C
ds(j−5)

, (5.16)
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where

Am = (−1)m
2

M2
, (5.17)

while the coefficients σ0–4, %1–7, dmj , vmj , hmj(j = 1–9) are reported in Appendix B (held
in an editorial file).

The latter system of ordinary differential equations in the longitudinal coordinate
must be supplemented by suitable boundary conditions, the nature of which will be
clarified in the next section where we derive the exact solution of the problem.

6. The exact solution of the linear problem of meander morphodynamics
The differential system (5.15) and (5.16) can be solved in closed form. Though the

derivation is somewhat tedious algebraically, this solution allows us to clarify the
problem of morphodynamic influence in erodible channels and provides a tool which
is readily amenable to numerical implementation.

Equation (5.15) is a non-homogeneous ordinary differential equation with constant
coefficients which can be solved using the so-called method of variation of parameters
(see Coddington & Levinson 1955, p. 75). Once the solution for um is known, then
we can solve for the remaining dependent variables by employing equation (5.16).
The exact solution of the linear problem of meander morphodynamics can then be
written in the form:

(um, vm, dm, hm) =

4∑
j=1

{
(1, ϕmj , δmj , ξmj)

[
Âmgj0

∫ s

s0

exp λmj(s− t)C(t) dt

+ cmj exp λmj(s− s0)
]

+ Âm

9∑
k=1

Γ
(u,v,d,h)
jk

∂(k−1)C
∂s(k−1)

}
. (6.1)

In the latter relationship, cmj(j = 1, . . . , 4;m > 1) are constants to be determined and

Âm = Am/σ4. Furthermore,

(δmj, ϕmj, ξmj) =

4∑
`=1

(dm`, vm`, hm`)(λmj)
`−1, (6.2)

Γ
(u)
jk = gjk (j = 1, . . . , 4, k = 1, . . . , 6), Γ

(u)
jk = 0 (k > 6), (6.3)

(Γ (d)
jk , Γ

(v)
jk , Γ

(h)
jk ) = Γjk`(dm`, vm`, hm`) (m > 1, k = 1, . . . , 9), (6.4)

where the subscript ` in equation (6.4) is summed and the elements of the matrices
gjk and Γjk` have the form reported in Appendix C (held in an editorial file).

The characteristic exponents λmj(j = 1, . . . , 4) for each mode m play a fundamental
role in the analysis. They were first investigated by Olesen (1983) and were later
reexamined by Struiksma et al. (1985) and Seminara & Tubino (1992) in different
contexts. These investigations have shown that one of the exponents is invariably
real and positive, one is real and negative, the last two are complex conjugates. The
real part of the complex exponents is negative, provided the dimensionless parameter
β does not exceed a threshold value which, for the first mode, coincides with the
resonant value βR of Blondeaux & Seminara (1985). For the higher modes, it is easy
to show that β(m)

R is m times βR . Figure 4 provides an example of the dependence
of the real and imaginary parts of the characteristic exponents of the first mode on
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the aspect ratio β for given values of τ∗ and ds. For the higher modes, the following
relationship holds:

λmj(β; τ∗, ds) = mλ1j

(
β

m
; τ∗, ds

)
(m > 1). (6.5)

The latter results have a direct consequence on the problem of upstream and down-
stream morphodynamic influence.

In order to clarify this, we first point out that the constants cmj(j = 1, 4) which
appear in (6.1) must obviously be chosen such as to fit the boundary conditions at
the upstream and downstream ends of the reach being investigated.

Let us consider the sub-resonant case (β < βmR , m > 1) and let λm1 denote the real
positive characteristic exponent. In this case, for each mode m, one of the boundary
conditions must be imposed at the downstream end while the remaining three must
be assigned at the upstream end. With the help of some algebraic manipulations
equation (6.1) then takes the following form:

(um, vm, dm, hm) = −Âmg10(1, ϕm1, δm1, ξm1)

∫ s0+L

s

exp−λm1(t− s)C(t) dt︸ ︷︷ ︸
1− upstream propagating influence

+Âm

4∑
j=2

gj0(1, ϕmj , δmj , ξmj)

∫ s

s0

exp λmj(s− t)C(t) dt︸ ︷︷ ︸
2− downstream propagating influence

+Âm

4∑
j=1

[
9∑
k=1

(Γ (u)
jk , Γ

(v)
jk , Γ

(d)
jk , Γ

(h)
jk )

∂(k−1)C
∂s(k−1)

]
︸ ︷︷ ︸

3− local effect

+um|s0+L(1, ϕm1, δm1, ξm1) exp−λm1(s0 + L− s)︸ ︷︷ ︸
4− upstream effect of downstream boundary condition

+

4∑
j=2

(1, ϕmj , δmj , ξmj)cmj exp λmj(s− s0).︸ ︷︷ ︸
5− downstream effect of upstream boundary condition

(6.6)

The constants cmj(j = 2, 3, 4) are readily obtained once the boundary conditions to
be imposed at s = s0 are known. The different contributions in the right-hand side of
equation (6.6) interpret the various effects which determine the morphodynamics of
a meandering river at a given cross-section. They may be described as follows.

(i) Contribution 1 (single contribution in the sub-resonant case) accounts for the
morphodynamic influence of the downstream reach on the given cross-section.

(ii) Contribution 2 (three contributions in the sub-resonant case) accounts for the
similar morphodynamic influence of the upstream reach on the given cross-section.

(iii) Contribution 3 interprets how the local channel curvature and its variations in a
neighbourhood of the given cross-section contribute to determine the morphodynamic
asset of the latter.
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Figure 4. The four characteristic exponents λmj(j = 1–4) for the first mode are plotted versus the
dimensionless parameter β (half-width to depth ratio) for given values of Shields stress (τ∗ = 0.1)
and relative roughness (ds = 0.01) for the plane bed case. Solid lines denote the real parts of the
exponents while dotted lines denote their imaginary parts.

(iv) Contribution 4 describes the effect of the boundary conditions at the down-
stream end on the reach under investigation.

(v) Contribution 5 describes the effect of the boundary conditions at the upstream
end on the reach under investigation.

The regions of influence of the different contributions are schematically described
in figure 1. Note that we have assumed that the reach is long enough for the effect of
the downstream boundary conditions to be negligible at the upstream end and vice
versa. Otherwise, the evaluation of the constants cmj(j = 2, 3, 4) in s = s0 would be
coupled with the evaluation of the constant cm1 in s = s0 + L.

Let us analyse the structure of the exact solution (6.6) with the aim of clarifying
the issue of morphodynamic influence. Recalling figure 4, it appears that the real
part of λm1 is an order one number. Hence, in the sub-resonant case, the effect of
contributions 1 and 4 damps out within a distance of the order of a few channel
widths. Moreover, of the three contributions 2, one is also damped very fast while
the remaining two affect a reach of length of the order of a few tenths of the channel
width, a length which increases in a neighbourhood of the resonant conditions,
reaching a theoretically infinite distance exactly at resonance. The latter scenario may
be summarized by stating that under sub-resonant conditions the morphodynamic
influence is felt dominantly downstream.

The latter picture is reversed when the channel falls in the super-resonant regime,
at least as far as the first mode is concerned. Under these conditions the solution for
the higher sub-resonant modes is still in the form of equation (6.6), as βmR = mβR . On
the contrary, the first, super-resonant, mode, which typically provides the dominant
contribution to the morphodynamics, exhibits an upstream influence arising from
the presence of three contributions of type 1, one of them being purely damped
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at a fast rate while the other two are oscillatory and weakly damped. A weak
downstream influence is also displayed by super-resonant modes through the single
contribution of type 2 which is now strongly damped downstream. Similarly, the
number of contributions of types 4 and 5 is also reversed. This second scenario
may be summarized by stating that the morphodynamic influence concerning super-
resonant modes is felt dominantly upstream. The latter result does not appear to
have been previously noted, though it was essentially implied by the work of Olesen
(1983) and Struiksma et al. (1985).

7. A physical explanation of the occurrence of upstream influence
Results obtained in the last section naturally suggest that, under super-resonant

conditions, information concerning the development of two-dimensional perturbations
of bottom topography may propagate upstream. This can be given a physical expla-
nation on the basis of the classical linear stability analysis employed to investigate
the occurrence of free bars in a straight channel (e.g. Colombini, Seminara & Tubino
1987). In Colombini et al., the growth of small-amplitude perturbations of the flow
field and bottom topography with respect to a basic state consisting of a uniform flow
over a plane bed in a straight channel was examined. The longitudinal and temporal
structure of the mth mode of the perturbation of bottom topography ηm can be put
in the form

ηm(s, n, t) = ηr exp (Ωt) cos (λs− ωt) sin ( 1
2
πmn), (7.1)

where ηr is a real positive quantity, t is dimensionless time and Ω, λ and ω are real
numbers representing growth rate, dimensionless wavenumber and angular frequency
of the perturbation, respectively.

The above analysis, involving the homogeneous component of the system (5.3)–(5.6),
reveals that bar formation is controlled by a delicate balance between destabilizing and
stabilizing effects, that are associated with the divergence of the perturbed bedload
discharge vector, whose longitudinal and transverse components can be expressed in
the following form:

Qs1 = Qsr exp (Ωt) cos (λs− ωt− δ1) sin ( 1
2
πmn),

Qn1 = Qnr exp (Ωt) cos (λs− ωt− δ2) cos ( 1
2
πmn),

}
(7.2)

with Qsr and Qnr real positive quantities and δ1 and δ2 phase lags, relative to bed
profile, of the perturbations of the longitudinal and transverse bedload discharge,
respectively.

The main output of the above linear stability analysis consists of the neutral curve
for bar stability (Ω = 0), which is reported in figure 5 together with the neutral curve
for bar migration (ω = 0).

The first major implication of figure 5 is that the point of intersection of the
marginal stability curve and of the curve characterized by vanishing angular fre-
quency defines the resonant conditions (λR, βR) of Blondeaux & Seminara (1985). The
dependence of βR and λR on the Shields stress and the relative roughness ds is plotted
in figure 6, where Engelund & Hansen’s (1967) formula has been employed and the
presence of dunes has been assumed. A similar plot for the flat bed case is reported
in Seminara & Tubino (1992) (figures 2a and 3a, pp. 265 and 266), where the Meyer-
Peter and Muller’s formula, in the form given by Chien (1956) has been employed.
Are the values of βR realistic? Figure 7 answers this question. We have plotted data
concerning a number of meandering gravel bed rivers of Colorado (Andrews 1984)
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Figure 5. Neutral curves for two-dimensional free bars instability (Ω = 0) and migration (ω = 0),
dividing the (λ, β)-plane in the four different regions I to IV. The additional dashed line in the
middle of the plot shows the qualitative behaviour of Ω(λ) for a given β > βR (plane bed, τ∗ = 0.1,
ds = 0.01).

and Minnesota (MacDonald, Parker & Leuthe 1991) (USA), Alberta (Kellerhals, Neill
& Bray 1972) and British Columbia (courtesy of G. Parker) (Canada). It appears
that under bedload dominated conditions both sub- and super-resonant regimes are
frequently encountered in nature.

The significance of resonant conditions in terms of actual physical processes related
to river meandering arises from the facts discussed below.

(a) Resonant bar perturbations are essentially non-migrating and non-amplifying
(hence steady) periodic perturbations of flow and bed topography naturally allowed
by the system flow-cohesionless bottom: if the channel centreline meanders with
wavenumber λR (or close to it) and the aspect ratio of the channel is βR (or close to
it), then the forcing effect of curvature (right-hand sides of (5.3)–(5.8)) is such as to
force a free response of the system (i.e. a solution of the homogeneous part of the
problem (5.3)–(5.8)) and the system resonates, i.e. flow and bottom perturbations peak,
at least in a linear context. Though exact resonant conditions would never be met in
nature, however, the above finding allowed Blondeaux & Seminara (1985) to clarify
the fundamental difference between the two distinct theories of meander formation,
namely, the so called bar and bend theories. In particular, such theories select
markedly different wavenumbers: the bar mechanism selects the most unstable bar
perturbations (a migrating feature), whereas the bend theory selects the wavenumber
such that the (steady) perturbation of flow and bed topography forced by curvature
is most intense. The latter would be exactly the resonant wavenumber λR if the aspect
ratio of the channel were exactly βR , but even for values of β significantly larger
or smaller than βR , resonance displays its effects in that a peak in the response of
bed topography to a periodic perturbation of channel axis is found for values of
meander wavenumber fairly close to λR . In other words, the peak of the bend theory
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Figure 6. The resonant values of width ratio βR and wavenumber λR are plotted versus the
Shields stress τ∗ for different values of the relative roughness ds in the case of a dune-covered bed.

originally proposed by Ikeda et al. (1981) is associated with the fact that the bend
mechanism selects a quasi-resonant wavenumber. Such findings have been confirmed
by Johannesson & Parker (1989) and by Hasegawa, Nakamura & Toyabe (1998).
Nonlinear effects obviously smooth out the sharpness of the resonant response. This
has been shown analytically by Seminara & Tubino (1992), numerically by Shimizu,
Tubino & Watanabe (1992) and experimentally by Colombini, Tubino & Whiting
(1992) and Hasegawa et al. (1998).

(b) A second physical implication of the existence of such resonant conditions
concerns the location of the maximum scour in a meandering channel. In mathematical
terms, this has to do with the phase of the perturbation of bottom topography arising
in response to perturbations of channel curvature. A well-known feature of linear
resonators is the change in phase of the response as the resonant conditions are
crossed (Kevorkian & Cole 1981, p. 145). In the present case, under sub-resonant
conditions (β < βR) the location of the maximum scour moves from downstream to
upstream of the bend apex as the wavenumber increases exceeding λR . The situation
reverses under super-resonant conditions (β > βR): the location of the maximum scour
is located upstream (downstream) of the bend apex for values of λ smaller (larger)
than λR . Such a result, which has been experimentally confirmed by Colombini et
al. (1992), Hasegawa et al. (1998) and Garcia & Nino (1993) independently, besides
its obvious practical implications has an important consequence as regards the well-
known process of skewing of the shape of large-amplitude meanders: in fact, meanders
are skewed upstream or downstream depending on whether the location of maximum
scour is downstream or upstream of the bend apex. As a result, sub- (super-)resonant
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Figure 7. The difference β − βR for several North American gravel bed rivers is plotted versus the
Shields stress τ∗. Data partly taken from MacDonald et al. (1991), Kellerhals et al. (1972), Andrews
(1984), partly provided by G. Parker.

large-amplitude meanders are downstream or upstream skewed, respectively. This
feature will clearly be demonstrated in Part 2.

(c) The third important implication of the existence of resonant conditions concerns
upstream influence in river meandering. Let us then clarify the physical basis of our
findings.

Figure 5 shows that the (λ, β)-plane can be divided into four different regions
according to the signs of the growth rate Ω and of the angular speed ω of the
perturbation. Alternate bars do not form in regions I and IV, characterized by a
negative value of the growth rate Ω. The instability area covers both regions II
and III, characterized by different signs for the angular speed ω. Region II displays
upstream migration (ω < 0), while downstream migration takes place in region III
(ω > 0).

This result can be given a simple physical explanation on the basis of the behaviour
of the phase lags δ1 and δ2. The dependence of the angular frequency ω on such
phase lags is readily written in the form:

ω

Q0

=
λQsr

ηr
cos δ1 +

mπQnr

2ηr
sin δ2. (7.3)

The direction of migration of linearly unstable alternate bars is then controlled by
the balance between the two terms on the right-hand side of equation (7.3).

In figure 8, δ1 and δ2 are plotted versus bar wavenumber λ for two different values
of β, corresponding to sub- and super-resonant conditions, respectively.

The second term of the right-hand side of (7.3) proves to be invariably positive,
regardless of the values taken by β and λ, thus determining a contribution to bar
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Figure 8. The phase lags δ1 and δ2 of the longitudinal and transverse components of the perturbed
bedload vector (Qs1, Qn1) relative to bed topography are plotted versus bar wavenumber λ for
β = 10 < βR and β = 20 > βR (plane bed, τ∗ = 0.1, ds = 0.01, βR = 16.5).

migration always in the downstream direction. On the contrary, the first term is
negative for low values of λ, and becomes positive when λ exceeds a threshold value
λ∗ which increases with β. As a result, for sufficiently large values of the width ratio β,
the first term on the right-hand side of (7.3) may prevail leading to upstream migration
of the perturbations. The minimum value of β such that upstream migration may
occur is the resonant value βR and the corresponding wavenumber is the resonant
wavenumber λR .

We may wonder why the phase lag of Qs1 changes quadrant (from the fourth
to the third) for small values of the perturbation wavenumber λ, thus leading to
upstream migration. In order to clarify this point, we note that perturbations of
the longitudinal component of bedload flux are proportional to perturbations of the
longitudinal component of bottom stress. As λ→ 0, longitudinal variations of all flow
quantities tend to vanish, hence, flow continuity suggests that perturbations of the
transverse component of velocity tend to vanish. Hence, the transverse component of
the momentum equation implies that perturbations of free-surface elevation also tend
to vanish, i.e. flow depth is in opposition relative to bottom elevation. The longitudinal
component of the momentum equation, in the absence of inertial and gravitational
effects, simply implies that perturbations of the ratio between longitudinal bottom
stress and flow depth must vanish, hence, perturbations of the former must be in
phase with perturbations of the latter. In other words, as λ → 0, perturbations of
bottom stress tend to have a phase lag π relative to bottom elevation, as shown by
the complete solution plotted in figure 8.
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Figure 9. Overdeepening: sketch of the channel.

Finally, we point out that such an upstream migrating perturbation would not
arise spontaneously, say in a straight channel, as, for given value of β > βR , such
perturbations are not the most unstable (see dashed line in figure 5). However,
the development of such perturbations may be forced by geometrical constraints,
such as the abrupt change in channel curvature leading to the phenomenon of
overdeepening.

The above result was also implied in previous works (Johannesson & Parker 1989,
Seminara & Tubino, 1992), but its relevance for the issue of morphodynamic influence
does not seem to have been pointed out before.

8. An application to the overdeepening phenomenon and some discussion
In order to clarify the two scenarios described at the end of § 6, let us employ

the exact solution of the linear problem of meander morphodynamics to study the
overdeepening phenomenon outlined in § 1. We then focus our attention on an erodible
channel consisting of a curved reach (II in figure 9) with constant curvature of the
channel axis connected to two straight reaches located upstream (I) and downstream
(III). Reaches (I) and (III) are assumed to be indefinitely long.

The exact solution of the linear model requires appropriate boundary conditions
in order to evaluate the constants cmj(j = 1–4;m > 1). The curvature of channel axis
exhibits discontinuities in the two cross-sections located at s = 0 and s = sL. The
solution is then obtained for the three reaches separately and matching conditions are
imposed at the latter cross-sections. Having assumed reaches I and III to be infinitely
long, the appropriate boundary conditions impose that perturbations of the flow and
bottom topography must keep finite as s→ ±∞.

We now show that the phenomenon of overdeepening takes place downstream of
cross-sections A–A′ and B–B′ provided the aspect ratio of the channel does not exceed
the resonant value βR . In fact, under such conditions, it turns out that:

λm1 > 0 (m > 1), λmj < 0 (j = 2, 3, 4;m > 1). (8.1)

Hence, each free mode m consists of four components, one of which is exponentially
growing downstream, while the remaining three are exponentially decaying. Hence,
the solution reads:

I − V m = cIm1f(1) exp (λm1s), (8.2)
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Figure 10. A comparison with run T1 of Struiksma et al. is performed by employing both
Meyer–Peter & Muller’s and Engelund & Hansen’s formula.

II − V m = cIIm1f(1) exp

[
λm1

(
s− LII

B

)]
+

4∑
j=2

cIImjf(j) exp (λmjs) + Âm

4∑
j=1

[
gj0

λmj
f(j) − Γ (u,v,d,h)

j1

]
, (8.3)

III − V m =

4∑
j=2

cIIImj f(j) exp [λmj(s− LII/B)], (8.4)

where the eight constants cIm1, c
II
mj , (j = 1, . . . , 4), cIIImj , (j = 2, . . . , 4) are readily calculated

by imposing the matching conditions, V m = (um, vm, dm, hm) and f(j) = (1, ϕmj , δmj , ξmj),

j = 1, . . . , 4. We have evaluated the solution for η (= F2
0h − d) by truncating the

expansion (5.13) at the fifth order, as higher-order contributions decrease rapidly as
m increases.

Good agreement is found with the experimental findings of Struiksma et al. (1985),
referring to the sub-resonant case. The comparison is given in figures 10–12. Notice
that the assumption of wide cross-sections employed in the present analysis, quite
suitable to natural channels, is only approximately satisfied by the experimental
conditions set up by Struiksma et al. In particular, the channel banks were vertical in
the experiments, which implies that the effective width of the cross-section, practically
unaffected by the presence of the sidewalls, was slightly smaller than the actual width
of the channel. The relatively narrow character of the cross-sections was accounted
for by applying our theory to effective cross-sections, treated as infinitely wide, and
such that, under uniform flow conditions, they would carry the same discharge as the
actual channel with a transversely uniform distribution of longitudinal velocity. The
effective width of such a channel (2B∗e ) was related to the actual width (2B∗) by the
following relationship

B∗e
B∗

=

(
1 +

D∗

B∗

)2/3

. (8.5)
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Figure 11. A comparison with run T2 of Struiksma et al. is performed by employing both
Meyer-Peter & Muller’s and Engelund & Hansen’s formula.
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Figure 12. A comparison with run T3 of Struiksma et al. is performed by employing both
Meyer-Peter & Muller’s and Engelund & Hansen’s formula.

Experimental conditions of run T1, T2, T3 of Struiksma et al. (1985) are reported in
table 1. The flume was 1.5 m wide and filled with almost uniform sand (d50 = 0.45 mm);
the bend was 29.32 m long, with R∗0 = 12 m.

Comparison is fairly satisfactory both for the wavelength and the amplitude of
bed deformations. Downstream overdeepening indeed occurs at the entrance of both
the curved reach (II) and of the straight reach (III), induced by the discontinuities
in channel curvature. Note that, in all examined cases, the value of the parameter
ν0
√
τ∗/rCf0 is lower than 10, hence, following Seminara & Solari (1998), we may

expect that the linear model is suitable for interpreting the actual phenomenon.
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Discharge Mean water depth Mean water velocity
Run (m3 s−1) (m) (m s−1) Shields parameter

T1 0.047 0.080 0.39 0.26
T2 0.061 0.100 0.41 0.27
T3 0.074 0.091 0.54 0.52

Table 1. Experimental conditions of run T1, T2, T3 of Struiksma et al. (1985).

In fact, the agreement between the present theoretical results and the experimental
observations of Struiksma et al. (1985) seems to be no less satisfactory than that
achieved by Seminara & Solari (1998) on the basis of a two-dimensional nonlinear
numerical model. However, note that no comparison has been performed with
experiment T6 of Struiksma et al. (1985). The latter exhibited a fairly small value of
β and its peculiar character was already noted by Struiksma et al. (1985). Further-
more, the present theory is unable to predict the occurrence of small-scale bottom
perturbations exhibited by these experimental results. They are likely to arise from
the nonlinear generation of higher-order longitudinal modes.

We then move to examine the occurrence of upstream overdeepening. In reach
(I), the response of the system is characterized by three oscillating and exponentially
growing free modes, whereas in reach (II) an exponentially damped free mode also
contributes to the natural response. The complete solution is then obtained by
adding the solution forced by curvature to the free response. In reach (III), only
the exponentially damped free mode may contribute. In order to clearly isolate the
upstream influence effect due to a discontinuity in channel curvature, the model is
applied here to an even simpler channel configuration consisting of a straight reach (I)
and a curved reach (II), supposed to be long enough for the effect of the downstream
end not to be felt in the region of interest.

Figure 13 shows the bed profile close to the left bank of the channel, i.e. the outer
bank of the bend. Notice that finite bed deformation occurs in the straight reach
at a distance almost twenty times the channel width. In natural rivers, this would
suggest a tendency of the upstream reach to undergo the process of bank erosion,
leading to channel meandering. Experimental testing of this theoretical result is now
being pursued in our laboratory. Preliminary results (Guala et al. 1999) support our
theoretical findings.

It is then instructive to examine the exact solution (6.6) in relation to the standard
model employed to simulate the planimetric evolution of meandering rivers. In fact,
as already pointed out, nearly all available simulations are based on the linear
morphodynamic model originally developed by Ikeda et al. (1981) and later modified
by Johannesson & Parker (1989). The solution obtained by the standard model,
written in the present notations is:

ub = u|n=1 =

∞∑
m=0

(−1)mum

= ν0

[
C(s) + (βCf0)[A+ F2

0 ]

∫ s

s0

exp[−2βCf0(s− t)]C(t) dt

]
, (8.6)

with A constant. Let us compare (6.6) with (8.6).
The first significant difference arising from such comparison is that in (8.6) the non-
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Figure 13. Upstream overdeepening: τ∗ = 0.1, ds = 0.01, βR = 16.5, β = 30.

history term involves only the value of local curvature, whereas the complete solution
(6.6) also involves its derivatives up to some high order. As pointed out before, many
of the additional terms included in (6.6) are quite small, being proportional to the
dispersive coefficients k2 and k5, or to the higher derivatives of channel curvature.
Other terms, namely those proportional to k0, k1, k3 or k4, appear in our linearized
solution, though only terms proportional to k3 play a dominant role. Their effect
increases for the relatively short components of meander trains, which exhibit a fairly
short life being intrinsically stable, as will appear in Part 2. However, on the whole,
this feature does not seem to be too severe a limitation on the standard model.

A second, more significant, distinct feature of the complete model is its ability
to account for upstream influence effects. In fact, some of the approximations on
which the standard model is based make it only able to capture history effects which
propagate downstream. Moreover, the kernel of the convolution integral in equation
(8.6) is purely exponentially damped whereas the complete kernel is also oscil-
latory. Finally, the damping rate and the wavelength of oscillations in the complete
formulation depend on β nonlinearly (see figure 4), rather than linearly as in (8.6).
Such distinct features do have significant consequences on various aspects of river
morphodynamics as will be shown in Part 2.

Finally, we point out that the restriction of linearity of the present model has
a severe consequence in the super-resonant regime. In fact, Seminara & Tubino
(1992) showed that exponentially growing modes tend asymptotically to reach a
finite-equilibrium amplitude in the super-resonant regime. Hence, such modes, which
cannot be included in linear theory, would arise in a nonlinear context, leading
to a somewhat altered picture where upstream overdeepening would coexist with
a downstream overdeepening, the latter being triggered by nonlinear growth in the
downstream reach. A continuity for this effect will require the development of a fully
nonlinear model.

This work has been jointly supported by the Italian Ministry for Scientific Research
(MURST) and by the University of Genova under the project ‘Fluvial and coastal
morphodynamics’.
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The authors are grateful to G. Parker who kindly provided the data reported in
figure 7.

Appendix A. Coefficients of equations (4.6)–(4.9)

f11 = −nC
(
VU,n + β

τs

D

)
−UVC− n(k0Γn0 + k1Γn1 + k2Γn2),

g11 = −k0(Γ0 + Γs0)− k1(Γ1 + Γs1)− k2(Γ2 + Γs2) + CU2 − nC
(
VV,n +H,n + β

τn

D

)
,

m11 = −C(s)[n(DV ),n + DV ],

n11 = −C(s)[Q0(nqn,n + qn) + (F2
0H − D),t].

Coefficients Γn0, Γn1, Γn2, Γs0, Γs1, Γs2 and Γ0, Γ1, Γ2 are defined as follows:

Γn0 =
C

β
√
Cf0

[U2D,n + (DU2),n],

Γn1 =
1

β2Cf0

{DU(UC),sD,n + [D2U(UC),s],n},

Γn2 =
C

β2Cf0

[U2D,sD,n + (DU2D,s),n],

Γs0 =
1

β
√
Cf0

[CU2D,s + (CU2D),s],

Γs1 =
1

β2Cf0

{DU(UC),sD,s + [D2U(UC),s],s},

Γs2 =
1

β2Cf0

{C(UD,s)
2 + [CDU2D,s],s},

Γ0 =
2C

β
√
Cf0

[UVD,n + (UVD),n],

Γ1 =
2

β2Cf0

{DV (UC),sD,n + [D2V (UC),s],n},

Γ2 =
2C
β2Cf0

[UVD,sD,n + (DUVD,s),n].
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