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1. INTRODUCTION

Heterogeneous expectations models are becoming increasingly popular in var-
ious fields of economic analysis, such as exchange rate models [De Grauwe
et al. (1993); Da Silva (2001); De Grauwe and Grimaldi (2005, 2006)], macro-
monetary policy models [Evans and Honkapohja (2003); Evans and McGough
(2005); Bullard et al. (2008); Anufriev et al. (2009)], overlapping-generations
models [Duffy (1994); Tuinstra (2003); Tuinstra and Wagener (2007)], and mod-
els of socioeconomic behavior [Lux (1995); Brock and Durlauf (2001); Alfarano
et al. (2005)]. Yet the application with the most systematic and perhaps most
promising heterogeneous expectations models seems to be asset price modeling.
Contributions of, e.g., Brock and Hommes (1998), Lux and Marchesi (1999),
LeBaron (2000), Chiarella and He (2002), Brock et al. (2005), and Gaunersdorfer
et al. (2008) demonstrate how a simple standard asset pricing model with hetero-
geneous beliefs is able to lead to complex dynamics that makes it extremely hard
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to predict the coevolution of prices and forecasting strategies in asset markets.
A widely used framework is adaptive belief systems (ABS), a financial market
application of the evolutionary selection of expectation rules, introduced by Brock
and Hommes (1997). See Hommes (2006) and LeBaron (2006) for extensive re-
views of agent-based models in finance; recent overviews stressing the empirical
and experimental validation of agent-based models are Hommes and Wagener
(2009) and Lux (2009).

An important result in asset pricing models with heterogeneous beliefs is that
nonrational traders, such as technical analysts extrapolating past price trends,
may survive evolutionary competition. These results contradict the hypothesis
that irrational traders will be driven out of the market by rational arbitrageurs,
who trade against them and earn higher profits and accumulate higher wealth
[Friedman (1953)]. In most asset pricing models with heterogeneous beliefs, irra-
tional chartists can survive because evolutionary selection is driven by short-run
profitability. The role of memory, time horizons, or long-run profitability in the
evolutionary fitness measure underlying strategy selection has hardly been studied
in the literature, however.

LeBaron (2001) and (2002) are among the few papers that have addressed the
role of investors time horizons in learning and strategy selection in an agent-based
financial market. It has been argued that investors’ time horizons are related to
whether they believe that the world is stationary or nonstationary. In a stationary
world agents should use all available information in learning and strategy selection,
whereas if one views the world as constantly in a state of change, then it will be bet-
ter to use a shorter history of past observations. One of LeBaron’s main findings is
that in a world where more agents have a long memory horizon, the volatility of as-
set price fluctuations is smaller. Stated differently, long-horizon investors make the
market more stable, whereas short-horizon investors contribute to excess volatility
and prevent asset prices from converging to the rational, fundamental benchmark.

Another contribution along these lines is Brock and Hommes (1999), who use
a simple, tractable asset pricing model with heterogeneous beliefs to investigate
the effect of memory on the fitness measure for strategy selection. In contrast
to LeBaron (2001, 2002), they find that more memory in strategy selection may
destabilize asset price dynamics.1

Honkapohja and Mitra (2003) provide analytical results for the dynamics of
adaptive learning when the learning rule has finite memory. These authors focus
on the case of learning a stochastic steady state. Although their work is not done in
a heterogeneous agent setting, the results are interesting for our analysis. Their fun-
damental outcome is that the expectational stability principle, which plays a central
role in the stability of adaptive learning, as discussed, e.g., in Evans and Honkapo-
hja (2001), retains its importance in the analysis of incomplete learning, though
it takes a new form. Their main result is that expectational stability guarantees
stationary dynamics under learning with finite memory, with unbiased forecasts
but higher price volatility than under complete learning with infinite memory.

Chiarella et al. (2006) study the effect of the time horizon in technical trading
rules upon stability in a dynamic financial market model with fundamentalists
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and chartists. The chartist demand is governed by the difference between the
current price and a (long-run) moving average. One of their main results is that
an increase of the window length of the moving average rule can destabilize
an otherwise stable system, leading to more complicated, even chaotic behavior.
Analysis of the corresponding stochastic model was able to explain various market
price phenomena, including temporary bubbles, sudden market crashes, price
resistance, and price switching between different levels.

The aim of our paper is to study the role of memory or time horizon in evolution-
ary strategy selection in a simple, analytically tractable asset pricing model with
heterogeneous beliefs. We analyze the effects of additional memory in the fitness
measure on evolutionary adaptive systems and the consequences for survival of
technical trading strategies. By complementing the stability analysis with local bi-
furcation theory [see Kuznetsov (2004) for an extensive mathematical treatment],
we will be able to analyze the effects of adding different amounts of memory to the
fitness measure on stability in a standard asset pricing model with heterogeneous
beliefs.

The outline of the paper is as follows. In Section 2 an adaptive belief system
is presented in its general form with H different trader types. In Section 3 an
ABS with two types and costs for information gathering is examined. In Section 4
we investigate the stability of the fundamental steady state in a more generalized
framework without information costs. In Section 5 our theoretical findings with
respect to memory are examined numerically in an example with three strategies.
The final section concludes, and proofs are collected in an Appendix.

2. ADAPTIVE BELIEF SYSTEMS

An adaptive belief system is a standard discounted-value asset pricing model de-
rived from mean–variance maximization with heterogeneous beliefs about future
asset prices. We shall briefly recall the model of Brock and Hommes (1998); for
a recent more detailed discussion see, e.g., Hommes and Wagener (2009).

2.1. The Asset Pricing Model

Agents can invest either in a risk-free asset or in a risky asset. The risk-free asset
is in infinite elastic supply and pays a fixed rate of return r; the risky asset is in
fixed supply zs and pays an uncertain dividend. Let pt be the price per share of
the risky asset at time t , yt the stochastic dividend process of the risky asset, and
zt the number of shares of risky assets purchased at date t . Then wealth dynamics
is given by

Wt+1 = (1 + r)Wt + [pt+1 + yt+1 − (1 + r)pt ] zt . (1)

There are H different types of trading strategies. Let Eht and Vht denote forecasts
of trader type h, with h = 1, . . . , H , about conditional expectation and conditional
variance, which are based on a publicly available information set of past prices
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and past dividends. Demand zh,t of a trader of type h for the risky asset is derived
from myopic mean–variance maximization; i.e.,

max
zt

{
Eht [Wt+1] − a

2
Vht [Wt+1]

}
, (2)

where a is the risk aversion parameter. Then the demand zh,t is given by

zh,t = Eh,t [pt+1 + yt+1 − (1 + r)pt ]

aVh,t [pt+1 + yt+1 − (1 + r)pt ]
. (3)

Let zs denote the supply of outside risky shares per investor, assumed to be
constant, and let nh,t denote the fraction of type h at date t . Then equality of the
demand and the supply in the market equilibrium implies

H∑
h=1

nht

Eh,t [pt+1 + yt+1 − (1 + r)pt ]

aVh,t [pt+1 + yt+1 − (1 + r)pt ]
= zs. (4)

We shall assume the conditional variance Vh,t = σ 2 to be constant and equal for
all types2: thus the equilibrium pricing equation is given by

(1 + r)pt =
H∑

h=1

nh,tEh,t [pt+1 + yt+1] − aσ 2zs. (5)

As in Brock and Hommes (1998), we focus on the case of zero outside supply,
i.e., zs = 0. It is well known that, if all agents are rational, the asset price is given
by the discounted sum of expected future dividends,

p∗
t =

∞∑
k=1

Et [yt+k]

(1 + r)k
. (6)

The price p∗
t is called the fundamental price. The properties of p∗

t depend on the
stochastic dividend process yt . We focus on the case of IID dividend process yt

with constant mean ȳ, for which the fundamental price is constant and given by

p∗ =
∞∑

k=1

ȳ

(1 + r)k
= ȳ

r
. (7)

It will be convenient to work with the deviation from the fundamental price,

xt = pt − p∗. (8)

Beliefs of type h satisfy the following assumptions:

[B1] Vh,t[pt+1 + yt+1 − (1 + r)pt ] = σ 2,
[B2] Eh,t[yt+1] = Et[yt+1] = ȳ,
[B3] Eh,t[pt+1] = Et[p∗

t+1] + fh(xt−1, . . . , xt−L) = p∗ + fh(xt−1, . . . , xt−L).
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Assumption [B1] says that beliefs about conditional variance are equal and con-
stant for all types. According to assumption [B2], expectations about future divi-
dends yt+1 are the same and correct for all trader types. According to assumption
[B3], traders of type h believe that in a heterogeneous world the price may deviate
from its fundamental value p∗

t by some function fh = fh(xt−1, . . . , xt−L) of past
deviations. The function fh represents agent type h’s view of the world.

Brock and Hommes (1998) investigated evolutionary competition between sim-
ple linear forecasting rules with only one lag,

fh,t = ghxt−1 + bh, (9)

where gh is the trend and bh is the bias of trader type h. If bh = 0 we call an agent
h a pure trend chaser if gh > 0 and a contrarian if gh < 0. In the special case
gh = 0 and bh = 0, and trader of type h is a fundamentalist, believing that price
returns to its fundamental value.

An important and convenient consequence of assumptions [B1]–[B3] is that the
heterogeneous agent market equilibrium (5) can be reformulated in deviations from
the fundamental price. The fact that the fundamental price satisfies (1 + r)p∗ =
Et[pt+1+yt+1] yields the equilibrium equation in deviations from the fundamental
value,

(1 + r)xt =
H∑

h=1

nh,tfh,t . (10)

2.2. Evolutionary Fitness with Memory

The evolutionary part of the model describes how beliefs are updated, i.e., how
the fractions nh,t of trader types in the market evolve over time. Fractions are
updated according to an evolutionary fitness measure Uh,t . The fractions of agents
choosing strategy h are given by the multinomial logit probabilities

nh,t = exp(βUh,t−1)

H∑
h=1

exp(βUh,t−1)

. (11)

The intensity of choice parameter β ≥ 0 measures how sensitive the traders are to
selecting the optimal prediction strategy. The extreme case β = 0 corresponds to
the case where agents do not switch and all fractions are fixed and equal 1/H . The
other extreme case β = ∞ corresponds to the case where all traders immediately
switch to the optimal strategy. An increase in the intensity of choice β represents
an increase in the degree of rationality with respect to evolutionary selection of
trading strategies. One of the main results of Brock and Hommes (1998) is that a
rational route to randomness occurs; that is, as the intensity of choice increases, the
fundamental steady state becomes unstable and a bifurcation route to complicated,
chaotic asset price fluctuations arises. The key question to be addressed in this
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paper is whether more memory is stabilizing or destabilizing. In particular, we are
interested in the question of how memory in the fitness measure affects the primary
bifurcation toward instability and how it affects the rational route to randomness.

A natural candidate for evolutionary fitness is a weighted average of current
realized profits πht and last period fitness Uh,t−1,

Uh,t = γπh,t + wUh,t−1

= γ

[
(pt + yt − Rpt−1)

Eh,t−1[pt + yt − Rpt−1]

aσ 2
− Ch

]
+ wUh,t−1,

(12)

where R = 1 + r , Ch ≥ 0 is an average per period cost of obtaining forecasting
strategy h, and w ∈ [0, 1) is a memory parameter measuring how quickly past
realized fitness is discounted for strategy selection. The parameter γ in (12) has
been introduced to distinguish between two important cases in the literature. Brock
and Hommes (1998) proposed the case γ = 1, implying that the weights given to
past profits decline exponentially; more precisely realized profit k periods ago gets
weight wk . Brock and Hommes (1998), however, as well as almost all subsequent
literature, focus the analysis on the case without memory, i.e., w = 0, with fitness
equal to current realized profit.3 An advantage of the case γ = 1 is that w = 1
corresponds to the benchmark where fitness equals the accumulated excess profit
of the risky asset over the risk-free asset.4 A disadvantage, however, is that for
γ = 1 the weights are not normalized, but rather sum up to 1/(1 − w). The
second case studied in the literature assumes γ = 1 − w, corresponding to the
case where the weights are normalized and add up to 1. Note that for w = 1/T

and γ = 1−1/T , this case reduces to a T −period average with fixed T [see, e.g.,
LeBaron (2001) and Diks and van der Weide (2005)]. We will refer to the case
γ = 1 as cumulative weights and to the case γ = 1 − w as normalized weights.5

Notice that the two different cases lead to the same distribution of relative
weights over past profits, given by (1, w,w2, w3, · · · ). Stated differently, the
relative contribution of past profits to overall fitness is the same for both weighting
schemes. For both weighting schemes, an increase of w thus means an increase
of memory in the sense that more weight is given to more distant observations.
However, an increase of w has another, second effect that is different for the two
weighting schemes. As stated above, for γ = 1 all weights add up to 1/(1 − w),
whereas for γ = 1 − w the weights are normalized to 1. This implies a scaling
effect for γ = 1, with the sum of the weights, 1/(1 −w), blowing up to infinity as
w approaches 1. In particular, for γ = 1 the fitness at steady state is multiplied by
a factor 1/(1 − w). Hence, for the stability of a steady state, this scaling effect for
γ = 1 is equivalent to an increase of the intensity of choice β by a factor 1/(1−w).
Because an increase of the intensity of choice may be destabilizing [Brock and
Hommes (1997, 1998)], the scaling effect for γ = 1 may be a destabilizing force
as w increases, not present in the case of normalized weights. Another, related
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way of looking at this is to consider the direct effect of current realized profits on
fitness. In the case of normalized weights, γ = 1 − w, the direct effect of current
realized profits πht (getting weight 1−w) on fitness vanishes, i.e., tends to 0, as w

tends to 1. On the other hand, in the case of cumulative weights, γ = 1, the direct
effect of current realized profits πht (always getting weight 1) on fitness stays the
same, and thus remains nonnegligible, independent of w. As we will see, these
differences will lead to different stability results for evolutionary selection.6

Fitness (12) can be rewritten in deviations from the fundamental as

Uh,t = γ

[
(xt − Rxt−1 + δt )

(
ghxt−2 + bh − Rxt−1

aσ 2

)
− Ch

]
+ wUh,t−1, (13)

with δt = p∗
t + yt − Et−1[p∗

t + yt ] a martingale difference sequence, repre-
senting intrinsic uncertainty about economic fundamentals. The ABS with linear
forecasting rules, in deviations from the fundamental, is given by

(1 + r)xt =
H∑

h=1

nh,t (gixt−1 + bi) + εt , (14)

nh,t = exp(βUh,t−1)

H∑
h=1

exp(βUh,t−1)

, (15)

Uh,t = γ

[
(xt − Rxt−1 + δt )

(
ghxt−2 + bh − Rxt−1

aσ 2

)
− Ch

]
+ wUh,t−1, (16)

where an additional noise term εt , e.g., representing a small fraction of noise
traders, has been added to the pricing equation and will be used in some stochastic
simulations below. A special case, the deterministic skeleton, arises when all noise
terms are set to zero. To understand the properties of the general stochastic model,
it is important to understand the properties of the deterministic skeleton.

3. TWO TYPES OF AGENTS AND INFORMATION COSTS

Consider an ABS with two types of traders and the following forecasting rules:

{
f1,t = g1xt−1, 0 ≤ g1 < 1,

f2,t = g2xt−1, 1 < g2.
(17)

Type 1 believes in mean reversion, that the price will converge to its fundamental
value. In the special case g1 = 0, type 1 becomes a pure fundamentalist, as in
Brock and Hommes (1998). In contrast, type 2 believes that price deviations from
the fundamental are persistent and will increase.7 The dynamics in deviations from
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the fundamental is described by the following system:

Rxt = n1,t g1xt−1 + n2,t g2xt−1, (18)

nh,t = exp(βUh,t−1)

2∑
h=1

exp(βUh,t−1)

, (19)

Uh,t−1 = γ

[
(xt−1 − Rxt−2)

(
ghxt−3 − Rxt−2

d

)
− Ch

]
+ wUh,t−2, (20)

where C2 = 0, but C1 = C > 0 is the information-gathering costs for funda-
mentalists that agents of type 1 must pay per period. These costs reflect the effort
investors incur to collect information about economic fundamentals.

We can rewrite the system above as a five-dimensional map:⎛
⎜⎜⎜⎜⎝

xt−1

xt−2

xt−3

U1,t−2

U2,t−2

⎞
⎟⎟⎟⎟⎠ �→

⎛
⎜⎜⎜⎜⎝

1
R
(n1,t g1 + n2,t g2)xt−1

xt−1

xt−2

γπ1,t−1 + wU1,t−2

γπ2,t−1 + wU2,t−2

⎞
⎟⎟⎟⎟⎠ . (21)

The following theorem describes the results concerning existence and stability of
the steady states (see Appendix A for the proof).

THEOREM 1 (Existence and Stability of the Steady States). Let us denote the
fundamental steady state as xf = 0, and non fundamental steady states as x+ =
x∗ > 0 and x− = −x∗ < 0, where

x∗ =

√√√√√√√
C − 1 − w

γβ
log

(
R − g1

g2 − R

)

(R − 1)
g2 − g1

aσ 2

, C > 0. (22)

Let

β∗ = 1 − w

Cγ
log

R − g1

g2 − R
. (23)

Then three cases are possible:

(i) 1 < g2 < R: the fundamental steady state xf is the unique steady state and it is
globally stable;

(ii) R ≤ g2 < 2R − g1: the system displays a pitchfork bifurcation at β = β∗ such that
(a) — for 0 < β < β∗, xf is unique and stable;
(b) — for β > β∗, there are three steady states, xf , x+, and x−, and the fundamental

steady state xf is unstable;
(iii) g2 ≥ 2R − g1: there are always three steady states, xf , x+ and x−, and the funda-

mental steady state xf is unstable.
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When the trend chasers extrapolate only weakly, i.e., 1 < g2 < R, the funda-
mental steady state xf = 0 is globally stable. If C = 0, then the two types of agents
are equally represented in the market; i.e., n1 = n2 = 1/2 for any value of β, be-
cause the difference in fitnesses U2 −U1 = 0 at x = 0. If agents on average extrap-
olate very strongly, i.e., (g1 +g2)/2 > R, the fundamental steady state is unstable
and there are always two additional nonfundamental steady states x = x+ > 0 and
x = x− < 0, even when there are no information costs. The case with strongly
extrapolating trend chasers, i.e., R < g2 < 2R−g1, is the most interesting. If there
are no information costs, C = 0, the fundamental steady state is stable for all values
of β and agents are equally distributed over the two types due to equality of profits.
But when C > 0, the fundamental steady state is stable only if the agents are not
too sensitive to switch the prediction strategy, i.e., for β < β∗. As the intensity of
choice increases (β > β∗), most of the agents switch to using the cheap prediction
rule, because if the price is in a small neighborhood of its fundamental value, then
due to information costs, the first type of agents have lower profits, and for large
β a majority of agents switch to the trend-extrapolating strategy.

It can be seen immediately from expressions (22) and (23) how memory affects
the primary bifurcation of the system. In the case with normalized weights (γ =
1 − w), memory does not affect the stability. However, in the case of cumulative
weights (γ = 1) and positive information-gathering costs for fundamentalists,
memory does affect the stability and in fact it destabilizes the system; i.e., with
more memory the primary bifurcation occurs earlier. This is due to a scaling effect
when the parameter w increases, leading to a higher effective intensity of choice
and thus to an earlier bifurcation of the fundamental steady state.

As a typical example, consider an ABS with the following two prediction rules:

f1,t = 0.5xt−1, (24)

f2,t = 1.2xt−1. (25)

Traders of the first type believe that the next-period deviation of the price from the
fundamental will be two times less than in the current period, whereas traders of
the second type predict an increase in the deviation of the price from fundamental.

It follows from Theorem 1 that the fundamental steady state xf = 0 is unique
and stable for β ∈ (0, β∗), with β∗(w) = 1.79(1 − w)/γ . When the parameter
β passes the critical value β∗, the fundamental steady state loses stability due
to a pitchfork bifurcation and two new stable equilibria of the price dynamics
appear.

Next consider the two different cases: cumulative versus normalized weights.

3.1. Cumulative Weights (γ = 1)

In the case with accumulated profits, i.e., when γ = 1, the pitchfork bifurcation
curve is given by β∗(w) = 1.79(1 − w), which is declining with respect to the
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FIGURE 1. The case of two types of prediction rules and accumulated profits (γ = 1).
The left column corresponds to w = 0; the right column corresponds to w = 0.5. Upper
figures display bifurcation diagrams with respect to β. Time series of the price deviation
are represented by the middle figures (without noise) and the lower figures (with noise).
Belief parameters are g1 = 0.5 and g2 = 1.2; the other parameters are β = 4, R = 1.1,
C = 1, and d = 1.

memory parameter. This means that memory destabilizes the price dynamics: the
larger w the earlier the primary bifurcation occurs.

Figure 1 illustrates the dynamics without memory (w = 0, left panel) and with
memory (w = 0.5, right panel). In both cases a rational route to randomness, that
is, a bifurcation route to complicated dynamics as the intensity of choice increases,
occurs. Notice that, with memory in the fitness measure, the temporary bubbles
and crashes in the price series occur less frequently, but when they occur they last
longer, with much larger deviations from the fundamental benchmark.
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FIGURE 2. The normalized fitness measure case (γ = 1 − w): time series of the price
deviation from its fundamental value for different levels of the memory. Belief parameters
are g1 = 0.5 and g2 = 1.2; the other parameters are β = 4, R = 1.1, C = 1, and d = 1.

3.2. Normalized Weights (γ = 1 − w)

In the case with normalized weights, i.e., when γ = 1−w, the pitchfork bifurcation
curve is given by β∗(w) = 1.79. Hence, memory does not affect the stability of
the fundamental steady state. Figure 2 illustrates the dynamics without memory
(w = 0, left panel) and with memory (w = 0.8, right panel). Although less
pronounced, memory has a similar effect on price fluctuations: with memory in
the fitness measure, the temporary bubbles and crashes in the price series occur
less frequently, but once started, bubbles last longer, with larger swings away from
the fundamental benchmark.

The bottom panels of Figures 1 and 2 contain time series simulations in the
presence of noise, represented by a small fraction of noise traders. Whereas in
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the deterministic simulations the chaotic bubbles and crashes are still somewhat
predictable, in the presence of noise they become very irregular and highly unpre-
dictable.

4. STABILITY IN THE MODEL WITH H TYPES

Brock and Hommes (1998) stressed the importance of simple forecasting rules,
because it is unlikely that enough traders will coordinate on a complicated rule for it
to have an impact in real markets. The learning-to-forecast laboratory experiments
of Hommes et al. (2005) show that simple, linear forecasting rules with only a few
lags describe individual forecasting behavior surprisingly well. In this section, we
investigate the role of memory in an ABS with an arbitrary number H of linear
forecasting rules with one lag, i.e.,

fi,t = gixt−1 + bi, gi, bi ∈ R, i = 1, . . . , H, (26)

and without information-gathering costs, i.e., Ci = 0 for all i = 1, . . . , H . The
coevolution prices and beliefs are described by the following difference equation:

Rxt =
H∑

h=1

nh,t (ghxt−1 + bh) , (27)

nh,t = exp
(
βUh,t−1

)
H∑

h=1

exp
(
βUh,t−1

) , (28)

Uh,t−1 = γ

[
(xt−1 − Rxt−2)

(
ghxt−3 + bh − Rxt−2

d

)]
+ wUh,t−2

= γπh,t + wUh,t−2, (29)

with d = aσ 2. Equation (27) can be rewritten as an (H+3)-dimensional map

⎛
⎜⎜⎜⎜⎜⎜⎝

xt−1

xt−2

xt−3

U1,t−2

· · ·
UH,t−2

⎞
⎟⎟⎟⎟⎟⎟⎠

�→

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

R

H∑
h=1

nh,t (ghxt−1 + bh)

xt−1

xt−2

γπ1,t−1 + wU1,t−2

· · ·
γπH,t−1 + wUH,t−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (30)

The following theorem describes the results concerning existence and stability
of the fundamental steady state (see Appendix B for the proof).
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THEOREM 2 (Existence and Stability of the Fundamental Steady State). As-
sume that

1. The average bias equals zero, i.e.,
∑H

i=1 bi = 0.
2. There is at least one non-zero bias, i.e., V = 1

H

∑H

i=1 b2
i > 0.

3. The mean trend is not too strong, i.e., |ḡ| = | 1
H

∑H

i=1 gi | < R.

Then the fundamental price xf = 0 is a steady state of (30). The fundamental
steady state is stable for 0 ≤ β < βNS, where

βNS = aσ 2

V γ

(
1 − ḡ

R
w

)
> 0. (31)

At the value β = βNS the steady state loses stability due to a Neimark–Sacker
bifurcation. For β > βNS the fundamental steady state is unstable.8

The assumption that the average bias is zero seems reasonable, as there is no a
priori reason that the average bias would be negative or positive.9 The other two
assumptions, that there is at least one nonzero bias and that the average trend over
all rules is not too strong, also seem plausible. The theorem says that, under these
assumptions, the dynamic behavior of the price of the risky asset is independent
of the number of agent’s strategies, but depends on the mean value ḡ of the trend-
extrapolating coefficients gh and the diversity or spread V of the biases bh. The
larger the absolute average trend |ḡ|, the lower βNS and the earlier the primary
bifurcation occurs; if the trend chasers on average extrapolate more heavily away
from the fundamentals, the system destabilizes faster. Similarly, the greater the
variance V in biases, the lower βNS and again the bifurcation occurs earlier; if there
is more variability among biased traders, the price dynamics becomes unstable
earlier. Note that for the special case ḡ = 0 and γ = 1, memory does not affect
the stability of the fundamental steady state, because βNS = aσ 2/V [cf. Brock
and Hommes (1998)].

In the case γ = 1, i.e., in the case of cumulative weights, the Neimark–Sacker
bifurcation curve (31) becomes a straight line,

βNS = aσ 2

V

(
1 − ḡ

R
w

)
, (32)

as illustrated in Figure 3 (left panel). The slope of the line depends on the sign of the
average trend extrapolation ḡ. If agents on the average extrapolate positively, then
the line is decreasing and the bifurcation w.r.t. β comes earlier with more memory.
The intuition is that positive trend extrapolation reinforces market movements
away from the fundamentals and the system destabilizes faster. On the other
hand, if agents on average are contrarians extrapolating negatively, then (32) is an
increasing line and the bifurcation w.r.t. β comes later with more memory. Here
the intuition is that contrarian behavior counterbalances market movements away
from the fundamentals and the system destabilizes more slowly.
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FIGURE 3. Neimark–Sacker bifurcation curves βNS in (31) for different values of the
parameters γ and ḡ: dotted lines correspond to the case ḡ > 0, whereas solid lines
correspond to the case ḡ < 0. For the case with γ = 1 (left panel) the bifurcation curves
are straight lines, whereas for γ = 1 − w (right panel) they are hyperbolas. In the case
γ = 1 (left panel) and ḡ > 0, memory has a destabilizing effect on the dynamics; i.e., the
bifurcation w.r.t. β comes earlier. In contrast, in the case γ = 1 − w (right panel), more
memory always has a stabilizing effect.

In the case with normalized weights, γ = 1−w, the Neimark–Sacker bifurcation
curve (31) becomes a “hyperbola” for both positive and negative values of ḡ (see
Figure 3, right panel):

βNS = aσ 2

V (1 − w)

(
1 − ḡ

R
w

)
. (33)

In the case of normalized weights, memory is always stabilizing (independent of
the average extrapolation factor ḡ). Notice that the Neimark–Sacker bifurcation
values (32) and (33) only differ by a factor (1 − w) in the denominator of (33)
representing the scaling effect when weights are not normalized. Comparing the
left and right panels of Figure 3, this scaling effect dominates when average trend
extrapolation ḡ > 0 and destabilizes the system when the memory parameter w

increases in the case of cumulative weights (i.e., γ = 1).

5. NUMERICAL SIMULATION OF A THREE-TYPE EXAMPLE

In this section we discuss a simple, but typical ABS with three types of traders in
order to illustrate the differences in impact of the memory strength on the stability
of the fundamental price in the two cases of cumulative weights (γ = 1) and
normalized weights (γ = 1 − w).

Consider the ABS with the following three types of prediction rules:

f1,t = 0, (34)

f2,t = 1.2xt−1 − 0.2, (35)

f3,t = 0.9xt−1 + 0.2. (36)
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FIGURE 4. Neimark–Sacker bifurcation curve (left panel) and bifurcation diagram with
respect to the memory parameter w (right panel) for the model with three types of agents
and fitness given by accumulated profits, i.e., γ = 1. Belief parameters are g1 = 0, b1 = 0;
g2 = 1.1, b2 = −0.2; and g3 = 0.9, b3 = 0.2. Other parameters are R = 1.1, aσ 2 = 1,
and β = 25 (for the right panel). The Neimark–Sacker bifurcation curve divides the
(w, β)−plane into two regions; for the parameter values in the upper region the fundamental
steady state is unstable, whereas for the parameter values in the lower region it is stable.

The second and third types are symmetrically opposite–biased positive trend
extrapolators; the first type are fundamentalists. The remaining parameters are
fixed at R = 1.1, aσ 2 = 1. Because ḡ = 0.7 < R, V = 0.08/3 �= 0, and
biases sum up to zero, according to Theorem 2, the fundamental steady state loses
stability in a Neimark–Sacker bifurcation at β = βNS:

βNS = 37.5 − 23.9w

γ
. (37)

5.1. The Case γ = 1

In the case with cumulative weights, i.e., when γ = 1, the Neimark–Sacker
bifurcation curve is a declining straight line:

βNS = 37.5 − 23.9w. (38)

As can be seen from Figure 4, in this case memory destabilizes the price dynamics;
with higher memory strength the bifurcation occurs earlier, i.e., for smaller values
of β. Because both nonfundamentalist agents extrapolate positively, and thus the
average trend extrapolation is also positive, in accordance with our findings from
Section 4, the extrapolation of trend reinforces market movements away from
the fundamentals and the bifurcation line is thus decreasing. In addition, it can
be observed in the bifurcation diagram of Figure 4 (right panel) how, for a fixed
β-value, the fundamental steady state becomes unstable and complicated, chaotic
price movements arise as the memory parameter w increases. Figure 4 (right
panel) also illustrates that the amplitude of price fluctuation increases as memory
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FIGURE 5. Neimark–Sacker bifurcation curve (left) and bifurcation diagram with respect to
the memory (right) for the model with three types of agents’ strategies and normalized fitness
measure, i.e., γ = 1 − w. Belief parameters are g1 = 0, b1 = 0; g2 = 1.1, b2 = −0.2; and
g3 = 0.9, b3 = 0.2. Other parameters are R = 1.1, d = 1, and β = 70 (for the right figure).
The Neimark–Sacker bifurcation curve divides the (w, β)−plane into two regions; for the
parameter values in the upper region the fundamental steady state is unstable, whereas for
the parameter values in the lower region it is stable.

increases, in accordance with our earlier finding that bubbles last longer with more
memory.

5.2. The Case γ = 1 − w

In the case with normalized weights, i.e., when γ = 1 − w, the Neimark–Sacker
bifurcation curve (37) becomes a “hyperbola”:

βNS = 37.5 − 23.9w

1 − w
. (39)

As can be seen from Figure 5 (left panel), more memory now stabilizes the
price dynamics; an increase in the memory strength makes the bifurcation occur
later, i.e., for larger values of β. Even when the traders are on average positive
trend extrapolators (with some bias), if the weight on cumulative past fitness (the
memory strength w) is high enough compared to the weight on current realized
profits (γ = 1 − w), the dynamics is stable. Indeed, the bifurcation diagram in
Figure 5 (right panel) shows that, for a given β, the dynamics stabilizes from
chaotic movements (interspersed with stable cycles) for low values of the memory
parameter w to a stable fundamental steady state when memory w is sufficiently
large.

6. CONCLUSION

We investigated how memory affects the stability of evolutionary selection dy-
namics in a simple, analytically tractable asset-pricing model with heterogeneous
beliefs. By complementing the stability analysis with local bifurcation theory,
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we were able to analyze the effects of adding different amounts of memory to
the fitness measure on the stability of the fundamental steady state. Whether
memory is stabilizing or destabilizing depends on three key factors: (1) whether
we have a fitness measure with cumulative weights or normalized weights; (2) the
ecology (i.e., the composition of the set) of forecasting rules, and in particular the
average strength of trend extrapolation and the spread in biased forecasts; and (3)
whether or not costs for information gathering of economic fundamentals have to
be incurred.

When there are costs for gathering fundamental information, more memory in
the fitness measure does not stabilize the dynamics. In the case with normalized
weights, due to the information-gathering costs, memory has no effect on stability;
in the case of cumulative weights, when there are information-gathering costs for
fundamentalists, more memory is destabilizing due to a scaling effect, leading to
a larger effective intensity of choice.

We have also studied the model with an arbitrary number of linear forecasting
rules with one lag and no costs for information gathering. The stability depends
critically on the ecology of forecasting rules. In particular, the system may become
unstable more easily when the average trend parameter and/or the variability of
biased forecasts become larger. How memory affects the stability of the funda-
mental steady state depends again on whether we have cumulative weights or
normalized weights. In the case of normalized weights, more memory is always
stabilizing: with more memory the first bifurcation toward instability comes later.
In the case of cumulative weights the effect of memory on the stability depends on
the direction of average trend extrapolation. If agents on the average are contrari-
ans, extrapolating negatively, more memory stabilizes the system; if on the other
hand agents on the average extrapolate positively, memory destabilizes the system.
This is due to a dominant scaling effect on fitness at steady state, when weights
are cumulative, which destabilizes the system if average trend extrapolation is
positive.

Our analysis yields a precise mathematical classification of the stability of
evolutionary selection for cumulative versus normalized weights in the fitness
measure within a very simple modeling framework. Which of these two fitness
measures is more relevant in reality is an empirical and behavioral question. Is
individual choice, for example individual portfolio selection in financial markets,
driven by cumulative fitness (e.g., accumulated wealth) or by normalized fitness
(e.g., average realized returns)? In particular, how much weight do individuals
put on the most recently observed fitness? Our theoretical results show that the
more weight they put on the most recent observation, the more easily the system
may destabilize. Future research with laboratory experiments with human subjects
may shed light on which behavioral assumptions fit individual decision making in
strategy selection more closely and, in particular, how much weight individuals
put on the most recent observations.

The difference between cumulative versus normalized weights, as expressed
through the weighting coefficients γ = 1 versus γ = 1 −w, is related to the more

https://doi.org/10.1017/S136510051000060X Published online by Cambridge University Press

https://doi.org/10.1017/S136510051000060X


352 CARS HOMMES ET AL.

general issue of whether one should use a cumulative or normalized fitness mea-
sure in strategy-switching models. An advantage of normalization is that one can
compare the magnitude of the intensity-of-choice parameter across different nor-
malized fitness measures and market settings. The intensity-of-choice parameter
is notoriously hard to estimate and only few significant results have been obtained.
Boswijk et al. (2007) estimate the intensity of choice in an asset-pricing model with
heterogeneous beliefs using yearly S&P500 data, whereas Goldbaum and Mizrach
(2008) estimate the intensity of choice in mutual fund allocation decisions. Our
results stress the importance of normalization of the fitness measure in empirical
applications. But in general it is not clear how exactly a fitness measure should
be normalized, especially when the fitness (such as realized profits) may attain
(arbitrarily large) positive as well as negative values. The normalization itself may
affect, e.g., the primary bifurcation toward instability. Laboratory experiments on
individual selection among different strategies with a normalized fitness measure
may give useful estimates of the intensity of choice of individual strategy selection
across different market settings.

NOTES

1. Another related paper is Levy et al. (1994), who simulate an agent-based microscopic stock
market model with a fixed memory length of 10.

2. Gaunersdorfer (2000) investigates the case with time-varying beliefs about variances and shows
that the asset price dynamics are quite similar. Chiarella and He (2002) and Chiarella et al. (2003)
investigate the model with heterogeneous risk aversion coefficients.

3. It is interesting to note that Anufriev and Hommes (in press) fit an evolutionary selection model
to data from laboratory experiments and use a memory parameter w = 0.7.

4. There is a large related literature on wealth-driven selection models with heterogeneous investors,
with fractions of each type determined by relative wealth. See, e.g., Anufriev and Bottazzi (2006) and
Anufriev (2008) for some recent contributions and Chiarella et al. (2009) and Evstigneev et al. (2009)
for extensive up-to-date reviews.

5. This terminology is similar to that used in the experience-weighted attraction (EWA) learning in
games literature [e.g., Camerer and Ho (1999) and Camerer (2003)], where a parameter moves from 0
to 1 between the extremes of cumulative and average reinforcement.

6. The difference between cumulative weights versus normalized weights as expressed through the
weighting coefficients γ = 1 versus γ = 1 − w is related to the more general issue of cumulative
versus normalized fitness measure Uh,t ; see the final section for more discussion.

7. Boswijk et al. (2007) estimated this ABS with two types of investors using yearly S&P 500 data
and found coefficients of g1 ≈ 0.8 and g2 ≈ 1.15, thus suggesting behavioral heterogeneity.

8. Note that in the special case V = 0 all biases equal zero, and if |ḡ| < R the fundamental steady
state is stable for all values of β and w.

9. If the average bias is nonzero but close to 0, the fundamental price is not a steady state but the
system has a steady state close to the fundamental. In that case, a stability analysis becomes much
more cumbersome, however.
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APPENDIX A: PROOF OF THEOREM 3.1
The steady states of the map (21) satisfy the equation

Rx = x

[
g1

1 + exp(β�)
+ g2

1 + exp(−β�)

]
, (A.1)

where � = γ

1−w
[(1 − R)(

g2−g1
d

)x2 + C].
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It is easy to see that the fundamental steady state xf = 0 always exists. The other
(nonfundamental) steady state is a solution of the equation

exp

{
β

γ

1 − w

[
(1 − R)

g2 − g1

d
x2 + C

]}
= R − g1

g2 − R
. (A.2)

Note that if (R − g1)/(g2 − R) ≤ 0 there are no solutions for this equation. If we take
into account that g1 < 1 then we can conclude that for 1 < g2 < R the map (18)–(20) is
contracting and has a unique globally stable steady state xf = 0.

Assume now that g2 > R; then we can obtain nonfundamental steady states from the
equation

x2 =
C − 1 − w

βγ
ln

R − g1

g2 − R

(R − 1)
g2 − g1

d

, (A.3)

which has solutions x = ±x∗, when its right-hand side is positive. It is satisfied for β > β∗

in (23) if R ≤ g2 < 2R − g1, and for any positive β if g2 ≥ 2R − g1. This proves the
statements about existence of equilibria in (i), (ii), and (iii).

To explore the stability of the fundamental steady state, we need to compute eigenvalues
of the Jacobian matrix

J (xf ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 + g2 exp

(
Cβγ

1 − w

)
[

1 + exp

(
Cβγ

1 − w

)]
R

0 0 0 0

1 0 0 0 0
0 1 0 0 0
0 0 0 w 0
0 0 0 0 w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A.4)

The characteristic equation is given by

(w − λ)2λ2

{
g1 exp

(−Cγβ

1 − w

)
+ g2 − Rλ

[
1 + exp

(−Cγβ

1 − w

)]}
(A.5)

and thus

λ1,2 = 0, λ3,4 = w, λ5 =
g1 exp

(−Cγβ

1 − w

)
+ g2

R

[
1 + exp

(−Cγβ

1 − w

)] > 0. (A.6)

Note that all eigenvalues are real and nonnegative, so the only bifurcation that can occur is
a pitchfork bifurcation, which happens if

λ5 = 1 ⇔ β = β∗. (A.7)

This means that if g2 ∈ [R, 2R−g1) for β ∈ (0, β∗), there exists a unique stable fundamental
steady state, and at the critical parameter value β = β∗, two nonfundamental steady states
occur due to a pitchfork bifurcation.
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APPENDIX B: PROOF OF THEOREM 4.1
Note that at the fundamental steady state all fitnesses are equal to zero; i.e., U ∗

h = 0 for
h = 1, . . . , H, which implies that all fractions are equal, n∗

h = 1/H. Therefore the steady
state price satisfies the equation

Rx∗ = 1

H

H∑
h=1

(ghx
∗ + bh) (B.1)

and thus

x∗ (R − ḡ) = 1

H

H∑
h=1

bh. (B.2)

It is clear that the fundamental steady state exists if and only if
∑H

h=1 bh = 0.
The Jacobian of (30) computed at the fundamental steady state is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

dḡ + V γβ

d
−V γβ

d
0 J1,1 · · · J1,H

1 0 0 0 · · · 0

0 1 0 0 · · · 0

b1γ

d
−b1Rγ

d
0 w 0 · · · 0

b2γ

d
−b2Rγ

d
0 0 w 0 · · · 0

...
. . .

bH γ

d
−bH Rγ

d
0 0 · · · 0 w

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where d = aσ 2 and

J1,s = −bswβ

HR
, s = 1, . . . , H.

The characteristic equation for the fundamental steady state is given by

λ2(w − λ)H−1 {dwḡ + RβV γ + [−d(ḡ + Rw) − βV γ ]λ + dRλ2}︸ ︷︷ ︸
p(λ)

= 0. (B.3)

The characteristic equation (B.3) has H+3 roots, where H+1 of them are inside the unit
circle, λ3 = λ4 = 0 and λ5 = . . . = λH+3 = w < 1, whereas the other two are roots of the
polynomial p(λ) and thus they determine stability of the steady state. If p(λ) has at least
one root outside of the unit circle, the steady state is unstable. We denote roots of p(λ) as
λ1 and λ2.

Let us now explore three cases where one or two roots of p(λ) are crossing a unit circle:

1. λ1 = 1, pitchfork bifurcation,

p(1) = 9d(R − ḡ)(1 − w) + 9V (R − 1)γβ.
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If V = 0 then p(1) > 0 for w ∈ [0, 1) and |ḡ| < R. If V > 0 then

p(1) = 0 ⇔ β = d(1 − w)(ḡ − R)

V (R − 1)γ
< 0 for ḡ < R, (B.4)

which means that this type of bifurcation cannot occur in the system.
2. λ1 = −1, period-doubling bifurcation,

p(−1) = 9d(R + ḡ)(1 + w) + 9V (R + 1)γβ.

If V = 0 then p(−1) > 0 for w ∈ [0, 1) and |ḡ| < R. If V > 0 then

p(−1) = 0 ⇔ β = βPD = − 4(ḡ + R)(1 + w)

V (1 + R)(1 − w)
< 0,

which means that this type of bifurcation cannot occur in the system either.
3. λ1,2 = µ1 ± µ2i, where µ2 > 0 and µ2

1 + µ2
2 = 1, Neimark–Sacker bifurcation.

Using Vieta’s formula, we get

µ2
1 + µ2

2 = λ1λ2 = dḡw + RVβγ

dR
= 1. (B.5)

If V = 0, the equation (B.5) does not have solutions for w ∈ [0, 1) and |ḡ| < R.
Therefore all eigenvalues corresponding to the fundamental steady state are inside
the unit circle and thus the steady state is stable for w ∈ [0, 1) and β ≥ 0.
If V > 0, we obtain from (B.5) the equation of the Neimark–Sacker bifurcation curve

βNS = d

V γ

(
1 − ḡ

R
w

)
. (B.6)

We have to make sure that µ2 �= 0 or equally µ2
2 > 0. Because µ2

1 + µ2
2 = 1, the

latter inequality holds if µ2
1 < 1. Using again Vieta’s formula, we have

µ1 = λ1 + λ2

2
= d(ḡ + Rw) + βV γ

2dR
> 0.

To make sure that µ2
1 < 1, we need to check the inequality

d(ḡ + Rw) + Vβγ

2dR
< 1.

Together with (B.6), it implies

w(R2 − ḡ) < R(2R − 1 − ḡ), (B.7)

which is satisfied for |ḡ| < R and any value of w ∈ [0, 1).

Our analysis shows that the Neimark–Sacker bifurcation is the only bifurcation that occurs
in the system. It happens for β = βNS as in (B.6) and leads to a loss of stability of the
fundamental steady state. �

https://doi.org/10.1017/S136510051000060X Published online by Cambridge University Press

https://doi.org/10.1017/S136510051000060X

