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OUT-OF-EQUILIBRIUM RANDOM WALKS
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Abstract

We study the long-term behaviour of a random walker embedded in a growing sequence
of graphs. We define a (generally non-Markovian) real-valued stochastic process, called
the knowledge process, that represents the ratio between the number of vertices already
visited by the walker and the current size of the graph. We mainly focus on the case
where the underlying graph sequence is the growing sequence of complete graphs.
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1. Introduction

The following models of dynamics in graphs and of graphs have been extensively studied
during the past decades.

Dynamic Agent in a Static World. Let G0 be a finite connected undirected graph. Let V0 be
the set of its vertices, and assume that |V0| = N. Also, let E0 be the set of its edges. We denote
the vertices of G0 by the first N natural numbers. For a given vertex v, we denote by degG0 (v)
its degree in the graph G0. Also, if {u, v} ∈ E0, we set u ∼G0 v. We start a random walk at
some given vertex drawn from a prescribed probability distribution on the set V0. For the time
being, consider the random walk to be a simple walk; i.e., the walker evolves according to the
transition kernel

PG0 (u, v) = 1

degG0 (u)
1{u∼G0 v}.

In this static context, we have at our disposal several measures of the performance of the
random walk, the hitting times and cover time being the most important for our purposes. For
a random walk started at X0 and for some arbitrary v ∈ V0, the hitting time (or first passage
time) τv is the first time that the walker visits v: that is, τv := min{n ≥ 0 : Xn = v}. The cover
time of the random walk is defined as Cov(G0) = maxv∈G0 τv. Thanks to the finiteness and
connectedness of the graph, the cover time is finite almost surely (a.s.). A classical result states
that for a connected simple finite graph, the expectation of the cover time is polynomially
bounded above by O(n3), with the bound being achieved on the lollipop graph, and that the
lowest possible order is achieved on the complete graph with expectation O(n log(n)) (see the
important paper [2]). Matthews has shown that for any finite connected graph, the expectation
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of the cover time satisfies

EX0 (Cov(G0)) ≤ max
u,v∈V0

{Eu(τv)}
N−1∑
j=1

1

j
,

with equality in the case of the complete graph (see [15] for the original result, and [13], [1] for
an introduction to what David Aldous calls the Matthews method). Of course, tighter bounds
can be proved as soon as we have more information about the structure of the underlying graph.
See the survey [14] and the textbooks [13], [1] for a gentle introduction to this topic.

Changing World. Consider now a sequence of graphs G0, G1, . . ., where each graph is finite
and connected. In this work we will make some simplifying assumptions on the sequence.
Specifically, we assume that the sequence is growing and consistent. We say that the graph
sequence is growing if for each k ≥ 1, |Vk| ≤ |Vk+1|. We say that the sequence is consis-
tent if for each k ≥ 1, the subgraph of Gk induced by the first |Vk−1| vertices equals Gk−1.
Accordingly, without loss of generality, we assume that the vertices of each graph Gk are
labelled with {1, 2, . . . , |Vk|}. The sequence of graphs could be either deterministic or the
product of a generative model of random graphs, the classical example being the Barabási–
Albert preferential attachment model as presented in [5] and [6]. For the time being, we assume
that the sequence evolves according to a (possibly degenerate) Markov kernel PG(·, ·), and that
the aforementioned conditions of growing and consistency of the trajectories hold a.s.

Consider now the situation where the above dynamics are interwoven.

Dynamic Agent in a Changing World. A random walker of the type presented in the first item
above wanders in an ever-changing sequence of graphs of the type presented in the second item.
Although for technical reasons we will prefer a continuous-parameter model, at this point the
discrete-parameter one is more amenable to verbal description. So, let G0 be a finite connected
graph and fix a vertex in V0. Also, fix a parameter 0 < p < 1 (the extremes are excluded to
avoid trivialities). We declare the current world of the walker to be G0. For n ≥ 1, given Xn−1
and given that the current world is F, with probability 1 − p we perform a step of the random
walk according to PF(Xn−1, ·) (i.e. Xn is drawn according to the transition kernel of the current
world), whereas with probability p the current world evolves according to PG(F, ·) and the
walker stays put (i.e. we set Xn = Xn−1).

This is the kind of dynamics we are concerned with in this work. Models akin to ours
have been proposed previously. In [3], the authors consider a model termed Random Walk
in Changing Environment, where a random walker wanders inside a maze with a changing
landscape of conductances. There, the problem addressed is the determination of the recurrence
or transience of the walk under the appropriate conditions of boundedness of the conductances
and its dependence on the walker’s state. In [4], the authors propose a model called Evolving
Graphs, where the connection configuration undergoes mutation due to edge addition and/or
deletion on a fixed set of vertices. The main quantity studied in [4] is the cover time of a
simple random walk. It is shown that, in some circumstances, this quantity may greatly exceed
the polynomial bound that holds on fixed graphs and may reach, for example, exponential
order.

Observe that in the first work mentioned, the focus is on qualitative aspects of the walk, and
the most important results are those that assume that the underlying conductances are bounded
away from zero. This hypothesis is far from trivial, and accordingly there is no obvious exten-
sion to the case where the connections have a binary status. In the second paper, however rich
the dynamics of the connections may be, the model is constrained to have a fixed number of
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774 L. VIDELA

vertices, and, again, there seems to be no clue as to how to adapt the results to a growing
sequence of graphs.

The setting closest to the one we have termed Dynamic Agent in a Changing World is
studied in [7], where the authors consider a random walker moving on a growing sequence
of graphs. It is worth taking a closer look at the models and main results of [7]. The authors
focus on two models of growth. In both, the initial graph G1 consists of just one vertex and
m ≥ 2 loops. In Model 1, given the graph Gt−1, the graph Gt is built by adding a new vertex
and m edges whose endpoints are chosen uniformly amongst the vertices in Gt−1. Model 2
is a version of the preferential attachment graph: given Gt−1, the new vertex throws m edges
whose endpoints are chosen independently amongst the already present vertices in Gt−1, with
probabilities proportional to their degrees. As the authors explain, this may cause self-loops
and multiple edges, but for large times these perturbances are negligible. Now, while vertex t
is being added, the walker is sitting at some vertex Xt−1 of Gt−1. After the addition of vertex t,
and before the beginning of step t + 1, the walker performs a random walk of length l, where
l ≥ 1 is a fixed, deterministic positive integer independent of t.

Of course, in this context it is meaningless to ask about the cover time of the random walk.
However, it is still reasonable to ask about the evolution of the ratio of the number of ver-
tices visited to the size of the underlying world. The authors of [7] find that in the large-m
regime, for l = 1, the expected proportion of vertices not visited asymptotically equals 0.57 in
Model 1 and 0.59 in Model 2, and that in both cases, for large l, this proportion asymptotically
equals 2

l .
In the context of fixed graphs, the study of a quantity closely related to the above ratio has

had a long history. Seminal work traces back to the classical research of Erdös and Dvoretzky
(see [12] for the original paper, and [16] for a survey on the quantity called range in the
context of lattice walks). More recently, and mainly in connection with problems of interest
to the statistical physics community, there have been some attempts to determine this quantity
when the underlying graph is a large random graph (see [9] and the references therein). In any
case, in all these papers, the model assumes a fixed underlying world.

After the above discussion, it seems natural to generalise the model proposed in [7] and
pose the question about the asymptotics of the aforementioned ratio in the setting we have
termed Dynamic Agent in a Changing World. More precisely, for a given time n ≥ 1, set Kn =
{i ≥ 1 : Xj = i for some 0 ≤ j ≤ n}. We define the knowledge process as

( |Kn|
|Vn| : n ≥ 0

)
, (1)

and we ask for its quantitative long-term behaviour when the Markov kernel that controls the
growth of the world satisfies certain conditions.

In the quite general setting of the above definitions, some natural questions arise:

1. When does there exist an a.s. constant limit of (1)?

2. A quite reasonable ansatz is that, as long as p
1−p is small, with probability 1 a positive

proportion of the graph is asymptotically visited. Now, for a given transition kernel
PG(·, ·), is there a critical value of the proportion between growth rate and walking rate
above which the asymptotics vanish a.s.? This is a question about the existence of phase
transitions.
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3. A dual question to the previous one can be stated as follows: is it possible to characterise
the kind of graph evolution that guarantees a positive asymptotic proportion for any
growth rate and walking rate?

4. Finally: does there exist a quantitative relationship between the cover time of the
sequence of graphs and the asymptotic proportion of vertices visited by the walker as the
world grows? More precisely, suppose we know in advance that the Markov kernel that
governs the growth is such that the graphs it generates have a cover time with expected
value asymptotically equal to a certain function f , i.e. that

E(Cov(Gn)) = O( f (n)).

What, then, can we say about limn→∞ E

( |Kn|
|Vn|

)
in terms of f ?

This is the kind of question we address in the present work. As a preliminary approach to
the subject, our aim is, first, to provide an appropriate theoretical setting that allows us to pose
these questions, and second, to provide answers to some of these questions when the underlying
graph dynamics are relatively simple. Accordingly, the rest of this work is organised as follows.

In Section 2 we define the probability spaces where the knowledge process lives. In order
to allow for future developments, our exposition proposes a framework more general than is
needed for our present purposes. At the end of the same section, we present the simple model
on which we concentrate thereafter, with the appropriate specialisations and simplifications of
the general model.

In Section 3 we study the mean and almost sure properties of the quantities of interest in
our simple model.

In Section 4 we present a very simple model of growing random graphs and study the
knowledge process in this changing structure.

Finally, in Section 5, we summarise the most relevant results and indicate some paths for
further work in the area.

2. The model

In this section we provide the definitions, notation, and basic results regarding the general
framework where our processes (random walks and graph sequences) will live. At this point, it
seems fair to explain the motivations for some of our choices. First, in order to avoid trivialities
due to lack of irreducibility of random walks in discrete time, we will assume that the steps of
the walker are performed at the jump times of a homogeneous Poisson process. In the same
vein, the evolution of the underlying graph will take place at the jump times of a pure birth
Markov process (independent of the previous one). Since the main quantity we are interested
in is a function of the number of vertices, and since the graph dynamics add vertices one by one,
the height of the trajectories of this pure birth process is just the number of vertices modulo
a constant. This continuous-time model has a second important advantage over the discrete-
time version sketched in the introduction, in that it avoids the rather awkward detention of the
walker while the world evolves.

2.1. The construction of the process

We start with some standard definitions and notation. A (simple, undirected) graph is a pair
G = (V, E), where V is a finite or countably-infinite set and E is a symmetric, antireflexive
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relation on V × V (and so E can be identified with a subset of the unordered pairs of elements
of V). The elements of V are referred to as vertices, while those of E are called edges. Given
a graph G, the notation V(G) (resp. E(G)) will denote the set of its vertices (resp. the set of its
edges). More often than not, we will use uppercase italics, F, G, H, . . ., to identify particular
graphs. We say that two vertices u, v ∈ V are neighbours in the graph G = (V, E) if {u, v} ∈ E,
and in this case we write u ∼G v. Also, for a vertex v, we write NG(v) to denote the set of
neighbours of v in the graph G. We write Gn, Gfin, and GN to denote the families of graphs with
n vertices, the finite graphs, and the countably infinite graphs, respectively. Since the nature of
the elements used as labels is entirely immaterial, we will assume that the vertices of graphs in
Gn are labelled by [n] = {1, 2, . . . , n}. With this convention, for a graph G ∈ Gn and for m ≤ n,
we define G|[m] to be the subgraph of Gn induced by the first m vertices.

Remark 1. We can get a more vivid image of a random walk in a growing graph sequence
from the following alternative construction. Given a graph G and a vertex v ∈ G, write P

G,v

to denote the law of the continuous-time simple random walk on the graph G started at v.
Given an increasing sequence of graphs G = {G0, G1, . . .} and an increasing sequence of times
T = {T0 = 0, T1, T2, . . .}, we build the transition probabilities of the random walk started at
vertex x of the graph G0 conditioned on (G, T) as follows: if Tn−1 ≤ s ≤ t < Tn, then

PG0,x(Xt = v|Xs = u) = P
Gn−1,u(Xt−s = v),

whereas if Tm−1 ≤ s ≤ Tm < Tm+1 < . . . < Tn ≤ t < Tn+1, then

PG0,x(Xt = v|Xs = u) =
∑

P
Gm−1,u(XTm−s = vm−1)PGm,vm−1 (XTm+1−Tm = vm) . . .

. . . PGn−1,vn−2 (XTn−Tn−1 = vn−1)PGn,vn−1 (Xt−Tn = v),

where the sum ranges over vm−1 ∈ Gm−1, . . . , vn−1 ∈ Gn−1.

In order to get a Markov process on the pair (Gt, Xt), of course, we need the graph sequence
to be a Markov process itself, and we need the inter-arrival times of both the jumps of the
walker and the growth epochs of the graph to be exponentially distributed.

Remark 2. In order to keep the notation as simple as possible, in the remaining sections we
will abuse it slightly. For example, we will write Kt for both the set of vertices visited by time
t and the cardinality of this set. The same notational convention will be used for the set of
vertices Vt and its cardinality. In context, no confusion will be possible.

2.2. An example: increasing finite path sequence

Let Pn be the path on n vertices. We label its vertices as 0, 1, . . . , n − 1. For the construction
below, it is worth keeping in mind the usual image of a segment of R+ drawn from left to right.
In order to illustrate the usage of the above construction, in this subsection we consider a graph
process that starts at PN for some N ≥ 2 and, at each of the random times (Tk)k≥1, gains one
vertex at its rightmost end. Thus, Gt = PN+k for t ∈ [Tk, Tk+1). Let Xt be a rate μ = 1 simple
random walk on this increasing sequence of graphs started at vertex 0. With the notation of the
previous subsection, the law of the random walk will be denoted by PPN ,0.

Theorem 1.

Kt

Vt
→ 0 PPN ,0- a.s.
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Intuitive as it is, the proof of the above result involves some technicalities. We will need
to consider the times when the walker is constrained to perform a deterministic step to the
left. Notice that this happens at time t > 0 if and only if a transition from Vt (to the left) is
performed. Formally, define l0 = 0, and for n ≥ 1, let

ln = inf{t ≥ ln−1 : Xt− = Vt, Xt = Vt − 1}.
It may well be the case that ln = +∞ for some n ≥ 1, but this is not an issue for the moment.

Now, let Yt be the simple random walk on the one-sided lattice Z+ with reflecting barrier
at 0, defined on some arbitrary probability space. Denote by Rt the range of Yt, i.e.,

Rt = |{Ys : 0 ≤ s ≤ t}|.
In what follows, we will regard Pn as an induced subgraph of Z+ (alternatively, Z+ can be
seen as the projective limit of Pn as n → ∞).

Proof. The demonstration relies on a coupling argument and well-known facts regarding the
range of recurrent random walks on the (unrestricted) line.

First, given a sample path (Xt, Vt)(ω) we build a new walk (X′
t){t≥0} on Z+ such that

1. Xt(ω) ≤ X′
t(ω) for all t ≥ 0;

2. X′
t ∼ Yt for all t ≥ 0.

To this end, let (ξn)n≥1 be a sequence of {−1, 1}-valued independent and identically distributed
(i.i.d.) random variables, independent of the process (Xt, Vt) as well, such that for every n ≥ 1,
(ξn + 1)/2 ∼ Bernoulli(1/2). Let X′

0 = 0, and prescribe the following:

1. The jump times of X′ are exactly the jump times of X.

2. If, for some s ≥ 0, X′
s = Xs holds, then we fix X′

t = Xt for s ≤ t < ts := min{ln : ln ≥ s}. If
ts = lm, fix X′

lm
= Xl−m + ξm.

3. If, on the contrary, for some s ≥ 0, X′
s 
= Xs, let X′ evolve as a simple random walk on

the unrestricted line up to the first time after s when both processes meet.

It is easily checked that the construction above works as required. Now, since Xt ≤ X′
t , we

have that

Kt = |{Xs : s ≤ t}| ≤ R′
t = |{X′

s : s ≤ t}| ∼ Rt.

Since Vt
γ t → 1 PPN ,0-a.s., we have

PPn,0

{
lim sup

t

Kt

Vt
> 0

}
= PPn,0

{
lim sup

t

Kt

γ t

γ t

Vt
> 0

}

≤ PPn,0

{
lim sup

t

R′
t

γ t

γ t

Vt
> 0

}
= 0,

because R′ ∼ R and Rt
t → 0 a.s. (see, e.g., [16]) implies R′

t
t → 0 a.s. as well.
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2.3. Specialising the model: the sequence of complete graphs

Henceforth we concentrate our efforts on the simple model we will deal with, namely the
sequence of growing complete graphs.

For n ≥ 2, let Cn be the complete graph on n vertices. Assume that G0 = CN for some natural
number N ≥ 2 and that PG(G, ·) = δC|G|+1 is the (trivial) transition kernel of the graph-valued
process. By symmetry, it is easily seen that in this case the pair (|Gt|, |Kt|) is a Markov process.
Let b� be the space of bounded Borel functions on �, and b�0 the linear subspace of b� of
functions of the form

h(g, x, k) = h(|g|, |k|).
Introduce the difference operators

�1f (|g|, |k|) = f (|g| + 1, |k|) − f (|g|, |k|),
�2f (|g|, |k|) = f (|g|, |k| + 1) − f (|g|, |k|).

Theorem 2. Assume that G0 = CN for some natural number N ≥ 2 and that PG(G, ·) = δC|G|+1 .
Then, for h ∈ b�0, the prescription

Lh(|g|, |k|) = γ�1h(|g|, |k|) + μ

(
1 − |k| − 1

|g| − 1

)
�2h(|g|, |k|) (2)

corresponds to the action of the infinitesimal generator of the process (|Gt|, |Kt|).
Proof. The reader is referred to Theorem 6 in the Appendix. Just observe that, in this case,

for any x ≤ |g|, the second term in (20) equals

μ
1

|g| − 1

(|N g(x)| − |N g(x) ∩ k|) �2h(|g|, |k|) = μ
(|g| − 1) − (|k| − 1)

|g| − 1
�2h(|g|, |k|)

= μ
|g| − |k|
|g| − 1

�2h(|g|, |k|).

In accordance with Remark 2, in order to simplify the notation, from now on we write v for
the size of a graph g, and we put k instead of |k|. With this, the above expression can be written
as

Lh(v, k) = γ�1h(v, k) + μ

(
1 − k − 1

v − 1

)
�2h(v, k).

Remark 3. We turn back for a while to the discrete parameter model informally sketched in the
introduction. What does Kn look like as the walker wanders in a fixed structure, say the com-
plete N-graph? Since at time 0 the walker has already visited one vertex, and since our walker
is not lazy, K0 = 1 and K1 = 2. For n ≥ 0, let Fn be the σ -field generated by the random vari-
ables X0, X1, . . . , Xn. We observe that, for n ≥ 2, given the past Fn, we have Kn+1 = Kn if the
(n + 1)th step takes the walker to an already visited vertex, and this happens with probability

Kn − 1

N − 1

(the −1 in the numerator takes care of the fact that the random walk is a simple random
walk, so that the walker never stays at a given vertex). The complementary event is, of course,
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Kn+1 = Kn + 1, and this happens with probability

N − Kn

N − 1
.

Rearranging terms, we get

E(Kn+1|Fn) = Kn

(
N − 2

N − 1

)
+ N

N − 1
. (3)

Iteration yields

E(Kn+1) = N − (N − 1)

(
1 − 1

N − 1

)n+1

. (4)

Now, from (3), we see that (Kn : n ≥ 0) is a bounded Fn-submartingale, and hence has an a.s.
limit that is, of course, limn→∞ E(Kn) = N.

Trivial as it is, the point of this observation is that, to some extent, we can rely on analo-
gous reasoning to understand the knowledge process as the complete graph grows. To grasp
this connection, let [N] = {1, 2, . . . , N}, and consider an [N]-valued pure birth process, say
(Zs : s ≥ 0), started at Z0 = 1, with absorbing barrier at N, and with transition rates given by

νi,i+1 = μ
N − i

N − 1
, 1 ≤ i < N. (5)

We see that in this case, Zs and (the continuous counterpart of) the walker of the first paragraph
have the same law. In other words, in the complete graph, the knowledge process is a pure birth
Markov process with rates of the type given in (5). Now, by looking at (2), we see clearly what
we mentioned before. By identifying a pair (|g|, |k|) with the corresponding point of the lattice
N

2, we can consider a derived random walk on � that starts at (N, 1) and whose transitions are
as follows. At the jump times of a Poisson process of intensity γ , the derived walker performs
a unit step from (|g|, |k|) to (|g| + 1, |k|). This is a process of constant drift towards the east.
Independently of the above drift, when the walker is at (|g|, ·), a pure birth process of rate

μ
|g| − |k|
|g| − 1

controls the transition from (|g|, |k|) to (|g|, |k| + 1). This is a process of decreasing drift
towards the north. The overall behaviour is that of a walker travelling northeast. In this setting,
if there exists a random variable

lim
s→∞

|Ks|
|Gs| ,

this corresponds to the asymptotic slope of the walker in the wedge. This is the topic of the
next section.

Later, we will use the expression at (2) to derive limit theorems. Meanwhile, as a direct con-
sequence of the above theorem, we provide a semimartingale representation of the knowledge
process.

Corollary 1. Let f ∈ b� be defined by

f0(v, k) = k − 1

v − 1
.
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Then

Mt := f0(Vt, Kt) + γ

∫ t

0

f0(Vs, Ks)

Vs
ds − μ

∫ t

0

1 − f0(Vs, Ks)

Vs − 1
ds

is an L2-bounded Ft-martingale.

Proof. A straightforward application of (2) shows that Mt is a centred local martingale. An
easy computation shows that the carré du champ associated to f ∈ b� is given by


( f , f ) :=L( f 2) − 2fL( f )

= γ (�1f )2 + μ(1 − f0)(�2f )2.

Hence, the unique predictable process (〈M, M〉t : t ≥ 0) such that (M2
t − 〈M, M〉t : t ≥ 0) is a

centred local martingale is given by

〈M, M〉t =
∫ t

0

( f0, f0)(Vs, Ks)ds

=
∫ t

0
γ f0(Vs, Ks)

2
(

1

Vs

)2

+ μ(1 − f0(Vs, Ks))

(
1

Vs − 1

)2

ds.

For a fixed time t ≥ 0, let Tt be the first jump time of V after t, and let Nt be the number of
jumps up to and including time Tt. Since f0 ∈ [0, 1] a.s., for some constant C independent of t,
we have the estimate

〈M, M〉t ≤ C
∫ t

0

1

(Vs − 1)2
ds

= C
Nt∑

k=0

1

(N + k)2
(Tk+1 − Tk)

≤ C
∑
k≥0

1

(N + k)2
(Tk+1 − Tk). (6)

Since (Tk − Tk−1 : k ≥ 1) is an i.i.d. sequence of random variables with distribution Exp(γ ),
we have

E(〈M, M〉t) ≤ C
∑
k≥0

1

γ

1

(N + k)2
≤ C̃,

where C̃ is some constant independent of t. Now, let (Un : n ≥ 0) be a localising sequence for
the local martingale M, i.e., an increasing sequence of stopping times satisfying Un → ∞ a.s.
and such that (MUn

t := Mt∧Un : t ≥ 0) is a martingale for each n. We have

E
((

MUn
t

)2) =E
(〈MUn , MUn〉t

) =E(〈M, M〉t∧Un ) ≤ C̃,

and taking the limit as n → ∞, we obtain

E(M2
t ) ≤ C̃.
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3. Covering properties on the complete graph sequence

In this section we apply the previous Markov model to the problem of finding asymptotics
of |Kt| when the underlying graph sequence is simple enough to yield analytically solvable
expressions. As at the end of the previous section, we set Vs = |Gs|, and we drop the bars in
expressions such as |Ks| and simply put Ks. Recall the notation: PG,v is the probability measure
induced by the continuous-time simple random walk on the fixed graph G started from v, and
for a given graph G and vertex v ∈ G, we write PG0,v for the law of the Markov process (Gt, Xt)
started at the vertex v of the graph G. Let T0 = 0 < T1 < . . . be the jump times of the structure,
and let S0 = 0 < S1 < . . . be the jump times of the walker.

3.1. Hitting times on the complete graph sequence

We first study the behaviour of the hitting times on the sequence of growing complete
graphs. Just for this subsection, we set μ = 1, and GN refers to the complete graph on N > 2
vertices. Fix arbitrarily a vertex of GN , say v, and let τ be the hitting time of v, i.e.,

τ = min{t ≥ 0 : Xt = v}.
For fixed u ∈ GN different from v, we are interested in the mean hitting time

EGN ,u(τ ).

It is elementary that, in the case of a fixed graph, EGN ,u(τ ) = N − 1. In the case of a growing
sequence, the situation is much more interesting.

We need the following simple result, whose proof is omitted.

Lemma 1. Let X ∼ Exp (μ1), Y ∼ Exp(μ2) be two independent random variables defined on
the same probability space (�, P). Then

E(X|X < Y) =E(Y|Y < X).

We now observe that for u 
= v under P
GN+k,u the random variable τ is exponentially

distributed with rate 1
N+k−1 . Thus, by the previous result,

E
GN+k,u(τ |τ < (Tk+1 − Tk)) =E

GN+k,u(Tk+1 − Tk|τ > (Tk+1 − Tk)) = N + k − 1

(N + k − 1)γ + 1
.

Lemma 2. For u 
= v,

P
GN+k,u(τ < Tk+1 − Tk) = 1

1 + γ (N + k − 1)
.

Proof. Put n = N + k, T = Tk+1 − Tk, and let S̃0, S̃1, . . . be the jump times of the walker on
Gn. Under PGn,u, u 
= v, we have S̃m ∼ 
(m, 1). Plainly,

P
Gn,u(τ < T) =

∑
m≥1

P
Gn,u(τ < T|v is reached for the first time in exactly m steps)

×
(

n − 2

n − 1

)m−1 1

n − 1

= 1

n − 1

∑
m≥1

P
Gn
u (S̃m < T)

(
n − 2

n − 1

)m−1
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= 1

n − 1

∑
m≥1

∫ ∞

0
γ e−γ t

∫ t

0

sm−1e−s

(m − 1)!
(

n − 2

n − 1

)m−1

dsdt

= 1

n − 1

∫ ∞

0
γ e−γ t

∫ t

0

∑
m≥1

sm−1e−s

(m − 1)!
(

n − 2

n − 1

)m−1

dsdt

= 1

n − 1

∫ ∞

0
γ e−γ t

∫ t

0
e− s

n−1 dsdt

=
∫ ∞

0
γ e−γ t(1 − e− t

n−1 )dt

= 1

1 + γ (n − 1)
.

Lemma 3. For k ≥ 0,

PGN ,u(τ ∈ [Tk, Tk+1)) = 1

γ


(N + k − 1)


(N − 1)


(N + γ −1 − 1)


(N + γ −1 + k)
. (7)

Proof. Clearly, on the set {τ > Tj}, we have XTj 
= v, and by symmetry,

P
Gj,XTj (τ > (Tj+1 − Tj)) = P

Gj,u(τ > (Tj+1 − Tj))

whenever u 
= v. Thus,

PGN ,u(τ ∈ [Tk, Tk+1)) = PGN ,u(τ < Tk+1, τ > Tk, τ > Tk−1 . . . , τ > T1)

= PGN ,u(τ < Tk+1|τ > Tk)PGN ,u(τ > Tk|τ > Tk−1) . . .

. . . PGN ,u(τ > T2|τ > T1)PGN ,u(τ > T1)

= P
GN+k,u(τ < Tk+1 − Tk)PGN+k−1,u(τ > Tk − Tk−1) . . .

. . . PGN+1,u(τ > T2 − T1)PGN ,u(τ > T1)

= 1

1 + γ (N + k − 1)

k−1∏
j=0

N − 1 + j

N − 1 + γ −1 + j
, (8)

where in the last line we have used the previous lemma. The result follows after rearranging.

Theorem 3. For every u 
= v,

EGN ,u(τ ) = 1

γ

∑
k≥0

⎛
⎝ k∑

j=0

N + j − 1

γ (N + j − 1) + 1

⎞
⎠(


(N + k − 1)


(N − 1)


(N + γ −1 − 1)


(N + γ −1 + k)

)
. (9)

In particular,

EGn,u(τ ) < +∞ if and only if γ < 1.
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Proof. Let pN,k be the expression in the right-hand side of (7). We have

EGn,u(τ ) =
∑
k≥0

EGN ,u(τ1{τ∈[Tk,Tk+1)})

=
∑
k≥0

EGN ,u(τ |τ ∈ [Tk, Tk+1))pk

=
∑
k≥0

EGN ,u((τ − Tk) + (Tk − Tk−1 + . . . (T1 − T0))|τ ∈ [Tk, Tk+1))pk

=
∑
k≥0

⎛
⎝ k∑

j=1

EGN ,u(Tj − Tj−1|τ ∈ [Tk, Tk+1)) +EGN ,u(τ − Tk|τ ∈ [Tk, Tk+1))

⎞
⎠ pk.

But for 1 ≤ j ≤ k,

EGN ,u(Tj − Tj−1|τ ∈ [Tk, Tk+1)) =E
GN+j−1,u(Tj − Tj−1|τ > (Tj − Tj−1))

= N + j − 2

γ (N + j − 2) + 1
,

and analogously, using the result in Lemma 2,

EGN ,u(τ − Tk|τ ∈ [Tk, Tk+1)) =E
GN+k,u(τ |τ < (Tk+1 − Tk))

= N + k − 1

γ (N + k − 1) + 1
.

The explicit expression for the expectation in (9) follows at once.
Finally, observe that pk = O(k−1−1/γ ), and that the inner sum in (9) is O(k). Thus, the

general term of the outer sum is O(k−1/γ ). This proves the last claim of the theorem.

3.2. L1 asymptotics for the knowledge process

In this subsection, we set ourselves in the special framework described by (2) and the remark
after it, i.e., the random walk on an increasing sequence of complete graphs. Let ρ = μ/γ .
Figure 3.2 shows a simulation of three sample paths for Kt/Vt up to horizon T = 50, with
parameters ρ = 1 (left) and ρ = 0.5 (right).

Proposition 1.

lim
k→∞ E

(
KTk

VTk

)
= μ

μ + γ
:= ν.

Proof. We proceed as in the remark after Theorem 2, but now we compute conditional
expectations with respect to the stopped filtration (FTk : k ≥ 0). Let Mk = |{i : Tk−1 < Si < Tk}|
be the number of steps performed by the walker in the time interval (Tk−1, Tk), and let
R1, R2, . . . , RMk be the times when those steps take place. Some observations are in order.
First, with probability 1, no step of the walker coincides with a bump of the graph. Second, if
there is no step of the walk between Tk−1 and Tk, we obviously have KTk = KTk−1. Otherwise,
for Mk ≥ 1, we have that KTk is exactly KRMk

. Third, the random variable zk := Tk − Tk−1 is
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FIGURE 1: Knowledge process on complete graphs: left, ρ = 1; right, ρ = 0.5.

independent of FTk−1 and has an Exp(γ ) distribution. Putting together these observations,
we get

E(KTk |FTk−1 )

=
∑
n≥0

E(KTk 1{Mk=n}|FTk−1 )

= KTk−1E(e−μ(Tk−Tk−1)|FTk−1 ) +
∑
n≥1

E(KRMk
1{Mk=n}|FTk−1 )

= KTk−1E(e−μzk ) +
∑
n≥1

E

{ [
KRMk −1

(
N + k − 3

N + k − 2

)
+ N + k − 1

N + k − 2

]
1{Mk=n}|FTk−1

}

= KTk−1E(e−μzk )+
∑
n≥1

E

⎧⎨
⎩

⎡
⎣KTk−1

(
N + k − 3

N + k − 2

)n

+ N + k − 1

N + k − 2

n−1∑
j=0

(
N + k − 3

N + k − 2

)j
⎤
⎦ 1{Mk=n}|FTk−1

⎫⎬
⎭

= KTk−1E(e−μzk )+
∑
n≥1

⎡
⎣KTk−1

(
N + k − 3

N + k − 2

)n

+ N + k − 1

N + k − 2

n−1∑
j=0

(
N + k − 3

N + k − 2

)j
⎤
⎦E

(
e−μzk

(μzk)n

n!

)
,

where in the last line we have used the independence of zk and FTk−1 and the fact that Mk has
law Poisson(μzk). Now, for n ≥ 0,

E(e−μzk zn
k) = (−1)n dn

dμn
E(e−μzk ) = n! γ

(μ + γ )n+1
,

but then we can write

E(KTk |FTk−1 ) = KTk−1

γ

μ + γ

∑
n≥0

(
μ(N + k − 3)

(μ + γ )(N + k − 2)

)n

+

(N + k − 1)
γ

μ + γ

∑
n≥1

[(
μ

μ + γ

)n

−
(

μ(N + k − 3)

(μ + γ )(N + k − 2)

)n]
.
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After some algebra we get

E(KTk |FTk−1 ) = KTk−1

γ (N + k − 2)

μ + γ (N + k − 2)
+ μ(N + k − 1)

μ + γ (N + k. − 2)

= KTk−1

N + k − 2

N + k − 2 + ρ
+ ρ

N + k − 1

N + k − 2 + ρ
, (10)

and hence

Mk := KTk


(N + k − 1 + ρ)


(N + k − 1)
− ρ

N+K−1∑
j=N

j

( j − 1 + ρ)


( j)
(11)

is an FTk -martingale. So

E(KTk ) = 
(N + k − 1)


(N + k − 1 + ρ)

(

(N − 1 + ρ)


(N − 1)
+ ρ

N+K−1∑
j=N

j

( j − 1 + ρ)


( j)

)
. (12)

Now, the usual approximation procedures (application of Stirling’s formula and comparison of
the sum with the corresponding integral) allow us to obtain the asymptotic ratio

lim
k→∞

E(KTk )

N + k
= ρ

1 + ρ
= μ

μ + γ
.

3.3. L1 asymptotics on the complete graph sequence: variable rate of growth

With minor modifications, the growth rate of the underlying world can be made size-
dependent. Of course, the important case is when the vertex-addition rate decreases. In this
case, the fundamental recurrence equation becomes

E(KTk ) =E(KTk−1 )
N + k − 2

N + k − 2 + ρk
+ ρk

N + k − 1

N + k − 2 + ρk
.

Proposition 2. With the above notation, if α ∈ (0, 1) and ρk = ρkα , then

E

(
KTk

VTk

)
∼ e− ρ

α
kα

k

∫ k

1
ρxαe

ρ
α

xα

dx

∼ 1 − 1

ρkα

[
1 + α − 1

ρkα
+ (α − 1)(2α − 1)

ρ2k2α
+ (α − 1)(2α − 1)(3α − 1)

ρ3k3α
+ . . .

]
,

whereas if ρk = ρ ln (k), then

E

(
KTk

VTk

)
∼ e− ρ

2 ln2 (k)

k

∫ k

1
ρ ln (x)e

ρ
2 ln2 (x)dx

∼ 1 − 1

(1 + ρ ln (k))

[
1 + 1 · ρ

(1 + ρ ln (k))2
+ 3 · 1 · ρ2

(1 + ρ ln (k))4
+ 5 · 3 · 1 · ρ3

(1 + ρ ln (k))6
+ . . .

]
,

where an expression of the form ak ∼ bk stands for limk→∞
ak

bk
= 1.
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Proof. We prove the asymptotics for the power decay rate, since the logarithmic case is
demonstrated along the same lines. Write ek =E

(
KTk

)
. Observe that

ek = ek−1(1 − ρkα−1) + ρkα + δk, (13)

where δk = O(k3α−2). Since α < 1, we have 3α − 2 < α, and thus δk = o(kα). Choose k0 > 1
such that ρkα−1

0 < 1, and for k ≥ k0 define

φ(k) := (1 − ρkα−1)(1 − ρ(k − 1)α−1) . . . (1 − ρkα−1
0 ) =

k∏
j=k0

(1 − ρjα−1).

Iterating the relation (13), we can write

ek = φ(k)

φ(k0)
ek0 +

k∑
j=k0+1

ρjα
φ(k)

φ( j)
+

k∑
j=k0+1

δj
φ(k)

φ( j)
. (14)

On the other hand,

ln (φ( j)) =
j∑

i=k0

ln (1 − ρiα−1) = −
j∑

i=k0

ρiα−1 + O( j2α−1) = −
j∑

i=k0

ρiα−1 + o( jα),

where the last equality follows since α < 1. Thus,

φ( j) = e
− ∑j

i=k0
ρiα−1+o( jα)

.

Observe that ∫ j

k0

xα−1dx ≤
j∑

i=k0

iα−1 ≤
∫ j

k0−1
xα−1dx,

and hence, for some constant C(k0) depending only on k0,

φ( j) = C(k0)(1 + o(1)) exp

(
−

∫ j

k0

ρxα−1dx + o( jα)

)

= C(k0)(1 + o(1)) exp
(
−ρ

α
jα + o( jα)

)
.

Then, from (14) we obtain

ek

k
= e− ρ

α
kα+o(kα)

k
+ e− ρ

α
kα+o(kα)

k

k∑
j=k0+1

ρjαe
ρ
α

jα+o( jα)

+ e− ρ
α

kα+o(kα)

k

k∑
j=k0+1

δje
ρ
α

jα+o( jα). (15)

Since δj = o( jα), we see that the leading term in the above expression is the second of the three
summands. Thus,

ek

k
∼ e− ρ

α
kα

k

k∑
j=k0+1

ρjαe
ρ
α

jα .
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A new comparison of the sum with the corresponding integral yields

ek

k
∼ e− ρ

α
kα

k

∫ k

k0

ρxαe
ρ
α

xα

dx ∼ e− ρ
α

kα

k

∫ k

1
ρxαe

ρ
α

xα

dx,

since any finite interval of integration is asymptotically immaterial. This proves the first line of
our claim. The second line follows easily by integration by parts.

The next result is a direct consequence of the above proposition, L’Hôpital’s rule, and
Markov’s inequality.

Corollary 2. For the power and logarithmic decay,

KTk

VTk

→ 1 in probability.

Remark 4. As a second extension to the basic model, we can assume that at each time t ≥ 0
there are L independent walkers investigating the growing structure. Here, L ≥ 1 is the number
of walkers that collaborate to achieve the goal of knowing as much of the network as possible;
i.e., the knowledge at time t ≥ 0 increases if and only if at least one (and, a.s., exactly one)
amongst the L walkers jumps at time t into a non-visited vertex. Of course, we can regard these
L walkers as a single walker (Xt = (X(i)

t )1≤i≤L : t ≥ 0) such that for each t ≥ 0, Xt ∈ VL
t . For 1 ≤

i ≤ L, let μi be the transition rate of the ith walker. Thanks to independence, the transitions of
Xt occur at rate μ = ∑L

i=1 μi. This fact leads to a pleasant additive property of the knowledge
process: regardless of which walker is performing a transition at time t, a jump of K occurs at
this time if and only if this walker jumps into one of the Vt− − Kt− non-visited vertices. This
said, the next result, whose proof is omitted, should be almost obvious.

Proposition 3. With μ redefined as above, in the multiple-walker case,

lim
k→∞ E

(
KTk

VTk

)
= μ

μ + γ

holds as well.

3.4. Almost sure properties for the knowledge process on the complete graph sequence

We turn back to the model of the growing sequence of complete graphs with constant rate
of growth. Recall the generator (2). In what follows, L∗ denotes the adjoint operator of L.

Lemma 4. Let h ∈ b�∗ be defined as

h(v, k) =
(

v − 1

k − 1

)
νk−1(1 − ν)v−k, 1 ≤ k ≤ v.

Then L∗h = 0.

Proof. Based on (2), a routine computation shows that L∗ is given by

L∗g(v, k) = γ
[
g(v − 1, k) − g(v, k)

] + μ

[
g(v, k − 1)

v − k + 1

v − 1
− g(v, k)

v − k

v − 1

]
. (16)

https://doi.org/10.1017/apr.2020.23 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2020.23


788 L. VIDELA

When this is applied to h, we obtain

L∗h(v, k) = γ

[(
v − 2

k − 1

)
νk−1(1 − ν)v−k−1 −

(
v − 1

k − 1

)
νk−1(1 − ν)v−k

]
+

+ μ

[(
v − 1

k − 2

)
νk−2(1 − ν)v−k+1 v − k + 1

v − 1
−

(
v − 1

k − 1

)
νk−1(1 − ν)v−k v − k

v − 1

]

= γ
ν

1 − ν

(
v − 2

k − 1

)
νk−2(1 − ν)v−k − γ

(
v − 1

k − 1

)
νk−1(1 − ν)v−k

+ μ
1 − ν

ν
νk−1(1 − ν)v−k

(
v − 1

k − 2

)
v − k + 1

v − 1
− μνk−1(1 − ν)v−k

(
v − 1

k − 1

)
v − k

v − 1

= μνk−2(1 − ν)v−k
(

v − 2

k − 1

)

+ νk−1(1 − ν)v−k
[
γ

(
v − 1

k − 2

)
v − k + 1

v − 1
− μ

(
v − 1

k − 1

)
v − k

v − 1
− γ

(
v − 1

k − 1

)]
.

But the expression inside the square brackets equals

γ

((
v − 2

k − 2

)
−

(
v − 1

k − 1

))
− μ

(
v − 2

k − 1

)
= −(μ + γ )

(
v − 2

k − 1

)
,

and thus

L∗h(v, k) = μνk−2(1 − ν)v−k
(

v − 2

k − 1

)
− (μ + γ )νk−1(1 − ν)v−k

(
v − 2

k − 1

)

= 0,

as claimed.
For k ≤ v, set pv(k) = h(v, k).

Theorem 4. We have

Kt

Vt
−−−→
t→∞ ν PCN ,K0∼pN -a.s.

Proof. Let (Pt : t ≥ 0) be the Markov semigroup associated to the process (Vt, Kt)t≥0, and
P∗

t its adjoint. Lemma 4 says that pv is harmonic for P∗
t ; i.e.,

P∗
t (pv)(·) = pv(·). (17)

For n ≥ 1 consider any measurable function f : [1, n] →R, and define the function
g ∈ b� by

g(v, k) = f (k)1{v=n}.

If we use integrals instead of the corresponding finite sums, a.s. we have

EK0∼pV0
(g(Vt, Kt)) =

∫
Pt( f 1{·=n})(V0, k)pV0 (dk)

=
∫

f (k)1{V0=n}(P∗
t pV0 )(dk),
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and by the harmonic property (16), a.s. the last line equals∫
f (k)1{V0=n}pV0 (dk) = 1{V0=n}EK0∼pV0

( f (K0)).

In other words, we have proved that

EK0∼pV0
( f (Kt)|Vt) =EKt∼pVt

( f (Kt)) a.s.,

or

(Kt − 1)|Vt ∼ Binomial(Vt − 1, ν) a.s.

The rest of the proof relies on the classical estimate for trials of i.i.d. random variables with
finite fourth moment. Indeed, there exists a constant c, depending on ν but not on t, such that

E( |(Kt − 1) − ν(Vt − 1)|4 |Vt) ≤ c(Vt − 1)2,

and thus

E

( ∣∣∣∣Kt − 1

Vt − 1
− ν

∣∣∣∣
4

|Vt

)
≤ c(Vt − 1)−2,

so that

E

( ∣∣∣∣Kt − 1

Vt − 1
− ν

∣∣∣∣
4 )

≤E(c(Vt − 1)−2).

An application of the Fubini–Tonelli theorem to the left-hand side of this inequality yields

E

( ∫ ∞

0

∣∣∣∣Kt − 1

Vt − 1
− ν

∣∣∣∣
4

dt

)
≤

∫ ∞

0
E(c(Vt − 1)−2)dt.

The expression on the right-hand side is easily seen to be convergent. Thus, the integral on the
left-hand side converges a.s. In particular, the integrand vanishes a.s. as t goes to infinity, and
this implies our claim.

4. Complete bipartite graph sequence

As a final application, in this section we consider a simple rule for the growth of a bipartite
graph. Let p( j), for j = 0, 1, be positive parameters such that p(0) + p(1) = 1. We start the graph
sequence with G0 equal to the complete graph on two vertices. Call the initial vertices 0 and 1.
For t ≥ 0, the set Vt is split into two components, Vt = V (0)

t ∪ V (1)
t , and initially each component

contains one vertex. Just as before, at each time of renewal of a Poisson process of parameter γ

a new vertex arrives. Suppose the new vertex, say v, arrives at time t > 0. Then with probability
p( j) it is assigned to the jth component (i.e. we set V ( j)

t = V ( j)
t− ∪ {v}), and, at the same time, we

declare the edges of v to be exactly those of the old vertices in the component it was assigned to.
Just as in the previous section, let (Xt : t ≥ 0) be the simple random walk on the growing

graph (Gt : t ≥ 0). Let Yt = 1{Xt∈V(1)
t }; i.e., Yt is the component Xt belongs to. Let π be the

invariant distribution of a simple random walk on G0. Obviously, π is Yt-invariant too.
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We introduce some new notation related to the splitting of the growing graph into two
components. Fix j ∈ {0, 1}. For t ≥ 0, let K( j)

t = Kt ∩ V ( j)
t ; i.e., K( j)

t is the set of vertices in V ( j)
t

visited by time t. Let Z( j)
0 = 0, and for k ≥ 1, let

Z( j)
k := min

{
t ≥ Z( j)

k−1 : V ( j)
t− 
= V ( j)

t
}
;

write I( j)
k = [Z( j)

k−1, Zj
k) and l( j)

k = |I( j)
k |. Finally, let J( j)

k be the number of transitions to some

vertex in the component j performed by the walker in the interval I( j)
k .

Some observations are in order. First, the processes N( j)
t := |{k : Zj

k ≤ t}| are (up to a constant

shift) Poisson processes of intensity γ p( j). In particular, l( j)
k has distribution Exp(γ p( j)) for

every k ≥ 1. Second, under the assumption that X0 ∼ π , we have that for fixed j, the random
variables (J( j)

k : k ≥ 1) are identically distributed. So, for j = 0, 1, let J( j) be a random variable
distributed according to this common law, defined on an otherwise arbitrary probability space
(�j, Pj).

Proposition 4. For k ≥ 1, let rk =
(

1 − 1

k

)
, and for j = 0, 1, let C( j)

k :=E(rJ( j)

k ). Then, for

every k ≥ 1,

Eπ

(
K( j)

Z( j)
k

)
=Eπ

(
K( j)

Z( j)
k−1

)
C( j)

k + k(1 − C( j)
k ). (18)

Proof. Let PZ( j)
(J( j)

k = ·) be the law of J( j)
k given the sequence Z( j) := (Z( j)

k : k ≥ 1). For
n ≥ 0, define

P( j)
n =Eπ

(
P

Z( j)
(J( j)

k = n)|F
Z( j)

k−1

)
.

The definition is consistent. Indeed, J( j)
k depends only on the length lk, and conditional on

FZk−1 , this length is distributed as Exp(γ p( j)) independently of the σ -field F
Z( j)

k−1
. So P( j)

n is a

constant a.s., and furthermore,

P( j)
n = Pj(J

( j) = n),

where Pj refers to the probabilty measure in the space �j where J( j) has been defined.
Now, and in the same vein as in the proof of our result for the complete graph sequence,

we compute conditional expectations, but this time we condition on F
Z( j)

k−1
for k ≥ 1. In order

to simplify the notation, just for the next computation, we drop the (j) superindices. On the set
Jk = n, let R1, R2, . . . , Rn be the times in the interval Ik where a transition to the state in the
component j takes place. Then

E(KZk |FZk−1 ) =E(KZk 1{Jk=0}|FZk−1 ) +
∑
n≥1

E(KZk 1{Jk=n}|FZk−1 )

= KZk−1 P0 +
∑
n≥1

E(KRn1{Jk=n}|FZk−1 )

= KZk−1 P0 +
∑
n≥1

E

{(
KRn−1

KRn−1

k
+ (KRn−1 + 1)

k − KRn−1

k

)
1{Jk=n}|FZk−1

}
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= KZk−1 P0 +
∑
n≥1

E

{(
KRn−1

k − 1

k
+ 1

)
1{Jk=n}|FZk−1

}

= KZk−1 p0 +
∑
n≥1

E

{(
KZk−1

(k − 1

k

)n +
n−1∑
i=0

(k − 1

k

)i
)

1{Jk=n}|FZk−1

}
,

and this line equals

KZk−1

(∑
n≥0

(
1 − 1

k

)n
Pn

)
+ k

(
1 −

∑
n≥0

(
1 − 1

k

)n
Pn

)
.

After restoring the (j) superindices and taking expectations, we obtain (18).
The constants C( j)

k can be computed exactly. As an example, when p(0) = p(1) = 1/2 (and
hence, the growth of the structure can be defined as a sequence of uniformly growing complete
bipartite graphs), we obtain that

C(0)
k = C(1)

k = 3ρ + 1

(2ρ + 1)2
+ ρ

(
4ρ + 1

2ρ + 1

)2 k − 1

k(4ρ + 1) + 4ρ2
= 1 − ρ

k
+ O

(
1

k2

)
.

It turns out that we do not need the exact value of these constants.

Theorem 5. For the model of the growing bipartite graph with parameters p(0), p(1),

E

⎛
⎜⎝K( j)

Z( j)
k

V ( j)

Z( j)
k

⎞
⎟⎠ → ρ( j)

1 + ρ( j)
,

where ρ( j) = ρ

2p( j)
.

Proof. For fixed j and k, consider first the random variable J( j)
k , and let τ = τ

( j)
k be the

number of steps of the process Yt during the time interval I( j)
k . Then Eπ (τ ) = μ

γ p( j)
. If we write

Ỹ1, Ỹ2, . . . for the steps of the discrete parameter chain associated to the process Y during the
same time interval I( j)

k , we have

Eπ (J( j)
k ) =Eπ

(
τ∑

i=1

1{Ỹi=j}

)

=
∑
m≥0

Eπ

(
τ∑

i=1

1{Ỹi=j}|τ = m

)
Pπ (τ = m)

=
∑
m≥0

πjmPπ (τ = m)

= πjEπ (τ )

= ρ

2p( j)

= ρ( j).
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Hence

C( j)
k =E

{(
1 − 1

k

)J( j)}
=E

{
exp

(
ln

(
1 − 1

k

)
J( j)

)}

= 1 + ln

(
1 − 1

k

)
E(J( j)) + O

(
1

k2

)

= 1 − E(J( j))

k
+ O

(
1

k2

)

= 1 − ρ( j)

k
+ O

(
1

k2

)
.

Thus, (18) becomes

Eπ

(
K( j)

Z( j)
k

)
=Eπ

(
K( j)

Z( j)
k−1

)(
1 − ρ( j)

k

)
+ ρ( j) + dk, (19)

where dk = O

(
1

k

)
. Now, fix k0 ≥ 1 such that ρ( j)

k0
< 1. Iterating the relation (19), after a bit of

algebra we get for k ≥ k0 that

Eπ

(
K( j)

Z( j)
k

)
=Eπ

(
K( j)

Z( j)
k0

)

(k + 1 − ρ( j))
(k0 + 2)


(k0 + 2 − ρ( j))
(k + 1)
+ ρ( j)

k∑
i=k0+1


(k + 1 − ρ( j))
(i + 1)


(k + 1)
(i + 1 − ρ( j))

+
k∑

i=k0+1

di

(k + 1 − ρ( j))
(i + 1)


(k + 1)
(i + 1 − ρ( j))
,

and once again, the usual approximations and the fact that dk → 0 as k → ∞ yield

E

⎛
⎜⎝K( j)

Z( j)
k

V ( j)

Z( j)
k

⎞
⎟⎠ → ρ( j)

1 + ρ( j)
.

5. Final remarks

We have conducted a preliminary study of the behaviour of the asymptotic proportion of
vertices visited by a random walker embedded in growing structures. We can think of this
limit ratio as an index of the fitness of a dynamic structure aimed at supporting a randomised
algorithm capable of taking advantage of new processing units as they become available. In
fact, questions regarding the efficiency of autonomous, non-centralised crawling of a growing
graph, as described in [7], largely served as inspiration for the present work. It must be stressed
that any quantification of this efficiency is not likely to be based on other well-known indices
(e.g. functionals of hitting times) as we have shown in the case of the complete graphs (Section
3, Subsection 2.1): in a fast-growing regime, τ turns out to be non-integrable.

The model we have proposed in Section 2 is motivated by the need to answer the question
posed in the introduction. Thus, it necessarily differs from the much simpler model presented
in [3], where the question about recurrence/transience of random walks in changing landscapes
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of conductances is qualitative in nature. The cost to be paid is that, at this stage, our research
can only give an account of very simple (equivalently, highly symmetrical) growing strucures.

We have found that when the underlying world is the growing finite path (Subsection 2.2) or
the complete graph sequence (Section 3), the asymptotic proportion is a.s. a constant, 0 in the
first case and a.s. positive in the second case. In other words, we have found two simple classes
of graph evolution that give an answer in the positive sense to Question 1 of the introduction.
In the case of a naïve random structure (the complete bipartite graph sequence of Section 4)
we were able to exhibit L1 asymptotics for the aforementioned proportion in each of the two
components of the graph. The question of whether this limit is an a.s. limit remains open, and
the same holds for the other questions we posed in the introduction.

In our opinion, there are at least two lines of further research that are worth pursuing. The
first one is to prove or disprove the conjecture below (or a related one) regarding the asymptotic
order of the cover times of the structures and its relation with the asymptotic expected value of
the knowledge process, as described in the last question of the introduction.

Conjecture 1. Let PG be a Markov kernel on Gfin, and (Gn : n ≥ 0) a graph process, as in

Section 2. Set cn := E(Cov(Gn))

n ln n
. Then

lim
t→∞ E

(
Kt

Vt

)
= μ

μ + γ limn→∞ cn
.

Some support for this still-to be-proved proposition can be found not only in the cases we have
analysed in this work, but also in a simple comparison of the main results in [7] and [8].

The second line of further research is related to the regularity of the limits. More precisely,
assume that for a given transition kernel PG and for some choice of μ and γ , there exists a
constant ν(μ, γ ) such that limt→∞ Kt/Vt = ν(μ, γ ) a.s. In the interpretation of this limit as an
efficiency index for the growing structure intended to support a crawler, it would be desirable to
have at our disposal some kind of fine-tuning theorem that gives conditions on PG such that this
limit is a smooth function of the natural parameters of the model. For example, it is far from
trivial that the existence of an a.s. positive constant limit for a given choice of (μ, γ ) guarantees
the existence of an a.s. positive constant limit for some open range of the parameters.

We are currently working on both of these lines of research.

Appendix

In this short appendix, we rigorously construct the Markov process �t of Section 2 and
compute its generator. We adopt the notation introduced therein.

First, we observe that the set Gfin can be turned into a metric space. For two graphs F, G ∈
Gfin we define N0(F, G) = inf{k : F|[k] 
= G|[k]}, with the convention inf ∅ = +∞, and set

dGfin (F, G) := 2−N0(F,G).

It is easy to verify that this metric induces the cylinder topology on Gfin, and that under dGfin ,
Gfin is a Polish space.

We give a topology to the set of finite subsets of N, denoted Pfin(N), in such a way that the
cardinal application

| · | : Pfin(N) →R+
A �→ |A|
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and set-union operation

∪ : Pfin(N) ×Pfin(N) →Pfin(N)

(A, B) �→ A ∪ B

become continuous functions in this topology. The simplest way to do this is to metrise Pfin(N)
with the discrete metric dPfin(N) = 1{A
=B}. Observe that under the assumption of the Axiom
of Countable Choice, this space becomes trivially a separable space that is complete for the
discrete metric.

Finally, we endow N with the discrete topology as well.
For each of the spaces Gfin,N, and Pfin(N) endowed with their respective metrics, we con-

sider their Borel σ -fields, B(Gfin), B(N), and B(Pfin(N)), and set B :=B(Gfin) ⊗B(N) ⊗
B(Pfin(N)).

Having established the elementary topological and measure-theoretic ingredients described
above, we are now ready to build a Markov process taking values on a subspace of S := Gfin ×
N×Pfin(N), namely on the wedge

� := {(g, w, k) ∈ S : w ≤ |g|, k ∈ 2|g|, w ∈ k}.
Every point of � will represent a state of the Markov process, and we give the following
interpretation to the coordinates: the first coordinate represents the current world, the second
coordinate represents the position of the walker in the current world, and the third coordinate
keeps track of the vertices already visited by the walker.

The construction of the process proceeds as follows.

1. Let a kernel PG : Gfin ×B(Gfin) → [0, 1] be given, and assume that it satisfies the
following:

• PG(·, A) is a measurable application for every A ∈B(Gfin).

• PG(G, ·) is a probability measure for every G ∈ Gfin.

• For every G ∈ Gn, the measure PG(G, ·) is concentrated in Gn+1 ∩ {H : H|[n] = G}.
The choices regarding the metric on Gfin guarantee that Gn is a Borel set of Gfin for

each n ∈N, and so the above conditions are consistent. Given any initial graph G on Gfin,

Kolmogorov’s consistency theorem guarantees the existence of a probability measure PG
G on

(�G := GN

fin,B(Gfin)⊗N) and a process (Gn : n ≥ 0) defined on it with G0 = G whose one-step

transitions are given by the kernel PG .

2. On an arbitrary space (�0,F0, P0) let there be given two independent, time-
homogeneous Poisson processes, (Nwalk

s : s ≥ 0) and (Ngrow
s : s ≥ 0). The first one (which

dictates the pace of the walker) is a Poisson process of intensity μ, and the second one
(which controls the inflation of the graph) is a Poisson process of intensity γ . Endow
�0 with the natural filtration (F0

t ) induced by the pair (Nwalk
s , Ngrow

s ). Let S0 = T0 = 0,
and for n ≥ 1 let Sn (resp. Tn) be the nth jump time of Nwalk (resp. Ngrow).

3. Let G0 ∈ Gfin be a fixed initial graph. Given (ω, ω′) drawn from �G × �0 according to
PG ⊗ P0, for s ≥ 0 we define

Gs(ω, ω′) := Gk(ω) on {Tk(ω′) ≤ s < Tk+1(ω′)}.
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4. We build an N-valued Markov process conditioned on G = (Gs = Gs(ω, ω′) : s ≥ 0) and
on (Nwalk, Ngrow) = ((Nwalk

s (ω), Ngrow
s (ω)) : s ≥ 0). For each fnite graph G = (V, E) ∈

Gfin, let PG be its one-step transition kernel associated to the simple random walk tak-
ing values on the set V . Given an initial vertex X0 ∈ [|G0|], for n ≥ 1 we draw Xn ∼
PGSn (Xn−1, ·). Again, Kolmogorov’s consistency theorem guarantees the existence of a
probability measure PX = PX (ω, ω′) on (�X :=N

N,B(N)⊗N) such that (Xn : n ≥ 0) is
a (non-time-homogeneous) Markov chain with the prescribed probability transition. Let
ω′′ = ω′′(ω, ω′) denote a typical sequence on this space, i.e., Xn(ω′′) = ω′′

n . Set Xt = X0
on 0 ≤ t ≤ S1 and

Xs(ω, ω′′) = Xn(ω′′) on {Sn(ω) ≤ s < Sn+1(ω)}.
5. Finally, given a set K0 ⊂ [|G0|] such that K0 contains X0, define

Kt := K0 ∪ {v ∈N : ∃s ≤ t such that Xs = v}.
Let � := (�t = (Gt, Xt, Kt) : t ≥ 0), and consider the filtrations

(FG
t := σ (Gs : 0 ≤ s ≤ t) : t ≥ 0),

(FW
t := σ (Xs : 0 ≤ s ≤ t) : t ≥ 0),

(FK
t := σ (Ks : 0 ≤ s ≤ t) : t ≥ 0),

Ft =FG
t ∨FW

t ∨FK
t .

The following properties are direct consequences of our definitions:

• F0
t ⊂Ft.

• ((Gs, Xs) : s ≥ 0) is a (Gfin ×N)-valued Ft-Markov process defined on the probability
space � := �0 × �G × �X ; the law Pg,x of the process started at vertex x in the graph
g is computed by the formula

Pg,x((G, X) ∈ A × B) = PX (X−1(B)|G−1(A))(P0 ⊗ PG)(G−1(A))

for all Borel sets A ∈B(Gfin)⊗N, B ∈B(N)⊗N.

Let b� be the Banach space of bounded measurable real-valued functions on �, and let E
be the expectation operator associated to the probability PG0,v. For a function f ∈ b�, we use
the notation

PG f (g, x, k) =
∑

H∈G|g|+1

PG(g, H)f (H, x, k),

and if g ∈ Gfin, we write

Pgf (g, x, k) =
∑
y∼gx

Pg(x, y) f (g, y, k).

Theorem 6. The process (�t : t ≥ 0) is a �-valued Markov process whose infinitesimal
generator acts on f ∈ b� as

Lf (g, x, k) = γ
[
PG f (g, x, k) − f (g, x, k)

] + μ
∑
y∼gx

Pg(x, y)
[
f (g, y, k ∪ {y}) − f (g, x, k)

]
.

(20)
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Proof. For 0 ≤ s ≤ t, let ws,t be the number of walking steps between s and t, and let gs,t

be the number of growing steps (i.e. added vertices) between s and t. Using Landau’s little-o
notation, for f as in our claim we compute as follows:

E( f (Gt, Xt, Kt)|Fs) =E( f (Gt, Xt, Kt)|(Gs, Xs, Ks))

=
∑
m≥0

∑
n≥0

E( f (Gt, Xt, Kt)1{gs,t=m}1{ws,t=n}|(Gs, Xs, Ks))

= e−(μ+γ )(t−s)f (Gs, Xs, Ks)

+ e−μ(t−s)γ (t − s)e−γ (t−s)
∑

H∈Gfin

PG(Gs, H) f (H, Xs, Ks)

+ e−γ (t−s)μ(t − s)e−μ(t−s)

×
∑

y∼GsXs

PGs (Xs, y)(f (Gs, y, Ks)1{y∈Ks} + f (Gs, y, Ks ∪ {y})1{y/∈Ks})

+ o(t − s)

= e−(μ+γ )(t−s)f (Gs, Xs, Ks)

+ e−μ(t−s)γ (t − s)e−γ (t−s)
∑

H∈Gfin

PG(Gs, H) f (H, Xs, Ks)

+ e−γ (t−s)μ(t − s)e−μ(t−s)
∑

y∼GsXs

PGs (Xs, y)f (Gs, y, Ks ∪ {y})

+ o(t − s),

where the last equality follows from the fact that Ks = Ks ∪ {y} on y ∈ Ks. Then we have

lim
t→s

E( f (Gt, Xt, Kt)|(Gs, Xs, Ks)) − f (Gs, Xs, Ks)

t − s
= −(μ + γ )f (Gs, Xs, Ks)

+γ PG f (Gs, Xs, Ks) + μ
∑

y∼GsXs

PGs (Xs, y)f (Gs, y, Ks ∪ {y}),

and our claim follows after rearranging terms and observing that

∑
y∼GsXs

PGs (Xs, y) = 1.
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