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Abstract
Real-time localization is an important mission for self-driving cars and it is difficult to achieve precise pose infor-
mation in dynamic environments. In this paper, a novel localization method is proposed to estimate the pose of
self-driving cars using a 3D-LiDAR sensor. First, the multi-frame curb features and laser intensity features are
extracted. Meanwhile, based on the high-precision curb map generated offline, obstacles on road are detected using
region segmentation methods and their features are removed. Furthermore, a map-matching method is proposed to
match the features to the map, a robust iterative closest point algorithm is utilized to deal with curb features along
with a probability search method dealing with intensity features. Finally, two separate Kalman filters are used to fuse
the low-cost global positioning systems and map-matching results. Both offline and online experiments are carried
out in dynamic environments and the results demonstrate the accuracy and robustness of the proposed method.

1. Introduction

Self-driving cars are developing rapidly to improve the driving safety and transportation efficiency. Self-
driving cars are qualified in many scenarios that are dangerous, inconvenient for human drivers. One of
the essential problems of self-driving technology is how to achieve high-precision pose of self-driving
cars, which leads to the development of localization methods.

The differential global positioning systems (DGPS) and inertial measurement units (IMU) were nor-
mally used for localization system in the past few decades [1]. However, in most city driving scenarios,
there are tall buildings, viaducts, and tunnels where the accuracy of DGPS cannot be guaranteed because
of the lack of visible satellites. Simultaneous localization and mapping (SLAM) methods were com-
monly used in robots localization systems [2]. The loop detection is a key component of SLAM methods
to correct the global position error. However, looped paths can hardly be guaranteed in most outdoor
driving cases.

1.1. Related work on localization in static environment

Due to the availability of accurate digital navigation maps, and the onboard sensors like camera [3, 4],
Radar or LiDAR gradually become a standard configuration. Researchers proposed many localization
algorithms to obtain accurate position of vehicle by matching the data from onboard sensors and the
digital map. In refs. [5, 6], two down-looking cameras mounted on both sides of the vehicle were used
to detect the road markings and an Extended Kalman Filter (EKF) was then applied to couple the road
marking information with the map data to estimate the lateral and directional deviations. The accurate
longitudinal position of autonomous vehicles is also required in actual driving scenarios. A stereo cam-
era system can solve the problem on how to recognize the lane markers and curbs. Then, an ICP algorithm
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was used to match the pre-built accurate map data with the detected features [7, 8]. It compensates for the
error of the horizontal and vertical position of the autonomous vehicle. However, under the assumption
of a fixed vehicle posture and a flat ground, the position of the lane markings is detected and calculated.
The intrinsic and extrinsic parameters sensitivity of camera were analyzed by ref. [9] and only use the
lateral position of the lane markings to achieve vehicle position. However, the disadvantage is that it is
difficult for the camera to accurately extract road features under shadow or insufficient light conditions.

The change of light intensity has little effect on the performance of LiDAR [10]. The point cloud data
returned by LiDAR contains three-dimensional context information [11]. In ref. [12], the road planes and
edge-like objects were extracted and matched by pattern align algorithm, but the correct matching rate
was low because of the sparsity. In refs. [13, 14], another road feature, lane marking, was extracted by
LiDAR sensor according to the extinguishable intensity value between lane marking and road surface.
A lane-map-based localization method was proposed using lane markings and road surfaces as features.
Generally speaking, in most urban driving scenes, the positions of curbs on both sides can define the
road boundary, which can be used to distinguish traffic lanes and restricted areas. The curbs detected
by a LiDAR have been used for localization [15]. Extract curbs is based on monocular cameras and
LiDAR, and use particle filters to locate autonomous vehicles [16, 17]. The localization algorithm was
performed under the assumption of flat road surface, which is hard to guarantee in most scenarios. In
recent years, deep learning based methods have been proposed to show promising results in localization
problem. A localization framework proposed by ref. [18] directly processes point clouds and estimates
the vehicle’s position accurately. Another deep neural network LocNet [19] was proposed to re-localize
the vehicle globally after ICP registration in multisteps. Although the deep learning-based methods have
shown the capability to match the performance of the state-of-the-art localization pipeline, they require
high-cost hardware and long-time training to adapt in certain scenarios.

1.2. Related work on localization in dynamic environment

Due to the complex environment, the performance of feature detection algorithms is poor, and outliers
usually exist in actual driving scenarios [20, 21]. A probabilistic grid map was adopted by refs. [22, 23]
for localization so as to achieve the purpose of skipping the feature detection process. The point cloud
data of LIDAR was projected into a grid image with a Gaussian intensity distribution. Then, the map-
matching algorithm was performed by traversing the lateral and longitudinal search space. Instead of
projecting the point cloud, raw data of a 2D-LiDAR [24] or 3D-LiDAR [25, 26] was directly matched
with the pre-built dense 3D point cloud map using ICP algorithm. Nevertheless, the computational
complexity of the raw data-based matching algorithms are high because all the sensor data are used for
matching the map.

In the autonomous vehicles research community, the design of robust localization system is of great
interest. Robustness of localization can be improved at different levels, including the processing of sen-
sor measurement [27, 28], map matching [29], and adapting localization strategies [30]. Some diagnostic
approaches were also integrated into localization system to detect the failures of localization [31, 32].
Semantic features and correspondence-based algorithms such as ICP are a popular choice for map
matching. In order to reduce the influence of outliers, robust variants ICP algorithms such as M-ICP
have been proposed [33, 34]. The cost function of M-ICP was designed under the assumption that the
outliers are more far away from the map than inliers. The Fourier–Mellin transformation (FMT) has been
used by ref. [35] for indoor applications. Ref. [36] expanded former works on FMT-based map matching
by further adaptation of this method for the usage with dense grid maps. However, it is still a problem
to robustly locate a autonomous vehicles under dynamic environment by matching sparse environment
features.

In this paper, a 3D-LiDAR is utilized to sense the surrounding environment. Multi-frame curb features
are generated based on vehicle dynamics. Meanwhile, the point cloud of obstacles are extracted from
driving corridor which is calculated based on pre-build curb map. In the feature extraction procedure, the
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Figure 1. The flowchart of the proposed method. The Wheel Speed and Steer Angle information are
used to estimate the vehicle motion through dynamic model. The GPS measurements is used to correct
the motion estimation result with global information. The Point Cloud and Map Data are used to locate
the vehicle and two Kalman filters are applied to fuse the location results and output the final vehicle
location.

beam model and region segmentation methods are used to reject the outliers. Furthermore, a probabilistic
ICP algorithm is proposed for matching map and estimating the ratio of outliers. Due to the reason that
curb features lack of longitudinal characteristics in some driving scenarios, for example, driving on
straight roads, the intensity features are also integrated into the localization system. Kalman filters were
implemented for fusion of the map-matching results of curb and intensity features. The framework of
the proposed method is shown in Fig. 1. This paper makes the following contributions:

1. A fast and accurate obstacle detection method is proposed to efficiently remove the obstacles on
road and enhance the localization stability in dynamic environments.

2. A probabilistic ICP method considering the ratio of outliers is proposed, which improves the
robustness of the localization results.

3. A Kalman filter-based optimization method is applied to integrate the curb and intensity features,
which enhances the lateral and longitudinal accuracy. In addition, the whole framework is able to
implement in real time, which is essential for autonomous vehicles.

The remainder of this paper is organized as follows. Section 2 describes map-based obstacles detec-
tion and outlier rejection algorithms. Section 3 details the probabilistic ICP and intensity matching
algorithms. Section 4 evaluates the proposed method through comprehensive experiments. Section 5
summarizes the contribution of the paper and maps out the direction for future research.

2. Preprocessing and feature extraction

This section detailed the point cloud preprocessing module and feature extraction module. In this paper,
the Velodyne HDL-32E LiDAR sensor has 32 lasers aligned vertically from +10◦ to −30◦, and it has a
360◦ horizontal field of view. A total of 700,000 points are generated each second in 70 m with 2 cm accu-
racy [37]. In this paper, the LiDAR is mounted on top of the vehicle as shown in Fig. 2(a). The raw data
is shown in Fig. 2(b). The ith point is represented by qc,i = (xc,i, yc,i, zc,i, rc,i). rc,i is the intensity value.

2.1. Preprocessing

When autonomous vehicles drives in the complex scenarios, the static or dynamic obstacles block the
view of onboard sensors and influence the feature extraction algorithms significantly. Thus, the feature
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Figure 2. Experimental platform. (a) Autonomous vehicles. (b) 3D point cloud.

detection algorithms perform poorly and generate outliers which further make map-matching difficult.
In this paper, the processing of sensor measurement is improved first. Different from deep leaning-based
obstacle detection algorithms [38, 39, 40] that require large training data, we proposed a fast and accurate
obstacle detection algorithm using a 3D-LiDAR based on the curb map.

2.1.1. Driving corridor extraction
The road boundary is defined by the position of curbs on both sides. Curb is an essential feature distin-
guishing the driving corridors and restricted areas, and is also significant for the safety of autonomous
vehicles. Autonomous vehicles usually care about the obstacles inside the driving corridors. The driv-
ing corridors can be extracted based on curb map primarily. Curb map contains the vertices that are
described in WGS-84 coordinates. (Bm,i, lm,i) is the ith curb vertex coordinate in the map. The Gaussian
projection algorithm is applied for transforming the curb vertices from WGS-84 coordinates to local
LiDAR coordinates. The transformed ith curb vertex is denoted as (xm,i, ym,i). The driving corridors are
usual irregular. In this paper, the driving corridors are represented by an occupied grid G with width
wg and height hg. Each cell represents a pw × ph area where pw and ph are the width and height of each
cell. Then, all the transformed curbs are projected into grid G. The occupied grid G is computed as
follows: ⎧⎨

⎩G(cw, ch)= 1 , if curb fall in cell(cw, ch)

G(cw, ch)= 0 , otherwise
(1)

where 1 and 0 represent that the cell is occupied and unoccupied, respectively.
The occupied grid G is donated by a binary image. After projecting curbs, image dilation operation

is performed for expanding the shapes and filling up the gaps. Connected regions are labeled based on
the dilated image and finally the driving corridors are extracted. The processing procedure is shown in
Fig. 3.

2.1.2. Obstacle rejection
The point cloud of LiDAR is separated by the driving corridors and the ith point, which falls in driv-
ing corridor is denoted by qd,i = (xd,i, yd,i, zd,i, rd,i). The separated points contain the obstacle part and
ground part. The elevation of obstacles is commonly higher than the ground. Thus, the points are sorted
by their elevation in ascending order and select ξ% points for fitting the ground. Parameter ξ is selected
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Figure 3. Procedures of driving corridors extraction. In (a), the black dots represent the curbs of map
that are transformed to local LiDAR coordinates. In (d), the green area is the extracted driving corridor.
(a) Curb map. (b) Grid image. (c) Dilated image. (d) Driving corridors.

Figure 4. Obstacle detection results. The red dots represent the detected points of obstacles. (a) Raw
data. (b) Obstacles. (c) Raw data. (d) Obstacles.

according to the statistics information of obstacle points. A flat plane model is applied for fitting the
ground surface using least square method:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩
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(2)

where a0, a1, a2 are the coefficients of plane equation: z= a0x+ a1y+ a2. nd is the number of selected
points. Then, the obstacle points are extracted based on distance criteria:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

di = |a0xd,i + a1yd,i − zd,i + a2|√
a2

0 + a2
1 + 1

Ld,i = obstacle if di > dσ

Ld,i = ground otherwise

(3)

where Ld,i is the label of point qd,i. di is distance of ith point to the fitting plane. dσ is the preset threshold.
The detection results are shown in Fig. 4. In this paper, the classes of obstacles are not cared. The detected
points of obstacles are eliminated from the raw point cloud and the remained point cloud is feed to the
next processings.
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Figure 5. Curb detection comparison between single frame and multi-frame. (a) Single-frame curb. (b)
Multi-frame curb.

2.2. Features extraction

The features used in this paper are curb and intensity features. In this subsection, the extraction methods
of these features are detailed.

2.2.1. Curb feature detection
After eliminating the dynamic obstacles, an improved curb detection method based on ref. [41] is pro-
posed. According to the previous method, the multi-frame point cloud data is used to multiply the curb
in each frame. As the moving information of the vehicle is denoted as dx, dy, and dψ on the x-y plane.
The detected curbs of single frame are denoted by Ck , where the coordinates are denoted as

[
xk yk

]T .
The transformation is used to generate the coordinates of multi-frame curbs:

C= [Ck f (Ck−1) f 2(Ck−2) · · · f n(Ck−n)
]

(4)

where f n(C)= f (f ( · · · f︸ ︷︷ ︸
n

(C))). The transformation f is defined by

f (C)�
[

cos (dψ ) − sin (dψ )

sin (dψ ) cos (dψ )

](
C−

[
dx

dy

])
(5)

An example of single-frame curbs and multi-frame curbs is shown in Fig. 5.
The connection regions between obstacles and ground are similar to curbs. Thus, the false detection

of curb features are often occurred around the obstacles. In this paper, the obstacle regions are seg-
mented based on distance criteria for eliminating the false detection. The obstacle regions are defined
that the distance of every point in the region to the closest obstacle is less than do. Based on KD-tree
method, the detected curb features which are within the obstacle regions are recognized as outliers and
elimated.

After the extraction of the curbs and rejection of the outliers, a beam model [27] is used to generate
a smooth curb contour for localization. In this paper, a set of beam models are applied in each step with
multi-frame. The angular resolution is denoted as δ = 2π/nb and the launching point of beam model is
set by the position of the vehicle. The full equations are denoted as follows:
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Figure 6. Beam model method. The yellow dots represent the trajectory points of the autonomous vehi-
cles and the light blue lines represent the beam lines launched at the each trajectory point. The pink dots
represent the extracted curbs using the beam model method. (a) Beam launching. (b) Extracted curbs.

Zk =
{

(k − 1) · π
nb

< arctan
(

y− yl,j

x− xl,j

)
≤ k · π

nb
,

− 25≤ x, y≤ 25, k = 1, 2, · · · , nb

}
(6)

Ik =
{

arg min
qb,i∈Zk

√
x2

i + y2
i

}
(7)

where qb,i = (xi, yi) is the ith curb coordinate in C. Zk means the kth beam area. The coordinate (xl,j , yl,j)
is the jth launching point of beam model. Ik is the index of the curb with the shortest distance among
the curbs in Zk . Thus, all the Ikth curbs are extracted to represent the contour. The procedure is shown
in Fig. 6.

2.2.2. Intensity feature generation
Although the curb features have a good performance of correcting the error of lateral position. In some
straight road, curbs lack longitudinal feature for localization. In this paper, the intensity measurements
of LiDAR are combined with curb features for enhancing the localization system. The pre-built intensity
map is represented as a grid, which is considered as probability distributions over environment described
in ref. [22]. The mean and variance of intensity are contained in each cell of the map. The advantage of
this representation is an increased robustness to dynamic obstacles. Because the dynamic obstacles can
cause large intensity variances for the cells in which they pass.

For intensity feature extraction, a three-dimensional grid S is established with width ws and height
hs. The cell (i, j) contains three elements Sn,(i,j), Sr,(i,j), and Sσ ,(i,j). Where Sn,(i,j) is the number of points
falling in cell (i, j), Sr,(i,j), and Sσ ,(i,j) are the mean and variance of intensity. The grid S is calculated
using the following iterative equations:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

S′n,(i,j)← Sn,(i,j) + 1

S′σ ,(i,j)←
Sn,(i,j) − 1

Sn,(i,j)
Sσ ,(i,j) +

(
rc,i − Sr,(i,j)

)2
Sn,(i,j) + 1

S′r,(i,j)← Sr,(i,j) + rc,i − Sr,(i,j)

Sn,(i,j) + 1

(8)
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Figure 7. Intensity grid. Due to the laser reflection, different materials show different intensities. For
example, the cross-walk area has higher intensity value than the road area. (a) Mean intensity. (b)
Variance intensity.

where rc,i is the intensity value of ith point. S′n,(i,j), S′σ ,(i,j) and S′r,(i,j) are new iterative values. The result
is shown in Fig. 7.

3. Map matching and localization

The map-matching process intends to estimate the deviation between features detected by the
autonomous vehicles and features provided by the digital map. In this section, the probabilistic ICP and
Area probability Search (APS) algorithms are utilized for map matching of curb and intensity features,
respectively.

3.1. Probabilistic ICP

The extracted curbs and curbs in map are represented as two point clouds. The matching procedure
of curbs is formulated as a point cloud registration problem. The ICP algorithm is a general matching
algorithm proposed by Besl [42]. The extracted curb points are denoted by C and the curb points in the
map are denoted by M. The standard ICP algorithm is to find a transformation T by minimizing the cost
function:

J =
nc∑
i

d (TCi, M) (9)

where d represents the Euclidean distance. The iterative process is denoted as follows. First, a corre-
spondence of Ci in map M is found by a k-dimensional tree search. Then the transformation of each
correspondence is computed based on the singular value decomposition (SVD) [43]. After that, the cost
J is calculated based on the transformation C=TC. Finally, the iteration is terminated when the cost J
falls below a pre-defined threshold τ .

However, the standard ICP algorithm cannot deal with the cases where outliers exist in point cloud C.
M-ICP is a robust variant of ICP algorithm which designs another cost function to reduce the influence of
outliers. The cost function of M-ICP is designed under the assumption that the outliers are more far away
from the map than inliers. Due to the initial position error of vehicle, this assumption is unreasonable
for map matching. The outliers should be identified by whether they are consistent with the map. In this
paper, an improved ICP algorithm is proposed to reduce the influence of outliers as much as possible
through a double-layer iteration processing. The first layer called local ICP iteration is designed for
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Figure 8. Relation pt of nc and nt, at the assumption of nc = 300 and nf = 45, which are determined by
statistic information.

finding a relative accurate transformation matrix based on a probabilistic method. The second layer
called global ICP iteration aims to fine tune the result obtained by the first layer and evaluate the quality
of iteration.

At the ith iteration, the feature points are randomly sampled by local ICP to calculate rough transfor-
mation matrix Tl,i and initialize the global ICP. In the processing of global ICP, the Tl,i is first applied
to the curb features. Then, the outliers of curb features are eliminated based on the distance to the map.
The matrix Tl,i is fine tuned and ratio of outliers is calculated to evaluate the quality of the iteration.
The proposed algorithm is performed under the assumption that if the accurate Tg,i is obtained by global
ICP, the more inliers will be consistent with the map and the outlier ratio is lower. The probability of
the proposed algorithm is analysed as follows.

The number of randomly selected curbs for local ICP denoted as np and number of iteration denoted
as nt are needed to choose. The total number of curbs is denoted as nc, number of outliers is nf . Thus,
in the ith iteration, the probability of all randomly selected curbs are inliers denoted as pr is calculated:

pr =�np−1
i=0

nc − nf − i
nc − i

(10)

In the iteration of nt , the probability of inliers are denoted as pt , note that the inliers are the curbs which
at least occurred once in the previous iterations.

pt = 1− (1− pr)nt (11)

Figure 8 shows the relation pt of nc and nt .
At the ith iteration, the outliers are recoginzed as follows:⎧⎨

⎩Ci = outlier if dist
(
Tg,iCi, M

)
> dg

Ci = inlier otherwise
(12)

where dg is the distance threshold. After all iterations, the final result outputted by probabilistic ICP is
computed as

T=

nt∑
i
ηi ·Tg,i

nt∑
i
ηi

(13)

and ηi is the ratio of outliers at the ith iteration. Finally, p̂c(t)=
[
x̂c(t) ŷc(t) ψ̂c(t)

]T is the observation of
map matching of curb features computed based on T.
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3.2. Intensity feature matching

The intensity feature matching is implemented by APS algorithm [22]. To calculate the probability of
offset (xo, yo) given sensor data z and intensity map data m, the product is token over all cells of the
probability of observing the sensor data cell’s average intensity given the map cell’s average intensity
and both of their variances. The mean and variance of intensity of cell (i, j) in the intensity map are
denoted as mr,(i,j) and mσ ,(i,j). The effective area in which Sn of cells greater than ne is considered for
calculation. Thus, the possibility of vehicle locating at offset (xo, yo), which is related to current position
is computed as

P(xo, yo|z, m)=
∏
i,j

exp
(−(mr,(i−xo,j−yo) − sr,(i,j))2

2(mσ ,(i−xo,j−yo) + sσ ,(i,j))2

)α
(14)

where α is a parameter that determines the shape of the probabilistic distribution. At the foundation
of curb features, the lateral searching space is restricted within 1 m and longitudinal searching space
is restricted within 3 m. Thus, the processing of intensity feature matching is fast and capable for real-
time computation. The center of mass of the distribution P(xo, yo|z, m) is recognized as the most likely
position:

xo =
∑

xo,yo P(xo, yo|z, m) · xo∑
xo,yo P(xo, yo|z, m)

(15)

yo =
∑

xo,yo P(xo, yo|z, m) · yo∑
xo,yo P(xo, yo|z, m)

(16)

x̂s(t)= xv(t − 1)+ xo (17)

ŷs(t)= yv(t − 1)+ yo (18)

where pv(t − 1)= [xv(t − 1) yv(t − 1) ψv(t − 1)
]T is the position of autonomous vehicles at time t − 1.

p̂s(t)=
[
x̂s(t) ŷs(t)

]T is the observation of map matching of intensity features.

3.3. Localization optimization

After obtaining the observations of map matching of curb and intensity features, Kalman filter fusion
framework is employed for fusion of observations and provide an optimized location of the autonomous
vehicle. The predicted vehicle position is calculated based on the vehicle dynamic model:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β̇ = 2Cf

Mvx

[
δf − β − lf ψ̇

vx

]
+ 2Cr

Mvx

[
−β + lf ψ̇

vx

]
− ψ̇

ψ̈ = 2lf Cf

Iz

[
δf − β − lf ψ̇

vx

]
− 2lrCr

Iz

[
−β + lf ψ̇

vx

]
ẋ= vx cosψ − vx tan β sinψ

ẏ= vx sinψ + vx tan β cosψ

(19)

where Cf , Cr are the stiffnesses of front and back wheels. lf , lr are the distances from mass to front
and back wheels. β, vx, Iz, M, and δf represent the slip angle of vehicle, longitudinal speed, moment
of inertia, weight of vehicle, and front wheel angle. The vehicle dynamic equations are solved through
Euler’s formula. p′v(t)=

[
x′v(t) y′v(t) ψ ′v(t)

]T is the predicted vehicle position at time t. The predicted
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Figure 9. High-precision digital map. In (a), the blue dots represent the road boundary, which are used
as the reference of the proposed method. (a) Curb map. (b) Intensity map.

pose of the vehicle is measured by low-cost GPS, and it is optimized through the first Kalman filter
which is denoted by:

p′v,gps(t)=
[
x′v,gps(t) y′v,gps(t) ψ ′v,gps(t)

]T (20)

The second Kalman filter is applied to optimize the relative pose by integrating the results of map match-
ing. The optimized pose is denoted as p′v,gps(t), and the states of the second Kalman filter is

[
x y ψ

]T and
the observation vector is

[
x̂c(t) ŷc(t) ψ̂c(t) x̂s(t) ŷs(t)

]T . Both online and offline experiments are carried
out to demonstrate the advantages of the proposed method.

4. Experiments

4.1. Implementation details

The experiments are divided into two parts: offline and online. In the offline experiment, the proposed
localization method is tested on static and dynamic environments. Before testing the localization method,
a high-precision map is created with two basic layers: curb layer and intensity layer. The map is shown in
Fig. 9, the size of the map is around 1800 m× 1200 m. All reference positions of the vehicle is acquired
by the real-time kinematic (RTK) GPS, which has an average accuraty of 3 cm. The key parameters used
in the proposed method are shown in Table I. The estimated position is projected with the origin of the
ground truth and a set of metrics including root mean square error (RMSE) of lateral, longitudinal, and
heading are reported for evaluation.
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Table I. Key parameters used in the proposed method.

Parameters Definitions Values Units

wg Width of grid image G 400 –
hg Height of grid image G 400 –
pw Width of cell in G 0.2 m
ph Height of cell in G 0.2 m
ξ Points for ground fitting 95 %
dσ Distance to the ground 0.5 m
ws Width of grid image S 200 –
hs Height of grid image S 200 –
do Distance to the obstacle 0.5 m
nb Number of beams 36 –
np Number of randomly select curbs 15 –
nt Number of ICP iteration 30 –
dg Distance to the map 1.0 m
Cf /Cr Stiffness of front/back wheels 45,980 –
lf Distance from mass to front wheel 1.4 m
lr Distance from mass to back wheel 1.2 m
Iz Moment of inertia 6000 kg · m2

M Weight of vehicle 2300 kg

Figure 10. Trajectory in static environment.

4.2. Experiment results

4.2.1. Static environment experiment
For the experiment in static environment, the dataset is recorded by our autonomous vehicle on the
campus road in Tongji University. The recorded dataset composed of 4260 frames contain few static or
dynamic obstacles. The trajectory of autonomous vehicles is shown in Fig. 10.

We compare the proposed method with those only using low-cost GPS, standard ICP based on the
ref. [44], ICP-obs that is further integrated with obstacle detection module, M-ICP method [33] and
FMT-based method [36]. The objective function of M-ICP is used as follows:

J ′ =
∑

ρ
(√

e2
x + e2

y

)
(21)
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Table II. Error comparison of static environment.

Method Lateral (m) Longitudinal (m) Heading (◦)

Low-cost GPS 1.9942 2.5449 1.5034
ICP [44] 0.2131 0.4436 0.7184
ICP-obs 0.1943 0.4353 0.6478
M-ICP [33] 0.1855 0.4074 0.5766
Intensity [22] 0.2983 0.4145 –
FMT [36] 0.4101 0.5905 0.8929
Proposed 0.1885 0.3933 0.5195
Note: Boldface means the best results in comparison.

Table III. Error comparison of dynamic environment.

Method Lateral (m) Longitudinal (m) Heading (◦)

Low-cost GPS 1.9509 1.8668 2.1533
ICP [44] 0.5812 2.6381 3.1461
ICP-obs 0.2210 0.4990 0.8338
M-ICP [33] 0.2035 0.4964 0.9514
Intensity [22] 0.3130 0.5614 –
FMT [36] 0.7467 0.8975 0.8356
Proposed 0.1884 0.4568 0.5283
Note: Boldface means the best results in comparison.

where ex and ey are the residual errors of map matching in x-y plane. ρ(·) is a biweight function, and B
is set to be 4.681 that fits the minimized normal distribution:

ρ(e)=

⎧⎪⎪⎨
⎪⎪⎩

B2

2

(
1−

(
1− ( e

B
)2)3

)
(if |e| ≤ B)

B2

2
(if |e| ≥ B)

(22)

The FMT-based method is implemented based on grid image. For comparison, grid images are gener-
ated and the curb features are projected into the grid image. According to ref [36], the width, height,
and precision of the grid images are set as 500, 500, and 0.1 m. The simulation is implemented with
MATLAB. The statistical results of six methods are reported in Table II. In static driving environment,
the ICP method based on our previous work achieves a satisfied result. By integrating the obstacle detec-
tion module, the result has a little improvement. Comparing to other methods, the result of proposed
method is similar to M-ICP. Due to the reason that the curb feature is sparse, the FMT-based method is
unstable for map matching.

4.2.2. Dynamic environment experiment
For the experiment in dynamic environment, the dataset is recorded at daytime in the campus. The dataset
composed of 4513 frames contain many pedestrian, trucks, and cars. More than half of frames contain
at least one obstacle. Also, there are different driving scenarios such as normal roads, intersections and
one-way roads in the dataset. The localization methods are implemented as the same as the methods in
static environment experiment. The curves of lateral, longitudinal, and heading error of localization are
shown in Fig. 11 and Table III is the statistical results.
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Figure 11. Curves of localization error in dynamic environment. (a) Lateral error. (b) Longitudinal
error. (c) Heading error.

Based on the experiment results, it can be seen that the M-ICP and FMT-based methods are unstable
when there are moving objects. With the rejection of the obstacles in the proposed method, the results are
more stable and accurate in dynamic environments. The M-ICP and FMT-based method failed to locate
the vehicle at about 330 and 340 s, respectively, as shown in Fig. 12. However, the proposed method can
deal with the cases robustly and achieve a precision localization with average 19 cm lateral error, 46 cm
longitudinal error, and 0.53◦ heading error. The whole trajectory with position error is shown in Fig. 13.

4.2.3. Online experiment
The aim of using online experiment system is to test the ability of real-time computing. In autonomous
vehicle system, the real-time performance is essential and the computing platform is limited. There is
no other mathematical model running inside online experiment, and this is the real performance running
in real time on our vehicle platform. The proposed algorithm is implemented with C/C++ in the Robot
Operating System (ROS). The online experiment is tested on our autonomous vehicles platform. The
controller is the ADLINK Industrial Personal Computer (IPC) with 16GB of RAM and Intel Core i7-
3610QE CPU at 2.3GHz. In addition, the probabilistic ICP is implemented using parallel programming
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Figure 12. Scenario at 330.6 s with a lot outliers. The coach represented by the red points blocks the
right side curbs.

Figure 13. Trajectory with position error. The unit of the color bar is meter.

and the average processing period of the proposed method is around 60 ms, which is possible for the
real-time operation of autonomous vehicles. The online experiment is carried out on our campus. In
Fig. 14, the blue dots represent the curb features. The yellow dots represent the detected obstacle points.
The position of blue car model is received from low-cost GPS and the position based on proposed method
is labeled in a red car model.
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Figure 14. Real-time localization results. The road boundary, lane line, and cross-walk are denoted in
white lines in the visualization.

5. Conclusion and future work

For autonomous vehicles, this paper develops a robust method to locate an autonomous vehicles using
a Velodyne 3D-LiDAR. The obstacles are detected based on curb map to form the foundation of feature
extraction. Then, curb and intensity features are extracted from the environment, and region segmen-
tation and beam model method are utilized to reject the outliers as much as possible in the feature
extraction procedure. The probabilistic ICP algorithm is proposed to match the high-precision map to
increase the robustness of localization system. The simulation and real-time experiments demonstrates
that the vehicle can be robustly located. A precision localization is achieved with average 19 cm lateral
error, 46 cm longitudinal error, and 0.53◦ heading error in the dynamic environment.

However, the proposed algorithm depends on a rough position that is provided by a low-cost GPS,
and some route-based localization methods can be integrated into the proposed method to reduce the
dependence of the GPS. The proposed method also has the limitation in locating the vehicle where
there is no curb. In the future work, other environmental features like road markings will be detected to
improve the robustness of the localization system.
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