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Abstract

Among the myriad of desirable properties discussed in the context of forgetting in Answer

Set Programming, strong persistence naturally captures its essence. Recently, it has been

shown that it is not always possible to forget a set of atoms from a program while obeying

this property, and a precise criterion regarding what can be forgotten has been presented,

accompanied by a class of forgetting operators that return the correct result when forgetting

is possible. However, it is an open question what to do when we have to forget a set

of atoms, but cannot without violating this property. In this paper, we address this issue

and investigate three natural alternatives to forget when forgetting without violating strong

persistence is not possible, which turn out to correspond to the different possible relaxations of

the characterization of strong persistence. Additionally, we discuss their preferable usage, shed

light on the relation between forgetting and notions of relativized equivalence established

earlier in the context of Answer Set Programming, and present a detailed study on their

computational complexity.

KEYWORDS: forgetting, Answer Set Programming, strong equivalence, relativized equiva-

lence, computational complexity

1 Introduction

A fundamental conclusion drawn by Gonçalves et al. (2016c) is that it is sometimes

impossible to forget a set of atoms from an answer set program while obeying im-

portant desirable properties, notably the so-called strong persistence (SP). However,

even in such cases, we may be forced to forget – just imagine a court ordering the
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elimination of illegally acquired information. In this paper, we thoroughly investigate

how to forget when it is impossible to obey SP.

Forgetting is an operation that allows the removal from a knowledge base of middle

variables no longer deemed relevant. Its importance is witnessed by its application,

e.g., to cognitive robotics (Lin and Reiter 1997; Liu and Wen 2011; Rajaratnam

et al. 2014), resolving conflicts (Lang et al. 2003; Zhang and Foo 2006; Eiter and

Wang 2008; Lang and Marquis 2010) and ontology abstraction and comparison

(Kontchakov et al. 2010; Wang et al. 2010; Konev et al. 2012; Konev et al. 2013).

With its early roots in Boolean Algebra (Lewis 1918), it has been extensively studied

within classical logic (Bledsoe and Hines 1980; Weber 1986; Middeldorp et al.

1996; Larrosa 2000; Lang et al. 2003; Larrosa et al. 2005; Moinard 2007) and,

more recently, in the context of Answer Set Programming (ASP) (Leite 2017). The

non-monotonic rule-based nature of ASP creates very unique challenges to the

development of forgetting operators – just as it happened with other belief change

operations such as revision and update (Alferes et al. 2000; Eiter et al. 2002; Sakama

and Inoue 2003; Slota and Leite 2012; Delgrande et al. 2013; Slota and Leite 2014)

– making it a special endeavour with unique characteristics distinct from those for

classical logic. This led to the introduction of several forgetting operators and classes

of operators (Zhang and Foo 2006; Eiter and Wang 2008; Wong 2009; Wang et al.

2012; Wang et al. 2013; Knorr and Alferes 2014; Wang et al. 2014; Delgrande and

Wang 2015; Gonçalves et al. 2016c), often promoting different sets of properties

that such operators of forgetting should satisfy.

From a recent critical survey on forgetting in ASP (Gonçalves et al. 2016b),

it stood out that strong persistence (SP) (Knorr and Alferes 2014) – a property

essentially requiring that all existing relations between the atoms not to be forgotten

be preserved – best captures the essence of forgetting in the context of ASP. However,

as shown by Gonçalves et al. (2016c), sometimes the atoms to be forgotten play

such a pivotal role that they cannot be forgotten without violating (SP). The class

of situations when forgetting, is possible, was characterized through a criterion – Ω

– that can be applied to any logic program P and set of atoms V , holding whenever

V cannot be forgotten from P , and not holding otherwise. For those cases when

forgetting is possible, Gonçalves et al. (2016c) also present a class of forgetting

operators that satisfy (SP), dubbed FSP.

But what if Ω is true and we nevertheless must forget? This may happen for legal

and privacy issues, including, for example, to enforce the new EU General Data

Protection Regulation (European Parliament 2016), which includes the right to be

forgotten – the person’s right to ask a corporation to eliminate private data – or

the implementation of court orders to eliminate certain pieces of illegally acquired

or maintained information. Tools that can help companies and users automate

the operation of forgetting should be able to handle not only situations where

we can achieve the required forgetting without violating strong persistence, but

also situations where such ideal forgetting is not possible. Toward developing a

theoretical ground on which such universally applicable tools can be based, in this

paper, we thoroughly address the question of how to forget when Ω is true, along

three different ways.
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We first take a closer look at the class FSP, which had only been considered for

the case when Ω is false, and investigate how it behaves in general. One crucial

observation is that it overestimates answer sets, i.e., forgetting preserves all existing

answer sets, but new ones may be added, which indicates a violation of property

(sC) (strengthened consequence).

Our second approach borrows from the notion of relativized equivalence (Eiter

et al. 2007), a generalization of strong equivalence that considers equivalence only

w.r.t. a given subset of the language, and is characterized by the so-called V -HT-

models1, which lead us to consider two novel ways to forget: a specific operator that

simply returns all rules that are relativized equivalent to the original program w.r.t.

the atoms not to be forgotten and, alternatively, a class of operators whose result is

characterized by the set of V -HT-models, omitting the atoms to be forgotten. The

former operator turns out to be a member of the latter class. Whereas this class

never overestimates answer sets, i.e., it obeys (sC), it may lose some of the original

answer sets, which indicates a violation of property (wC) (weakened consequence).

The third approach tries to overcome a weakness of the second, i.e., its result

diverges from FSP even when it is possible to forget, and proposes a case-based

definition that can be seen as a mixture of the previous two. Whereas it preserves

all answer sets, i.e., it obeys both (sC) and (wC), it no longer satisfies (SI) (strong

invariance), i.e., forgetting first and then adding some set of rules R (not containing

the atoms to be forgotten) is no longer (strongly) equivalent to adding R first, and

forgetting subsequently.

In this paper, we fully investigate these three alternatives. We characterize them by

showing which subset of the properties previously considered in the literature each

of them obeys, study their computational complexity, and relate them by considering

further additional properties to help clarify their preferable usage. Perhaps, one of

the most interesting features of this set of alternatives stems from a characterisation

of (SP) according to which a forgetting operator obeys (SP) if and only if it obeys

(sC), (wC) and (SI). Hence, each of the three alternatives exactly corresponds to

the relaxation of one of these three properties that characterize (SP).

Additional relevant results include a formal correspondence between V -HT-

models and HT-models allowing us to leverage beneficial properties of HT-models,

such as monotonicity, in the realm of V -HT-models, which do not satisfy them, and

a complexity result for checking whether Ω holds.

The remainder of the paper starts with some background on forgetting in ASP,

then proceeds with one section for each of the three approaches, followed by one

on their complexity, and one with some brief concluding remarks.

2 Forgetting in ASP

In this section, we recall the necessary notions on ASP and forgetting.

1 Programs P1, P2 are relativized equivalent w.r.t. V ⊆ A if and only if they have the same V -HT-models.
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Logic programs. We assume a propositional signature A, a finite set of propositional

atoms2. An (extended) logic program P over A is a finite set of (extended) rules of

the form

a1 ∨ . . . ∨ ak ← b1, . . . , bl , not c1, . . . , not cm, not not d1, . . . , not not dn , (2.1)

where all a1, . . . , ak, b1, . . . , bl , c1, . . . , cm, and d1, . . . , dn are atoms of A3. Such rules r

are also commonly written in a more succinct way as

A← B, not C, not notD , (2.2)

where we have A = {a1, . . . , ak}, B = {b1, . . . , bl}, C = {c1, . . . , cm}, D = {d1, . . . , dn},
and we will use both forms interchangeably. By A(P ), we denote the set of atoms

appearing in P . This class of logic programs, Ce, includes a number of special kinds

of rules r: if n = 0, then we call r disjunctive; if, in addition, k � 1, then r is normal ;

if on top of that m = 0, then we call r Horn, and fact if also l = 0. The classes of

disjunctive, normal and Horn programs, Cd, Cn and CH , are defined resp. as a finite set

of disjunctive, normal and Horn rules. Given a program P and a set I of atoms, the

reduct P I is defined as P I = {A← B : r of the form (2.2) in P ,C ∩ I = ∅,D ⊆ I}.
An HT-interpretation is a pair 〈X,Y 〉 s.t. X ⊆ Y ⊆ A. Given a program P , an

HT-interpretation 〈X,Y 〉 is an HT-model of P if Y |= P and X |= PY , where |=
denotes the standard consequence relation for classical logic. We admit that the

set of HT-models of a program P are restricted to A(P ) even if A(P ) ⊂ A. We

denote by HT (P ) the set of all HT-models of P . A set of atoms Y is an answer set

of P if 〈Y , Y 〉 ∈ HT (P ), but there is no X ⊂ Y such that 〈X,Y 〉 ∈ HT (P ). The

set of all answer sets of P is denoted by AS(P ). We say that two programs P1, P2

are equivalent if AS(P1) = AS(P2) and strongly equivalent, denoted by P1 ≡ P2, if

AS(P1 ∪ R) = AS(P2 ∪ R) for any R ∈ Ce. It is well-known that P1 ≡ P2 exactly

when HT (P1) = HT (P2) (Lifschitz et al. 2001). We say that P ′ is an HT-consequence

of P , denoted by P |=HT P ′, whenever HT (P ) ⊆ HT (P ′). The V -exclusion of a set

of answer sets (a set of HT-interpretations) M, denoted M‖V , is {X\V | X ∈M}
({〈X\V , Y \V 〉 | 〈X,Y 〉 ∈M}). Finally, given two sets of atoms X,X ′ ⊆ A, we write

X ∼V X ′ whenever X\V = X ′\V .

We recall the notion of A-SE-models (Eiter et al. 2007), but here adapted to

V -HT-models that focus on V ⊆ A, instead of on A = A\V . An HT-interpretation

〈X,Y 〉 is called a V -HT-interpretation if either X = Y or X ⊂ Y \V . A V -HT-

interpretation 〈X,Y 〉 is a (relativized) V -HT-model of P if (a) Y |= P ; (b) for all

Y ′ ⊂ Y with Y ∼V Y ′, Y ′ �|= PY ; and (c) if X ⊂ Y , then there exists X ′ ⊆ Y such

that X = X ′\V and X ′ |= PY . We denote by HT V (P ) the set of all V -HT-models of

P . Programs P1, P2 are relativized equivalent w.r.t. V ⊆ A, denoted by P1 ≡V P2, if

AS(P1 ∪ R) = AS(P2 ∪ R) for any R ∈ Ce s.t. A(R) ⊆ A\V . We have that P1 ≡V P2

exactly when HT V (P1) = HT V (P2) (Eiter et al. 2007).

2 Often, the term propositional variable is used synonymously.
3 Extended logic programs (Lifschitz et al. 1999) are actually more expressive, but this form is sufficient

here.
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Forgetting. Given a class of logic programs C over A, a forgetting operator (over C)

is a partial function f : C × 2A → C s.t. f(P , V ) is a program over A(P )\V , for each

P ∈ C and V ⊆ A. We call f(P , V ) the result of forgetting about V from P . Unless

stated otherwise, in what follows, we will be focusing on C = Ce, and we leave C
implicit. Furthermore, f is called closed for C ′ ⊆ C if, for every P ∈ C ′ and V ⊆ A,

we have f(P , V ) ∈ C ′. A class F of forgetting operators (over C) is a set of forgetting

operators (over C ′) s.t. C ′ ⊆ C. Such classes are usually described by a common

definition/condition that each operator in the class has to satisfy (see the paper by

Gonçalves et al. (2016b) for an overview on the many different kinds and forms of

defining such classes).

At the same time, previous work on forgetting in ASP has introduced a variety of

desirable properties accompanying these classes of operators. In the following, we

recall these properties and leave the details, e.g., on which class of forgetting operators

satisfies which properties to the papers by Gonçalves et al. (2016a; 2016b)4. Unless

stated otherwise, F is a class of forgetting operators, and C the class of programs

over A of a given f ∈ F.

(sC) F satisfies strengthened Consequence if, for each f ∈ F, P ∈ C and V ⊆ A, we

have AS(f(P , V )) ⊆ AS(P )‖V .

(wE) F satisfies weak Equivalence if, for each f ∈ F, P , P ′ ∈ C and V ⊆ A, we have

AS(f(P , V )) = AS(f(P ′, V )) whenever AS(P ) = AS(P ′).

(SE) F satisfies Strong Equivalence if, for each f ∈ F, P , P ′ ∈ C and V ⊆ A: if

P ≡ P ′, then f(P , V ) ≡ f(P ′, V ).

(W) F satisfies Weakening if, for each f ∈ F, P ∈ C and V ⊆ A, we have P |=HT

f(P , V ).

(PP) F satisfies Positive Persistence if, for each f ∈ F, P ∈ C and V ⊆ A: if P |=HT P ′,

with P ′ ∈ C and A(P ′) ⊆ A\V , then f(P , V ) |=HT P ′.

(SI) F satisfies Strong (addition) Invariance if, for each f ∈ F, P ∈ C and V ⊆ A,

we have f(P , V ) ∪ R ≡ f(P ∪ R, V ) for all programs R ∈ C with A(R) ⊆ A\V .

(EC) F satisfies Existence for C, i.e., F is closed for a class of programs C if there

exists f ∈ F s.t. f is closed for C.

(CP) F satisfies Consequence Persistence if, for each f ∈ F, P ∈ C and V ⊆ A, we

have AS(P )‖V = AS(f(P , V )).

(wC) F satisfies weakened Consequence if, for each f ∈ F, P ∈ C and V ⊆ A, we

have AS(P )‖V ⊆ AS(f(P , V )).

(SP) F satisfies Strong Persistence if, for each f ∈ F, P ∈ C and V ⊆ A, we have

AS(f(P , V ) ∪ R) = AS(P ∪ R)‖V , for all programs R ∈ C with A(R) ⊆ A\V .

We refer to the recent critical survey by Gonçalves et al. (2016b) for a discussion

about existing relations between these properties, but we want to point out that the

importance of (SP) is witnessed by the fact that if some class F satisfies (SP), then

it also satisfies basically all other mentioned properties (but (W) and (EC), which is

orthogonal).

4 We omit (NP) from the list, as it has been shown there to coincide with (W).
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Example 1

Consider the following program P .

a← not b b← not c e← d d← a

First, if we want to forget about an atom, then we expect that all rules that do

not mention this atom should persist, while rules that do mention the atoms should

no longer occur. For example, when forgetting about d from P , the first two rules

should be contained in the result of the forgetting, while the latter two should not.

At the same time, implicit dependencies should be preserved, such as, e depending

on a via d. Hence, we expect f(P , {d}) as follows:

a← not b b← not c e← a

In fact, many existing notions of forgetting in the literature (cf. the paper by

Gonçalves et al. (2016b)) provide precisely this result.

Now, consider forgetting about b from P . Note that P contains an implicit

dependency between a and c, namely, whenever c becomes true, then so does a, i.e.,

if we add, e.g., c ← to the program, then a is necessarily true. Different notions

of (classes of) forgetting operators f existing in the literature (see the paper by

Gonçalves et al. (2016b)) would return the result of forgetting f(P , {b}) = ∅, but if

we want to preserve property (SP), then f(P , {b}) must contain the rule a← not not c.

In fact, a valid result for f(P , {b}) such that f satisfies (SP) is

a← not not c e← d d← a

Finally, if the atom to be forgotten does not appear at the same time in some rule

body and some rule head, usually no dependencies need to be preserved. Consider

forgetting about c from P , then, since c only appears in the body of a rule, the result

f(P , {c}) is

a← not b b← e← d d← a

3 On the limits of forgetting

As argued by Gonçalves et al. (2016c), (SP) is the central property one wants to

ensure to hold when forgetting atoms from an logic program, essentially because

its definition intuitively requires that all (direct and indirect) dependencies between

the atoms not to be forgotten be preserved. This is witnessed by the fact that any

class of forgetting operators that satisfies (SP) also satisfies all other properties

introduced in the literature, with the exception of (W), which has been shown to be

incompatible with (SP) (Gonçalves et al. 2016b). However, it is also shown that it

is not always possible to forget a set of atoms from a given program, that is, there

is no forgetting operator that satisfies (SP) and that is defined for all pairs 〈P , V 〉,
called forgetting instances, where P is a program and V is a set of atoms to be

forgotten from P . The precise characterization of when it is not possible to forget

while satisfying (SP) is given by means of criterion Ω.
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Definition 1 (Criterion Ω)

Let P be a program over A and V ⊆ A. An instance 〈P , V 〉 satisfies criterion Ω if

there exists Y ⊆ A\V such that the set of sets

RY
〈P ,V 〉 = {RY ,A

〈P ,V 〉 | A ∈ RelY〈P ,V 〉}

is non-empty and has no least element, where

R
Y ,A
〈P ,V 〉 = {X\V | 〈X,Y ∪ A〉 ∈ HT (P )}

RelY〈P ,V 〉 = {A ⊆ V | 〈Y ∪ A, Y ∪ A〉 ∈ HT (P ) and

�A′ ⊂ A s.t. 〈Y ∪ A′, Y ∪ A〉 ∈ HT (P )}.

The rationale is that each set RY
〈P ,V 〉 is based on Y ⊆ A\V , which is a potential

answer set of the result of forgetting. Taking property (SP) into account, an answer

set Y of f(P , V )∪R must be obtained from an answer set Y ∪A of P ∪R, for some

A ⊆ V . So, the HT-models of the form 〈X,Y ∪ A〉 in HT (P ) must be taken into

account. This is captured by the set RY ,A
〈P ,V 〉. Nevertheless, there are some A ⊆ V such

that Y ∪ A is never an answer set of P ∪ R, for any R over A\V . This is captured

by the condition of the set RelY〈P ,V 〉.

This criterion was shown to be sound and complete, i.e., it is not possible to forget

about a set of atoms V from a program P exactly when 〈P , V 〉 satisfies criterion Ω.

A corresponding class of forgetting operators, FSP, was introduced.

Definition 2 (SP-Forgetting)

Let FSP be the class of forgetting operators defined by the following set5:

{f | HT (f(P , V ))={〈X,Y 〉 | Y ⊆ A\V ∧X∈
⋂

RY
〈P ,V 〉}}

It was shown that every operator in FSP satisfies (SP) for instances that do not

satisfy Ω. In fact, restricted to those instances, FSP satisfies every property except

(W), which makes this class of operators an ideal choice whenever forgetting is

possible.

However, the question as to whether this class is also of any use in case Ω is

satisfied has not been tackled. Given our focus on this problem, we first consider FSP

itself as a possible solution and characterize which of the well-known properties of

forgetting are satisfied by FSP in general, i.e., independently of whether Ω is satisfied

or not.

Proposition 1

FSP satisfies (wC), (SE), (PP)and (SI), but does not satisfy (wE), (W), (sC), (CP).

Regarding existence, it has already been shown by Gonçalves et al. (2016c) that FSP

is closed for extended programs and Horn programs, but neither for disjunctive nor

normal programs.

5 The definition is slightly generalized from the paper by Gonçalves et al. (2016c) as Y is no longer
restricted to be Y ⊆ A(P )\V . Whenever A = A(P ), then the two versions naturally coincide.
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From the previous proposition, we observe that (W) is no longer the only property

that does not hold. Notably, the fact that FSP does not satisfy (CP), and in particular

(sC), means that there are instances 〈P , V 〉 for which the result of forgetting about

V from P has answer sets that do not correspond to answer sets in the original

program P , which is also why (wE) does not hold.

Example 2

Consider the following program P .

a← p b← not p p← not not p

Clearly, P has six HT-models, 〈ap, ap〉, 〈b, b〉, 〈b, ab〉, 〈ab, ab〉, 〈ap, abp〉, 〈abp, abp〉6,
and two answer sets {a, p} and {b}. Intuitively, p yields an exclusive choice between

a and b. If we take V = {p}, then, R∅〈P ,V 〉 = ∅, R{a}〈P ,V 〉 = {{a}}, R{b}〈P ,V 〉 = {{b}}, and

R{a,b}〈P ,V 〉 = {{b, ab}, {a, ab}}. From this, we have that
⋂
R∅〈P ,V 〉 = ∅,

⋂
R{a}〈P ,V 〉 = {a},

⋂
R{b}〈P ,V 〉 = {b} and

⋂
R{a,b}〈P ,V 〉 = {ab}. This means that for any f ∈ FSP, f(P , V ) has

three HT-models, 〈a, a〉, 〈b, b〉, 〈ab, ab〉, which means that f(P , V ) has three answer

sets, the two from P ignoring p, {a} and {b}, and additionally {a, b}. Intuitively, this

happens because using the intersection essentially discards both 〈b, ab〉 and 〈ap, abp〉
(modulo the forgotten p).

This is in fact rather atypical as so far no class of forgetting operators that satisfies

(wC), but not (sC), and thus not (CP), was known. Since the violation of (sC) may

be seen as sufficient cause to render FSP inadequate when Ω is satisfied – notably,

when the introduction of new answer sets as the result of forgetting cannot be

accepted – alternatives need to be investigated.

4 Relativized forgetting

In this section, we explore alternative ways to forgetting in ASP, borrowing from

the notion of relativized equivalence (Eiter et al. 2007). Relativized equivalence is a

generalization of strong equivalence that considers equivalence w.r.t. a given subset

of the language, such that equivalence and strong equivalence are its special cases

(for the empty and the entire language, respectively). This fits naturally within the

idea of forgetting in ASP, in particular w.r.t. property (SP), inasmuch as after

forgetting about V from P we only allow the addition of programs over A\V , so

relativized (strong) equivalence should be applied accordingly.

Based on this idea, we first define a forgetting operator that simply considers all

logical consequences w.r.t. relativized equivalence. This way, the result of forgetting

about V from P amounts to the set of all rules (over A\V ) that can be added

to P while preserving relativized equivalence. Given a program P and V ⊆ A, we

consider the closure of P given V :

Cn(P , V ) = {r | {r} ∈ Ce and P ∪ {r} ≡V P }.

6 We follow a common convention and abbreviate sets in HT-interpretations such as {a, b} with the
sequence of its elements, ab.
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Then, the result of forgetting about V from P is defined as

fr(P , V ) = {r | r ∈ Cn(P , V ) and A({r}) ∩ V = ∅}.

The resulting program does not mention the forgotten atoms and we can show that

this operator does not belong to FSP.

Example 3

Recall program P from Example 2. It can be verified that fr(P , {p}) is strongly

equivalent to the program:

a← not b ⊥ ← not a, not b

b← not a a ∨ b←

Notably, this program does not have the answer set {a, b}, which indicates that this

operator does not belong to FSP.

We can show that fr is well-defined, in the sense that testing relativized equivalence

for each rule individually is the same as testing the entire set of rules as a whole.

Proposition 2

Let P be a program, V ⊆ A and R1, R2 programs over A\V . Then, P ∪R1∪R2 ≡V P

iff P ∪ R1 ≡V P and P ∪ R2 ≡V P .

As a consequence of the above result, fr(P , V ) is in fact the largest set of rules over

A\V that can be safely added to P without changing its set of V -HT-models.

Proposition 3

Let P be a program and V ⊆ A. Then, fr(P , V ) is the largest set of rules R over the

alphabet A\V such that P ∪ R ≡V P .

We could now define a (possibly singleton) class of operators that generalizes the

idea of fr in a straightforward manner, and then study this class, but its definition

would not be very concise, as we would always have to check for each rule whether

it is relativized equivalent to the original program.

Instead, inspired by knowledge forgetting (Wang et al. 2014), we follow a different

idea, defining a class of forgetting operators that consider the V -HT-models of P

and omit all occurrences of elements of V from these. Formally,

FR = {f | HT (f(P , V )) = HT V (P )‖V }

Example 4

Recall Example 3. It can be verified that the result of forgetting for any f ∈ FR

coincides with that for fr.

It turns out that this correspondence is no mere coincidence. In fact, we show in

the following that fr ∈ FR, and in the course of that, we establish a precise relation

between the HT-models and the V -HT-models of a program. This is an important

contribution, since it allows the usage of well-known properties of HT-models, such

as monotonicity, that are not satisfied by V -HT-models (see the paper by Eiter

et al. (2007)).
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First, we introduce an alternative characterization of the V -HT-models of a

program P based on its HT-models using the following notion.

Definition 3

Let P be a program and Y , V ⊆ A. Then, Y is relevant for P w.r.t. V if

(i) 〈Y , Y 〉 ∈ HT (P );

(ii) 〈Y ′, Y 〉 /∈ HT (P ) for every Y ′ ⊂ Y s.t. Y ∼V Y ′.

Rel(P , V ) denotes the set of all sets relevant for P w.r.t. V .

This notion is tightly connected with the sets in the definition of criterion Ω, i.e.,

we can show that Y ∪ A ∈ Rel(P , V ) iff A ∈ RelY〈P ,V 〉. This allows the alternative

definition of a V -HT-model in terms of HT-models.

Proposition 4

Let P be a program and V ⊆ A. Then, a V -HT-interpretation 〈X,Y 〉 is a V -HT-

model of P iff the following conditions hold:

(1) Y ∈ Rel(P , V ).

(2) If X ⊂ Y , then there exists X ′ ⊂ Y with X = X ′\V such that 〈X ′, Y 〉 ∈ HT (P ).

We can now present an alternative characterization of the set of V -HT-models of

a program in terms of its set of HT-models. This result is particularly useful since

it shows how the set of V -HT-models of a program can be directly obtained from

its set of HT-models.

Proposition 5

Let P be a program and V ⊆ A. Then,

HT V (P ) =
⋃

Y ∈Rel(P ,V )

({〈X\V , Y 〉 : 〈X,Y 〉 ∈ HT (P ) and X ⊂ Y } ∪ {〈Y , Y 〉}).

Based on that, we can show that fr is indeed a concrete forgetting operator in the

class FR.

Theorem 1

Let P be a program and V ⊆ A. Then,

HT (fr(P , V ))‖V = HT V (P )‖V .

Interestingly, we are also able to provide an alternative characterization of FR that

clarifies the relation to FSP.

Theorem 2

Let P be a program and V ⊆ A. Then, FR can be given by the set

{f | HT (f(P , V ))={〈X,Y 〉 | Y ⊆ A\V ∧X∈
⋃

RY
〈P ,V 〉}}.

Thus, this notion of forgetting based on relativized equivalence differs from FSP by

considering the union of the relevant HT-models instead of the intersection, which

explains the differences observed in Examples 2 and 3.

Of course, whenever RY
〈P ,V 〉 contains only one element, union and intersection

coincide, which is always the case for Horn programs.
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Proposition 6

Let P ∈ CH and V ⊆ A. Then, for every Y ⊆ A\V , we have that RY
〈P ,V 〉 has at most

one element.

Thus, when restricted to CH , FR coincides with FSP.

Proposition 7

Let P ∈ CH and V ⊆ A. Then, for every f ∈ FSP and f ′ ∈ FR, we have that

f(P , V ) ≡ f ′(P , V ).

Since this correspondence does not hold in general, we also establish which

properties are satisfied by FR.

Proposition 8

FR satisfies (sC), (SE), (PP), (SI), (ECH
), (ECe

), but not (wE), (W), (wC), (CP),

(ECn
), (ECd

).

In terms of the considered set of properties, FR and FSP only differ with respect

to (sC) and (wC). This difference, however, is crucial. Since FR satisfies (sC), it

approximates the set of answer sets of P , but, contrary to FSP, never ends up adding

new answer sets to the result of forgetting. However, it is not all roses, as will

become clear next.

5 Merging FSP and FR

We have shown that FR, which is based on relativized forgetting, is a better alternative

than FSP if our objective is to approximate the set of answer sets modulo the forgotten

atoms, but not introduce new answer sets. However, FR has a drawback: there are

cases where it is possible to forget while satisfying (SP), but the result for any f ∈ FR

does not coincide with the desired result (obtainable with operators from FSP).

Example 5

Consider the following program P and that we want to forget about p from P .

a← p p← not not p

It is easy to check that 〈P , V 〉 does not satisfy Ω, i.e., it is possible to forget about V

from P while satisfying (SP). The result returned by any operator in FSP is strongly

equivalent to {a← not not a}. However, f(P , V ) for any f ∈ FR is strongly equivalent

to the empty program.

The difference between FSP and FR, as shown in Theorem 2, lies in the usage of

intersection and union in their respective definitions. The key point is that whenever

RY
〈P ,V 〉 has more than one element, even if there is a least one, union and intersection

will not coincide. Taking this idea into account, we define a class of operators that

aims at combining the delineated positive aspects of both FSP and FR.

FM = {f | HT (f(P , V ))={〈X,Y 〉 | Y ⊆ A\V and

X∈
⋃

RY
〈P ,V 〉, if RY

〈P ,V 〉 has no least element, or

X∈
⋂

RY
〈P ,V 〉, otherwise}}.
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Whenever RY
〈P ,V 〉 has a least element, then FM employs the intersection, whose result

is precisely the least element, similar to FSP and does therefore coincide with the

desired ideal solution in this case, and whenever there is no least element it uses the

union instead, just like FR.

Example 6

Consider the program of Example 2. The result of forgetting about p from that

program, for any f ∈ FM, is strongly equivalent with that given in Example 3 for

any f ′ ∈ FR. On the other hand, for the program given in Example 5, the result

of forgetting about p from that program, for any f ∈ FM, is strongly equivalent to

{a← not not a}, and the same also holds for any operator in FSP.

Still, if we consider only Horn programs, then this definition of FM coincides with

both its constituents.

Proposition 9

Let P ∈ CH and V ⊆ A. Then, for every f ∈ (FSP ∪ FR) and f ′ ∈ FM, we have that

f(P , V ) ≡ f ′(P , V ).

Moreover, unlike FR, we are able to show that, whenever it is possible to forget,

FM coincides with FSP.

Proposition 10

Let P be a program and V ⊆ A, such that 〈P , V 〉 does not satisfy Ω. Then, for every

f ∈ FSP and f ′ ∈ FM, we have that f(P , V ) ≡ f ′(P , V ).

The particular definition of FM ensures that yet again a different set of properties

is satisfied by it.

Proposition 11

FM satisfies (sC), (wE), (SE), (wC), (CP), (PP), (ECH
), (ECe

), but not (W), (SI),

(ECn
), (ECd

).

Contrary to FSP and FR, the class FM satisfies both (wC) and (sC), and consequently

(CP). Therefore, the result of forgetting according to FM preserves the answer sets

of P , but, unlike the other two, no longer satisfies (SI).

In fact, the answer sets are no longer preserved if a (non-empty) program over A\V
is added to P . To capture this in a more precise way, we introduce generalizations

of (wC) and (sC), which correspond to the two inclusions of (SP).

(sSP) F satisfies strengthened Strong Persistence if, for each f ∈ F, P ∈ C and V ⊆ A,

we have AS(f(P , V ) ∪ R) ⊆ AS(P ∪ R)‖V , for all R ∈ C with A(R) ⊆ A\V .

(wSP) F satisfies weakened Strong Persistence if, for each f ∈ F, P ∈ C and V ⊆ A,

we have AS(P ∪ R)‖V ⊆ AS(f(P , V ) ∪ R), for all R ∈ C with A(R) ⊆ A\V .

Property (wSP) guarantees that all answer sets of P are preserved when forgetting,

no matter which rules R over A\V are added to P , but, for some such R, does not

prevent that the result of forgetting has more answer sets than P . Vice versa, (sSP)

does not guarantee the preservation of all answer sets of P for some added R over
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A\V , but it ensures that all answer sets of the result of forgetting indeed correspond

to answer sets of P , independently of the added rules R.

We can show that each of the three considered classes of forgetting operators

only satisfies one of the two properties.

Theorem 3

FSP satisfies (wSP), whereas FR and FM satisfy (sSP).

Since there is no class of forgetting operators that satisfies (SP) (Gonçalves et al.

2016c), it is clear that FSP does not satisfy (sSP), and that FR and FM do not satisfy

(wSP). Thus, even though FR satisfies (wC), i.e., (wSP) for an empty R, it does not

for arbitrary R’s. Still, although both FR and FM satisfy (sSP), the following result

shows that FM provides a better approximation in terms of property (SP).

Proposition 12

Let P be a program, V ⊆ A, f ∈ FR, and f ′ ∈ FM. Then, for every R ∈ C with

A(R) ⊆ A\V ,

AS(f(P , V ) ∪ R) ⊆ AS(f ′(P , V ) ∪ R).

Clearly, F satisfies (SP) iff it satisfies (wSP) and (sSP). Since no F can in general

satisfy (SP), we basically obtain two kinds of relaxations on the conditions of

(SP). But we can do even better: Following results by Gonçalves et al. (2016b),

we know that F satisfies (SP) iff it satisfies (wC), (sC)and (SI). From the results

in Proposition 1, 8 and 11, we obtain that each of the three discussed classes

corresponds to a unique relaxation of the conditions of (SP), implying that our

study gives a complete account on which forgetting operators to use when (SP)

cannot be satisfied, but only approximated.

Arguably, FM is also more flexible in situations where we have to forget several

atoms for which FSP and FR do not provide the optimal overall choice.

Example 7

Consider the following program P from which we want to forget about c and p.

d← c c← not not c a← p b← not p p← not not p

Clearly, FSP allows us to correctly capture the result of forgetting about c, in the

sense that d ← not not d is part of the result of forgetting, but, at the same time,

will introduce new answer sets in which both a and b are true. On the other hand,

FR will avoid the latter problem, but will simply cancel all rules mentioning d and

c. Here, FM certainly provides the best alternative as it avoids both problems and

provides the desired result.

In practice, the choice between the three classes greatly depends on the application

at hand. To help making this decision, we now identify, for each of the three classes,

a set of conditions in favor of its choice over the other two.

The class FSP should be chosen whenever

– (SP) should hold for those instances that do not satisfy Ω;

– rules that do not mention atoms to be forgotten should be preserved;
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– all answer sets should be preserved;

– we do not mind the appearance of new answer sets.

The class FR should be chosen whenever

– rules that do not mention atoms to be forgotten should be preserved;

– no new answer sets should appear;

– we do not mind that some answer sets may disappear;

– we do not mind that (SP) does not hold even if Ω does not hold.

The class FM should be chosen whenever

– (SP) should hold for those instances that do not satisfy Ω;

– answer sets should be preserved precisely (modulo the forgotten atoms);

– we do not mind to change rules that do not mention atoms to be forgotten.

These conditions directly stem from the properties each of the classes of forgetting

operators satisfies, and can be seen as a guideline for a more informed choice between

the three alternatives.

6 Complexity

We assume familiarity with standard complexity concepts, such as NP. Given a

complexity class C, a C oracle decides a given sub-problem from C in one computation

step. The class ΣP
k contains the problems that can be decided in polynomial time by

a non-deterministic Turing machine with unrestricted access to a ΣP
k−1 oracle. ΠP

k

is the complementary class of ΣP
k . Thus, ΣP

1 = NP and ΠP
1 = coNP. We also recall

that a language is in complexity class DP
i iff it is the intersection of a language in

ΣP
i and a language in ΠP

i . Instead of DP
1 , we use the more common name DP . In

addition, the following result will be useful due to the established correspondence

between HT-and V -HT-models in Proposition 5.

Proposition 13 (Eiter et al. (2007),Theorem 6.12.)

Given a program P , an HT-interpretation 〈X,Y 〉 and V ⊆ A, deciding whether

〈X,Y 〉 ∈ HT V (P ) is DP -complete.

Our first result is in the spirit of model checking.

Lemma 6.1

Given program P , V ⊆ A and HT-interpretation 〈X,Y 〉. Deciding whether 〈X,Y 〉 ∈
HT V (P )‖V is ΣP

2 -complete. Hardness holds already for disjunctive programs.

Membership follows from guessing an interpretation Y ′ ∼V Y and checking

(X,Y ′) ∈ HT V (P ) (cf. Proposition 13), while the hardness result can be adapted

from the ΣP
2 -hardness of ASP consistency, cf. the paper by Eiter and Gottlob (1995).

By means of this, we can determine the complexity of deciding whether a given

program is strongly equivalent to the result of forgetting obtained by any f ∈ FR.
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Theorem 4

Given programs P , Q and V ⊆ A, deciding whether P ≡ f(Q,V ) (for f ∈ FR) is

ΠP
3 -complete. Hardness holds already for disjunctive programs.

Essentially, for the complementary problem, we guess an HT-interpretation 〈X,Y 〉
and check that either (X,Y ) ∈ HT (P ) or (X,Y ) ∈ HT V (P )‖V , but not both. The

hardness result is then obtained by a reduction from (3, ∀)-QSAT.

The next result provides the complexity of determining whether some X occurs

in the intersection of RY
〈P ,V 〉 used in the definition of FSP, FM and Ω.

Lemma 6.2

Given program P , V ⊆ A and HT-interpretation 〈X,Y 〉 with Y ⊆ A \ V , deciding

whether X ∈
⋂
RY
〈P ,V 〉 is in DP

2 .

Basically, we have to perform a ΣP
2 - and a ΠP

2 -test. The former decides whether

RY
〈P ,V 〉 �= ∅, while the latter determines that for all A ⊆ V , either 〈Y ∪ A, Y ∪ A〉 /∈

HT V (P ) or 〈X,Y ∪ A〉 ∈ HT V (P ).

This Lemma allows us to obtain an identical result to Theorem 4 for FSP.

Theorem 5

Given programs P , Q and V ⊆ A, deciding whether P ≡ f(Q,V ) (for f ∈ FSP) is

ΠP
3 -complete. Hardness holds already for disjunctive programs.

The basic proof idea is very similar to the one sketched for Theorem 4, but

substituting the test (X,Y ) ∈ HT V (P )‖V with (X,Y ) ∈ HT (f(P , V )) for f ∈ FSP.

Since the definition of FM is based on cases, deciding whether its condition holds,

is computationally more expensive than the previous two (in Lemmas 6.1 and 6.2).

Lemma 6.3

Given program P , V ⊆ A and HT-interpretation 〈X,Y 〉 with Y ⊆ A \ V , deciding

whether X∈
⋃
RY
〈P ,V 〉 if RY

〈P ,V 〉 has no least element, and X∈
⋂
RY
〈P ,V 〉 otherwise, is

in ΣP
3 and in ΠP

3 .

Fortunately though, since this test is both in ΣP
3 and in ΠP

3 , in the next result, we

can basically solve the complementary problem of guessing an HT-interpretation

〈X,Y 〉 and check that either (X,Y ) ∈ HT (P ) or (X,Y ) ∈ HT (f(P , V )) for f ∈ FM,

but not both, in one step.

Theorem 6

Given programs P , Q and V ⊆ A, deciding whether P ≡ f(Q,V ) (for f ∈ FM) is

ΠP
3 -complete. Hardness holds already for disjunctive programs.

Thus, determining whether P ≡ f(Q,V ) for f of any of the three considered classes of

forgetting operators is always ΠP
3 -complete. This shows that the choice which of the

three classes of forgetting operators to use in a concrete situation is not influenced

by their computational complexity.

Finally, we provide the complexity result for criterion Ω, which on the one hand

improves on a flaw for the membership result by Gonçalves et al. (2016c), but also

includes the hardness result here.
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Theorem 7

Let P be a program over A and V ⊆ A. Deciding whether 〈P , V 〉 satisfies criterion

Ω is ΣP
3 -complete. Hardness holds already for disjunctive programs.

7 Concluding remarks

We addressed the problem of forgetting in ASP when we must forget, even if

satisfying the fundamental desirable property (SP) is not possible.

We thoroughly investigated three alternatives which, despite stemming from

different starting points – one reusing a known class of forgetting operators, one

exploring the concept of relativized equivalence, and one trying to get the best of

the previous two – turn out to each correspond to the relaxation of one of three

properties – (wC), (sC) and (SI) – that together characterize (SP). We characterized

the three classes by showing which of the usually considered properties each obeys,

established links between them, and investigated their computational complexity.

The computational complexity turns out to be high, which is not surprising given,

for example, the fact that, in classical logic, forgetting can only be expressed as

a second-order axiom. Nevertheless, on the one hand, forgetting is an operation

not expected to be done as regularly as for example model computation or query

answering, while, on the other hand, at least for those classes that satisfy (SI), FSP

and FR, we can perform forgetting in a modular way focusing only on the relevant

part of the program. Whether this can be extended also to FM remains an interesting

open problem for future research.

We also established relevant novel results concerning a correspondence between

V -HT-models and HT-models and a full complexity result for checking whether

the criterion (Ω) that indicates whether it is possible to forget while satisfying (SP)

holds.

It is also noteworthy that there are no other operators or classes of operators

mentioned in the literature that satisfy the same set of properties satisfied by any

of the three classes discussed here (cf. the paper by Gonçalves et al. (2016b)). The

closest approximation is the operator FSM (Wang et al. 2013) which obeys the same

set of properties previously found in the literature as FM, yet, unlike FM, it does not

satisfy either of the inclusions of (SP), notably (sSP).

Avenues for future research include investigating different forms of forgetting

which may be required in practice, such as those that preserve some aggregated meta-

level information about the forgotten atoms, or even going beyond maintaining all

relationships between non-forgotten atoms which may be required by certain legisla-

tion. This may also be of interest for semantics different from ASP, such as for forget-

ting under the well-founded semantics (Alferes et al. 2013; Knorr and Alferes 2014).
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