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A Radó theorem for complex spaces
Viorel Vîjîitu

Abstract. We generalize Radó’s extension theorem from the complex plane to reduced complex
spaces.

1 Introduction

A theorem due to Radó asserts that a continuous complex-valued function on an open
subset of the complex plane is holomorphic provided that it is holomorphic off its zero
set.

Essentially, this theorem was proved in [10]. Since then, many other proofs have
been proposed, e.g., [2, 3, 6, 7]. The articles [1, 11, 14] give some generalizations.

Radó’s statement remains true for complex manifolds (or, more generally, for
normal complex spaces) as well as in the complex plane.

In this short note, we investigate a natural extension of Radó’s theorem when the
ambient space has (nonnormal) singularities.

Complex spaces, unless explicitly stated, are assumed to be reduced and countable
at infinity. Let N = {1, 2, . . .} be the set of natural numbers.

Here, we state our main results.

Proposition 1 There is an irreducible Stein curve X and a continuous function f ∶
X �→ C that is holomorphic off its zero set, but no power f ν , ν ∈ N, is globally
holomorphic.

Theorem 1 Let X be a complex space and Ω ⊂ X be a relatively compact open set. Then,
there is νΩ ∈ N such that, for every continuous function f ∶ X �→ C that is holomorphic
off its zero set, and for every integer ν ≥ νΩ , the power function f ν is holomorphic on Ω.

Recall the following definition [15]. Let X be a complex space. A continuous,
complex-valued function f defined on an open set U ⊂ X is c-holomorphic if its
restriction of to Reg(X) ∩U is holomorphic, where Reg(X) is the open set of those
points of X where it is locally a manifold. The sheaf of germs of c-holomorphic
functions in X is denoted by Oc

X ; it is a coherent OX-module.
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Henceforth, the following remark will be used tacitly. For a complex space X,
any continuous function f ∶ X �→ C that is holomorphic off its zero set f −1(0) is
c-holomorphic. (This results by the classical Radó theorem on complex manifolds.)

2 Proof of Proposition 1

The example of a Stein curve X is obtained by implanting generalized cusp singulari-
ties at the points 2, 3, . . ., of C, and then the existence of the function f is obtained via
Cartan’s vanishing theorem on Stein spaces.

In order to proceed, let p and q be coprime integers ≥2. Consider the cusp-like
irreducible and locally irreducible complex curve:

� = {(z1 , z2) ∈ C2 ∶ zp
1 = zq

2} ⊂ C2 .

Its normalization is C and π ∶ C�→ �, t ↦ (tq , t p), is the normalization map. Note
that π is a homeomorphism.

A continuous function h ∶ ��→ C that is holomorphic off its zero set, but fails to
be globally holomorphic, is produced as follows.

Select natural numbers m and n with mq − np = 1, and define h ∶ ��→ C by
setting for (z1 , z2) ∈ �,

h(z1 , z2) ∶= {
zm

1 /zn
2 if z2 ≠ 0,

0 if z2 = 0.

It is easily seen that h is continuous (as π is a homeomorphism, the continuity
of h follows from that of h ○ π, which is equal to the identity mapping on C), h
is holomorphic off its zero set (incidentally, here, the regular part Reg(�) is the
complement of this zero set), and h is not holomorphic about (0, 0) (use a Taylor
series expansion about (0, 0) ∈ C2 of a presumably holomorphic extension).

Furthermore, hk is globally holomorphic provided that k ≥ (p − 1)(q − 1).
(Because every integer at least (p − 1)(q − 1) can be written in the form αp + βq with
α, β ∈ {0, 1, 2, . . .}, and because hp and hq are holomorphic being the restrictions of
z2 and z1 to �, respectively.)

In addition, za
1 zb

2 h is holomorphic on � provided that q⌊(m + a)/p⌋ + b ≥ n,
where ⌊⋅⌋ is the floor function.

It is interesting to note that the stalk of germs of c-holomorphic functionsOc
0 at 0 is

generated as an O0-module by the germs at 0 of 1, h, . . . , hr , where r = min{p, q} − 1.
Now, for each integer k ≥ 2, let �k ∶= {(z1 , z2) ∈ C2 ; zk

1 = zk+1
2 }. As previously

noted, �k is an irreducible curve whose normalization map is πk ∶ C�→ �k , t ↦
(tk+1 , tk), and the function hk ∶ �k �→ C defined for (z1 , z2) ∈ �k by:

hk(z1 , z2) ∶= {
z1/z2 if z2 ≠ 0,
0 if z2 = 0,

has the following properties:
ak) The function hk is c-holomorphic.
bk) The power hk−1

k is not holomorphic.
ck) The function zk−1

1 hk is holomorphic, because it is the restriction of zk
2 to �k .
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Here, with these examples of singularities at hand, we change the standard complex
structure of C at the discrete analytic set {2, 3, . . .} by complex surgery, in order
to obtain an irreducible Stein complex curve X and a discrete subset Λ = {xk ∶ k =
2, 3, . . .} such that, at the level of germs, (X , xk) is biholomorphic to (�k , 0).

The surgery, that we recall for the commodity of the reader (because, in some
monographs like [8], the subsequent condition (⋆) is missing), goes as follows.

Let Y and U ′ be complex spaces together with analytic subsets A and A′ of Y and
U ′, respectively, such that there is an open neighborhood U of A in Y and φ ∶ U ∖
A�→ U ′ ∖ A′ that is biholomorphic.

Then, define:

X ∶= (Y ∖ A) ⊔φ U ′ ∶= (Y ∖ A) ⊔U ′/∼

by means of the equivalence relation U ∖ A ∋ y ∼ φ(y) ∈ U ′ ∖ A′.
Then, there exists exactly one complex structure on X such that U ′ and Y ∖ A

can be viewed as open subsets of X in a canonical way provided that the following
condition is satisfied:
(⋆) For every y ∈ ∂U and a′ ∈ A′, there are open neighborhoods D of y in Y, D ∩ A =

∅, and B of a′ in U ′ such that φ(D ∩U) ∩ B ⊆ A′ .
Thus, X is formed from Y by “replacing” A with A′.

In practice, the condition (⋆) is fulfilled if φ−1 ∶ U ′ ∖ A′ �→ U ∖ A extends to a
continuous function ψ ∶ U ′ �→ U such that ψ(A′) = A. In this case, if D and V are
disjoint open neighborhoods of ∂U and A in Y, respectively, then B = A′ ∪ φ(V ∖ A)
is open in U ′, because it equals ψ−1(V) and (⋆) follows immediately. (This process
is employed, for instance, in the construction of the blowup of a point in a complex
manifold!)

Coming back to the construction of the example proving Proposition 1, consider
Y = C, A = {2, 3, . . .}, and for each k = 2, 3, . . ., let Δ(k, 1/3) be the disk in C centered
at k of radius 1/3 that is mapped holomorphically onto an open neighborhood Uk
of (0, 0) ∈ �k through the holomorphic map t ↦ πk(z − k). Applying surgery, we
get an irreducible Stein curve X and the discrete subset Λ with the aforementioned
properties.

It remains to produce the function f as stated. For this, we let I ⊂ OX be the
coherent ideal sheaf with support Λ and such that Ixk = mk−1

xk
for k = 2, 3 . . ., where

mxk is the maximal ideal of the analytic algebra of the stalk of OX at xk .
From the exact sequence:

0 �→ I�→ Oc �→ Oc/I�→ 0,

we obtain a c-holomorphic function f on X such that, for each k = 2, 3, . . ., at germs
level, f equals hk (mod Ixk ).

By properties ak), bk), and ck) from above, it follows that there does exist ν ∈ N
such that f ν becomes holomorphic on X. (For instance, if f = hk + gk−1

k , for certain
gk ∈ mxk , then f k−1 is not holomorphic about xk .)
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3 Proof of Theorem 1

This is divided into four steps. In Step 1, we recall, following [4], the multiplicity
of an analytic set at a point. Then, in Step 2, we estimate the vanishing order of a
c-holomorphic function germ at a point of its zero set in terms of the multiplicity of
the analytic germ where it is defined. In Step 3, we collect some useful facts about
ON -approximability due to Spallek [13] and Siu [12]. Eventually, the proof of theorem
is achieved in the fourth step.

Step 1. Let A be a pure k-dimensional locally analytic subset of Cn . Let a ∈ A and
select an (n − k)-dimensional complex subspace L ⊂ Cn such that a is an isolated
point of the set A∩ ({a} + L). Then, as we know, there is a domain U ∋ a in C

n such
that A∩U ∩ ({a} + L) = {a} and such that the projection πL ∶ A∩U �→ U ′L ⊂ L⊥
along L is a d-sheeted analytic cover, for some d ∈ N, where L⊥ is the orthogonal of L
with respect to the canonical scalar product in C

n .
The critical analytic set Σ of this cover does not partition the domain U ′L and is

nowhere dense in it; therefore, the number of sheets of this cover does not change
when shrinking U. Furthermore, if z′ is the projection of z in L⊥ and z′ ∈ U ′L ∖ Σ, then,

♯ A∩U ∩ ({z} + L) = d ,

and all d points of the fiber above z′ tend to a as z′ → a′. This number is called the
multiplicity of the projection πL ∣A at a, and is denoted by μa(πL ∣A).

For any point x ∈ A in the above indicated small neighborhood U ∋ a, the number
of sheets of the cover A∩U �→ U ′L does not exceed d in a neighborhood of x (it
may be less); hence, the function μx(πL ∣A) is upper semicontinuous on A∩U . See
[4, p. 102].

Thus, for every (n − p)-dimensional complex plane L ⊂ Cn such that a is an
isolated point in A∩ ({a} + L), the multiplicity of the projection μa(πL ∣A) is finite.
The minimum of these numbers over all L ∈ Gr(n − p, n) as above is denoted μa(A)
and is called the multiplicity of A at a.

Furthermore, it can be shown that the multiplicity μa(A) does not depend on how
A is locally embedded at a into a complex euclidean space.

Altogether, we get a function A ∋ x ↦ μx(A) ∈ N that is upper semicontinuous.
See [4, p. 120].

Step 2. For the sake of simplicity, let a = 0, and for the complex subspace L = {0} ×
C

n−k , the projection πL ∣A realizes μ0(A), namely μ0(πL ∣A) = μ0(A).
With the necessary changes, by Step 1, we arrive at the following setup.
The set A is analytic in D ×Cn−k with D a domain of Ck , the map π ∶ A�→

D is induced by the first projection from C
k
z ×Cn−k

w onto C
k
z , A ∋ x = (z, w) ↦

π(x) = z, such that π is a (finite) branched covering with image D, covering number
d ∶= μ0(A), critical set Σ, which is a nowhere dense analytic subset of D, and
π−1(0) = {0}.

Now, let h ∶ A�→ C be any c-holomorphic function. For every point x = (z, w) ∈
(D ∖ Σ) ×Cn−k , we define the polynomial:

ω(x , t) = ∏
π(x′)=z

(t − h(x′)) = td + a1(x)td−1 +⋯+ ad(x).
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Because h is holomorphic on the regular part Reg(A) of A and h is continuous on A, a
fortiori h is bounded on any compact subset of A (in particular, on π−1(K), for every
compact set K of D), the coefficients a j are naturally holomorphic on (D ∖ Σ) ×Cn−k

and locally bounded on D ×Ck . Thus, granting Riemann’s extension theorem, they
extend holomorphically to D ×Cn−k (we keep the same notations for the extensions).
If, furthermore, h(0) = 0, then all coefficients a j(0) = 0, because π is proper and
π−1(0) = {0}.

Therefore, we obtain a distinguished Weierstrass polynomial of degree d,
W(x , t) = td + a1(x)td−1 +⋯+ ad(x), which is the unique extension of ω to
D ×Cn−k and such that W(x , h(x)) = 0 for all x ∈ A.

Note that, if W(x , t) = 0, then the identity ∣t∣d = O(∥x∥) holds true as (x , t) → 0
because
∣a j(x)∣ = O(∥x∥), or equivalently:

∣t∣ = O(∥x∥1/d) as (x , t) → 0,

meaning that there are positive constants M and ε such that, if W(x , t) = 0 and
max{∣t∣, ∥x∥} < ε, then ∣t∣ ≤ M∥x∥1/d .

To sum up, coming back to the general setting, and using that for two real numbers
α and β, one has sα = O(sβ) as (0,∞) ∋ s → 0 if and only if α ≥ β, by routine
arguments, from Step 1 and the above discussion, we get the following fact.
(†) Let A be a locally analytic subset ofCn of pure dimension. Then, the multiplicity

function μx(A) on x ∈ A is upper semicontinuous. Furthermore, any point a ∈
A admits an open neighborhood U in A such that, for every point x0 ∈ U and
every nonconstant, c-holomorphic germ h ∶ (A, x0) �→ (C, 0), one has,

∣h(x)∣ = O(∥x − x0∥α) as A ∋ x → x0 ,

where α = 1/μa(A).
In general, if (A, x) = ∪ j(A j , x) is the decomposition of the germ (A, x) into its
finitely many irreducible components, whose number might depend on x ∈ A, then
we set μx(A) = max j μx(A j). The multiplicity function thus defined is upper semi-
continuous on A, and the above “identity” in (†) holds for the exponent α given by
1/α = max j μa(A j).

For the commodity of the reader, we mention that, for any complex space X, we
get a natural multiplicity function X ∋ x ↦ μx(X) ∈ N that is upper semicontinuous,
although this information is not used hereafter.

Step 3. From Spallek [13], we recall the following notion. Let A ⊂ Cn be a set and a a
point of A. We say that a germ function φ ∶ (A, a) �→ (C, φ(a)) is ON -approximable
at a if there exists a polynomial P(z, z̄) of degree at most N − 1 in the variables
z j − a j , z j − a j , j = 1, . . . , n, such that,

∣φ(z) − P(z, z̄)∣ = O(∥z − a∥N) as A ∋ z → a.

Example 1 If φ is the restriction of a C∞-smooth, complex-valued function defined
on a neighborhood of a in C

n , then using Taylor’s formula, one has that φ is
ON -approximable at a for all positive integers N.
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Example 2 Let A be locally analytic at the point a, and ν, N ∈ N that satisfy ν >
μa(A)N . Then, by (†), it follows that for any germ of a c-holomorphic map h ∶
(A, a) �→ (C, 0), Re hν and Im hν are ON -approximable at a.

The following result due to Siu [12] improves onto Spallek’s similar one from [13].

Proposition 2 For every compact set K of a complex space X, there exists a positive
integer N = N(K) depending on K such that, if f is a c-holomorphic function germ at
x ∈ K and Re f is ON -approximable at any point in some neighborhood of x, then f is a
holomorphic germ at x.

Step 4. To conclude the theorem, because the assertion to be proved is local, without
any loss in generality, we may assume that X is an analytic subset of some open set of
C

n .
Now, let K be a compact set of X. We claim that there is νK ∈ N such that, for any

c-holomorphic function f on X that is holomorphic off its zero set f −1(0), the power
f ν is holomorphic about K for all integers ν ≥ νK .

For this, consider a compact neighborhood K∗ of K in X. Because the function
X ∋ x ↦ μx(X) ∈ N is upper semicontinuous, there exists a natural number d such
that μx(X) < d for all x ∈ K∗.

We show that νK = dN is as desired, where N is selected according to Proposition
2 corresponding to the compact K of X.

Indeed, in order to show that f ν is holomorphic about K for ν ∈ N that satisfies
ν ≥ νK , we apply Proposition 2, and for this, we need to check that the function Re f ν

is ON -approximable at any point x ∈ K∗.
This follows by case analysis.
If f (x) ≠ 0, because f is holomorphic on the open set X ∖ f −1(0) of X, so that Re f

and Im f are C∞-smooth there, by Example 1, it follows that Re f ν is ON -approximable
at x.

If f (x) = 0, then by Example 1, the function Re f ν is ON -approximable at x, because
ν ≥ dN = νK .

This completes the proof of the theorem.

4 A final remark

Below we answer a question raised by Th. Peternell at the XXIV Conference on
Complex Analysis and Geometry, held in Levico Terme, June 10–14, 2019. He asked
whether or not a similar statement like Theorem 1 does hold for nonreduced complex
spaces.

More specifically, let (X ,OX) be a not necessarily reduced complex space and
f ∶ X �→ C be continuous such that, if A denotes the zero set of f, then X ∖ A is dense
in X, and there is a section σ ∈ �(X ∖ A,OX) whose reduction Red(σ) equals f ∣X∖A.

Is it true that, for every relatively compact open subset D of X, there is a positive
integer n such that σ n extends to a section in �(D,OX)?

We show that the answer is “No.”
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In order to do this, recall that, if R is a commutative ring with unit and M is an
R-module, we can endow the direct sum R ⊕M with a ring structure with the obvious
addition, and multiplication defined by:

(r, m) ⋅ (r′ , m′) = (rr′ , rm′ + r′m).

This is the Nagata ring structure from algebra [9].
Now, if (X ,OX) is a complex space and F a coherent OX-module, then

H ∶= OX ⊕ F becomes a coherent sheaf of analytic algebras and (X ,H) a complex
space [5, Satz 2.3].

The example is as follows. Let nO denote the structural sheaf of Cn . The above
discussion produces a complex space (C,H) such that H = 1O⊕ 1O, which can be
written in a suggestive way H = 1O + ε ⋅ 1O, where ε is a symbol with ε2 = 0. As a
matter of fact, if we consider C2 with complex coordinates (z, w) and the coherent
ideal I generated by w2, then H is the analytic restriction of the quotient 2O/I to C.

The reduction of (C,H) is (C, 1O). A holomorphic section of H over an open set
U ⊂ C consists of couple of ordinary holomorphic functions on U.

Now, take f the identity function id on C, and the holomorphic section σ ∈
�(C⋆ ,H) given by σ = id + εg, where g is holomorphic on C

⋆ having a singularity at
0, for instance, g(z) = 1/z.

Obviously, the reduction of σ is the restriction of id on C
⋆, and no power σ k of σ

extends across 0 to a section in �(C,H), because σ k = id + εkg and g does not extend
holomorphically across 0 ∈ C.
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