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A Radé theorem for complex spaces
Viorel Vijiitu

Abstract. We generalize Radds extension theorem from the complex plane to reduced complex
spaces.

1 Introduction

A theorem due to Rad¢ asserts that a continuous complex-valued function on an open
subset of the complex plane is holomorphic provided that it is holomorphic off its zero
set.

Essentially, this theorem was proved in [10]. Since then, many other proofs have
been proposed, e.g., [2, 3, 6, 7]. The articles [1, 11, 14] give some generalizations.

Radé’s statement remains true for complex manifolds (or, more generally, for
normal complex spaces) as well as in the complex plane.

In this short note, we investigate a natural extension of Radd’s theorem when the
ambient space has (nonnormal) singularities.

Complex spaces, unless explicitly stated, are assumed to be reduced and countable
at infinity. Let N = {1, 2, ...} be the set of natural numbers.

Here, we state our main results.

Proposition 1 ~ There is an irreducible Stein curve X and a continuous function f :
X — C that is holomorphic off its zero set, but no power f*, veN, is globally
holomorphic.

Theorem1 Let X be a complex space and Q) c X be a relatively compact open set. Then,
thereis v € N such that, for every continuous function f : X — C that is holomorphic
off its zero set, and for every integer v > v, the power function f" is holomorphic on Q.

Recall the following definition [I5]. Let X be a complex space. A continuous,
complex-valued function f defined on an open set U c X is c-holomorphic if its
restriction of to Reg(X) n U is holomorphic, where Reg(X) is the open set of those
points of X where it is locally a manifold. The sheaf of germs of c-holomorphic
functions in X is denoted by O; it is a coherent O x-module.
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A Rado theorem for complex spaces 467

Henceforth, the following remark will be used tacitly. For a complex space X,
any continuous function f : X — C that is holomorphic off its zero set f7'(0) is
c-holomorphic. (This results by the classical Rad6 theorem on complex manifolds.)

2 Proof of Proposition 1

The example of a Stein curve X is obtained by implanting generalized cusp singulari-
ties at the points 2,3, . . ., of C, and then the existence of the function f is obtained via
Cartan’s vanishing theorem on Stein spaces.

In order to proceed, let p and g be coprime integers >2. Consider the cusp-like
irreducible and locally irreducible complex curve:

[={(z1,22) e C* : 2l =21} c C*.

Its normalization is C and 7: C — T, t — (14, t?), is the normalization map. Note
that 7 is a homeomorphism.

A continuous function h : I' — C that is holomorphic off its zero set, but fails to
be globally holomorphic, is produced as follows.

Select natural numbers m and n with mq—np =1, and define h: ' — C by
setting for (z1,2;) € T,

zm[z?  ifzy #0,
h(zl,zz)::{ 01 /2 ifzizo.

It is easily seen that h is continuous (as 7 is a homeomorphism, the continuity
of h follows from that of % o 7, which is equal to the identity mapping on C), h
is holomorphic off its zero set (incidentally, here, the regular part Reg(T") is the
complement of this zero set), and & is not holomorphic about (0, 0) (use a Taylor
series expansion about (0,0) € C?* of a presumably holomorphic extension).

Furthermore, h* is globally holomorphic provided that k> (p-1)(q-1).
(Because every integer at least (p —1)(q — 1) can be written in the form ap + g with
a,f€{0,1,2,...}, and because h” and h? are holomorphic being the restrictions of
z, and z; to T, respectively.)

In addition, z#z%h is holomorphic on I' provided that g|(m +a)/p| +b > n,
where || is the floor function.

It is interesting to note that the stalk of germs of c-holomorphic functions Og at 0 is
generated as an Op-module by the germsat 0 of 1, i, ..., h", where r = min{p,q} - 1.

Now, for each integer k >2, let I'y := {(z1,2,) € C?; zF = ZK*1}. As previously
noted, 'y is an irreducible curve whose normalization map is 73 : C — [y, t —
(t*+1, £%), and the function hy : Ty —> C defined for (z;,2,) € T'g by:

zi/z, ifzy %0,
hi(z1,22) = { ol/ ifz, =0

has the following properties:

a;) The function hy is c-holomorphic.
b) The power k5 is not holomorphic.
¢t) The function z{"lh « is holomorphic, because it is the restriction of z§ to I'k.
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Here, with these examples of singularities at hand, we change the standard complex
structure of C at the discrete analytic set {2,3,...} by complex surgery, in order
to obtain an irreducible Stein complex curve X and a discrete subset A = {x; : k =
2,3,...} such that, at the level of germs, (X, xx ) is biholomorphic to (I'x,0).

The surgery, that we recall for the commodity of the reader (because, in some
monographs like [8], the subsequent condition () is missing), goes as follows.

Let Y and U’ be complex spaces together with analytic subsets A and A’ of Y and
U’, respectively, such that there is an open neighborhood U of A in Y and ¢ : U
A — U’ \ A’ that is biholomorphic.

Then, define:

X:=(YNA)u, U :=(YNA)uU'/.

by means of the equivalence relation UN A3 y ~ ¢(y) e U' N A'.

Then, there exists exactly one complex structure on X such that U’ and Y \ A
can be viewed as open subsets of X in a canonical way provided that the following
condition is satisfied:

() ForeveryyeodUanda’ € A’, there are open neighborhoods Dof yinY,Dn A =
@,and Bof a’ in U’ such that (DN U)nBCc A’.

Thus, X is formed from Y by “replacing” A with A’.

In practice, the condition («) is fulfilled if ¢! : U’ \ A’ — U \ A extends to a
continuous function y : U — U such that y(A’) = A. In this case, if D and V are
disjoint open neighborhoods of 0U and A in Y, respectively, then B= A" U ¢(V \ A)
is open in U’, because it equals ' (V) and () follows immediately. (This process
is employed, for instance, in the construction of the blowup of a point in a complex
manifold!)

Coming back to the construction of the example proving Proposition 1, consider
Y=C,A={2,3,...},andforeach k = 2,3,...,let A(k,1/3) be the disk in C centered
at k of radius 1/3 that is mapped holomorphically onto an open neighborhood Uy
of (0,0) € T’y through the holomorphic map ¢ — m(z — k). Applying surgery, we
get an irreducible Stein curve X and the discrete subset A with the aforementioned
properties.

It remains to produce the function f as stated. For this, we let J c Ox be the
coherent ideal sheaf with support A and such that J,, = mfﬁk‘l for k =2,3..., where
m,, is the maximal ideal of the analytic algebra of the stalk of Oy at x.

From the exact sequence:

0—J—0°— 07 —0,

we obtain a c-holomorphic function f on X such that, for each k = 2,3, .. ., at germs
level, f equals hy (mod Jy, ).

By properties ax), bi), and c) from above, it follows that there does exist v € N
such that f becomes holomorphic on X. (For instance, if f = hy + gf ', for certain
gk € my,, then %! is not holomorphic about xy.)
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3 Proof of Theorem 1

This is divided into four steps. In Step 1, we recall, following [4], the multiplicity
of an analytic set at a point. Then, in Step 2, we estimate the vanishing order of a
c-holomorphic function germ at a point of its zero set in terms of the multiplicity of
the analytic germ where it is defined. In Step 3, we collect some useful facts about
O™ -approximability due to Spallek [13] and Siu [12]. Eventually, the proof of theorem
is achieved in the fourth step.

Step 1. Let A be a pure k-dimensional locally analytic subset of C". Let a € A and
select an (n — k)-dimensional complex subspace L c C" such that a is an isolated
point of the set An ({a} + L). Then, as we know, there is a domain U 5 a in C" such
that AnUn ({a} +L)={a} and such that the projection 7, : AnU — Uj c L*
along L is a d-sheeted analytic cover, for some d € N, where L* is the orthogonal of L
with respect to the canonical scalar product in C”.

The critical analytic set 2 of this cover does not partition the domain Uj and is
nowhere dense in it; therefore, the number of sheets of this cover does not change
when shrinking U. Furthermore, if 2’ is the projection of zin L* and 2’ € U] \ Z, then,

f AnUn({z}+L)=d,

and all d points of the fiber above z’ tend to a as z’ — a’. This number is called the
multiplicity of the projection mp|4 at a, and is denoted by p,(7r|a).

For any point x € A in the above indicated small neighborhood U 3 g, the number
of sheets of the cover An U — Uj does not exceed d in a neighborhood of x (it
may be less); hence, the function p,(71|4) is upper semicontinuous on An U. See
[4, p. 102].

Thus, for every (n — p)-dimensional complex plane L ¢ C" such that a is an
isolated point in An ({a} + L), the multiplicity of the projection p,(mr|4) is finite.
The minimum of these numbers over all L € Gr(n — p, n) as above is denoted p,(A)
and is called the multiplicity of A at a.

Furthermore, it can be shown that the multiplicity u,(A) does not depend on how
A is locally embedded at a into a complex euclidean space.

Altogether, we get a function A 3 x — p,(A) € N that is upper semicontinuous.
See [4, p. 120].

Step 2. For the sake of simplicity, let a = 0, and for the complex subspace L = {0} x
C"*, the projection 7|4 realizes o (A), namely po(7z|a) = po(A).

With the necessary changes, by Step 1, we arrive at the following setup.

The set A is analytic in D x C"* with D a domain of C*, the map m: A —>
D is induced by the first projection from CX x C"~* onto Ck, A3 x = (z,w) ~
7(x) = z, such that 7 is a (finite) branched covering with image D, covering number
d = up(A), critical set ¥, which is a nowhere dense analytic subset of D, and
71(0) = {0}.

Now, let h : A — C be any c-holomorphic function. For every point x = (z,w) €
(D~ Z) x C"*, we define the polynomial:

w(x,t)= [] (t=h(x"))=t"+a(x)t!™ + -+ ag(x).

n(x')=z
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Because h is holomorphic on the regular part Reg(A) of A and h is continuous on A, a
fortiori h is bounded on any compact subset of A (in particular, on 77! (K), for every
compact set K of D), the coefficients a; are naturally holomorphic on (D \ £) x C"*
and locally bounded on D x C¥. Thus, granting Riemann’s extension theorem, they
extend holomorphically to D x C"* (we keep the same notations for the extensions).
If, furthermore, h(0) = 0, then all coefficients a;(0) = 0, because 7 is proper and
n1(0) = {0}.

Therefore, we obtain a distinguished Weierstrass polynomial of degree d,
W(x,t) =t +ay(x)t* 1+ -+ ay(x), which is the unique extension of w to
D x C"* and such that W (x, h(x)) = 0 for all x € A.

Note that, if W (x, t) = 0, then the identity [¢|? = O(|x|) holds true as (x, ) — 0
because

laj(x)| = O(|x|), or equivalently:

1= O(|x|"') as (x.1) = 0,

meaning that there are positive constants M and ¢ such that, if W(x,) =0 and
max{|t], | x|} < & then || < M|x|".

To sum up, coming back to the general setting, and using that for two real numbers
a and B, one has s% = O(sF) as (0,00) 35 — 0 if and only if a > B, by routine
arguments, from Step 1 and the above discussion, we get the following fact.

(t) Let A bealocally analytic subset of C" of pure dimension. Then, the multiplicity
function p,(A) on x € A is upper semicontinuous. Furthermore, any point a €
A admits an open neighborhood U in A such that, for every point x, € U and
every nonconstant, c-holomorphic germ h : (A, x) — (C,0), one has,

|h(x)] = O(]x — x0]|%) as A 3> x = xo,
where o =1/, (A).

In general, if (A,x) =U;(Aj,x) is the decomposition of the germ (A, x) into its
finitely many irreducible components, whose number might depend on x € A, then
we set ji(A) = max; u,(A;). The multiplicity function thus defined is upper semi-
continuous on A, and the above “identity” in (1) holds for the exponent a given by
1/a = max; pua(Aj).

For the commodity of the reader, we mention that, for any complex space X, we
get a natural multiplicity function X 5 x — p,(X) € N that is upper semicontinuous,
although this information is not used hereafter.

Step 3. From Spallek [13], we recall the following notion. Let A c C" beasetandaa
point of A. We say that a germ function ¢ : (A, a) — (C, ¢(a)) is ON-approximable
at a if there exists a polynomial P(z,Z) of degree at most N —1 in the variables
zj—aj,zj - aj, j=1,...,n, such that,

lo(z) — P(z,2)| = O(|z - a|NYasAsz - a.

Examplel If ¢ is the restriction of a C*-smooth, complex-valued function defined
on a neighborhood of a in C", then using Taylor’s formula, one has that ¢ is
OY-approximable at a for all positive integers N.
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Example 2 Let A be locally analytic at the point a, and v, N € N that satisfy v >
pa(A)N. Then, by (), it follows that for any germ of a c-holomorphic map A :
(A,a) — (C,0), Reh” and Im h" are OY -approximable at a.

The following result due to Siu [12] improves onto SpalleK’s similar one from [13].

Proposition 2 For every compact set K of a complex space X, there exists a positive
integer N = N(K) depending on K such that, if f is a c-holomorphic function germ at
x € K and Re f is ON-approximable at any point in some neighborhood of x, then fis a
holomorphic germ at x.

Step 4. To conclude the theorem, because the assertion to be proved is local, without
any loss in generality, we may assume that X is an analytic subset of some open set of
cn.

Now, let K be a compact set of X. We claim that there is vk € N such that, for any
c-holomorphic function f on X that is holomorphic off its zero set f~'(0), the power
f" is holomorphic about K for all integers v > vi.

For this, consider a compact neighborhood K* of K in X. Because the function
X 5 x — uy(X) €N is upper semicontinuous, there exists a natural number d such
that p,(X) < d for all x € K*.

We show that vk = dN is as desired, where N is selected according to Proposition
2 corresponding to the compact K of X.

Indeed, in order to show that f" is holomorphic about K for v € N that satisfies
v > vk, we apply Proposition 2, and for this, we need to check that the function Re f*
is ON -approximable at any point x € K*.

This follows by case analysis.

If f(x) # 0, because f is holomorphic on the open set X \ f'(0) of X, so that Ref
and Im f are C*°-smooth there, by Example 1, it follows that Re f* is ON -approximable
at x.

If f (x) = 0, then by Example 1, the function Re f* is O~ -approximable at x, because
v>dN = vg.

This completes the proof of the theorem.

4 A final remark

Below we answer a question raised by Th. Peternell at the XXIV Conference on
Complex Analysis and Geometry, held in Levico Terme, June 10-14, 2019. He asked
whether or not a similar statement like Theorem 1 does hold for nonreduced complex
spaces.

More specifically, let (X,Ox) be a not necessarily reduced complex space and
f : X — Cbe continuous such that, if A denotes the zero set of f, then X \ Ais dense
in X, and there is a section 0 € ['(X \ A, Ox) whose reduction Red(¢) equals f]|x« 4.

Is it true that, for every relatively compact open subset D of X, there is a positive
integer n such that 6" extends to a section in I'(D, Ox)?

We show that the answer is “No””

https://doi.org/10.4153/S0008439521000424 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439521000424

472 V. Vijiitu

In order to do this, recall that, if R is a commutative ring with unit and M is an
R-module, we can endow the direct sum R & M with a ring structure with the obvious
addition, and multiplication defined by:

(r,m)-(r',m") = (rr',rm’ +r'm).

This is the Nagata ring structure from algebra [9].

Now, if (X,0x) is a complex space and F a coherent Ox-module, then
H := Ox & F becomes a coherent sheaf of analytic algebras and (X, ) a complex
space [5, Satz 2.3].

The example is as follows. Let ,O denote the structural sheaf of C”. The above
discussion produces a complex space (C,H) such that H = ;0 @10, which can be
written in a suggestive way H =10 + ¢ -10, where ¢ is a symbol with &> = 0. As a
matter of fact, if we consider C? with complex coordinates (z, w) and the coherent
ideal J generated by w?, then J is the analytic restriction of the quotient ,0/J to C.

The reduction of (C,H) is (C, ;0). A holomorphic section of HH over an open set
U c C consists of couple of ordinary holomorphic functions on U.

Now, take f the identity function id on C, and the holomorphic section o ¢
['(C*,H) given by ¢ = id + eg, where g is holomorphic on C* having a singularity at
0, for instance, g(z) =1/z.

Obviously, the reduction of ¢ is the restriction of id on C*, and no power o of &
extends across 0 to a section in I'(C, H), because ¢* = id + ekg and g does not extend
holomorphically across 0 € C.
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