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Abstract
The famous Erdős–Gallai theorem on the Turán number of paths states that every graph with n vertices
and m edges contains a path with at least (2m)/n edges. In this note, we first establish a simple but novel
extension of the Erdős–Gallai theorem by proving that every graph G contains a path with at least

(s+ 1)Ns+1(G)
Ns(G)

+ s− 1

edges, where Nj(G) denotes the number of j-cliques in G for 1� j�ω(G). We also construct a family
of graphs which shows our extension improves the estimate given by the Erdős–Gallai theorem. Among
applications, we show, for example, that the main results of [20], which are on the maximum possible
number of s-cliques in an n-vertex graph without a path with � vertices (and without cycles of length at
least c), can be easily deduced from this extension. Indeed, to prove these results, Luo [20] generalized a
classical theorem of Kopylov and established a tight upper bound on the number of s-cliques in an n-vertex
2-connected graph with circumference less than c. We prove a similar result for an n-vertex 2-connected
graph with circumference less than c and large minimum degree. We conclude this paper with an appli-
cation of our results to a problem from spectral extremal graph theory on consecutive lengths of cycles in
graphs.

2010 MSC Codes: 05C35, 05C38

1. Erdős–Gallai theorem and an extension
Let H be a family of graphs. The Turán number ex(n,H) is the largest possible number of edges
in an n-vertex graph G which contains no member ofH as a subgraph. IfH= {H}, then we write
ex(n,H) for ex(n,H). We use P� to denote a path with � vertices. In this case, we say P� is of length
�− 1.

Erdős and Gallai [9] proved the following celebrated theorems on Turán numbers of cycles and
paths.
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Theorem 1.1 (Erdős and Gallai [9]).

ex(n, C��)�
(�− 1)(n− 1)

2
,

where �� 3 and C�� is the set of all cycles of length at least �.

Theorem 1.2 (Erdős and Gallai [9]).

ex(n, P�)�
(�− 2)n

2
,

where �� 2.

For the tightness of Theorem 1.1, one can check the graph consisting of (n− 1)/(�− 2) cliques
of size �− 1 with a common vertex, where n− 1 is divisible by �− 2. The tightness of Theorem 1.2
is shown by the graph with n/(�− 1) disjoint K�−1, where n is divisible by �− 1. For more
improvements and extensions of the Erdős–Gallai theorems, see [4, 5, 6, 11, 13, 19, 22, 23]. We
refer the reader to an excellent survey on related topics by Füredi and Simonovits [14].

For a graph G, let ω(G) be the clique number of G, that is, the size of a largest clique in G.
For 1� j�ω(G), we use Nj(G) to denote the number of copies of Kj in G. Theorem 1.2 can be
rephrased as each graph contains a path of length at least 2N2/N1. The main purpose of this note
is to prove the following extension of Theorem 1.2 and present several applications of this result.
We will prove Theorem 1.3 immediately after its statement as the proof is very short.

Theorem 1.3. Let G be a graph. For each positive integer s with 1� s�ω(G), there is a path of
length at least

(s+ 1)Ns+1(G)
Ns(G)

+ s− 1 in G.

Proof. We prove the theorem by induction on s. The case of s= 1 is Theorem 1.2. Suppose it is
true for s= k− 1, where s�ω(G)− 1. For each vertex x ∈V(G), let Gx be the subgraph induced
by NG(x), and �x be the length of a longest path in Gx. By induction hypothesis, for each vertex
x ∈V(G) with Nk−1(Gx) �= 0,

�x �
kNk(Gx)
Nk−1(Gx)

+ k− 2.

Equivalently, (�x − k+ 2)Nk−1(Gx)� kNk(Gx). Let �max =max{�x : x ∈V(G)}. Then
(�max − k+ 2)Nk−1(Gx)� kNk(Gx) (1.1)

holds for each x. Summing inequality (1.1) over all x ∈V(G), we get
(�max − k+ 2)

∑
x∈V(G)

Nk−1(Gx)� k
∑

x∈V(G)
Nk(Gx).

Note that
∑

x∈V(G) Nk−1(Gx)= kNk(G) and
∑

x∈V(G) Nk(Gx)= (k+ 1)Nk+1(G). We get

kNk(G)(�max − k+ 2)� k
∑

x∈V(G)
Nk(Gx)= k(k+ 1)Nk+1(G).

So

�max �
(k+ 1)Nk+1(G)

Nk(G)
+ k− 2.
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This implies that there exists a vertex v such that Gv contains a path Pv of length at least
(k+ 1)Nk+1(G)

Nk(G)
+ k− 2.

Therefore, there is a path of length at least
(k+ 1)Nk+1(G)

Nk(G)
+ k− 1 in G.

The following family of graphs shows our extension improving the estimate given by
Theorem 1.2. Let G be an n-vertex graph which consists of a Kn−2 and two pendant edges sharing
an endpoint from the Kn−2. Theorem 1.2 implies that G contains a path of length at least

2N2(G1)
N1(G1)

= n− 5+ 10
n
,

while Theorem 1.3 tells us that G contains a path of length at least
(n− 2)Nn−2(G)

Nn−3(G)
+ n− 4= n− 3,

where we choose s= n− 3.
For two graphs G and H, we write G∨H for their join defined by V(G∨H)=V(G)∪V(H)

and E(G∨H)= E(G)∪ E(H)∪ {xy : x ∈V(G), y ∈V(H)}. The proof of Theorem 1.3 gives the
following result.

Theorem 1.4. Let G be a graph and k be an integer. If ω(G)� k� 2, then G contains a subgraph
P� ∨K1, where

�� (k+ 1)Nk+1(G)
Nk(G)

+ k− 1.

In particular, G contains cycles of lengths from 3 to⌈
(k+ 1)Nk+1(G)

Nk(G)

⌉
+ k.

2. Short proofs of two theorems of Luo
Before we present applications of Theorems 1.3 and 1.4 to the generalized Turán number, we recall
a few definitions. Let T be a graph and H be a family of graphs. The generalized Turán number
ex(n, T,H) is the maximum possible number of copies of T in an n-vertex graph which is H-free
for each H ∈H. When H= {H}, we write ex(n, T,H) instead of ex(n, T, {H}). If T =K2, then
ex(n,K2,H)= ex(n,H) is the classical Turán number of H.

The generalized Turán number has received a lot of attention recently. There are several
notable and nice papers concerning the generalized Turán number ex(n, T,H) (see [1, 3, 8,
10, 14, 15, 20]). Erdős [8] first determined ex(n,Kt ,Kr) for all t< r. Bollobás and Győri [3]
determined the order of magnitude of ex(n, C3, C5). Their estimate was improved by Alon and
Shikhelman [1] and recently by Ergemlidze, Győri, Methuku and Salia [10]. Alon and Shikhelman
obtained a number of results on ex(n, T,H) for different T and H and posed several open
problems in [1].

Luo [20] recently proved upper bounds for ex(n,Ks, C��) and ex(n,Ks, P�) which are general-
izations of Theorems 1.1 and 1.2.
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Theorem 2.1 (Luo [20]).

ex(n,Ks, C��)�
n− 1
�− 2

(
�− 1
s

)
,

where �� 3 and s� 2.

Theorem 2.2 (Luo [20]).

ex(n,Ks, P�)�
n

�− 1

(
�− 1
s

)
,

where �� 2 and s� 2.

Luo’s result turned out to be useful for investigating Turán-type problems in hypergraphs. For
example, Győri, Methuku, Salia, Tompkins and Vizer [16] applied Theorem 2.1 to study the max-
imum number of hyperedges in a connected r-uniform n-vertex hypergraph without a Berge path
of length k.

We next give very short proofs of Theorems 2.1 and 2.2 by applying Theorems 1.4 and 1.3
respectively.

Short proof of Theorem 2.1. Let c be the length of a longest cycle in G. By Theorem 1.4 and the
condition in Theorem 2.1, we have

kNk(G)
Nk−1(G)

+ k− 1� c� �− 1,

where 3� k� s. This implies

Nk(G)�
�− k
k

Nk−1(G)

holds for 3� k� s. We apply the inequality recursively and get

Ns(G)�
(�− s)(�− s+ 1) · · · (�− 3)

s(s− 1) · · · 3 N2(G).

By Theorem 1.1, we have

N2(G)�
(n− 1)(�− 1)

2
,

and thus

Ns(G)�
n− 1
�− 2

(
�− 1
s

)
.

Short proof of Theorem 2.2. Since G is P�-free, the length of a longest path P in G is at most �− 2.
By Theorem 1.3, we have

�− 2� kNk(G)
Nk−1(G)

+ k− 2

whenever 2� k� s. It follows that

Nk(G)�
�− k
k

Nk−1(G)
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for 2� k� s. Recursively applying this inequality, we get

Ns(G)�
(�− s)(�− s+ 1) · · · (�− 2)

s(s− 1) · · · 2 N1(G)= n
�− 1

(
�− 1
s

)
.

3. Extension of Luo’s theorem
In order to prove Theorems 2.1 and 2.2, Luo [20] extended some classical theorems due to
Kopylov [18]. LetH(n, k, c) be the graph obtained from Kc−k by connecting each vertex of a set of
n− (c− k) isolated vertices to the same k vertices chosen from Kc−k. Let fs(n, k, c) be the number
of Ks in H(n, k, c). Namely,

fs(n, k, c)=
(
c− k
s

)
+

(
k

s− 1

)
(n− (c− k)).

When s= 2, it equals the number of edges in H(n, k, c). The circumference of a graph G is the
length of a longest cycle in G. Improving Theorem 1.1, Kopylov [18] proved the following.

Theorem 3.1 (Kopylov [18]). Let n� c� 5 and G be a 2-connected graph on n vertices with
circumference less than c. Then

N2(G)�max
{
f2(n, 2, c), f2

(
n,

⌊
c− 1
2

⌋
, c

)}
.

Kopylov’s theorem was re-proved by Fan, Lv and Wang in [12] who indeed proved a slightly
stronger result with the aid of another result of Woodall [23]. In the same paper [23], Woodall
posed a conjecture which is a generalization of a previous result on non-Hamiltonian graphs due
to Erdős [7].

Conjecture 3.2 (Woodall [23]1). Let n� c� 5. If G is a 2-connected graph on n vertices with
circumference less than c and minimum degree δ(G)� k, then

N2(G)�max
{
f2(n, k, c), f2

(
n,

⌊
c− 1
2

⌋
, c

)}
.

One can easily find that Kopylov’s theorem confirmed Woodall’s conjecture for k= 2.
Generalizing Kopylov’s result, Luo [20] proved the following theorem.

Theorem 3.3 (Luo [20]). Let n� c� 5 and s� 2. If G is a 2-connected graph on n vertices with
circumference less than c, then

Ns(G)�max
{
fs(n, 2, c), fs

(
n,

⌊
c− 1
2

⌋
, c

)}
.

We present an extension of Theorem 3.3, which is in the spirit of Kopylov’s remark (see the
footnote).

1It should be mentioned that, in the last part of his paper [18], Kopylov wrote: ‘we remark that a proof of Woodall’s
conjecture can be obtained by a minor modification of the solution to Problem D.’
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Theorem 3.4. Let n� c� 5 and s� 2. If G is a 2-connected graph on n vertices with circumference
less than c and minimum degree δ(G)� k� 2, then

Ns(G)�max
{
fs(n, k, c), fs

(
n,

⌊
c− 1
2

⌋
, c

)}
.

To prove Theorem 3.4, we need the following lemma whose proof is omitted in [18]. We would
like to mention that this generalizes Bondy’s lemma on longest cycles whose proof is implicitly
included in the proof of Lemma 1 in [4].

Lemma 3.5 (Kopylov [18]). Let G be a 2-connected n-vertex graph containing a path P of m edges
with endpoints x and y. For v ∈V(G), let dP(v)= |N(v)∩V(P)|. Then G contains a cycle of length
at leastmin{m+ 1, dP(x)+ dP(y)}.

We also need a definition from Kopylov [18].

Definition (α-disintegration of a graph, Kopylov [18]). Let G be a graph and α be a natural
number. Delete all vertices of degree at most α from G; for the resulting graph G′, we again delete
all vertices of degree at most α from G′. We keep running this process until we finally get a graph,
denoted by H(G; α), such that all vertices are of degree greater than α.

Note that H(G; α) is now commonly called the (α + 1)-core of G. Our proof is very similar to
Kopylov’s proof [18] of Theorem 3.1 and the proof of Theorem 3.3 in [20]. We give only a sketch
and omit the details. We split the proof into five steps.

Sketch of the proof of Theorem 3.4. Let G be a counter-example such that G is edge maximal, that
is, adding each non-edge creates a cycle of length at least c. Thus each pair of non-adjacent vertices
is connected by a path of length at least c− 1. Let t= �(c− 1)/2	 and H =H(G; t).

Claim 1 ([20]).H is not empty.

Proof. Suppose not. For the first n− t vertices in the process of getting H(G; t), each of them has
degree at most t and then it is contained in at most

( t
s−1

)
copies of Ks. The number of copies of

Ks in the subgraph induced by the last t vertices is bounded from above by
(t
s
)
. Thus we have the

following upper bound on Ns(G):

Ns(G)� (n− t)
(

t
s− 1

)
+

(
t
s

)
� fs(n, t, c),

which is a contradiction.

Claim 2 ([18]).H is a clique.

The main differences come from Claims 3 and 4, whose proofs need the minimum degree
condition and a new function.

Claim 3. Let r= |V(H)|. Then k� c− r� t.

Proof. As H =H(G; t) is a clique, r� t+ 2. We first claim r� c− k, where δ(G)� k. Suppose
r� c− k+ 1. If x ∈V(G) \V(H), then x is not adjacent to at least one vertex in H. Otherwise,
x ∈H. We pick x ∈V(G) \V(H) and y ∈V(H) satisfying the following two conditions: (a) x and
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y are not adjacent, and (b) a longest path in G from x to y contains the largest number of edges
among such non-adjacent pairs. Let P be a longest path in G from x to y. Clearly, |V(P)|� c as
G is edge maximal. We next show NG(x)⊆V(P). Suppose not. Let z ∈NG(x) and z /∈V(P). If z
and y are not adjacent, then there is a longer path from z to y, a contradiction to the selection
of x and y. If z and y are adjacent, then there is a cycle of length at least c+ 1, a contradiction
to the assumption of G. Similarly, we can show NH(y)⊆V(P). By Lemma 3.5, there is a cycle
with length at least min{c, dP(x)+ dP(y)}�min{c, k+ c− k} = c, a contradiction. Thus r� c− k.
Recall t+ 2� r� c− k. We get k� c− r� c− t− 2� t. This proves Claim 3.

Claim 4. Let H′ =H(G; c− r). Then H �=H′.

Proof. Suppose H =H′. We next show an upper bound on Ns(G). Firstly, the number of Ks con-
tained in V(H′)=V(H) is at most

(r
s
)
. Secondly, each vertex from V(G) \V(H′) is contained in at

most
(c−r
s−1

)
cliques of size s as its degree is at most c− r. Therefore,

Ns(G)� (n− r)
(
c− r
s− 1

)
+

(
r
s

)
= fs(n, c− r, c)�max{ fs(n, k, c), fs(n, t, c)},

as the function fs(n, x, c) is convex for x ∈ [k, t] and k� c− r� t. This is a contradiction and
Claim 4 follows.

Claim 5. G contains a cycle of length at least c.

The proof of the claim above is the same as Kopylov’s proof and we skip it. The proof of
Theorem 3.4 is complete.

Similar to Theorem 3.4, we have the following result and skip the details of the proof.

Theorem 3.6. If G is an n-vertex connected graph containing no P� and having minimum degree
δ(G)� k, where n� �� 4, then

Ns(G)�max
{
fs(n, k, �− 1), fs

(
n,

⌊
�

2

⌋
− 1, �− 1

)}
.

4. Consecutive lengths of cycles
For a graph G, let μ(G) be the spectral radius of G which is the largest eigenvalue of the adja-
cency matrix. Nikiforov [21] proved the following: If G is a graph of sufficiently large order n and
the spectral radius μ(G)>

√�n2/4	, then G contains a cycle of length t for every t� n/320. We
slightly improve Nikiforov’s result as follows.

Theorem 4.1. Let G be a graph of sufficiently large order n with μ(G)>
√�n2/4	. Then G contains

a cycle of length t for every t� n/160.

Notice that Theorem 1.4 implies the following fact.

Fact 4.2. A graph G contains all cycles of length t ∈ [3, �], where

�=
⌈
3N3(G)
N2(G)

⌉
+ 2.
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Sketch of the proof of Theorem 4.1. Compared with the original proof in [21], the improvement
comes from the fact mentioned above. In [21], it is shown that for n sufficiently large, there exists
an induced subgraph H ⊂G with |H|> n/2 satisfying one of the following conditions:

(i) μ(H)> (1/2+ 1/80)|H|,
(ii) μ(H)> |H|/2 and δ(H)> 2|H|/5.

For case (i), it is shown in [21] that

N3(H)� 1
960
|H|3.

In this case, if e(H)=N2(H)> |H|2/4, then a theorem of Bollobás [2] implies there are cycles of
lengths from 3 to |H|/2 in H. Thus there are cycles of length t for each 3� t� n/4. We assume
e(H)� |H|2/4. By Fact 4.2, H contains all cycles of length

� ∈
[
3,

3|H|3/960
|H|2/4

]
.

Since
3|H|3/960
|H|2/4 � 1

160
n,

we proved the result for the case (i). The proof for case (ii) follows from Nikiforov’s original proof
(see [21, page 1497]).
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