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Generic rank of Betti map and unlikely intersections

Ziyang Gao

Abstract

Let A → S be an abelian scheme over an irreducible variety over C of relative dimension
g. For any simply-connected subset Δ of San one can define the Betti map from AΔ to
T2g, the real torus of dimension 2g, by identifying each closed fiber of AΔ → Δ with
T2g via the Betti homology. Computing the generic rank of the Betti map restricted to
a subvariety X of A is useful to study Diophantine problems, e.g. proving the geometric
Bogomolov conjecture over char 0 and studying the relative Manin–Mumford conjec-
ture. In this paper we give a geometric criterion to detect this rank. As an application
we show that it is maximal after taking a large fibered power (if X satisfies some con-
ditions); it is an important step to prove the bound for the number of rational points
on curves (Dimitrov et al., Uniformity in Mordell–Lang for Curves, Preprint (2020),
arXiv:2001.10276). Another application is to answer a question of André, Corvaja and
Zannier and improve a result of Voisin. We also systematically study its link with the rel-
ative Manin–Mumford conjecture, reducing the latter to a simpler conjecture. Our tools
are functional transcendence and unlikely intersections for mixed Shimura varieties.

1. Introduction

Let S be an irreducible variety over C, and let πS : A → S be an abelian scheme of relative
dimension g, namely a proper smooth group scheme whose fibers are abelian varieties.

For any s ∈ S(C), there exists an open neighborhood Δ ⊆ San of s with a real-analytic map,
which we call the Betti map,

bΔ : AΔ = π−1
S (Δ) → T2g,

where T2g is the real torus of dimension 2g. The precise definition will be given in (4.2),
but we give a brief explanation here: up to shrinking Δ we may assume that it is simply-
connected. Then one can define a basis ω1(s), . . . , ω2g(s) of the period lattice of each fiber s ∈ Δ
as holomorphic functions of s. Now each fiber As = π−1

S (s) can be identified with the complex
torus Cg/Zω1(s) ⊕ · · · ⊕ Zω2g(s), and each point x ∈ As(C) can be expressed as the class of∑2g

i=1 bi(x)ωi(s) for real numbers b1(x), . . . , b2g(x). Then bΔ(x) is defined to be the class of the
2g-tuple (b1(x), . . . , b2g(x)) ∈ R2g modulo Z2g.

Through the introduction, let X be a closed irreducible subvariety of A such that πS(X) = S.
The goal of this paper is to compute the generic rank of bΔ|X∩AΔ

. We also systematically
study the link between this rank and the relative Manin–Mumford conjecture, reducing the latter
to a simpler conjecture on unlikely intersections.
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First of all, rankR(dbΔ|X)x must be an even number for each x ∈ Xsm(C), as each ωi(s) is
holomorphic. So the question becomes giving a characterization for

rankR(dbΔ|X) := max
x∈Xsm(C)∩AΔ

(rankR(dbΔ|X∩AΔ
)x) = 2l. (1.1)

Also it can be shown that rankR(dbΔ|X) does not depend on the choice of Δ by Sard’s theorem;
see the end of § 4 for a detailed explanation.

There is a naive bound for rankR(dbΔ|X) as follows. Let Ag be the universal abelian variety
over the moduli space Ag of abelian varieties. We have the following modular map.

A ι ��

πS

��

��
Ag

π

��

S
ιS �� Ag

(1.2)

It is not hard to show that bΔ factors through ι. So rankR(dbΔ|X) ≤ 2 min(dim ι(X), g).
The question to characterize (1.1) was explicitly asked and systematically studied for the

first time in [ACZ20]. The submersivity problem, i.e. l = g, was solved in [ACZ20] for all A/S

with End(A/S) = Z and dim ιS(S) ≥ g. A clear connection to functional transcendence (André’s
independence of abelian logarithms [And92] and the pure Ax–Schanuel theorem [MPT19]) was
presented.

In our paper we completely solve the generic rank problem by giving a criterion (equivalent
condition) to (1.1) for each l in simple terms of the geometry of X. Our approach is independent
of [ACZ20]. It uses functional transcendence (in a different vein, the mixed Ax–Schanuel theorem
[Gao20]), combined with a finiteness result [Gao20, Theorem 1.4]. Here let us state the criterion
in an equivalent (but simpler formulated) way: give a criterion to rankR(dbΔ|X) < 2l for each l.

The following notation will be used throughout the paper. Denote by AX the translate of an
abelian subscheme of A → S by a torsion section (up to a finite covering of S), which contains
X, minimal for this property. Then AX → S itself is an abelian scheme (up to taking a finite
covering of S), whose relative dimension we denote by gX .

Theorem 1.1. For each l, we have the following.

(i) (Criterion to (1.1)) rankR(dbΔ|X) < 2l if and only if the following condition holds: there

exists an abelian subscheme B of AX → S (of relative dimension gB) such that for the

quotient abelian scheme pB : AX → AX/B and the modular map ι/B : AX/B → AgX−gB , we

have dim(ι/B ◦ pB)(X) < l − gB.

AX

pB ��

πS

��

AX/B
ι/B

��

��

��
AgX−gB

��

S
idS �� S

ι/B,S
�� AgX−gB

(1.3)

(ii) There exists a Zariski closed subset X<2l of Xsm such that {x ∈ Xsm(C) : rankR(dbΔ|X)x <

2l} = X<2l(C) ∩ AΔ.
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Part (ii) says that the locus where the Betti rank decreases with respect to the generic one
is defined by algebraic equations. This is not obvious a priori, and not even the fact that this
locus is complex analytic is obvious (left as an open issue in [CMZ18]).

In fact we can prove more: we are able to write the locus of X where rankR(dbΔ|X∩AΔ
)x is

smaller than 2l for each l (Theorem 1.7).
This geometric criterion to detect the Betti rank can be simplified in some cases, e.g.

rankR(dbΔ|X) = 2 min(dim ι(X), dim〈X〉gen−sp − dim S)
if dim ιS(S) = 1 or ιS(S) has simple connected algebraic monodromy group.

(1.4)

See Definition A.1 for the definition of 〈X〉gen−sp and Corollary A.4 for the statement.
Betti map was first studied and used in [Zan12]. Then it was used to study the relative

Manin–Mumford conjecture by Bertrand, Corvaja, Masser, Pillay, and Zannier in a series of
works [MZ12, MZ14, MZ15, BMPZ16, CMZ18, MZ18], to prove the geometric Bogomolov con-
jecture over char 0 by Gao and Habegger [GH19] and Cantat, Gao, Habegger and Xie [CGHX20]
with (1.1) for l = dim X − dim S, and to prove the denseness of torsion points on sections of
Lagrangian fibrations by Voisin [Voi18] using André, Corvaja and Zannier’s result [ACZ20] on
(1.1) for l = g ≤ 4.

1.1 Two applications
We see two applications of Theorem 1.1 in this subsection.

As shown by [DGH20, Theorem 1.6], in some number theory and algebro-geometric
applications, it is particularly important to understand when (1.1) holds for l = dim X, namely

rankR(dbΔ|X) = 2 dimX. (1.5)

As rankR(dbΔ|X) ≤ 2 min(dim ι(X), g) always holds, (1.5) requires ι|X to be generically finite
and that dimX ≤ g. But in applications we often need to handle X with dim X > g.

Because of this problem, our main result towards (1.5) is in the following philosophy. Instead
of proving (1.5) for X, we raise X to a large enough fibered power so that (1.5) holds for this
fibered power. In this process we need to put some extra assumptions on X.

Let us explain this in detail. For any integer m ≥ 1, let A[m] = A×S · · · ×S A (m-copies),
X [m] = X ×S · · · ×S X (m-copies) and b

[m]
Δ = (bΔ, . . . , bΔ) : A[m]

Δ → T2mg. Let DA
m : A[m+1] →

A[m] be the mth Faltings–Zhang map fiberwise defined by (P0, P1, . . . , Pm) �→ (P1 − P0, . . . , Pm −
P0).

We start with the following example. Let Mg be the moduli space of curves of genus g. Up
to taking a finite covering, we have a universal curve Cg → Mg. Let Ag be the moduli space of
principally polarized abelian varieties of dimension g. Up to taking a finite covering, we have a
universal abelian variety π : Ag → Ag. Then we have the following diagram.

Jac(Cg)
ι ��

��

��
Ag

π

��
Mg �� Ag

By abuse of notation denote by Mg the image of the bottom arrow.
Let S be an irreducible variety with a generically finite (not necessarily dominant) mor-

phism S → Mg such that Cg ×Mg S → S admits a section ε. Take A = Ag ×Ag S, and let
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CS = Cg ×Mg S. We have the fiberwise Abel–Jacobi embedding jε : CS ↪→ Jac(CS) via ε, and
by abuse of notation denote by CS the image of CS under ι ◦ jε. Denote by CS − CS = DA

1 (CS).

Theorem 1.2. Let S, A, and CS be as above. For any m ≥ 1, we have the following:

(i) rankR(db
[m]
Δ |

C
[m]
S

) = 2 dim(C[m]
S ) for all m ≥ dim S if g ≥ 2;

(ii) rankR(db
[m]
Δ |(CS−CS)[m]) = 2 dim(CS − CS)[m] for all m ≥ dimS if g ≥ 3.

Theorem 1.2 is a particular case of part (i) of the following Theorem 1.3 (applied to ι = id,
X = CS and X = CS − CS), which is the general result towards (1.5).

Theorem 1.3. Assume that ι|X is generically finite. Assume furthermore that X satisfies the

following:

(a) we have dimX > dimS;

(b) there exists s ∈ S such that no proper subgroup of As contains Xs;

(c) we have X + A′ ⊆ X for any non-isotrivial abelian subscheme A′ of A → S.

Then we have the following:

(i) rankR(db
[m]
Δ |X[m]) = 2 dim X [m] for all m ≥ dim S;

(ii) rankR(db
[m]
Δ |DA

m(X[m+1])) = 2 dimDA
m(X [m+1]) for all m ≥ dimX.

This theorem follows directly from Theorem 10.1, applied to r = t = 0. In practice, the bound for
m can often be improved; see Remark A.5 for some cases for Theorems 1.2 and 1.2′. Hypothesis
(a) is crucial: if X is the image of a multi-section of A → S, then X [m] is contained in the
diagonal of A → A[m], so essentially no new objects are constructed with the operations.

We close this subsection with the following result, which is a direct corollary of part (ii) of
Theorem 1.3 applied to ι = id and X = CS .

Theorem 1.2
′
. Under the notation of Theorem 1.2. Let Dm := D

Ag
m , namely

Dm : Ag ×Ag Ag ×Ag · · · ×Ag Ag︸ ︷︷ ︸
(m+1)-copies

→ Ag ×Ag · · · ×Ag Ag︸ ︷︷ ︸
m-coplies

fiberwise defined by (P0, P1, . . . , Pm) �→ (P1 − P0, . . . , Pm − P0). Assume g ≥ 2. Then we have

rankR(db
[m]
Δ |

Dm(C
[m+1]
S )

) = 2 dimDm(C[m+1]
S ) for all m ≥ dim(CS) = 1 + dimS.

Theorem 1.2′ will be applied in [DGH20], as an important step, to prove: for a smooth
projective curve C of genus g ≥ 2 defined over a number field K, #C(K) is bounded only in
terms of g, [K : Q] and the Mordell–Weil rank.

Our second application is to answer a question of André, Corvaja and Zannier (ACZ)
[ACZ20].

ACZ question. Assume that A/S has no fixed part over any finite covering of S and that ZX =
∪N∈Z{[N ]x : x ∈ X(C)} is Zariski dense in A. Does (1.1) hold for l = min(dim ι(X), g)?

Many cases of this question were proved to be true when dim ιS(S) ≥ g in [ACZ20], e.g. when
g ≤ 3 or any A/S with End(A/S) = Z.

We hereby answer the ACZ question: it has a positive answer in many cases, but may be
false in general.
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Theorem 1.4. We have the following.

(i) The ACZ question has a positive answer if the following hold:

(a) either A → S is geometrically simple;

(b) or each Hodge generic curve C ⊆ ιS(S) satisfies the following property: ι(A)|C :=
π−1(C) → C has no fixed part over any finite covering of C.

(ii) There exist a closed irreducible subvariety S ⊆ A4 of dimension 4 and a section ξ of A4|S → S

such that A4|S → S has no fixed part over any finite covering of S, Zξ is Zariski dense in

A4|S , and rankR(dbΔ|ξ(S)∩AΔ
)x < 8 for all x ∈ ξ(S).

Part (i) is Theorem 9.2; see Remark 9.3 for (i)(b). Part (i)(a) for l = g, combined with
[ACZ20, Proposition 2.1.1], shows that [Voi18, Theorem 0.3] holds without the dimension
assumption because by Lemma 4.5 of [Voi18] the abelian scheme in question is geometrically
simple. Part (ii) is constructed in Example 9.4; it is closely related to [ACZ20, Remark 6.2.1].
Note that this counterexample is the simplest one: in this example A/S has maximal variation
and X is the image of a section, and by [ACZ20, Theorem 2.3.1] no such examples exist for g ≤ 3.

1.2 The tth degeneracy locus
Our method to study the generic rank of the Betti map is to translate the problem into studying
the tth degeneracy locus defined below. Let us explain it in this subsection. Recall our abelian
scheme πS : A → S.

Definition 1.5. A closed irreducible subvariety Z of A is called a generically special subvariety
of sg type of A if there exists a finite covering S′ → S, inducing a morphism ρ : A′ = A×S S′ →
A, such that Z = ρ(σ′ + σ′

0 + B′), where B′ is an abelian subscheme of A′/S′, σ′ is a torsion
section of A′/S′, and σ′

0 is a constant section of A′/S′.

We briefly explain the meaning of constant section here. Let C ′ × S′ be the largest constant
abelian subscheme of A′/S′. We say that a section σ′

0 : S′ → A′ is a constant section if there
exists c′ ∈ C ′(C) such that σ0 is the composite of S′ → C ′ × S′, s′ �→ (c′, s′), and the inclusion
C ′ × S′ ⊆ A′.

Definition 1.5 is closely related to the generically special subvarieties defined in [GH19,
Definition 1.2]. See Appendix A for some discussion.

For any locally closed irreducible subvariety Y of A, denote by 〈Y 〉sg the smallest generically
special subvariety of sg type of A|πS(Y ) = π−1

S (πS(Y )), which contains Y .

Definition 1.6. Let X be a closed irreducible subvariety of A. For any t ∈ Z, define the tth
degeneracy locus of X, denoted by Xdeg(t), to be the union of positive dimensional closed
irreducible subvarieties Y ⊆ X such that dim〈Y 〉sg − dimπS(Y ) < dimY + t. When t = 0, we
abbreviate Xdeg(0) as Xdeg. We say that X is degenerate if Xdeg is Zariski dense in X.

Note that Xdeg = X clearly holds if X is a multi-section and g < dim S.
The locus on which rankR(dbΔ|X)x is smaller than expected is precisely Xdeg(t) for some

t ≤ 0. More precisely we have the following result (recall the modular map ι : A → Ag (2.1) and
the naive bound rankR(dbΔ|X) ≤ 2 dim ι(X)).
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Theorem 1.7. Let x ∈ Xsm(C) ∩ AΔ. Then for each integer l ≤ dim ι(X), we have

rankR(dbΔ|X)x < 2l ⇔ ι(x) ∈ ι(X)deg(l − dim ι(X)) ⇔ x ∈ Xdeg(l − dimX).

This is not yet satisfactory as the Xdeg(t) thus defined is a priori a complicated subset of X.
However we show that they are all Zariski closed in X.

Theorem 1.8. The set Xdeg(t) is Zariski closed in X for each t ∈ Z.

Both theorems will be proved in § 9. Before the treatment of the general case, we will prove,
for the case X ⊆ Ag, Theorem 1.7 in § 6 and Theorem 1.8 in § 7. Note that Theorem 1.1(ii)
follows directly from Theorems 1.7 and 1.8.

1.3 Relation with the relative Manin–Mumford conjecture
Another application of the tth degeneracy locus is for the relative Manin–Mumford conjecture.
In this application we need to take t = 1. Let us state the result.

Denote by Ator the set of points x ∈ A(C) such that [N ]x lies in the zero section of A → S

for some integer N . Zannier [Zan12] proposed the following relative Manin–Mumford conjecture.

Relative Manin–Mumford Conjecture. Assume that ZX :=
⋃

N∈Z{[N ]x : x ∈ X(C)} is
Zariski dense in A. If (X ∩ Ator)Zar = X, then codimA(X) ≤ dimS.

In this paper we will reduce this conjecture to another simpler conjecture.

Conjecture 1.9. Assume S is a locally closed irreducible subvariety of Ag defined over Q̄ and
A = Ag ×Ag S. Assume X is defined over Q̄. If (X ∩ Ator)Zar = X, then Xdeg(1) = X.

Proposition 1.10. Conjecture 1.9 implies the relative Manin–Mumford conjecture.

A more precise version of this reduction is Proposition 11.2.
Proposition 1.10 suggests that there is a strong link between the Betti map and the relative

Manin–Mumford conjecture. The existence of such a link already appeared in previous works
on the relative Manin–Mumford conjecture: the Betti coordinate played a key role in the proofs
of many particular cases of the conjecture by Masser and Zannier [MZ12, MZ14, MZ15] and
Corvaja, Masser and Zannier [CMZ18] (pencils of abelian surfaces, first over Q̄ then over C;
passing from Q̄ to C is highly non-trivial as it enlarges the base), Bertrand, Masser, Pillay and
Zannier [BMPZ16] (semi-abelian surfaces), and Masser and Zannier [MZ18] (any abelian scheme
over a curve). See also [Zan14].

1.4 Outline of the paper
In § 2 we set up some convention of the paper. In § 3 we recall the universal abelian variety and
define the Betti map for this case. In § 4 we define the Betti map for a general abelian scheme.
These are the basic setting up of the paper.

In § 5 we explain in details our main tools to study the Betti map. There are two parts.
The first part §§ 5.1 and 5.2 is to introduce the functional transcendence theorem (mixed
Ax–Schanuel), and the second part §§ 5.3 and 5.4 is Deligne and Pink’s language of mixed
Shimura varieties.

Sections 6–8 are the core of this paper. In these sections we prove the main results on the
Betti rank (Theorems 1.7, 1.8, and 1.1) for the case X ⊆ Ag. In § 6 we use the weak mixed
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Ax–Schanuel theorem to transfer the problem of the generic rank of the Betti map into studying
the tth degeneracy locus for some particular t, and hence prove Theorem 1.7 for X ⊆ Ag. In
§ 7 we use the finiteness result [Gao20, Theorem 1.4] to prove the Zariski closedness of the
tth degeneracy locus (Theorem 1.8) for X ⊆ Ag. The proof in this section will also be used in
§ 8, where the criterion to check whether X is degenerate is proved for X ⊆ Ag. Combined with
results in §§ 6 and 7 this proves Theorem 1.1 for X ⊆ Ag.

Then ultimate versions of the main results on the Betti rank (Theorems 1.7, 1.8, and 1.1)
are proved in § 9. As we shall see they are not hard to be deduced from the case X ⊆ Ag. The
end of this section sees its application to the ACZ question and proves Theorem 1.4.

Then in § 10 we prove Theorem 1.3, claiming that the Betti map attains the maximal rank
if we raise X to a large enough fibered power, for X satisfying some mild properties.

In § 11 we reduce the relative Manin–Mumford conjecture to a simpler conjecture involving
the first degeneracy locus.

In Appendix A we further simplify the formula of the Betti rank when the base takes some
simple form.

2. Convention and notation

2.1 Convention on abelian schemes
Let g ≥ 1 be an integer. Let S be an irreducible variety over C and let πS : A → S be an abelian
scheme of relative dimension g. Since level structures are not important in this paper, we will
use the following abuse of notation through the whole paper.

(i) We say that a subvariety B of A is an abelian subscheme of A → S if there exists a finite
covering S′ → S, inducing a morphism ρ : A′ = A×S S′ → A, such that B = ρ(B′) where
B′ is an abelian subscheme of A′/S′ in the usual sense.1

(ii) We say that σ is a section of A → S if there exists a finite covering S′ → S, inducing a
morphism ρ : A′ = A×S S′ → A, such that σ = ρ ◦ σ′ where σ′ : S′ → A′ is a section of
A′ → S′ in the usual sense.2 Denote by σ(S) := (ρ ◦ σ′)(S′).

(iii) In (ii), call σ a torsion section if σ′(s′) is a torsion point on A′
s′ for each s′ ∈ S′(C); call

σ a constant section if σ′ is the composite of S′ → C ′ × S′, s′ �→ (c′, s′), and the inclusion
C ′ × S′ ⊆ A′, where C ′ × S′ is a constant abelian subscheme of A′ → S′.

The following definition is convenient to study constant sections.

Definition 2.1. An abelian scheme C → S (of relative dimension g) is said to be isotrivial if
one of the following equivalent conditions holds:

(i) the fibers Cs are isomorphic to each other for all s ∈ S(C);
(ii) there exists a finite covering S′ → S such that C ×S S′ is a constant abelian scheme, namely

C ×S S′ = C × S′ for some abelian variety C over C;
(iii) the image of the modular map S → Ag induced by C → S is a point.

In particular, the zero section of any abelian scheme A → S is an isotrivial abelian subscheme.
If dimS = 0, then A → S is isotrivial.

1 Namely B′ is an irreducible subgroup scheme of A′ → S′, which is proper, flat, and dominant to S′. In particular,
each fiber of B′ → S′ is an abelian subvariety of the corresponding fiber of A′ → S′.
2 In other words, σ is a multi-section in the usual sense.
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Since the sum of two isotrivial abelian subschemes of A → S is isotrivial, we can define the
largest isotrivial abelian subscheme of A → S, which we denote by C. Then any constant section
of A → S (defined above) has image in C.

2.2 Modular map
When g = 0, let A0 and A0 be a point. When g ≥ 1. Let D = diag(d1, . . . , dg) be a g × g diagonal
matrix with d1, . . . , dg positive integers such that d1| · · · |dg.

For any integer N ≥ 3, let Ag,D(N) denote the moduli space of abelian varieties of dimension g

with polarization of type D and with level-N -structure. Then Ag,D(N) is a fine moduli space, and
hence admits a universal family π : Ag,D(N) → Ag,D(N). Since level structure is not important
for our purpose, we shall drop the ‘(N)’ in the rest of the paper. When there is no ambiguity
about the polarization type, we also drop the ‘D’ and simply use the notation π : Ag → Ag.

It is known that any abelian scheme πS : A → S can be equipped with a polarization of type
D for some D = diag(d1, . . . , dg), with d1, . . . , dg positive integers such that d1| · · · |dg; see [GN09,
§ 2.1]. Thus up to taking a finite covering of S and the associated base change of A → S, we have
the following modular map.

A ι ��

��

��
Ag

π

��

S
ιS �� Ag

(2.1)

Then A → S is isotrivial if and only if ιS(S) is a point. In particular, if S ⊆ Ag, then Ag ×Ag S

is isotrivial if and only if S is a point.

3. Universal abelian variety and Betti map

We recall some facts on the universal abelian variety in this section. Let D = diag(d1, . . . , dg) be
a g × g diagonal matrix with d1, . . . , dg positive integers such that d1| · · · |dg.

3.1 Uniformizing space of Ag

Let H+
g be the Siegel upper half space

{Z = X +
√−1Y ∈ Mg×g(C) : Z = Zᵀ, Y > 0}.

It is well-known that the uniformization of Ag := Ag,D in the category of complex varieties is
given by

uG : H+
g → Ag. (3.1)

Let us take a closer look at this uniformization.
Let Sp2g be the Q-group{

h ∈ GL2g : h

(
0 D

−D 0

)
h

ᵀ
=

(
0 D

−D 0

) }
,

and let GSp2g be the image of Gm × Sp2g under the central isogeny Gm × SL2g → GL2g. Then
GSp2g(R)+, the connected component of GSp2g(R) containing the identity, acts on H+

g by the
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formula(
A′ B′

C ′ D′

)
Z = (A′Z + B′)(C ′Z + D′)−1, ∀

(
A′ B′

C ′ D′

)
∈ GSp2g(R)+ and Z ∈ H+

g .

It is known that the action of GSpder
2g (R) = Sp2g(R) on H+

g thus defined is transitive, and the
uniformization (3.1) is obtained by identifying (Ag)an with the quotient space ΓGSp2g

\H+
g for a

suitable congruence group ΓSp2g
of Sp2g(Z).

3.2 Uniformizing space of Ag

To obtain the uniformization of Ag, let us construct the following complex space X+
2g,a:

(i) as a semi-algebraic space, X+
2g,a = R2g × H+

g ;
(ii) the complex structure of X+

2g,a is the one given by

X+
2g,a = Rg × Rg × H+

g
∼−→ Cg × H+

g ,

(a, b, Z) �→ (Da + Zb, Z)
. (3.2)

The uniformization of Ag in the category of complex varieties is then given by

u : X+
2g,a → Ag. (3.3)

Similar to the discussion on uG, there exists a Q-group, which we call P2g,a such that P der
2g,a(R)

acts transitively on X+
2g,a and u is obtained by identifying (Ag)an with the quotient space Γ\X+

2g,a

for a suitable congruence subgroup Γ = Z2g � ΓSp2g
of P der

2g,a(Z). Let us briefly explain this.
Use V2g to denote the Q-vector group of dimension 2g. Then the natural action of GSp2g on

V2g defines a Q-group
P2g,a = V2g � GSp2g.

The action of P2g,a(R)+ on X+
2g,a is defined as follows: for any (v, h) ∈ P2g,a(R)+ = V2g(R) �

GSp2g(R)+ and any (v′, x) ∈ X+
2g,a, we have

(v, h) · (v′, x) = (v + hv′, hx), (3.4)

where GSp2g(R)+ acts on R2g as above (3.2).
The natural projection of complex spaces π̃ : X+

2g,a → H+
g is equivariant with respect to the

natural projection of groups P2g,a → GSp2g. Hence by abuse of notation we also denote by
π̃ : P2g,a → GSp2g.

3.3 Betti map
We define the Betti map in this section. We will start by defining the universal uniformized Betti
map on X+

2g,a, and then descend it to AH+
g
, the pullback of Ag/Ag under uG : H+

g → Ag. Note
that AH+

g
is a family of abelian varieties over H+

g .
Recall that X+

2g,a is defined to be R2g × H+
g with the complex structure determined by (3.2).

The universal uniformized Betti map b̃ is defined to be the natural projection

b̃ : X+
2g,a → R2g. (3.5)

Then b̃ is semi-algebraic. For the complex structure on X+
2g,a given by (3.2), it is clear that b̃−1(r)

is complex analytic for each r ∈ R2g.
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Recall that (Ag)an � Γ\X+
2g,a as complex spaces for a suitable congruence subgroup Γ =

Z2g � ΓSp2g
of P der

2g,a(Z). The family of abelian varieties AH+
g

defined as at the beginning of this
subsection can be identified with the quotient space (Z2g � {1})\X+

2g,a. Now taking quotient by
Z2g on both sides of (3.5), we obtain the universal Betti map

b : AH+
g
→ T2g, (3.6)

where T2g denotes the real torus of dimension 2g. By the discussion below (3.5), we have the
following properties for b̃ and b.

(i) Both b̃ and b are real-analytic, and b̃ is moreover semi-algebraic.
(ii) For each r ∈ R2g, resp. each t ∈ T2g, we have that b̃−1(r), resp. b−1(t), is complex analytic.
(iii) For each τ ∈ H+

g , the restriction b|(A
H+

g
)τ

is a group isomorphism.

We summarize our notation regarding the uniformizations in the following diagram:

X+
2g,a

u ����������
��

π̃ ��AH+
g

��

��

��
H+

g

uG

��
Ag

π �� Ag

(3.7)

with the uniformization u from (3.3) and the uniformization uG from (3.1).

4. Betti map on arbitrary abelian schemes

The goal of this section is to extend the definition of Betti map to an arbitrary abelian scheme.
Moreover we choose to work on the original abelian scheme instead of on the pullback to the
universal covering.

Let S be an irreducible quasi-projective variety over C, and let πS : A → S be an abelian
scheme of relative dimension g. Then up to replacing S by a finite covering and A → S by the
corresponding base change, we have the following diagram.

A ι ��

πS

��

��
Ag

π

��

S
ιS �� Ag

(4.1)

Let Δ0 be a simply-connected open subset in Aan
g . Fix a component of Δ̃0 of u−1

G (Δ0) under
the uniformization uG : H+

g → Ag. The fact that Δ0 is simply-connected implies that uG|Δ̃0
is

an isomorphism in the category of complex spaces. Thus the universal Betti map (3.6) induces
a map bΔ0 : Ag|Δ0 → T2g by identifying Ag|Δ0 = π−1(Δ0) with AH+

g
|Δ̃0

.
For any s ∈ S(C), we can find a Δ0 as above such that ιS(s) ∈ Δ0. Let Δ be a component

of ι−1
S (Δ0), which contains s. Let AΔ = π−1

S (Δ). Define

bΔ : AΔ → T2g (4.2)
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to be the composite of ι and bΔ0 . The following properties of bΔ follow from the properties of
the universal Betti map listed below (3.6).

(i) The map bΔ is real-analytic.
(ii) For each t ∈ T2g, we have that b−1

Δ (t), is complex analytic.
(iii) For each s ∈ Δ, the restriction bΔ|As is a group isomorphism.

Note that bΔ is not unique as we can choose different components of u−1
G (Δ0). But bΔ is

unique up to Sp2g(Z) because Ag � ΓGSp2g
\H+

g for some congruence subgroup ΓGSp2g
of Sp2g(Z).

The Betti map factors through the universal abelian variety by definition. Thus to study the
generic rank of the Betti map, it often suffices to consider the subvarieties of Ag.

Before moving on, let us see another way to define the Betti map. Let uS : S̃ → San be
the universal covering, and let AS̃ be the pullback of A → S under uS . Then the modular map
ι : A → Ag induces a natural morphism ι̃ : AS̃ → AH+

g
; see (3.6) for notation. Then one can define

bS̃ : AS̃ → T2g to be ι̃ composed with the universal Betti map (3.6). Note that bS̃ is uniquely
determined, contrary to bΔ. Now bΔ (4.2) can be obtained as follows: identify AΔ and AΔ̃ by
identifying Δ with a component Δ̃ of u−1

S (Δ), then bΔ is bS̃ restricted to AΔ.
Now we are able to prove some easy properties of the Betti rank. Let X be a closed irreducible

subvariety of A with πS(X) = S. Then rankR(dbΔ|X) := maxx∈Xsm(C)∩AΔ
(rankR(dbΔ|X)x) sat-

isfies the following:

(i) it is at most 2 min(dim ι(X), g) as bΔ factors through ι;
(ii) it is even by property (ii) above;
(iii) it does not depend on the choice of Δ: take a complex analytic irreducible component X̂ of

the inverse image of Xsm under AS̃ → A, then rankR(dbΔ|X) = rankR(dbS̃ |X̂∩AΔ̃
). As X̂ ∩

AΔ̃ is open (and hence has positive Lebesgue measure) in X̂, we have rankR(dbS̃ |X̂∩AΔ̃
) =

rankR(dbS̃ |X̂) by Sard’s theorem. The conclusion then follows.

5. Bi-algebraic system associated with Ag

The goal of this section is to give some further background knowledge on the universal abelian
varieties, which will serve as our main tools to study the Betti map. There are two parts.
The first part §§ 5.1 and 5.2 is to introduce the functional transcendence theorem (called weak
Ax–Schanuel), and the second part §§ 5.3 and 5.4 is Deligne and Pink’s language of mixed
Shimura varieties.3

5.1 Generically special subvarieties of sg type and bi-algebraic subvarieties
The goal of this subsection is to explain the relation between generically special subvarieties of
sg type (see Definition 1.5) and bi-algebraic subvarieties of Ag.

Let us start with defining bi-algebraic subvarieties of Ag. Recall the uniformization
u : X+

2g,a → Ag. By [Gao17b, § 4] X+
2g,a can be embedded as an open, in the usual topology,

semi-algebraic subset of a complex flag variety (hence algebraic) X∨
2g,a.

3 For readers not familiar with the language of Shimura varieties but only want to see how to study the generic
rank of the Betti map or the relative Manin–Mumford conjecture via Xdeg(t), it is probably a better idea to skip
§§ 5.3 and 5.4 as these two complicated subsections will only be used in §§ 7 and 8 (whose proofs we also suggest
to skip at first).
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Definition 5.1. (i) A subset Ỹ of X+
2g,a is said to be irreducible algebraic if it is a complex

analytic irreducible component of X+
2g,a ∩ W for some algebraic subvariety W of X∨

2g,a.
(ii) An irreducible subvariety Y of Ag is said to be bi-algebraic if one (and hence any) complex

analytic irreducible component Ỹ of u−1(Y ) is algebraic.

It is not hard to show that the intersection of two bi-algebraic subvarieties of Ag is a finite
union of irreducible bi-algebraic subvarieties of Ag. Hence for any subset Z of Ag, there exists
a smallest bi-algebraic subvariety Ag which contains Z. We use ZbiZar to denote it. Note that
ZbiZar ⊇ ZZar.

Remark 5.2. There is a canonical way to endow H+
g with an algebraic structure, which is com-

patible with π̃ : X+
2g,a → H+

g and the algebraic structure on X+
2g,a defined above; see [Gao17b,

§ 4]. Then it is clear that for any F bi-algebraic in Ag, we have that π(F ) is bi-algebraic
in Ag.

Bi-algebraic subvarieties of Ag are closely related to generically special subvarieties of sg type
defined in Definition 1.5 by the following proposition.

Proposition 5.3 [Gao17a, Proposition 3.3]. Let B be an irreducible subvariety of Ag. Denote

by Ag|B = π−1(B). Then we have

{generically special subvarieties of sg type of Ag|B}
= {irreducible components of (Ag|B) ∩ F : F irreducible bi-algebraic in Ag with B ⊆ π(F )}.

The following equivalent form of Proposition 5.3 is more practical for our use.

Corollary 5.4. Let Y be an irreducible subvariety of Ag. Then 〈Y 〉sg is an irreducible com-

ponent of (Ag|π(Y )) ∩ Y biZar. In particular, dim〈Y 〉sg − dimπ(Y ) = dimY biZar − dimπ(Y )biZar.

Proof. First note that (Ag|π(Y )) ∩ Y biZar is equidimensional. So the ‘In particular’ part follows
from the main part and the fact that π(Y )biZar = π(Y biZar) (Remark 5.2).

Let B = π(Y ). Proposition 5.3 implies that each irreducible component of (Ag|B) ∩ Y biZar is
a generically special subvariety of sg type of Ag|B. Hence 〈Y 〉sg ⊆ W , where W is an irreducible
component of (Ag|B) ∩ Y biZar.

For the other inclusion, since 〈Y 〉sg is a generically special subvariety of sg type of Ag|B, we
have by Proposition 5.3 that 〈Y 〉sg is an irreducible component of (Ag|B) ∩ F for some irreducible
bi-algebraic subvariety F of Ag. Then Y ⊆ 〈Y 〉sg ⊆ F . Hence Y biZar ⊆ F . Thus (Ag|B) ∩ Y biZar ⊆
(Ag|B) ∩ F .

In summary, we have 〈Y 〉sg ⊆ W ⊆ (Ag|B) ∩ Y biZar ⊆ (Ag|B) ∩ F , and that 〈Y 〉sg is an
irreducible component of (Ag|B) ∩ F . So W = 〈Y 〉sg and we are done. �

5.2 Weak Ax–Schanuel for Ag

One of the most important tools we use to study the Betti map is the following weak Ax–Schanuel
theorem for Ag [Gao20, Theorem 1.1 or Theorem 3.5].
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Theorem 5.5. Let Z̃ be a complex analytic irreducible subset of X+
2g,a. Then

dim Z̃Zar + dim(u(Z̃))Zar ≥ dim Z̃ + dim(u(Z̃))biZar,

where Z̃Zar means the smallest irreducible algebraic subset of X+
2g,a which contains Z̃.

5.3 A quick introduction to Shimura varieties
We gather some notation and facts on Shimura varieties. We will need the knowledge (only) for
the proofs in §§ 7 and 8.

Recall that in § 3.1, we have associated a reductive Q-group GSp2g and a complex space H+
g

to the moduli space Ag. In other words, we have associated a pair (GSp2g, H
+
g ) to Ag, where:

• GSp2g is a reductive Q-group;
• H+

g is a complex space on which GSp2g(R)+ acts transitively;
• as a complex space, Ag is the quotient of H+

g by a congruence subgroup of GSpder
2g (Z).

This pair (GSp2g, H
+
g ) is a special case of pure Shimura datum, and the third bullet point makes

Ag a pure Shimura variety. In general, a pure Shimura datum is a pair (G,X+
G ) such that G is a

reductive Q-group and X+
G is a complex space on which Gder(R)+ acts transitively (along with

some other properties). A pure Shimura variety is a quotient space ΓG\X+
G for some congruence

subgroup ΓG of Gder(Z).
Next we turn to the universal abelian variety Ag. In § 3.2 we have associated with it a Q-

group P2g,a and a complex space X+
2g,a. Note that P2g,a is not a reductive group. Nevertheless we

have the following properties for the pair (P2g,a,X+
2g,a):

• P2g,a is a Q-group, whose unipotent radical is a vector group;
• X+

2g,a is a complex space on which P2g,a(R)+ acts transitively;
• as a complex space, Ag is the quotient of X+

2g,a by a congruence subgroup of P der
2g,a(Z).

This makes the pair (P2g,a,X+
2g,a) a mixed Shimura datum of Kuga type, and the third bullet

point makes Ag a mixed Shimura variety of Kuga type. In general a mixed Shimura datum of
Kuga type is a pair (P,X+) such that P is a Q-group whose unipotent radical is a vector group,
and X+ is a complex space on which P (R)+ acts transitively (along with some other properties).
A mixed Shimura variety of Kuga type is a quotient space Γ\X+ for some congruence subgroup
Γ of P der(Z).

It is worth pointing out that any pure Shimura datum is a mixed Shimura datum of Kuga type
(such that the unipotent radical of the underlying group is trivial). Given two mixed Shimura data
of Kuga type (Q,Y+) and (P,X+), a map f : (Q,Y+) → (P,X+) is called a Shimura morphism
if f is a group homomorphism on the underlying groups and is a holomorphic morphism on the
underlying complex spaces, and that f(q · ỹ) = f(q) · f(ỹ) for any q ∈ Q(R)+ and any ỹ ∈ Y+.
For a Shimura morphism f of this form, we say that (f(Q), f(Y+)) is a mixed Shimura subdatum
of (P,X+). Applying the discussion to (P,X+) = (P2g,a,X+

2g,a), we get the definition of mixed
Shimura subdata of (P2g,a,X+

2g,a). Applying the discussion to (G,X+
G ) = (GSp2g, H

+
g ), we get the

definition of Shimura subdata of (GSp2g, H
+
g ).

It is known that for each mixed Shimura subdatum (Q,Y+) of (P2g,a,X+
2g,a), the unipotent

radical of Q is V2g ∩ Q by weight reasons; see [Gao17b, Proposition 2.9].
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Define the special subvarieties of Ag to be the subvarieties of the form u(Y+) where Y+ is the
underlying space of some mixed Shimura subdatum (Q,Y+) of (P2g,a,X+

2g,a). Define the special
subvarieties of Ag to be the subvarieties of the form uG(Y+

G ), where Y+
G is the underlying space

of some Shimura subdatum (H,Y+
G ) of (GSp2g, H

+
g ).

Let us end this subsection by the following proposition on the geometric meaning of special
subvarieties of Ag and beyond. Recall the notation π̃ : P2g,a → GSp2g at the end of § 3.2 and the
uniformizations (see (3.7)).

X+
2g,a

π̃ ��

u

��

H+
g

uG

��
Ag

π �� Ag

(5.1)

Proposition 5.6. Let M be a special subvariety of Ag. Then MG := π(M) is a special subvari-

ety of Ag, and M is the translate of an abelian subscheme of Ag|MG
→ MG by a torsion section.

Conversely all special subvarieties of Ag are obtained in this way.

More precisely, if M is associated with the mixed Shimura subdatum of Kuga type (Q,Y+)
of (P2g,a,X+

2g,a) (namely M = u(Y+)), then the relative dimension of M → MG is

gQ := 1
2 dim(V2g ∩ Q).

5.4 Quotient by a normal group
In §§ 7 and 8, we need the geometric interpretation of the operation of taking the quotient mixed
Shimura varieties of Kuga type. We explain this in the current subsection.

The setting is as follows. Let (Q,Y+) be a mixed Shimura subdatum of (P2g,a,X+
2g,a), and let

M = u(Y+) be the associated special subvariety of Ag. Take a normal subgroup N of Q. Pink
[Pin89, 2.9] constructed the quotient mixed Shimura datum (Q,Y+)/N whose underlying group
is Q/N .

By Proposition 5.6, MG := π(M) is a special subvariety of Ag. Let (GQ,Y+
GQ

) be the pure
Shimura subdatum of (GSp2g, H

+
g ) in Proposition 5.6, then MG = uG(Y+

GQ
).

Let VQ = V2g ∩ Q and VN = V2g ∩ N . We explained above (5.1) that VQ is the unipotent
radical of Q. Since N � Q, group theory implies that VN is the unipotent radical of N . Let
GN = N/VN , then GN is a normal subgroup of GQ.

Proposition 5.6 says that π|M : M → MG itself is an abelian scheme of relative dimension
gQ = 1

2 dim(V2g ∩ Q). Let ε : MG → M be the zero section.4 It induces a Levi decomposition
Q = VQ � GQ and a semi-algebraic isomorphism

Y+ � VQ(R) × Y+
GQ

such that u({0} × Y+
GQ

) = ε(MG). In the rest of this subsection, we shall use this identification
of Y+ with VQ(R) × Y+

GQ
.

Deligne [Del71, Rappel 4.4.3] proved that Y+ → Y+
GQ

is a variation of Hodge structure of
type (−1, 0) + (0,−1).

4 It is a torsion section of Ag|MG → MG.
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We have VN � Q since N � Q and VN is the unipotent radical of N . The reductive group
GQ, as a subgroup of GSp2g, acts on V2g. Now VN � Q implies that VN is a GQ-submodule of
V2g, so VN is a sub-Hodge structure of VQ. Thus VN (R) × Y+

GQ
→ Y+

GQ
is a subvariation of Hodge

structure of Y+ → Y+
GQ

. Thus u(VN (R) × Y+
GQ

) is an abelian subscheme of M → MG by [Del71,
Rappel 4.4.3].

The quotient p̃N : (Q,Y+) → (Q,Y+)/N can be constructed in two steps. First we take the
quotient (Q0,Y+

0 ) := (Q,Y+)/VN , and then we take (Q′,Y ′+) := (Q0,Y+
0 )/GN .

The geometric meaning of the quotient p̃0 : (Q,Y+) → (Q0,Y+
0 ) = (Q,Y+)/VN is as follows.

We have the following commutative diagram (where Γ0 = p̃0(Γ ∩ Q(R))):

Y+
p̃0

��

u|Y+

��

Y+
0

��

M
p0

��

π|M
��

M0 := Γ0\Y+
0

π0

��
MG

idMG �� MG

(5.2)

such that M0 → MG is the abelian scheme obtained by taking the quotient of M → MG by
u(VN (R) × Y+

GQ
). Let gN = 1

2 dimVN , then the relative dimension of M0 → MG is gQ − gN .
To explain the quotient p̃′ : (Q0,Y+

0 ) → (Q′,Y ′+) = (Q0,Y+
0 )/GN , we need the following pre-

liminary. We know that GN is a normal subgroup of GQ. We take for granted that we can do
the operation (GQ,Y+

GQ
)/GN for pure Shimura datum, and this quotient gives a morphism

pGN
: MG → M ′

G.5

For each y′G ∈ M ′
G, the inverse image (pGN

)−1(y′G) equals uG(GN (R)+ỹG) for some ỹG ∈ Y+
GQ

.
So the connected algebraic monodromy group of (pGN

)−1(y′G) is Gder
N . Since N � Q, we have

GN = N/VN � Q/VN . Hence GN acts trivially on VQ/VN . So M0|(pGN
)−1(y′

G) → (pGN
)−1(y′G) is

an isotrivial abelian scheme by Deligne’s theorem of the fixed part [Del71, Corollaire 4.1.2]. We
have the following commutative diagram:

Y+
0

p̃′
��

��

Y ′
0

��
M0 = Γ0\Y+

0

p′
��

π0

��

M ′

π′
��

MG

pGN �� M ′
G

(5.3)

where π′ is an abelian scheme (of relative dimension gQ − gN ) such that each closed fiber of
M0|(pGN

)−1(y′
G) → (pGN

)−1(y′G) is the abelian variety (π′)−1(y′G). In other words, the lower box

5 See [Pin89, 2.9] or [UY11, Definition 2.1]. In this paper we mostly only need the notion, so we choose not go
into more details on this in the preliminary part.
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is an intermediate step of the following modular map.

M0
��

π0

��

��
AgQ−gN

��

MG
�� AgQ−gN

We end this subsection by summarizing the quotient p̃N : (Q,Y+) → (Q,Y+)/N (after taking
the uniformizations) in the following commutative diagram:

M p0 ��

π|M
��

pN
��

M0 := Γ0\Y+
0

π0

��

p′ ��

��
M ′

π′
��

��

��
AgQ−gN

��

MG

idMG �� MG

pGN �� M ′
G

�� AgQ−gN

(5.4)

where each vertical arrow is an abelian scheme, with the left one of relative dimension gQ and
the other three of relative dimension gQ − gN . Moreover M0|p−1

GN
(b′) is isotrivial for any b′ ∈ M ′

G

by the discussion above (5.3). And for any x′ ∈ M ′, we have that p−1
N (x′) is the translate of an

abelian subscheme of M |π(p−1
N (x′)) → π(p−1

N (x′)) of relative dimension gQ − (gQ − gN ) = gN by a
constant section.

6. From Betti map to the tth degeneracy locus

In §§ 6–8 we will prove Theorem 1.1 for X ⊆ Ag. It is arranged as follows: § 6 transfers the study
of the generic rank of the Betti map to the tth degenerate locus of X for some particular t, § 7
proves the Zariski closedness of the tth degenerate locus Xdeg(t), and § 8 gives the criterion to
Xdeg(t) = X.

Let us fix the notation. Recall the uniformizations (5.1)

X+
2g,a

π̃ ��

u

��

H+
g

uG

��
Ag

π �� Ag

and the uniformized universal Betti map b̃ : X+
2g,a → R2g defined in (3.5). Let X be an irreducible

subvariety of Ag. Fix a complex analytic irreducible component X̃ of u−1(X).

Proposition 6.1. Let d = dimX. For any integer l ∈ {1, . . . , d}, let

X̃<2l = {x̃ ∈ X̃ : rankR(b̃|X̃)x̃ < 2l, u(x̃) ∈ Xsm(C)}.

Then Xdeg(l − d) ∩ Xsm(C) ⊆ u(X̃<2l) ⊆ Xdeg(l − d), where Xdeg(l − d) is defined in Definition

1.6.

In particular, if rankR(b̃|X̃)x̃ < 2l for all x̃ ∈ X̃ with u(x̃) ∈ Xsm(C), then Xdeg(l − d) is

Zariski dense in X.
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Proof. The ‘In particular’ part of the proposition follows directly from the main statement by
letting x run over all points in Xsm(C).

Let us prove Xdeg(l − d) ∩ Xsm(C) ⊆ u(X̃<2l). Suppose not, then there exists some x̃ ∈ X̃

such that u(x̃) ∈ Xdeg ∩ Xsm(C) and rankR(b̃|X̃)x̃ = 2l. By definition of Xdeg(l − d), the point
u(x̃) lies in a subvariety Y of X such that dim〈Y 〉sg − dimπ(Y ) < dimY + (l − d), where 〈Y 〉sg
is defined above Definition 1.6.

Let Ỹ be a complex analytic irreducible component of u−1(Y ) with x̃ ∈ Ỹ ⊆ X̃. Observe
that rankR(b̃|X̃)x̃ ≤ rankR(b̃|Ỹ )x̃ + 2(dim X − dim Y ). So 2l − 2(d − dim Y ) = rankR(b̃|X̃)x̃ −
2(dim X − dimY ) ≤ rankR(b̃|Ỹ )x̃. So for 〈̃Y 〉sg a complex analytic irreducible component of
u−1(〈Y 〉sg), which contains Ỹ , we have

rankR(b̃|〈̃Y 〉sg)x̃ = 2(dim〈Y 〉sg − dimπ(Y ))

< 2l − 2(d − dimY ) by choice of Y

≤ rankR(b̃|Ỹ )x̃.

But this cannot happen as Ỹ ⊆ 〈̃Y 〉sg.
Next we prove the other inclusion u(X̃<2l) ⊆ Xdeg(t). Take any x̃ ∈ X̃<2l. Set r = b̃(x̃) ∈ R2g.

By assumption of the proposition, we have

dimR(b̃−1(r) ∩ X̃) > 2(d − l). (6.1)

In the rest of the proof, we identify X+
2g,a as the semi-algebraic space R2g × H+

g with the complex
structure defined by (3.2). In particular, b̃−1(r) = {r} × H+

g . Property (ii) of the Betti map (below
(3.6)) implies that b̃−1(r) ∩ X̃ is complex analytic. Then by (6.1), there exists a complex analytic
irreducible subset W̃ in H+

g of dimension ≥ d − l + 1 such that

x̃ ∈ {r} × W̃ ⊆ X̃.

Hence it suffices to prove the following assertion: Y = (u({r} × W̃ ))Zar satisfies

dim〈Y 〉sg − dimπ(Y ) < dimY + (l − d). (6.2)

Apply weak Ax–Schanuel for Ag, namely Theorem 5.5, to {r} × W̃ . Then we get

dim({r} × W̃ )Zar + dimY ≥ dim({r} × W̃ ) + dimY biZar. (6.3)

On the other hand we have

W̃Zar ⊆ W̃ biZar ⊆ (uG(W̃ ))biZar ⊆ π(Y )biZar, (6.4)

where the last inclusion holds because uG(W̃ ) ⊆ π(Y ) by definition of Y .
Let us temporarily assume ({r} × W̃ )Zar = {r} × W̃Zar and finish the proof. Then from (6.3)

and (6.4) we get

dimπ(Y )biZar + dimY ≥ dim W̃ + dimY biZar.

Thus

dim〈Y 〉sg − dimπ(Y ) = dimY biZar − dimπ(Y )biZar ≤ dimY − dim W̃ ,

where the first equality follows from Corollary 5.4. Therefore (6.2) holds since dim W̃ ≥ d − l + 1.
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It remains to prove ({r} × W̃ )Zar = {r} × W̃Zar. First note that {r} × W̃Zar is semi-algebraic
and complex analytic. Then it is a general fact that {r} × W̃Zar is algebraic in X+

2g,a; see [KUY16,
(the proof of) Lemma B.1]. Thus ({r} × W̃ )Zar ⊆ {r} × W̃Zar. Remark 5.2 says that the algebraic
structures on X+

2g,a and H+
g are compatible under π̃, so π̃|({r}×W̃ )Zar : ({r} × W̃ )Zar → W̃Zar is

dominant. Now we can conclude. �

7. Zariski closeness of the tth degeneracy locus

The goal of this section is to prove Theorem 1.8 for X ⊆ Ag. Let X be an irreducible subvariety
of Ag. Through the whole section we fix a t ∈ Z. Let Xdeg(t) be the tth degeneracy locus of X

defined in Definition 1.6.

Theorem 7.1. The subset Xdeg(t) is Zariski closed in X.

Combined with Proposition 6.1, this theorem proves part (ii) of Theorem 1.1 for X ⊆ Ag.
Our proof of Theorem 7.1 is inspired by Daw and Ren’s work [DR18, § 7] on the anomalous

subvarieties in a pure Shimura variety.

7.1 Weakly optimal subvariety
To prove Theorem 7.1, we need the following definition of weakly optimal subvarieties. The notion
was first introduced by Habegger and Pila [HP16] to study the Zilber–Pink conjecture for abelian
varieties and product of modular curves.

Definition 7.2. (i) For any irreducible subvariety Z of Ag, define the weakly defect to be
δws(Z) = dim ZbiZar − dimZ.

(ii) A closed irreducible subvariety Z of X is said to be weakly optimal if the following
condition holds: Z � Z ′ ⊆ X with Z ′ irreducible closed in X ⇒ δws(Z ′) > δws(Z).

Weakly optimal subvarieties of X are closely related to Xdeg(t) by the following lemmas.

Lemma 7.3. dim〈Z〉sg − dimπ(Z) < dim Z + t ⇔ δws(Z) < dimπ(Z)biZar + t.

Proof. The condition dim〈Z〉sg − dimπ(Z) < dim Z + t can be rewritten to be

((dim〈Z〉sg − dimπ(Z)) + dimπ(Z)biZar) − dimZ < dimπ(Z)biZar + t.

By Corollary 5.4, we have dim ZbiZar = (dim〈Z〉sg − dim π(Z)) + dimπ(Z)biZar. Hence the
inequality above becomes δws(Z) < dim π(Z)biZar + t. �

Lemma 7.4. Assume a closed irreducible subvariety Z ⊆ X satisfies dim〈Z〉sg − dim π(Z) <

dimZ + t and is maximal for this property. Then Z is weakly optimal.

Proof. For any Z ⊆ Z ′ ⊆ X with Z ′ irreducible closed in X, if δws(Z ′) ≤ δws(Z), then we have

δws(Z ′) ≤ δws(Z) < dimπ(Z)biZar + t ≤ dimπ(Z ′)biZar + t,

where the second inequality follows from Lemma 7.3 (applied to Z). Applying Lemma 7.3 to Z ′,
we get dim〈Z ′〉sg − dimπ(Z ′) < dim Z ′ + t. The maximality of Z then implies Z = Z ′. So Z is
weakly optimal. �
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Thus Xdeg(t) is the union of some weakly optimal subvarieties. We will show that this union
is finite. The key point is the following finiteness theorem concerning weakly optimal subvarieties
[Gao20, Theorem 1.4]. See § 5.3 for notation.

Theorem 7.5. There exists a finite set Σ consisting of elements of the form ((Q,Y+), N), where

(Q,Y+) is a mixed Shimura subdatum of Kuga type of (P2g,a,X+
2g,a) and N is a connected normal

subgroup of Q whose reductive part is semi-simple, such that the following property holds. If a

closed irreducible subvariety Z of X is weakly optimal, then there exists ((Q,Y+), N) ∈ Σ such

that ZbiZar = u(N(R)+ỹ) for some ỹ ∈ Y+.

7.2 An auxiliary proposition
Let X be as in Theorem 7.1.

Let Z be a positive dimensional closed irreducible subvariety X such that dim〈Z〉sg −
dim π(Z) < dimZ + t and is maximal for this property. Then Z is weakly optimal by Lemma
7.4. So Theorem 7.5 gives a finite set Σ and a ((Q,Y+), N) ∈ Σ such that ZbiZar = u(N(R)+ỹ)
for some ỹ ∈ Y+. Recall that N is a connected normal subgroup of Q whose reductive part is
semi-simple. Note that N = 1 since Z has positive dimension.

Consider the operation of taking quotient mixed Shimura datum p̃N : (Q,Y+) →
(Q,Y+)/N =: (Q′,Y ′+) discussed in § 5.4 and the induced morphism on the corresponding mixed
Shimura varieties of Kuga type.

Y+
p̃N ��

u|Y+

��

Y ′+

��
M

pN �� M ′

(7.1)

We refer to (5.4) for the geometric meaning of pN : M → M ′ and notation.
For any integer h, define

Eh = {x ∈ X : dimx(pN |X∩M )−1(pN (x)) > h}. (7.2)

Then Eh is Zariski closed in X.

Proposition 7.6. For gN = 1
2 dim(V2g ∩ N) as in (5.4):

(i) we have Z ⊆ EgN−t;

(ii) we have EgN−t ⊆ Xdeg(t).

Proof. (i) Recall that Z satisfies dim〈Z〉sg − dimπ(Z) < dimZ + t. Therefore δws(Z) <

dim π(Z)biZar + t by Lemma 7.3. Hence

dim Z > dimZbiZar − dimπ(Z)biZar − t.

By construction we know that ZbiZar is a fiber of pN . Hence as a morphism, ZbiZar → π(Z)biZar

is an abelian scheme of relative dimension gN by the discussion below (5.4). So the inequality
above becomes dim Z > gN − t. As Z ⊆ X ∩ M , we have that Z ⊆ EgN−t by definition of EgN−t.

(ii) For any x ∈ EgN−t, there exists a component Y of (pN |X∩M )−1(pN (x)) containing x such
that dimY > gN − t. Let x′ = pN (x).
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By (5.4) and the discussion below, p−1
N (x′) → π(p−1

N (x′)) is an abelian scheme of relative
dimension gN .

Proposition 5.3 says that as a morphism, Y biZar → π(Y )biZar is an abelian scheme. Since
p−1

N (x′) is bi-algebraic [Gao17b, Corollary 8.3] and Y ⊆ p−1
N (x′), we have Y biZar ⊆ p−1

N (x′). Thus
the relative dimension of the abelian scheme Y biZar → π(Y )biZar is at most gN . So

dimY > gN − t ≥ dimY biZar − dimπ(Y )biZar − t.

Hence δws(Y ) < dimπ(Y )biZar + t. Thus dim〈Y 〉sg − dim π(Y ) < dimY + t by Lemma 7.3, and
hence Y ⊆ Xdeg(t) by definition. By varying x ∈ Eh, we get the conclusion. �

7.3 Proof of Theorem 7.1
Now we are ready to prove Theorem 7.1. Let X be as in Theorem 7.1. Let Σ be the finite set in
Theorem 7.5.

For any positive dimensional closed irreducible subvariety Z of X such that dim〈Z〉sg −
dimπ(Z) < dim Z + t and is maximal for this property, we obtain some ((Q,Y+), N) ∈ Σ from
which we can construct a Zariski closed subset EgN−t of X such that Z ⊆ EgN−t by (i) of
Proposition 7.6. Since Σ is a finite set, we have finitely many such EgN−t. By definition of
Xdeg(t), we then have that Xdeg(t) is contained in the union of these EgN−t, which is a Zariski
closed subset of X.

Conversely by (ii) of Proposition 7.6, each such EgN−t is contained in Xdeg(t).
Hence Xdeg(t) is the union of these EgN−t. This is a finite union with each member being a

closed subset of X. Hence Xdeg(t) is Zariski closed in X.

8. Criterion of degenerate subvarieties

Let X be an irreducible subvariety of Ag. Through the whole section we fix a t ∈ Z. Let Xdeg(t)
be the tth degeneracy locus of X defined in Definition 1.6.

The goal of this section is to prove the criterion for X = Xdeg(t), and hence part (i) of
Theorem 1.1 for X ⊆ Ag in view of Proposition 6.1 and Theorem 7.1.

For notation let B = π(X), let AX be the translate of an abelian subscheme of Ag|B → B

by a torsion section, which contains X, minimal for this property. Then AX → B itself is an
abelian scheme (up to taking a finite covering of B), whose relative dimension we denote by gX .

For any abelian subscheme B of AX → B whose relative dimension we denote by gB, we
obtain the following diagram:

AX

pB ��

π|AX

��

AX/B
π/B

��

ι/B
��

��
AgX−gB

��

B
idB �� B

ι/B,G
�� AgX−gB

(8.1)

where pB is taking the quotient abelian scheme, and the right box is the modular map.

Theorem 8.1. Assume either t ≤ 0, or t = 1 and AX = Ag|B. Then X = Xdeg(t) if and only if

the following condition holds: there exists an abelian subscheme B of AX → B (whose relative

dimension we denote by gB) such that for the map ι/B ◦ pB constructed above, we have dim(ι/B ◦
pB)(X) < dimX − gB + t and that ι/B ◦ pB is not generically finite.
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Note that when t ≤ 0, the condition ι/B ◦ pB is not generically finite is redundant. This is
because in this case, dim(ι/B ◦ pB)(X) < dimX − gB + t implies dim(ι/B ◦ pB)(X) < dimX, and
hence ι/B ◦ pB is not generically finite.

8.1 Auxiliary proposition
We start by proving the following auxiliary proposition.

Proposition 8.2. We have X = Xdeg(t) if and only if there exist:

• a special subvariety M∗ of Ag, associated with (Q∗,Y+∗ ), which contains X;

• a non-trivial connected normal subgroup N∗ of Q∗ whose reductive part is semi-simple;

such that the following condition holds: for the operation of taking quotient mixed Shimura

datum p̃N∗ : (Q∗,Y+∗ ) → (Q∗,Y+∗ )/N∗ discussed in § 5.4 and the induced morphism on the

corresponding mixed Shimura varieties of Kuga type

Y+∗
p̃N∗ ��

u|Y+∗
��

Y ′+∗

��
M∗

pN∗ �� M ′∗

(8.2)

we have dimX − dim pN∗(X) > gN∗ − t, where gN∗ = 1
2 dim(V2g ∩ N∗).

Proof. We prove ⇐. Let EgN∗−t = {x ∈ X : dimx(pN∗ |X)−1(pN∗(x)) > gN∗ − t} as defined in
(7.2). Then X = EgN∗−t as dim X − dim pN∗(X) > gN∗ − t. Note that (7.1) and (8.2) have the
same shape. Hence X = Xdeg(t) by (ii) of Proposition 7.6.

Now let us prove ⇒. By the proof of Theorem 7.1 (§ 7.3), we have that Xdeg(t) is a finite union
of some Zariski closed subsets EgN∗−t of X. Now X = EgN∗−t for some EgN∗−t since X = Xdeg(t).

Recall the definition of EgN∗−t as in (7.2): EgN∗−t = {x ∈ X : dimx(pN∗ |X∩M∗)
−1(pN∗(x)) >

gN∗ − t} for some mixed Shimura subdatum of Kuga type (Q∗,Y+∗ ) of (P2g,a,X+
2g,a) and a non-

trivial connected normal subgroup N∗ of Q∗ whose reductive part is semi-simple, with gN∗ =
1
2 dim(V2g ∩ N∗).

By definition of EgN∗−t, it is contained in X ∩ M∗. Hence X = EgN∗−t ⊆ M∗.
Now that each fiber of pN∗ |X has dimension > gN∗ − t, we have dim X − dim pN∗(X) >

gN∗ − t. �

8.2 Theorem 8.1 in terms of mixed Shimura variety
In this subsection, we prove Theorem 8.1 in terms of mixed Shimura variety. Then we translate
it into the desired geometric description in the next subsection.

Let M be the smallest special subvariety of Ag, which contains X. Assume that M is
associated with the mixed Shimura subdatum of Kuga type (Q,Y+) of (P2g,a,X+

2g,a).

Proposition 8.3. Assume either t ≤ 0, or t = 1 and M = Ag|π(M). Then X = Xdeg(t) if and

only if there exists a non-trivial connected normal subgroup N of Q whose reductive part is semi-

simple, such that the following condition holds: For the operation of taking quotient Shimura

datum p̃N : (Q,Y+) → (Q,Y+)/N =: (Q′,Y ′+) discussed in § 5.4 and the induced morphism on
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the corresponding mixed Shimura varieties of Kuga type

Y+
p̃N ��

u|Y+

��

Y ′+

��

M
pN �� M ′,

(8.3)

we have dimX − dim pN (X) > gN − t, where gN = 1
2 dim(V2g ∩ N).

Proof of Proposition 8.3. We use Proposition 8.2. First ⇐ of Proposition 8.3 follows directly
from ⇐ of Proposition 8.2.

Let us prove ⇒ of Proposition 8.3. Let M∗, (Q∗,Y+∗ ), N∗ and gN∗ be as in ⇒ of Proposition
8.2.

Set N to be the identity component of Q ∩ N∗. Since X ⊆ M∗ and M is the smallest special
subvariety of Ag, which contains X, we have M ⊆ M∗. Hence we may assume (Q,Y+) ⊆ (Q∗,Y+∗ ).
Let N = Q ∩ N∗, then N � Q. Replacing N by N ∩ π̃−1(π̃(N)der), we may and do assume that
the reductive part of N is semi-simple; here π̃ : P2g,a → GSp2g.

Let us temporarily assume

dim pN∗(X) = dim pN (X) (8.4)

and finish the proof by showing that this N can be taken as the desired connected normal
subgroup of Q. We need to prove the following:

(i) dimX − dim pN (X) > gN − t for gN = 1
2 dim(V2g ∩ N);

(ii) N is a non-trivial group.

For (i), we have gN ≤ gN∗ since N < N∗. So dimX − dim pN (X) = dimX − dim pN∗(X) >

gN∗ − t ≥ gN − t.
For (ii), suppose N is trivial. Then pN = idM and thus dim pN (X) = dimX. So dim pN∗(X) =

dimX. Hence pN∗ |X is generically finite. So X = EgN∗−t implies that gN∗ − t < 0. But then
gN∗ = 0 and t = 1 as t ≤ 1. Hence N∗ is reductive. It can be viewed as a subgroup of Sp2g via
π̃ : P2g,a → GSp2g. Now N∗ � Q∗ implies that the subgroup N∗ of Sp2g acts trivially on V2g ∩ Q∗.
By our hypothesis on X (note that t = 1 now) and Proposition 5.6, we have M = Ag|π(M). Hence
V2g ∩ Q = V2g. Thus V2g ∩ Q∗ = V2g since Q ⊆ Q∗. But the only connected subgroup of Sp2g

acting trivially on V2g is 1. Hence N∗ is trivial, contradicting to the choice of N∗. Thus N is
non-trivial. Hence this N can be taken as the desired connected normal subgroup of Q.

Now it remains to prove (8.4). Each fiber of p̃N is of the form N(R)+ỹ for some ỹ ∈ Y+,
and each fiber of p̃N∗ is of the form N∗(R)+ỹ∗ for some ỹ∗ ∈ Y+∗ . As Y+ ⊆ Y+∗ , we can take
ỹ∗ = ỹ ∈ Y+. By definition of N , we have N(R)+ỹ = Q(R)+ỹ ∩ N∗(R)+ỹ = Y+ ∩ N∗(R)+ỹ.

Denote by X̃ a complex analytic irreducible component of u−1(X), which is contained in Y+.
Then by the previous paragraph, each fiber of p̃N |X̃ is of the form N(R)+ỹ ∩ X̃, and each fiber
of p̃N∗ |X̃ is of the form N∗(R)+ỹ ∩ X̃. The last sentence of last paragraph says N(R)+ỹ ∩ X̃ =
Y+ ∩ N∗(R)+ỹ ∩ X̃, which furthermore equals N∗(R)+ỹ ∩ X̃ since X̃ ⊆ Y+. Thus the fibers of
p̃N |X̃ and p̃N∗ |X̃ have the same dimensions. Hence the fibers of pN |X and pN∗ |X have the same
dimensions. Thus (8.4) holds. Now we are done. �
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8.3 Proof of Theorem 8.1
Let M be the smallest special subvariety of Ag, which contains X. Assume that M is associated
with the mixed Shimura subdatum of Kuga type (Q,Y+) of (P2g,a,X+

2g,a). Denote by VQ =
V2g ∩ Q and GQ = π̃(Q) the reductive part of Q. Let gQ = 1

2 dimVQ.
Special subvarieties of Ag are described in Proposition 5.6. Hence the smallest special

subvariety M of Ag, which contains X can be described as follows:

• let MG be the smallest special subvariety of Ag, which contains π(X);
• let M be the translate of an abelian subscheme of Ag|MG

→ MG by a torsion section which
contains X, minimal for this property.

Then M → MG itself is an abelian scheme of relative dimension gQ.

⇒ of Theorem 8.1. Apply ⇒ of Proposition 8.3. Then we obtain a non-trivial connected nor-
mal subgroup N of Q whose reductive part is semi-simple, such that for the quotient Shimura
morphism pN : M → M ′, we have (gN = 1

2 dim(V2g ∩ N))

dimX − dim pN (X) > gN − t. (8.5)

Recall the geometric meaning of pN (5.4):

M p0 ��

π|M
��

pN
��

M0 := Γ0\Y+
0

π0

��

p′ ��

��
M ′

π′
��

i ��

��
AgQ−gN

��

MG

idMG �� MG

pGN �� M ′
G

iG �� AgQ−gN

The morphism p0 is taking the quotient of M → MG by the abelian subscheme Ker(p0)◦ (which
has relative dimension gN ). For each b′ ∈ M ′

G, the abelian scheme M0|p−1
GN

(b′) → p−1
GN

(b′) is

isotrivial.
Take B = Ker(p0)◦ ∩ AX . Then B is an abelian subscheme of AX → B of relative dimension

gN , namely gB = gN . Now we can construct the maps in (8.1). We have AX = M |B, pB = p0|AX
,

π/B = π0|M0|B , ι/B = (i ◦ p′)|M0|B and ι/B,G = (iG ◦ pGN
)|B. Thus

dim(ι/B ◦ pB)(X) ≤ dim pN (X) < dimX − gN + t = dimX − gB + t,

where the first inequality follows from X ⊆ M |B and the second inequality follows from (8.5).
Thus it suffices to prove that ι/B ◦ pB is not generically finite.

Suppose ι/B ◦ pB is generically finite. Then gN = 0, pB = idAX
and ι/B is generically finite.

Hence dim(ι/B ◦ pB)(X) = dimX. But then dimX < dim X − gB + t = dim X + t. When t ≤ 0
this cannot hold. Hence t = 1 and AX = Ag|B by our hypothesis. Hence M = Ag|MG

.
Since gN = 0, we have p0 = idM and M0 = M = Ag|MG

. For each b′ ∈ M ′
G, the abelian scheme

Ag|p−1
GN

(b′) → p−1
GN

(b′) is isotrivial. So dim p−1
GN

(b′) = 0; see the end of § 2. Hence pGN
is generi-

cally finite, and so is p′. Thus dimM = dimM ′. This contradicts our choice of N (non-trivial
connected).

⇐ of Theorem 8.1. Before moving on, let me point out that if t ≤ 0, then this implication follows
rather easily from Proposition 6.1 and Theorem 7.1 because we can translate it into studying
the generic rank of the Betti map. However the argument below works also for t = 1.
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Hodge theory says that: (1) every abelian subscheme of AX → B is the intersection of an
abelian subscheme of M → MG with Ag|B (in particular AX = M ∩ Ag|B = M |B and gX = gQ);
(2) the abelian subschemes of M → MG are in one-to-one correspondence to GQ-submodules of
VQ. See [Del71, 4.4.1–4.4.3].

Assume that B = B ∩ Ag|B where B is an abelian subscheme of M → MG, and that B

corresponds to the GQ-submodule VN of VQ. Let gN = 1
2 dimVN , then B → MG has relative

dimension gN . Hence gB = gN .
Taking the quotient, we get the following.

M
pB ��

π|M
��

M/B

π/B

��
MG

idMG �� MG

In particular, π/B is an abelian scheme of relative dimension gQ − gN . It induces the following
modular map.

M/B
ι/B

��

π/B

��

��
AgQ−gN

��

MG

ι/B,G
�� AgQ−gN

By definition of ι/B,G, (M/B)|ι−1
/B,G

(a) is an isotrivial abelian scheme for each a ∈ AgQ−gN .

Modular interpretation of Shimura varieties implies that ι/B,G is a Shimura morphism,
namely ι/B,G is induced by some ι̃/B,G : (GQ, π̃(Y+)) → (GSp2(gQ−gN ), H

+
gQ−gN

). Denote by H

the kernel of ι̃/B,G on the underlying groups, then H � GQ. Replace H by Hder, then H � Gder
Q .

Each fiber of ι̃/B,G on the underlying spaces is of the form H(R)+ỹG for some ỹG ∈ π̃(Y+).
Hence each fiber of ι/B,G is of the form uG(H(R)+ỹG) for some ỹG ∈ π̃(Y+), where uG : H+

g → Ag

is the uniformization. Thus the connected algebraic monodromy group of ι−1
/B,G(a) is H for each

a ∈ AgQ−gN . By Deligne’s theorem of the fixed part [Del71, Corollaire 4.1.2], H acts trivially on
VQ/VN � V2(gQ−gN ) because (M/B)|ι−1

/B,G
(a) is isotrivial.

The zero section of the abelian scheme M → MG gives rise to a Levi decomposition Q =
VQ � GQ. Let N = VN � H. Then N is a connected normal subgroup of Q whose reductive part
is semi-simple. Moreover the quotient morphism pN is precisely ι/B ◦ pB, namely the geometric
interpretation (5.4) for this N becomes the following.

M pB ��

π|M
��

pN ��
M/B

π/B
��

ι/B

��

��
ι(M/B)

π′
��

MG

idMG �� MG

ι/B,G
�� ι/B,G(MG)

(8.6)

Note that (8.1) is precisely (8.6) restricted to B ⊆ MG.
If N = 1, then pN = idM . This contradicts ι/B ◦ pB being not generically finite. Hence N is

non-trivial.
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Note that X ⊆ M |B. Thus the inequality in ⇐ of Theorem 8.1 becomes dim pN (X) <

dim X − gN + t. Now it suffices to apply ⇐ of Proposition 8.3 to this N .

9. Summary on the generic rank of the Betti map

In this section, we go back to the general setting and prove the main results concerning the Betti
rank. First of all let us recall the setting up.

Let S be an irreducible quasi-projective variety over C, and let πS : A → S be an abelian
scheme of relative dimension g ≥ 1. Recall the following modular map (4.1).

A ι ��

πS

��

��
Ag

π

��

S
ιS �� Ag

Let bΔ : AΔ → T2g be as defined in (4.2) where Δ is some open subset of San.
Let X be a closed irreducible subvariety of A dominant to S. Assume that ι|X : X → ι(X)

has relative dimension r ≥ 0. Then for each x ∈ X(C), we have

dimx ι|−1
X (ι(x)) ≥ r. (9.1)

9.1 Proof of Theorem 1.8
Fix t ∈ Z. We proved that ι(X)deg(t) is Zariski closed in ι(X) for each t in Theorem 7.1. Thus
Theorem 1.8 follows immediately from the below lemma.

Lemma 9.1. Xdeg(t) =

{
ι−1

(
ι(X)deg(t + r)

)
if t + r ≤ 0 or r = 0,

X otherwise.

Proof. First let us make the following observation: for any Y ⊆ A irreducible, we have that 〈Y 〉sg
is an irreducible component of ι−1(〈ι(Y )〉sg). So

dim〈ι(Y )〉sg − dim π(ι(Y )) = dim〈ι(Y )〉sg − dim ιS(πS(Y )) = dim〈Y 〉sg − dimπS(Y ) (9.2)

Case t + r ≤ 0 or r = 0. For ⊆, take Y ⊆ Xdeg(t) irreducible such that dimY > 0 and

dim〈Y 〉sg − dimπS(Y ) < dimY + t.

As ι|X has relative dimension r, we have dim ι(Y ) ≥ dimY − r. So (9.2) implies

dim〈ι(Y )〉sg − dimπ(ι(Y )) = dim〈Y 〉sg − dimπS(Y ) < dim Y + t ≤ dim ι(Y ) + (t + r).

If t + r ≤ 0, then the inequality above further implies 0 < dim ι(Y ). If r = 0, then ι is generically
finite and hence dim ι(Y ) = dimY > 0. Hence in either case, we have ι(Y ) ⊆ ι(X)deg(t + r). This
proves ⊆.

For ⊇, conversely take Y ′ ⊆ ι(X)deg(t + r) irreducible such that dimY ′ > 0 and

dim〈Y ′〉sg − dimπ(Y ′) < dimY ′ + t + r.
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Let Y be an irreducible component of ι|−1
X (Y ′). Then Y ′ = ι(Y ). So dimY ≥ dim Y ′ + r > 0 by

(9.1). By (9.2) we have then

dim〈Y 〉sg − dimπS(Y ) = dim〈Y ′〉sg − dimπ(Y ′) < dim Y ′ + t + r = dimY + t.

Hence Y ⊆ Xdeg(t). This proves ⊇.

Case t+ r> 0 and r> 0. Let x ∈ X(C). Let Y be the irreducible component of ι|−1
X (ι(x)), which

contains x. Then dim Y ≥ r > 0.
For B := πS(ι−1(ι(x))) = ι−1

S (π(ι(x))), we have that ι−1(ι(x)) is a constant section of A|B →
B. Thus dim πS(Y ) = dimY ≥ r, and 〈Y 〉sg = Y . Hence

dim〈Y 〉sg − dimπS(Y ) = dimY − dimY = 0 < r − r + 1 ≤ dimY + (−r + 1).

So Y ⊆ Xdeg(−r + 1). Thus X ⊆ Xdeg(−r + 1).
But t ≥ −r + 1 since t + r > 0. So Xdeg(−r + 1) ⊆ Xdeg(t) by definition. So we are done. �

9.2 Proof of Theorem 1.7
Fix x ∈ Xsm(C). Then

rankR(dbΔ|X)x < 2l ⇔ rankR(dbΔ|ι(X))ι(x) < 2l.

Apply Proposition 6.1 to ι(X), then we have

rankR(dbΔ|ι(X))ι(x) < 2l ⇔ ι(x) ∈ ι(X)deg(l − dim ι(X)).

Since l ≤ dim ι(X), we have

ι(x) ∈ ι(X)deg(l − dim ι(X)) ⇔ x ∈ Xdeg(l − dimX)

by Lemma 9.1, because dim X = dim ι(X) + r. We are done by the three equivalences above.

9.3 Proof of Theorem 1.1
Part (ii) follows immediately from Theorems 1.7 and 1.8. So it remains to prove part (i).

The implication ⇐ is clear: the generic rank of the Betti map on (ι/B ◦ pB)(X) has the trivial
upper bound 2 dim(ι/B ◦ pB)(X), and thus rankR(dbΔ|X) ≤ 2gB + 2 dim(ι/B ◦ pB)(X) < 2l.6

Let us prove ⇒. If l > dim ι(X), then rankR(dbΔ|X) < 2l always holds. Take B to be the zero
section of AX → S. Then gB = 0. Thus

dim(ι/B ◦ pB)(X) = dim ι/B(X) ≤ dim ι(X) < l = l − gB.

It suffices then to consider the case l ≤ dim ι(X). By Theorem 1.7, we have

rankR(dbΔ|X) < 2l ⇔ ι(X) = ι(X)deg(l − dim ι(X)).

Set B = ιS(S) = π(ι(X)). Apply Theorem 8.1 (and the discussion below) to ι(X) and
t = l − dim ι(X) ≤ 0. We thus obtain an abelian subscheme B′ of Aι(X) → B (of relative

6 In other words, ⇐ of Theorem 8.1 is clearly true when t ≤ 0 if one translates the condition X = Xdeg(t) into
studying the generic rank of the Betti map. But for t = 1, we still need to go into our original proof.
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dimension gB′), such that dim(ι/B′ ◦ pB′)(ι(X)) < dim ι(X) − gB′ for the following.

Aι(X)

pB′
��

π|Aι(X)

��

Aι(X)/B′

π/B′

��

ι/B′
��

��
Agι(X)−gB′

��

B
idB �� B

ι/B,G
�� Agι(X)−gB′

Observe AX = ι−1(Aι(X)) (so gX = gι(X)). Set B = ι−1(B′). Then B is an abelian subscheme of
AX → S; its relative dimension gB equals gB′ . The following diagram commutes.

AX

pB ��

ι

��

AX/B
ῑ

��

ι/B
�� AgX−gB

=

��
Aι(X)

pB′
�� Aι(X)/B′ ι/B′

�� Agι(X)−gB′

Thus (ι/B ◦ pB)(X) = (ι/B′ ◦ pB′)(ι(X)). So dim(ι/B ◦ pB)(X) = dim(ι/B′ ◦ pB′)(ι(X)) < dim ι

(X) − gB′ ≤ dimX − gB.

9.4 A question of André, Corvaja and Zannier
In this subsection we apply the previous results to study a conjecture of André, Corvaja and
Zannier.

Let ξ be a section of A → S. Denote by bΔ|ξ the composite bΔ ◦ ξ : Δ → AΔ → T2g.

Theorem 9.2. Assume that Zξ is Zariski dense in A. Assume, furthermore, the following:

(i) either A/S is geometrically simple;

(ii) or each Hodge generic curve C ⊆ ιS(S) satisfies the following property: ι(A) ×ιS(S) C =
π−1(C) → C has no fixed part over any finite covering of C.7

Then maxs∈Δ rankR(dbΔ|ξ)s = 2 min(dim ι(ξ(S)), g).

Remark 9.3. If A/S is isotrivial, then hypothesis (ii) holds automatically since ιS(S) is a point.
In general hypothesis (ii) can be checked in the following way. Let GB be the connected algebraic
monodromy group of ιS(S). Then hypothesis (ii) is equivalent to: for any non-trivial connected
normal subgroup H of GB, the only element of V2g stable under H is 0. It holds for example
when A → S has no fixed part and GB is a simple group.

Proof. Let X = ξ(S) and d = dim ι(X). Then maxs∈Δ rankR(dbΔ|ξ)s = rankR(dbΔ|X).
Since Zξ is Zariski dense in A, we have AX = A where AX is defined above Theorem 1.1.
Assume rankR(dbΔ|X) < 2 min(d, g). Applying Theorem 1.1(i) to l = min(d, g), we get an

abelian subscheme B of A → S (whose relative dimension we denote by gB) such that

dim(ι/B ◦ pB)(X) < dimX − gB + min(d, g) − d = min(d, g) − gB (9.3)

7 We say that a curve C ⊆ ιS(S) is Hodge generic if the generic Mumford–Tate group of C coincides with the
generic Mumford–Tate group of ιS(S).
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for the following.

A
pB ��

πS

��

A/B
ι/B

��

��

��
Ag−gB

��

S
idS �� S

ι/B,S
�� Ag−gB

(9.4)

Case (i). By assumption B is either the whole A or the zero section of A → S. In the former
case, gB = g. But then (9.3) cannot hold. In the latter case, gB = 0, pB = idA, and ι/B = ι. So
dim(ι/B ◦ pB)(X) = dim ι(X) = d. But then (9.3) cannot hold.

Case (ii). If B = A, then g = gB, and hence (9.3) cannot hold. So A/B → S is a non-trivial
abelian scheme. Applying the modular map ι : A → Ag (and ιS : S → Ag) to (9.4), we obtain the
following.

ι(A)
p′B ��

π|ι(A)

��

ι(A)/ι(B)
ι′
/B

��

��

��
Ag−gB

��
ιS(S)

id �� ιS(S)
ι′
/B,S

�� Ag−gB

It is not hard to check (ι′/B ◦ p′B)(ι(X)) = (ι/B ◦ pB)(X).

By construction of ι′/B,S , (ι(A)/ι(B))|
ι
′−1
/B,S

(a)
→ ι

′−1
/B,S(a) is an isotrivial abelian scheme. Tak-

ing a splitting of p′B yields an isotrivial abelian subscheme of ι(A)|
ι
′−1
/B,S

(a)
→ ι

′−1
/B,S(a), which is

non-trivial. For each a Hodge generic in ι′/B,S(ι(S)), we have that ι
′−1
/B,S(a) is Hodge generic

in ιS(S). But then our hypothesis forces dim ι
′−1
/B,S(a) = 0. Hence ι′/B,S is quasi-finite, and so

is ι′/B. So dim(ι′/B ◦ p′B)(ι(X)) = dim p′B(ι(X)) ≥ dim ι(X) − gB = d − gB ≥ min(d, g) − gB. This
contradicts (9.3) as dim(ι′/B ◦ p′B)(ι(X)) = dim(ι/B ◦ pB)(X). �

Example 9.4. The extra hypotheses (i) or (ii) in Theorem 9.2 are necessary. We illustrate this
with an example with g = 4. Consider A4 → A4. Now that A2 × A2 → A2 × A2 is an abelian
scheme of relative dimension 4, it induces canonically the following modular map.

A2 × A2
��

��

��
A4

��
A2 × A2

�� A4

By abuse of notation we write A2 × A2, resp. A2 × A2, for the image of the morphism on the
top, resp. on the bottom.

Let S1 and S2 be irreducible subvarieties of A2, then S := S1 × S2 ⊆ A2 × A2. The above
diagram implies that A4|S → S is the product of the two abelian schemes A2|S1 → S1 and
A2|S2 → S2.

Let i ∈ {1, 2}. Let ξi be a section of A2|Si → Si such that Zξi is Zariski dense in A2|Si for
i ∈ {1, 2}. For the Betti map bΔi : A2|Δi → T4, where Δi ⊆ (Si)an is an open subset, we have
rankR(dbΔi |ξi)si ≤ 2 min(dim Si, 2) for all si ∈ Si(C).
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Now ξ = (ξ1, ξ2) is a section of A4|S → S such that Zξ is Zariski dense in A4|S .
Take S1 = A2 and S2 to be a curve in A2 such that A2|S2 has no fixed part (over any

finite étale covering of S2), then A4|S → S has no fixed part (over any finite étale cover-
ing of S) and dimS = 4 = g. Let Δ = Δ1 × Δ2. Then the Betti map bΔ equals (bΔ1 , bΔ2).
So rankR(dbΔ|ξ)s ≤ maxs1∈Δ1 rankR(dbΔ1 |ξ1)s1 + maxs2∈Δ2 rankR(dbΔ2 |ξ2)s2 ≤ 2(2 + dimS2) =
6 < 8 = 2 min(dim ξ(S), g) for any s ∈ Δ.

10. Application to fibered powers

The goal of this section is to prove (a generalized form of) Theorem 1.3.
Recall the setting up. Let S be an irreducible subvariety over C and let πS : A → S be an

abelian scheme of relative dimension g0 ≥ 1. We have the following modular map (4.1).

A ι ��

πS

��

��
Ag0

��

S
ιS �� Ag0

Let X be a closed irreducible subvariety of A such that πS(X) = S.
For any integer m ≥ 1, set A[m] = A×S · · · ×S A (m-copies), X [m] = X ×S · · · ×S X

(m-copies) and b
[m]
Δ = (bΔ, . . . , bΔ) : A[m]

Δ → T2mg.
The modular map ι induces a morphism ι[m] : A[m] → Amg0 . Set X

[m]
ι = ι[m](X [m]). It is a

closed subvariety of ι(X) ×ιS(S) · · · ×ιS(S) ι(X), which may be proper.
Let DA

m : A[m+1] → A[m] be the mth Faltings–Zhang map fiberwise defined by
(P0, P1, . . . , Pm) �→ (P1 − P0, . . . , Pm − P0). In the particular case where A → S is Ag0 → Ag0 ,
abbreviate Dm = D

Ag0
m . Then ι[m] ◦ DA

m = Dm ◦ ι[m+1].

Theorem 10.1. Assume that X satisfies the following conditions:

(a) we have dimX > dim S;

(b) the subvariety X is not contained in the translate of any proper abelian subscheme of A → S

by a torsion section;

(c) we have X + A′ ⊆ X for any non-isotrivial abelian subscheme A′ of A → S.

Then for each t ≥ 0, we have the following:

(i) rankR(db
[m]
Δ |X[m]) ≥ 2(dimX

[m]
ι − t) for all m ≥ dimS − t.

(ii) rankR(db
[m]
Δ |DA

m(X[m+1]) ≥ 2(dim Dm(X [m+1]
ι ) − t) for all m ≥ dimX − t.

Before proceeding to the proof, let us fix some notation. Set d = dim X − dim S > 0. For any
m ≥ 1, we have dim X [m] − dimS = md. In particular, dimX

[m]
ι ≤ dim X [m] = md + dimS.

For notation let AX[m] be the translate of an abelian subscheme of A[m] → S by a torsion
section which contains X [m], minimal for this property. Hypothesis (b) then implies AX[1] = A.
Hence by hypothesis (a) on X, we have AX[m] = A[m] for all m ≥ 1.

Proof of Theorem 10.1(i). Suppose rankR(db
[m]
Δ |X[m]) < 2(dimX

[m]
ι − t). Then by Theorem 1.1,

there exists an abelian subscheme B of A[m] → S (whose relative dimension we denote by gB)

2497

https://doi.org/10.1112/S0010437X20007435 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007435


Z. Gao

such that

dim(ι/B ◦ pB)(X [m]) < dimX [m]
ι − t − gB (10.1)

for the following diagram.

A[m]
pB ��

πS

��

A[m]/B
π/B

��

ι/B
��

��
Amg0−gB

π′
��

S
idS �� S

ι/B,S
�� Amg0−gB

(10.2)

The following fact will be proved in Appendix B. There exists an isogeny

ρ : A[m] → A[m] (10.3)

such that ρ(B) = B1 ×S · · · ×S Bm for some abelian subschemes B1, . . . ,Bm of A. Moreover, we
may assume that ρ satisfies the following property: q1 ◦ ρ = ρ1 ◦ q1 for some isogeny ρ1 : A → A,
where q1 : A[m] → A is the projection to the first factor.

Lemma 10.2. Bi → S is non-isotrivial for each i ∈ {1, . . . , m}.

We will see that Lemma 10.2 implies the following naive lower bound for dim(ι/B ◦ pB)(X [m]):

dim(ι/B ◦ pB)(X [m]) ≥ m(d + 1) − gB. (10.4)

Let us finish the proof by assuming Lemma 10.2 and hence (10.4). We have

gB − (dimX [m]
ι − dim(ι/B ◦ pB)(X [m])) = gB + dim(ι/B ◦ pB)(X [m]) − dim X [m]

ι

≥ m(d + 1) − (md + dim S)

≥ m − dimS.

This contradicts (10.1) for m ≥ dimS − t. So we are done. �

Proof of Lemma 10.2. Suppose Bi0 → S is isotrivial for some i0. Note that (A[m]/B)|ι−1
/B,S

(a) →
ι−1
/B,S(a) is an isotrivial abelian scheme for each a. Hence A/Bi0 , being an abelian subscheme of

A[m]/B via the decomposition (10.3), is isotrivial when restricted to ι−1
/B,S(a). Thus A|ι−1

/B,S
(a) →

ι−1
/B,S(a) is isotrivial. So by the discussion at the end of § 2, dim ιS(ι−1

/B,S(a)) = 0, where ιS : S →
Ag0 is the modular map for A → S.

Applying the modular map ι : A → Ag0 (and ιS : S → Ag0) to (10.2), we obtain (denote by
A[m]

ι = ι[m](A[m])) the following diagram.

A[m]
ι

p
ι[m](B)

��

π

��

A[m]
ι /ι[m](B)

π
/ι[m](B)

��

ι′
/B

��

��
Amg0−gB

π′
��

ιS(S)
id �� ιS(S)

ι′
/B,S

�� Amg0−gB

(10.5)
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The previous paragraph implies that dim(ι′/B,S)−1(a′) = 0 for each a′. Thus ι′/B,S is generically
finite, and so is ι′/B.

It is not hard to check that (ι/B ◦ pB)(X [m]) = (ι′/B ◦ pι[m](B))(X
[m]
ι ). So

dim(ι/B ◦ pB)(X [m]) = dim(ι′/B ◦ pι[m](B))(X
[m]
ι ) = dim pι[m](B)(X

[m]
ι ) ≥ dimX [m]

ι − gB,

where the last inequality holds because ι[m](B) → ιS(S) has relative dimension gB. This
contradicts (10.1) since t ≥ 0. �

Proof of (10.4). Use the notation in (10.2). Take a point s ∈ S such that (ι/B ◦ pB)(X [m]) →
π′((ι/B ◦ pB)(X [m])) is flat over s′ := ι/B,S(s). Then dim(ι/B ◦ pB)(X [m]) = dimπ′((ι/B ◦
pB)(X [m])) + dim((π′)−1(s′) ∩ (ι/B ◦ pB)(X [m])) ≥ dim((π′)−1(s′) ∩ (ι/B ◦ pB)(X [m])). So it suf-
fices to prove the lower bound for dim((π′)−1(s′) ∩ (ι/B ◦ pB)(X [m])).

On the other hand (ι/B ◦ pB)(A[m]
s ∩ X [m]) ⊆ (π′)−1(s′) ∩ (ι/B ◦ pB)(X [m])) by the commuta-

tive diagram (10.2). Hence it suffices to prove the lower bound for dim(ι/B ◦ pB)(A[m]
s ∩ X [m]).

But pB(A[m]
s ∩ X [m]) is contained in one fiber of π/B. So ιB|pB(A[m]

s ∩X[m])
is an isomorphism. So

dim(ι/B ◦ pB)(A[m]
s ∩ X [m]) = dim pB(A[m]

s ∩ X [m]).

Thus it suffices to prove the lower bound for dim pB(A[m]
s ∩ X [m]) = dim pB(Xm

s ).
The isogeny ρ in (10.3) gives an isogeny Am

s → Am
s , which we still denote by ρ by abuse of

notation. Set for simplicity B = Bs, Bi = (Bi)s for i ∈ {1, . . . , m}. Denote by pi : As → As/Bi

the quotient. Then by the last paragraph, to prove (10.4) it suffices to prove

dim(p1, . . . , pm)(ρ(Xm
s )) ≥ m(d + 1) −

m∑
i=1

dimBi. (10.6)

By hypothesis (c) on X, for a very general s we have Xs + A′
s ⊆ Xs for any non-isotrivial

abelian subscheme A′ of A. In particular, Xs + Bi ⊆ Xs by Lemma 10.2. Thus

dim pi(Xs) ≥ d − (dimBi − 1). (10.7)

Let us prove (10.6) for such an s by induction on m. For m = 1, this is precisely (10.7). For
general m ≥ 2, denote by q1 : Am

s → As the projection to the first factor. Recall that q1 ◦ ρ =
ρ1 ◦ q1 for some isogeny ρ1 : As → As; see below (10.3). For each z ∈ ρ1(Xs), we have

ρ(Xm
s ) ∩ q−1

1 (z) = ρ
(
Xm

s ∩ ρ−1(q−1
1 (z))

)
= ρ

(
Xm

s ∩ (q1 ◦ ρ)−1(z)
)

= ρ
(
Xm

s ∩ (ρ1 ◦ q1)−1(z)
)

= ρ
(
Xm

s ∩ q−1
1 (ρ−1

1 (z))
)

= ρ
(
Xm

s ∩ {ρ−1
1 (z)} × Am−1

s

)
=

⋃
z′∈Xs∩ρ−1

1 (z)

ρ({z′} × Xm−1
s ).

Thus each irreducible component of a non-empty fiber of q1|ρ(Xm
s ) is a translate of ρ′1(Xm−1

s ) for
the isogeny ρ′1 : Am−1

s → Am−1
s obtained from ρ|{0}×Am−1

s
.

We wish to apply the induction hypothesis to ρ′1(Xm−1
s ) and the quotient morphism

(p2, . . . , pm). However we cannot directly do this because ρ′1 may not satisfy the extra property
that q1 ◦ ρ′1 and q1 differ from an isogeny As → As.
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To solve this problem, let B⊥
1 be the neutral component of ρ−1(εS ×S B2 ×S · · · ×S Bm) ⊆

ρ−1(εS ×S A[m−1]), where εS is the zero section of A → S. Apply (10.3) to B⊥
1 ⊆ A[m−1]. We

thus obtain an isogeny

ρ′ : A[m−1] → A[m−1]

such that ρ′(B⊥
1 ) = B′

2 ×S · · · ×S B′
m and that q1 ◦ ρ′ = ρ2 ◦ q1 for some isogeny ρ2 : A → A. As

ρ′1 : Am−1
s → Am−1

s is obtained from ρ|{0}×Am−1
s

, we have

dim(p2, . . . , pm)(ρ′1(X
m−1
s )) = dim(p′2, . . . , p

′
m)(ρ′(Xm−1

s )),

where p′i : As → As/(B′
i)s is the quotient morphism.

Lemma 10.2 applies to B′
i since A/B′

i is still an abelian subscheme of A[m]/B. So B′
i → S is

non-isotrivial. Hence we can apply the induction hypothesis to ρ′(Xm−1
s ) and (p′2, . . . , p′m). So

dim(p′2, . . . , p
′
m)(ρ′(Xm−1

s )) ≥ (m − 1)(d + 1) −
m∑

i=2

dim(B′
i)s = (m − 1)(d + 1) −

m∑
i=2

dimBi.

Denote by q̄1 : As/B1 × · · ·As/Bm → As/B1 the projection to the first factor. Then we have
q̄1((p1, . . . , pm)(ρ(Xm

s ))) = p1(q1(ρ(Xm
s ))) = p1(q1 ◦ ρ(Xm

s ))=p1(ρ1 ◦ q1(Xm
s ))=p1(ρ1(Xs)). But

dim p1(ρ1(Xs)) ≥ d − (dimB1 − 1) by a similar argument used to prove (10.7). Hence by the fiber
dimension theorem we have

dim(p1, . . . , pm)(ρ(Xm
s )) ≥ (d − (dim B1 − 1)) +

(
(m − 1)(d + 1) −

m∑
i=2

dimBi

)

= m(d + 1) −
m∑

i=1

dimBi.

This finishes the proof. �

Proof of Theorem 10.1(ii). The proof of part (ii) is similar. Let us sketch it.
We reduce (ii) to the case where X contains the zero section of πA : A → S. Indeed, up to

replacing S by a Zariski open subset (which does not change the generic Betti rank in question)
we can take a section σ : S → X of πA|X . Then DA

m(X [m+1]) = DA
m((X − σ(S))[m+1]) for all

m ≥ 1. It suffices then to replace X by X − σ(S).
Set Y := DA

m(X [m+1]). We have Y ⊇ X [m] because X [m] = DA
m(0S ×S X ×S · · · ×S X) ⊆

DA
m(X [m+1]). Let AY be the translate of an abelian subscheme of A[m] → S by a torsion section

which contains Y , minimal for this property. Then AY = A[m] since AX[m] = A.
Suppose rankR(db

[m]
Δ |Y ) < 2(dim ι[m](Y ) − t). Applying Theorem 1.1(i) to Y , we get an

abelian subscheme B of A[m] → S (whose relative dimension we denote by gB) such that for the
map ι/B ◦ pB as in (10.2), we have dim(ι/B ◦ pB)(Y ) < dim ι[m](Y ) − t − gB. This B is different
from the one in the proof of part (i).

Under a possibly new decomposition (up to isogeny) A[m] � A×S · · · ×S A (m-copies), we
may write B = B1 ×S . . . ×S Bm for some abelian subschemes B1, . . . ,Bm of A. One can show
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that Bi → S is non-isotrivial for each i ∈ {1, . . . , m}: indeed it suffices to take a verbalized copy
of the proof of Lemma 10.2 with X [m] replaced by Y and X

[m]
ι replace by ι[m](Y ).

Then (10.4) holds for this new B. Thus

gB + t + dim(ι/B ◦ pB)(Y ) − dimY

≥ gB + t + dim(ι/B ◦ pB)(Y ) − ((m + 1)d + dim S)

≥ gB + t + dim(ι/B ◦ pB)(X [m]) − (m + 1)d − dimS + mr since X [m] ⊆ Y

≥ t + m − d − dimS by (10.4) and (10.5)

= t + m − dimX.

This contradicts dim(ι/B ◦ pB)(Y ) < dim ι[m](Y ) − t − gB when m ≥ dimX − t.

So rankR(db
[m]
Δ |Y ) ≥ 2(dim ι[m](Y ) − t) when m ≥ dim X − t. So the conclusion fol-

lows because rankR(db
[m]
Δ |DA

m(X[m+1])) = rankR(db
[m]
Δ |Y ) and dimDm(X [m+1]

ι ) = dim(ι[m] ◦
DA

m)(X [m+1]) = dim ι[m](Y ). �

11. Link with relative Manin–Mumford

In this section, we discuss about the relative Manin–Mumford conjecture. It is closely related to
Xdeg(1).

Let S be an irreducible variety over C, and let πS : A → S be an abelian scheme of relative
dimension g ≥ 1. Denote by Ator the set of points x ∈ A(C) such that [N ]x lies in the zero section
of A → S for some integer N . In other words, x is a torsion point in its fiber.

Let X be a closed irreducible subvariety such that πS(X) = S. Denote by AX the translate
of an abelian subscheme of A → S by a torsion section which contains X, minimal for this
property.

Relative Manin–Mumford Conjecture. If (X ∩ Ator)Zar = X, then codimAX
(X) ≤ dimS.

Conjecture 11.1. Assume S, πS , and X are defined over Q̄. If (X ∩ Ator)Zar = X, then
Xdeg(1) is Zariski dense in X.

The goal is to reduce the relative Manin–Mumford conjecture to Conjecture 11.1.

Proposition 11.2. Conjecture 11.1 implies the relative Manin–Mumford conjecture. More

precisely, for X ⊆ A → S such that (X ∩ Ator)Zar = X, we have codimAX
(X) ≤ dim S if Con-

jecture 11.1 holds for any irreducible subvariety X ′ ⊆ Ag′ defined over Q̄ with 1 ≤ g′ ≤ g,

dim X ′ ≤ dimX and dimπ′(X ′) ≤ dimS.8

Proof. First let us note that by standard specialization argument, if relative Manin–Mumford
holds for all S, πS and X defined over Q̄, then it holds for all S, πS and X defined over C.

Let X ⊆ A → S be as in the relative Manin–Mumford conjecture, which is defined over Q̄.
Note that AX → S itself is an abelian scheme. Replacing A → S by AX → S, we may assume
AX = A. It suffices to prove codimA(X) ≤ dimS.

8 Here π′ : Ag′ → Ag′ is the universal abelian variety.
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Let us prove it by induction on (dimS, g), upward on both parameters. When dimS = 0
it follows from the classical Manin–Mumford conjecture (first proved by Raynaud [Ray83] and
then re-proved by many others). The conclusion for the case g = 0 is easily true.

In general, consider the following modular map (4.1).

A ι ��

πS

��

��
Ag

π

��

S
ιS �� Ag

Let B = ιS(S). Then ι(A) = π−1(B) =: Ag|B. Now (X ∩ Ator)Zar = X implies (ι(X) ∩
ι(A)tor)Zar = ι(X). Applying Conjecture 11.1 to ι(X) ⊆ ι(A),9 we get that ι(X)deg(1) is Zariski
dense in ι(X). Hence by Theorem 7.1 we have ι(X)deg(1) = ι(X). Applying Theorem 8.1 to t = 1
and ι(X), we get an abelian subscheme B of Ag|B → B (whose relative dimension we denote
by gB) such that for

Ag|B
pB ��

π|Ag |B
��

(Ag|B)/B
π/B

��

ι/B
��

��
Ag−gB

π′
��

B
idB �� B

ι/B,G
�� Ag−gB

we have that ι/B ◦ pB is not generically finite and

dim(ι/B ◦ pB)(ι(X)) < dim ι(X) − gB + 1. (11.1)

Hence we have (denote by Ag−gB |ι/B,G(B) = (π′)−1(ι/B.G(B)))

(codimA(X) − dimS) − (
codim(Ag−gB |ι/B,G(B))(ι/B ◦ pB)(ι(X)) − dim ι/B,G(B)

)
= (dimA− dimS − dimX) − (

dim(Ag−gB |ι/B,G(B)) − dim ι/B,G(B) − dim(ι/B ◦ pB)(ι(X))
)

= g − dim X − (g − gB) + dim(ι/B ◦ pB)(ι(X))

= −dimX + dim(ι/B ◦ pB)(ι(X)) + gB

≤ −dim ι(X) + dim(ι/B ◦ pB)(ι(X)) + gB ≤ 0,

and so

codim(Ag−gB |ι/B,G(B))(ι/B ◦ pB)(ι(X)) ≤ dim ι/B,G(B) =⇒ codimA(X) ≤ dimS. (11.2)

If dim ι/B,G(B) < dimB, then dim ι/B,G(B) < dimS since dim B = dim ιS(S) ≤ dimS. Now
we can apply the induction hypothesis on dimS to get

codim(Ag−gB |ι/B,G(B))(ι/B ◦ pB)(ι(X)) ≤ dim ι/B,G(B).

So codimA(X) ≤ dimS by (11.2).

9 Note that ι and ιS are defined over Q̄, dim ι(X) ≤ dim X and dim π(ι(X)) = dim ιS(S) ≤ dim S.

2502

https://doi.org/10.1112/S0010437X20007435 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X20007435


Generic rank of Betti map and unlikely intersections

If dim ι/B,G(B) = dimB, then ι/B,G is generically finite. So ι/B is generically finite. But
ι/B ◦ pB is not generically finite. So gB > 0. Moreover,

dim(ι/B ◦ pB)(ι(X)) = dim pB(ι(X)) ≥ dim ι(X) − gB,

and hence dim pB(ι(X)) = dim ι(X) − gB by (11.1). So ι(X) + B = ι(X).
Now the assumption (X ∩ Ator)Zar = X implies(

pB(ι(X)) ∩ ((Ag|B)/B)tor

)Zar = pB(ι(X)).

As (Ag|B)/B → B has relative dimension g − gB < g, we can apply the induction hypothesis on
g to get codim(Ag |B)/B(pB(ι(X))) ≤ dimB.

As both ι/B and ι/B,G are generically finite, we have dim(Ag|B)/B = dim ι/B((Ag|B)/B) =
dim Ag−gB |ιB,G(B), dim pB(ι(X)) = dim(ι/B ◦ pB)(ι(X)) and dimB = dim ι/B,G(B). So the left
hand side of (11.2) holds by the previous paragraph. Thus codimA(X) ≤ dim S. �

Acknowledgements

The author would like to thank Umberto Zannier for relevant discussions, especially on the
historical notes on the Betti map. The author would like to thank Fabrizio Berroero, Philipp
Habegger, and Umberto Zannier on relavant discussions on relative Manin–Mumford. The author
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Appendix A. Discussion when the base takes some simple form

Let S be an irreducible subvariety over C and let πS : A → S be an abelian scheme of relative
dimension g ≥ 1. Let X be a closed irreducible subvariety of A with dimπS(X) = S.

Definition A.1. Denote by 〈X〉gen-sp the smallest subvariety of A of the following form, which
contains X: up to taking a finite covering of S, we have 〈X〉gen-sp = σ + Z + B, where B is an
abelian subscheme of A → S, σ is a torsion section of A → S, and Z = Z × S where C × S is
the largest constant abelian subscheme of A → S and Z ⊆ C.

If we furthermore require Z to be a point, then we obtain 〈X〉sg (Definition 1.5).
Let AX be the translate of an abelian subscheme of A → S by a torsion section, which

contains X, minimal for this property. Then AX → S itself is an abelian scheme, whose relative
dimension we denote by gX . It is easy to see 〈X〉gen−sp ⊆ 〈X〉sg ⊆ AX .

The variety 〈X〉gen-sp is closely related to rankR(dbΔ|X). Let us start with the following
proposition, saying that rankR(dbΔ|X) attains its minimal value if and only if X = 〈X〉gen-sp.

Proposition A.2. rankR(dbΔ|X) = 2(dim X − dimS) ⇐⇒ X = 〈X〉gen−sp.

In particular, if dimS = 1, then either rankR(dbΔ|X) = 2 dim X or X = 〈X〉gen−sp.

Proof. The direction ⇐ is not hard to check. Let us prove ⇒ now.
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Apply Theorem 1.1(i) to l = dimX − dimS + 1. Then rankR(dbΔ|X) < 2(dimX − dim
S + 1) if and only if there exists an abelian subscheme B of AX → S such that

dim(ι/B ◦ pB)(X) ≤ dimX − dimS − gB

for the following.

AX

pB ��

πS |AX

��

AX/B
π/B

��

ι/B
��

��
AgX−gB

π′
��

S
idS �� S

ι/B,S
�� AgX−gB

Thus 2(dim X − dimS) = rankR(dbΔ|X) ≤ 2gB + 2 dim(ι/B ◦ pB)(X) ≤ 2(dim X − dimS).
This implies dim pB(X) = dimX − gB, and dim(ι/B ◦ pB)(X) = dim X − dimS − gB =

dim pB(X) − dimS. So pB|X has relative dimension gB, and ι/B|pB(X) has relative dimension
dimS. So X = p−1

B (pB(X)) as pB has relative dimension gB, and pB(X) = ι−1
/B (ι/B(pB(X))) with

ι/B having relative dimension dimS. So ι/B,S has relative dimension dimS, making ι/B,S(S) a
point.

Now X = (ι/B ◦ pB)−1(ι/B ◦ pB)(X) and ι/B,S(S) is a point. So X = 〈X〉gen−sp. �

To further investigate the relation between rankR(dbΔ|X) with 〈X〉gen-sp, let us first of all
recall the following modular map (4.1).

A ι ��

πS

��

��
Ag

��

S
ιS �� Ag

Proposition A.3. We have the following:

(i) rankR(dbΔ|X) ≤ 2 min(dim ι(X), dim〈X〉gen−sp − dimS);
(ii) assume dim ιS(S) = 1 or the connected algebraic monodromy group of ιS(S) is simple. Then

rankR(dbΔ|X) ≥ 2 min(dim ι(X), dim〈X〉gen−sp − dimS).

Before proving this proposition, let us see its direct corollary on the Betti rank.

Corollary A.4. Assume that ιS(S) has dimension 1 or has simple connected algebraic

monodromy group. Then

rankR(dbΔ|X) = 2 min(dim ι(X), dim〈X〉gen−sp − dimS).

We point out that the hypotheses in Corollary A.4 cannot be removed; see Example 9.4.

Remark A.5. Let Cg be the universal curve embedded in Ag. Use notation in Theorems 1.2 and
1.2′. It is clearly true that 〈C[m]

S 〉gen−sp = Amg ×Amg S for all m ≥ 1.10 If S has dimension 1 or has
simple connected algebraic monodromy group (for example when S is the whole Torelli locus),

10 Here S is a subvariety of Ag, and Ag is seen as a subvariety of Amg via the diagonal embedding.
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then Corollary A.4 has the following immediate corollaries: C
[m]
S has maximal generic Betti rank

for all m ≥ 3 and g ≥ 2, Dm(C[m+1]
S ) has maximal generic Betti rank for all m ≥ 4 and g ≥ 2,

and C
[m]
S − C

[m]
S has maximal generic Betti rank for all m ≥ 4 when g ≥ 5, for all m ≥ 5 when

g = 4 and for all m ≥ 6 for g = 3.

Proof of Proposition A.3. (i) We have seen rankR(dbΔ|X) ≤ 2 dim ι(X) at the end of § 4. On
the other hand it is not hard to check rankR(dbΔ|〈X〉gen−sp

) = 2(dim〈X〉gen−sp − dimS) by the
definitions of bΔ and 〈X〉gen−sp. Hence we are done because rankR(dbΔ|X) ≤ rankR(dbΔ|〈X〉gen−sp

).
(ii) Set l = min(dim ι(X), dim〈X〉gen−sp − dimS). Assume rankR(dbΔ|X) < 2l. Then by

Theorem 1.1(i), there exists an abelian subscheme B of AX → B (whose relative dimension
we denote by gB) such that

dim(ι/B ◦ pB)(X) < min(dim ι(X), dim〈X〉gen−sp − dim S) − gB (A.1)

for the following.

AX

pB ��

πS |AX

��

AX/B
π/B

��

ι/B
��

��
AgX−gB

π′
��

S
idS �� S

ι/B,S
�� AgX−gB

(A.2)

Observe that 〈X〉gen−sp ⊆ p−1
B

(
ι−1
/B

(〈(ι/B ◦ pB)(X)〉gen−sp

))
. So

dim〈X〉gen−sp − dimS ≤ dim(B → S) + dim〈(ι/B ◦ pB)(X)〉gen−sp

= gB + dim〈(ι/B ◦ pB)(X)〉gen−sp,

and thus (ι/B ◦ pB)(X) = 〈(ι/B ◦ pB)(X)〉gen−sp by (A.1). So ι/B,S(S) is not a point.
Apply the modular map ι : A → Ag (and ιS : S → Ag) to (A.2). Let B = ιS(S). Then we get

the following.

ι(AX)
p′B ��

π|ι(AX )

��

ι(AX)/ι(B)

��

ι′
/B

��

��
AgX−gB

π′
��

B
idB �� B

ι′
/B,S

�� AgX−gB

Let GB be the connected algebraic monodromy group of B ⊆ Ag, and let GQ be the
Mumford–Tate group of B ⊆ Ag. Then GB < Gder

Q .
We have that (ι(AX)/ι(B))|

ι
′−1
/B,S

(a)
is an isotrivial abelian scheme over ι

′−1
/B,S(a). Take a to be

Hodge generic in ι′/B,S(B), then by a theorem of Deligne and André [And92, § 5, Theorem 1], the

connected algebraic monodromy group H of ι
′−1
/B,S(a) is a normal subgroup of Gder

Q . Moreover,

H < GB since ι
′−1
/B,S(a) ⊆ B. Thus H � GB.

Recall the assumption: either dimB = 1 or H is simple. In the first case, either ι′/B,S(B)
is a point or ι′/B,S is quasi-finite. In the second case, either H = GB or H = 1 by the previous
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paragraph. If H = GB, then the fact that (ι(AX)/ι(B))|
ι
′−1
/B,S

(a)
→ ι

′−1
/B,S(a) is isotrivial implies

that ι(AX)/ι(B) → B is isotrivial. Hence ι′/B,S(B) is a point. If H = 1, then dim ι
′−1
/B,S(a) = 0,

and hence ι′/B,S is generically quasi-finite.
As ι′/B,S(B) = ι/B,S(S) is not a point, we have that ι′/B,S is generically quasi-finite. So

ι′B is generically quasi-finite, and so dim(ιB ◦ pB)(X) = dim(ι′/B ◦ p′B)(ι(X)) = dim p′B(ι(X)) ≥
dim ι(X) − gB, contradicting (A.1). �

Appendix B. Decomposition of abelian subschemes

The goal of this appendix is to prove (10.3).

B.1 Linear algebra
Let G be a reductive group and let V be a finite-dimensional G-representation, both defined
over Q.

Let m ≥ 1 be an integer and let W be a G-submodule of V ⊕m. The goal of this section is to
prove the following proposition.

Proposition B.1. There exists a G-linear isomorphism

τ : V ⊕m � V ⊕m

such that

τ(W ) = W1 ⊕ · · · ⊕ Wm

for some G-submodules W1, . . . , Wm of V . Moreover, τ can be chosen such that q1 ◦ τ = q1, where

q1 : V ⊕m → V is the projection to the first factor.

The key to prove this proposition is the following lemma.

Lemma B.2. Let q : V ⊕m → V ⊕m′
be a linear projection. Then there exists a G-homomorphism

i : V ⊕m′ → V ⊕m such that

(i) q ◦ i = 1V ⊕m′ ;

(ii) i(q(W )) = i(V ⊕m′
) ∩ W ;

(iii) i|q(W ) is injective.

Proof. As G is a reductive group and char Q = 0, there exists a G-submodule W0 of W such that
W = (W ∩ Ker q) ⊕ W0. In particular W0 ∩ Ker q = W0 ∩ W ∩ Ker q = {0}. Thus W0 + Ker q =
W0 ⊕ Ker q. Note that q(W ) = q(W0), and q|W0 is injective.

Now W0 ⊕ Ker q is a G-submodule of V ⊕m. Again as G is a reductive group and char Q = 0,
there exists a G-submodule W ′

0 of V ⊕m such that V ⊕m = (W0 ⊕ Ker q) ⊕ W ′
0. Moreover we claim

that W ′
0 ∩ W = 0. Indeed, W = (W ∩ Ker q) ⊕ W0 ⊆ Ker q ⊕ W0, and W ′

0 ∩ (Ker q ⊕ W0) = 0.
Thus (W0 ⊕ W ′

0) ∩ W = W0.
As V ⊕m = (W0 ⊕ Ker q) ⊕ W ′

0, we have that q|W0⊕W ′
0
: W0 ⊕ W ′

0 → V ⊕m′
is injective and

both sides have the same dimension. So q|W0⊕W ′
0

is an isomorphism.
Let i : V ⊕m′ → V ⊕m be the composite of the inclusion W0 ⊕ W ′

0 ⊆ V ⊕m with (q|W0⊕W ′
0
)−1.

Then i(V ⊕m′
) = W0 ⊕ W ′

0.
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Let us show that i is the desired map. Property (i) clearly holds. To see (ii) and
(iii), recall that q(W ) = q(W0), and hence i|q(W ) = i|q(W0) = (q|W0⊕W ′

0
)−1|q(W0) : q(W0) � W0 =

(W0 ⊕ W ′
0) ∩ W = i(V ⊕m′

) ∩ W . �

Proof of Proposition B.1. We prove the proposition by induction on m. When m = 1, the
proposition trivially holds true.

Now for a general m ≥ 1, suppose the proposition is proved for 1, . . . , m − 1.
Apply Lemma B.2 to q1 : V ⊕m → V the projection to the first component. We thus obtain

i1 : V → V ⊕m with the three properties. In particular V ⊕m = i1(V ) ⊕ Ker q1.
Let q′1 : V ⊕m → V ⊕(m−1) be the quotient by i1(V ). Then Ker q′1 ∩ W = i1(V ) ∩ W =

i1(q1(W )) by property (ii) of i1. Let i′1 : V ⊕(m−1) → V ⊕m, v �→ (0, v). Then i′1(V ⊕(m−1)) = Ker q1

and from the last paragraph we have V ⊕m = i1(V ) ⊕ i′1(V ⊕(m−1)). Define

τ1 : V ⊕m (q1,q′1)−−−−→ V ⊕ V ⊕(m−1) i1+i′1−−−→ V ⊕m. (B.1)

Then τ1 is a G-isomorphism, and τ1(W ) ⊆ i1 ◦ q1(W ) ⊕ i′1 ◦ q′1(W ). But dim i′1 ◦ q′1(W )=
dim q′1(W )=dimW−dim(Ker q′1 ∩ W ) = dimW − dim i1(q1(W )). Hence dim W = dim τ1(W ) ≤
dim i1 ◦ q1(W ) + dim i′1 ◦ q′1(W ) = dim i1 ◦ q1(W ) + dimW − dim i1 ◦ q1(W ) = dim W . Hence
τ1(W ) = i1 ◦ q1(W ) ⊕ i′1 ◦ q′1(W ).

Set W1 = i1 ◦ q1(W ) and W⊥
1 = i′1 ◦ q′1(W ).

By the induction hypothesis applied to W⊥
1 ⊆ V ⊕(m−1), there exists a G-linear τ ′

1 : V ⊕(m−1) �
V ⊕(m−1) such that τ ′

1(W
⊥
1 ) = W2 ⊕ · · · ⊕ Wm for some G-submodules W2, . . . , Wm of V .

Let τ be the composite

τ : V ⊕m τ1−→ V ⊕m = V ⊕ V ⊕(m−1) (1V ,τ ′
1)−−−−→ V ⊕ V ⊕(m−1) = V ⊕m.

Then τ(W ) = W1 ⊕ W2 ⊕ · · · ⊕ Wm. Hence we are done for the construction of τ .
Let us prove the ‘Moreover’ part. By our construction of τ , we have q1 ◦ τ = q1 ◦ (1V , τ ′

1) ◦
τ1 = q1 ◦ τ1 = q1 ◦ (i1 ◦ q1 + i′1 ◦ q′1) = q1 as q1 ◦ i1 = 1V and q1 ◦ i′1 = 0. �

B.2 Proof of (10.3)
Now we are ready to prove (10.3). Let πS : A → S be an abelian scheme, A[m] be the m-fold
fibered power, and B be an abelian subscheme of π

[m]
S : A[m] → S.

The variation of Hodge structures (VQHS) (R1(πS)∗Q)∨ over S is polarizable of type
(−1, 0) + (0,−1). Its generic Mumford–Tate group G is a reductive group defined over Q.

As EndVQ−HS((R1(πS)∗Q)∨) is a variation of Hodge structures of S of weight 0, there
exists s ∈ S(C) such that each element in EndQ−HS((R1(πS)∗Q)∨s ) extends to an element in
EndVQHS((R1(πS)∗Q)∨), up to replacing S by a finite covering. See [PS08, proof of Theorem
10.20].

Set V = (R1(πS)∗Q)∨s = H1(As, Q). Apply Proposition B.1 to W = H1(Bs, Q). We obtain
a G-isomorphism τ : V ⊕m � V ⊕m such that τ(W ) = W1 ⊕ · · · ⊕ Wm for some G-submodules
W1, . . . , Wm of V . Moreover, q1 ◦ τ = q1 with q1 : V ⊕m → V the projection to the first factor.

For each i ∈ {1, . . . , m}, Wi = Kerαi for some αi ∈ EndG(V ). But EndG(V ) ⊆ EndQ−HS(V ),
so by the discussion above each αi extends to an element in EndVQHS((R1(πS)∗Q)∨),
which by abuse of notation is still denoted by αi. Similarly τ extends to some ρ ∈
EndVQHS((R1(π[m]

S )∗Q)∨). We then have ρ((R1(π[m]
S |B)∗Q)∨) = Ker(α1) ×S · · · ×S Ker(αm).
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By [Del71, Rappel 4.4.3], ρ gives rise to an isogeny A[m] → A[m] and each αi gives rise
to an isogeny A → A. By abuse of notation we still use ρ, αi to denote them. Then ρ(B) =
Ker(αi) ×S · · · ×S Ker(αm). It suffices to take Bi = Ker(αi).

The ‘Moreover’ part of (10.3) follows from the same argument and the equality q1 ◦ τ = q1

above.
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