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We prove results on the relaxation and weak∗ lower semicontinuity of integral
functionals of the form

F [u] :=

∫
Ω

f

(
1

2

(
∇u(x) + ∇u(x)T

))
dx, u : Ω ⊂ R

d → R
d,

over the space BD(Ω) of functions of bounded deformation or over the
Temam–Strang space

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}
,

depending on the growth and shape of the integrand f . Such functionals are
interesting, for example, in the study of Hencky plasticity and related models.
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1. Introduction

Let Ω ⊂ R
d, d � 2 be a bounded Lipschitz domain occupied by some elasto-plastic

material body and let u : Ω → R
d denote a displacement field. The classical mini-

mization problem in the theory of Hencky plasticity [5,20,37] involves the following
convex functional: ∫

Ω

ϕ(dev Eu) +
κ

2
(div u)2 dx, (1.1)

where ϕ : SD(d) → [0,+∞) is a function which grows quadratically on some com-
pact set and linearly outside of this set, and κ = λ+ 2μ/3 > 0 is the bulk modulus
of the material with the Lamé constants λ and μ. Here, SD(d) denotes the space
of symmetric and deviatoric matrices in R

d×d and devA := A− d−1(trA) Id is
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474 K. Kosiba and F. Rindler

the deviatoric (trace-free) part of a matrix A ∈ R
d×d. We also write Eu for the

symmetrized gradient, i.e.

Eu :=
1
2
(∇u+ ∇uT

)
.

The minimization problem (1.1) and its relaxation have attracted much atten-
tion recently. For instance, in [13] the authors studied the same problem with an
additional jump penalization term. In [31] the L1-relaxation of (1.1) is identified,
further generalized in [22] to allow integrands for which deviatoric and trace com-
ponents are not necessarily separated additively. In [11,12] the author investigates
the relaxation of Signorini problems in the framework of Hencky’s plasticity.

Here we consider the functional (1.1) to be generalized to include possibly non-
convex integrands, i.e. we consider functionals of the form

F [u,Ω] :=
∫

Ω

f(Eu) dx, (1.2)

where the continuous integrand f : R
d×d
sym → [0,+∞) satisfies the anisotropic growth

conditions

m
(
(trA)2 + |devA|) � f(A) � M

(
1 + (trA)2 + |devA|) (1.3)

for some constants 0 < m � M and all A ∈ R
d×d
sym .

A first choice for a function space on which to define (1.2) with (1.3) is the space
of integrable functions u with integrable symmetrized distributional derivative Eu
and square-integrable distributional divergence, i.e.

LU(Ω) :=
{
u ∈ L1(Ω; Rd) : Eu ∈ L1(Ω; Rd×d

sym), div u ∈ L2(Ω)
}
.

Unfortunately, in this space the direct method of the calculus of variations does
not provide any solution to the minimization problem. The culprit is the lack of
reflexivity and consequently, the inability to infer the (weak) relative compactness
from the norm-boundedness of a minimising sequence.

Therefore, the functional (1.2) needs to be extended to account for displacement
fields u whose linear strains Eu are measures, since in the space of measures norm-
boundedness of minimising sequence implies weak∗ relative compactness. Then the
usual direct method applies. For this, one first introduces the space BD(Ω) of func-
tions of bounded deformation as the space of all functions u ∈ L1(Ω; Rd) such that
the distributional symmetrized derivative Eu := 1

2 (Du+DuT ) is representable as
a finite Radon measure Eu ∈ M(Ω; Rd×d

sym). Then, the Temam–Strang space U(Ω) is
the space of functions of bounded deformation with square-integrable divergence,
i.e.

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}
.

For more information on BD,U and their applications in the theory of plasticity
we refer to [2,20,25,30,35–38].
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On the relaxation of integral functionals 475

For an integrand f that is additionally symmetric rank-one convex (see below),
it was then established in [22] that the ‘continuity extension’ of the functional (1.2)
over the Temam–Strang space is given by

F [u,Ω] :=
∫

Ω

f(Eu) dx+
∫

Ω

f#
dev

(
dEsu

d|Esu|
)

d|Esu|, u ∈ U(Ω); (1.4)

see theorem 2.16 for details. Here, the strain Eu is decomposed into Eu =
Eau+ Esu = EuLd Ω + Esu according to the Lebesgue decomposition theorem,
dEsu/d|Esu| is the polar density of the singular part Esu with respect to |Esu|,
and f#

dev is the upper recession function of the restriction fdev of f to the symmetric
deviatoric (d× d)-matrices, denoted by SD(d), i.e.

f#
dev(D) := lim sup

D′→D
s→∞

fdev(sD′)
s

, D ∈ SD(d) . (1.5)

As our first result, we extend the previous strong L1-relaxation result by Jesenko
and Schmidt (see proposition 3.15 in [22]) to a weak∗ relaxation in the Temam–
Strang space with a weaker subcritical lower bound on the integrand. For this, we
define the relaxation F∗ of F for u ∈ U(Ω) as follows:

F∗[u,Ω] := inf
{

lim inf
h→∞

F [uh,Ω] : (uh) ⊂ LU(Ω), uh
∗⇁ u in U(Ω)

}
, (1.6)

where the weak∗ convergence is understood in a sense of definition 2.5 below.

Theorem 1.1. Let Ω ⊂ R
d be a bounded Lipschitz domain and let f : R

d×d
sym →

[0,∞) be a continuous function satisfying the following conditions:

(1) there exist constants 0 < m � M such that for all A ∈ R
d×d
sym the growth

m
(
(trA)2 + |devA|) � f(A) � M

(
1 + (trA)2 + |devA|) (1.7)

holds;

(2) f is symmetric-quasiconvex, that is for any bounded Lipschitz domain ω ⊂ R
d,

any symmetric matrix A ∈ R
d×d
sym and any ψ ∈ W1,∞

0 (ω; Rd) the inequality

|ω|f(A) �
∫

ω

f(A+ Eψ(y)) dy

holds;

(3) there exist constants γ ∈ [0, 2) and δ ∈ [0, 1) such that for all A ∈ R
d×d
sym the

inequality

f(A) � f#
dev(devA) −M

(| trA|γ + |devA|δ + 1
)

(1.8)

holds.

Then, the functional (1.4) is the relaxation of (1.2) with respect to weak∗ topology
in U(Ω), that is F∗[u,Ω] = F [u,Ω].
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Remark 1.2. The lower bound with subcritical growth in both trace and devia-
toric directions in the condition (1.3) is essential for the proof. It remains an open
question whether it can be deduced from the conditions (1.1) and (1.2).

It does not seem possible to prove theorem 1.1 using the blow-up argument
for both regular and singular estimates as in the usual BV lower semicontinuity
results [3,18]. The classical blow-up argument was tailored for functionals with an
isotropic linear growth imposed on the integrands. This, however, is not the case
here, as the admissible integrands in theorem 1.1 grow quadratically in the trace
direction. The problem is that if one attempts to utilize the blow-up argument at
singular points, one eventually faces the problem of controlling the blow-up rate
of the divergence terms of the blow-up sequence. A priori it seems not possible to
obtain a sufficient decay of this sequence of divergences, and so a different strategy
based on the Kirchheim–Kristensen convexity result [23,24] needs to be employed.

As our second result, we give a refined relaxation theorem in BD for homogeneous
integrands, improving the results of [6,8,33] to an essentially optimal (under the
following growth conditions) result:

Theorem 1.3. Let Ω ⊂ R
d be a bounded Lipschitz domain and let f : R

d×d
sym →

[0,∞) be a continuous function such that there exist constants 0 < m � M, for
which the inequality

m|A| � f(A) � M(1 + |A|), A ∈ R
d×d
sym , (1.9)

holds. Then, the functional

F [u,Ω] :=
∫

Ω

(SQf)(Eu) dx+
∫

Ω

(SQf)#
(

dEsu

d|Esu|
)

d|Esu|, u ∈ BD(Ω)

is the relaxation of the functional

F [u,Ω] :=
∫

Ω

f(Eu) dx, u ∈ LD(Ω) := BD(Ω) ∩ {u : Esu = 0}

with respect to the weak∗ topology in BD(Ω).

Here, the relaxation F∗ of F is defined as

F∗[u,Ω] := inf
{

lim inf
h→∞

F [uh,Ω] : (uh) ⊂ LD(Ω), uh
∗⇁ u in BD(Ω)

}
. (1.10)

Moreover, SQf : R
d×d
sym → [0,∞) is the symmetric-quasiconvex envelope, defined by

SQf(A) := inf
{
−
∫

D

f(A+ Eψ(y)) dy : ψ ∈ W1,∞
0 (D; Rd)

}
.

The set D ⊂ R
d in the above formula is an arbitrary bounded Lipschitz domain.

In theorem 1.1 in [33], only a weak∗ lower semicontinuity result, and not a full
relaxation result, was established under the assumption that the strong recession
function f∞ exists. Our theorem 1.3 extends [8] and also corollary 1.10 in [6] to

https://doi.org/10.1017/prm.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.22


On the relaxation of integral functionals 477

a relaxation theorem without any assumption on the recession function. We note
that in view of theorem 2 in [28], one can construct a function satisfying (1.9), for
which f∞ does not exist.

Remark 1.4. In theorems 1.1 and 1.3 the weak upper recession functions f#
dev and

(SQf)# respectively are evaluated only on matrices from the symmetric rank-one
cone. As the integrands f and SQf are symmetric-quasiconvex, hence symmetric
rank-one convex, by a simple convexity argument one can show that the upper
recession functions agree with the lower recession functions (with the lower limit
in place of the upper limit). This means that in the statements of theorems 1.1
and 1.3 we could use the lower recession functions instead (which, in a sense, are
more natural for lower semicontinuity results). However, while (SQf)# can easily
be seen to be symmetric quasiconvex (by Fatou’s lemma), this is not possible for
the lower recession function; see also remarks 8 and 9 in [33] for further discussion
of this subtle point.

2. Preliminaries

By R
d we denote the d-dimensional Euclidean space with d � 1. We write B(x, r)

for an open ball, B(x, r) for a closed ball and ∂B(x, r) for a sphere centred at
x ∈ R

d with the radius r > 0. For any matrix A ∈ R
d×d its deviatoric projection is

defined as devA := A− d−1(trA) Id, where Id ∈ R
d×d is the identity matrix. The

set of all symmetric and deviatoric matrices in R
d×d is denoted by

SD(d) :=
{
M ∈ R

d×d
sym : trM = 0

}
.

In this paper we always assume that Ω ⊂ R
d is an open bounded Lipschitz

domain, unless stated otherwise.
We write Lp(Ω), Lp(Ω;X), Lp

loc(Ω), etc., for the Lebesgue spaces and Wk,p(Ω),
Wk,p(Ω;X), Wk,p

g (Ω), etc., for the Sobolev spaces with suitable exponents.

2.1. Measure theory

We write B(X) for the Borel σ-algebra on a topological space X. The d-
dimensional Lebesgue measure is denoted by Ld and for the Ld-measurable set
A ⊆ R

d we occasionally write |A| instead of Ld(A).
The cone of (finite) Radon measures is denoted by M+(Rd) and its subspace

of probability measures is denoted by M1(Rd). We also use local versions of these
spaces denoted by M+

loc(R
d) and M1

loc(R
d), where the measures restricted to any

compact set K ⊂ R
d are in M+(K) or M1(K), respectively.

The following theorem provides a simple criterion for a set function to be a Radon
measure (for the proof see theorem 1.53 in [4]).

Theorem 2.1 De Giorgi-Letta. Let X be a metric space and let U(X) denote the
set of open subsets of X. Let μ : U(X) → [0,∞] be a set function such that

(1) μ(∅) = 0;

(2) (monotonicity) for A,B ∈ U(X) if A ⊂ B then μ(A) � μ(B);
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(3) (subadditivity) for A,B ∈ U(X) it holds that μ(A ∪B) � μ(A) + μ(B);

(4) (superadditivity) for A,B ∈ U(X) with A ∩B = ∅ it holds that μ(A ∪B) �
μ(A) + μ(B);

(5) (inner regularity) μ(A) = sup{μ(B) : B ∈ U(X), B � A}.

Then, the extension of μ to every B ⊂ X defined by

μ(B) := inf {μ(A) : A ∈ U(X), A ⊃ B}

is an outer measure. In particular, the restriction of μ to the Borel σ-algebra is a
positive measure.

Let μ be a positive Radon measure in an open set Ω ⊂ R
d and let k � 0. We

define the upper k-density of μ at x ∈ Ω as

Θ∗
k(μ, x) := lim sup

r↓0

μ(B(x, r))
ωkrk

,

where ωk := πk/2Γ(1 + k/2) is the Lebesgue measure of a unit ball in R
k.

The following result (see theorem 2.56 in [4] for the proof) asserts that the upper
k-density can be used to estimate the measure μ from below by the k-dimensional
Hausdorff measure Hk.

Proposition 2.2. Let Ω ⊂ R
d be an open set and let μ be a positive Radon measure

in Ω. Then, for any 0 < t <∞ and any Borel set B ⊂ Ω the implication

Θ∗
k(μ, x) � t ∀ x ∈ B =⇒ μ � tHk B

holds.

We also use vector-valued Borel measures μ : B(Rd) → R
N , which are σ-additive

set functions with μ(∅) = 0. The space of all such vector measures is denoted by
M(Rd; RN ). The space of local vector measures is denoted by Mloc(Rd; RN ). For a
vector measure μ ∈ M(Rd; RN ) we define its total variation measure |μ| ∈ M+(Rd)
for every Borel set S ⊂ Ω by

|μ|(S) := sup

{∑
k∈N

|μ(Sk)| : S =
⋃
k∈N

Sk, {Sk} is a Borel partition of S

}
.

The restriction of a measure μ ∈ Mloc(Rd; RN ) to a Borel set B ∈ B(Rd) is defined
as μ B(S) := μ(B ∩ S) for all relatively compact Borel sets S ∈ B(Rd).

For a positive measure μ on a locally compact separable metric space X, the
support of μ, in symbols suppμ, is the closed set of all points x ∈ X such that
μ(U) > 0 for every neighbourhood U of x. For a vector measure ν we define its
support to be the support of its total variation measure |ν|.

https://doi.org/10.1017/prm.2020.22 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2020.22


On the relaxation of integral functionals 479

Theorem 2.3 Besicovitch differentiation theorem. Let μ ∈ M(Rd; RN ) be a vector-
valued Radon measure and let ν ∈ M+(Rd) be a positive Radon measure. Then for
ν-a.e. x0 ∈ R

d in the support of ν, the limit

dμ
dν

(x0) := lim
r↓0

μ(B(x0, r))
ν(B(x0, r))

exists and is called the Radon–Nikodym derivative of μ with respect to ν.
Moreover, we have the Lebesgue decomposition of μ = (dμ/dν)ν + μs, where

μs = μ E is singular with respect to ν and

E = (Rd \ supp ν) ∪
{
x ∈ supp ν : lim

r↓0
|μ|(B(x, r))
ν(B(x, r))

= ∞
}
.

For the proof, see theorem 2.22 in [4]. See also theorem 5.52 in [4] for a more
general version, where a ball B(x0, r) can be replaced with a set x0 + rC for any
open convex set C ⊂ R

d containing the origin.

2.2. Function spaces

In this section we briefly recall definitions and basic properties of the space
of functions with bounded deformation and its subspace with square-integrable
distributional divergences, called the Temam–Strang space.

2.2.1. Functions of bounded deformation In applications coming from plasticity
theory [35,36,38] one is often concerned with the class of functions

LD(Ω) :=
{
u ∈ L1(Ω; Rd) : Eu ∈ L1(Ω; Rd×d

sym)
}
,

where Eu := 1
2 (∇u+ ∇uT ) is the distributional symmetrized gradient of a mapping

u : Ω → R
d. The space LD(Ω) is a Banach space when endowed with the norm

‖u‖LD := ‖u‖L1 + ‖Eu‖L1 .

However, in general we cannot infer weak relative compactness from boundedness,
since LD(Ω) is not reflexive. If a bounded sequence in LD(Ω) has equiintegrable sym-
metric gradients, then in virtue of the Dunford–Pettis theorem, we could infer the
weak relative compactness. The equiintegrability, however, is rare in applications,
so we need to consider a larger space instead.

Therefore, we define the space BD(Ω) of functions of bounded deformation [2,35,
36,38] as the space of all functions u ∈ L1(Ω; Rd) such that the distributional sym-
metrized derivative is representable as a finite Radon measure Eu ∈ M(Ω; Rd×d

sym).
The space BD(Ω) is a Banach space when endowed with the norm

‖u‖BD := ‖u‖L1 + |Eu|(Ω).

According to the Lebesgue decomposition theorem, we split the measure Eu into

Eu = EuLd + Esu,

where Eu := dEu/dLd ∈ L1(Ω,Ld; Rd×d
sym) is the Radon–Nikodym derivative of Eu

with respect to the Lebesgue measure Ld (called the approximate symmetrized
gradient) and Esu ⊥ Ld is the singular part of Eu.
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We have the following BD-analogue of Alberti’s rank-one theorem in BV
(cf. [1,29]).

Theorem 2.4. Let Ω ⊂ R
d be an open set and let u ∈ BD(Ω). Then, for |Esu|-a.e.

x ∈ Ω, there exist a(x), b(x) ∈ R
d \ {0} such that

dEsu

d|Esu| (x) = a(x) � b(x),

where a� b := (a⊗ b+ b⊗ a)/2 denotes the symmetrized tensor product.

For the proof, see [16].

2.2.2. Temam–Strang space For the theory of elasto-plasticity in the geometrically
linear setting the class of functions defined as

LU(Ω) :=
{
u ∈ LD(Ω) : div u ∈ L2(Ω)

}
becomes a natural choice [14,20,22,37]. Unfortunately, the space LU(Ω) inherits
the poor compactness property of LD(Ω) and again, it is reasonable to look for a
larger space which could be used instead of LU(Ω) to overcome this issue. Therefore
we define the Temam–Strang space U(Ω) as a subspace of BD(Ω):

U(Ω) :=
{
u ∈ BD(Ω) : div u ∈ L2(Ω)

}
.

The space U(Ω) is endowed with the norm

‖u‖U := ‖u‖BD + ‖div u‖L2 ,

which turns it into a Banach space. Similarly to the space BD, one usually works
in weaker topologies than the norm topology. We distinguish three such topologies
in the following.

Definition 2.5 Weak∗ convergence. We say that (uh) ⊂ U(Ω) converges weakly∗

to u in U(Ω) if uh → u strongly in L1(Ω; Rd), Euh
∗⇁ Eu weakly∗ in M(Ω; Rd×d

sym)
and div uh ⇀ div u weakly in L2(Ω).

We have the following simple fact.

Lemma 2.6. Let (uh) ⊂ U(Ω) be a sequence such that uh → u strongly in L1(Ω; Rd)
and (uh) is uniformly norm-bounded in U(Ω). Then, (uh) converges weakly∗ to u
in U(Ω).

Note that the same result holds for a sequence in BD(Ω) and both statements
can be proved similarly to the proof of proposition 3.13 in [4].

Definition 2.7 Strict convergence. We say that a sequence (uh) ⊂ U(Ω) converges
strictly to u in U(Ω) if uh → u strongly in L1(Ω; Rd), |Euh|(Ω) → |Eu|(Ω) and
div uh → div u strongly in L2(Ω).
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For a measure μ ∈ M(Rd; Rd) with the Lebesgue decomposition

μ =
dμ
dLd

Ld + μs

we define a Borel measure 〈μ〉 : B(Rd) → [0,∞] by

〈μ〉(A) :=
∫

A

√
1 +

∣∣∣∣ dμ
dLd

∣∣∣∣
2

dx+ |μs|(A).

Definition 2.8 Area-strict convergence. We say that (uh) ⊂ U(Ω) converges area-
strictly to u in U(Ω) if uh → u strictly, 〈Euh〉(Ω) → 〈Eu〉(Ω) and 〈devEuh〉(Ω) →
〈devEu〉(Ω).

The last type of convergence is particularly important, as it allows approxima-
tion of functions in U(Ω) by smooth functions (which is not possible in the norm
topology), see remark 2.17.

For u ∈ U(Ω) we have that devEsu = Esu, since the trace part of Eu, which is
equal to div u, is absolutely continuous with respect to the Lebesgue measure Ld.

2.3. Generalized convexity

In this section we recall some information about weaker notions of convexity.
These convexity notions are symmetric counterparts of the usual quasiconvexity in
the sense of Morrey [32] and rank-one convexity.

Definition 2.9. Let f : R
d×d
sym → R be a locally bounded Borel function. We call f

symmetric-quasiconvex, provided that for all bounded Lipschitz domains D ⊂ R
d,

all test functions ψ ∈ W1,∞
0 (D; Rd) and all matrices A ∈ R

d×d
sym the inequality

f(A) � 1
|D|

∫
D

f(A+ Eψ(y)) dy (2.1)

holds.

If the function f additionally satisfies an asymptotic growth condition of the form
|f(A)| � C(1 + |A|p), p ∈ [1,∞), then it is sufficient to test the above inequality
with ψ ∈ W1,p

0 (D; Rd) instead of Lipschitz functions (the proof is analogous to
lemma 7.1 in [34], also cf. proposition 3.4 in [19]).

Definition 2.10 Symmetric-quasiconvex envelope. Let f : R
d×d
sym → R be a Borel

function. Then, the symmetric-quasiconvex envelope SQf : R
d×d
sym → R ∪ {−∞} is

defined as

SQf(A) := inf
{
−
∫

D

f(A+ Eψ(y)) dy : ψ ∈ W1,∞
0 (D; Rd)

}
. (2.2)

Remark 2.11.

(1) By the Vitali covering argument one can show that the inequality (2.1)
and the formula (2.2) are independent of the choice of the domain D
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(cf. lemma 5.2(i) in [34]). See also proposition 5.11 in [15] for a different
proof.

(2) For a non-negative continuous function f with p-growth, 1 � p <∞, the
symmetric-quasiconvex envelope SQf is symmetric-quasiconvex and also has
p-growth (see lemma 7.1 in [34]).

(3) For a function f as in (1.2), we can equivalently express the symmetric-
quasiconvex envelope of f as the greatest symmetric-quasiconvex function,
no larger than f , i.e.

SQf(A) = sup {g(A) : g is symmetric-quasiconvex and g � f} .

Definition 2.12. Let f : R
d×d
sym → R be a locally bounded Borel function. We call

f symmetric rank-one convex if

R � t �→ f(A+ ta� b)

is convex for all A ∈ R
d×d
sym and all a, b ∈ R

d.

By the one-directional oscillations argument, similar to the one in the proof of
proposition 5.3 in [34], one can prove that for a symmetric-quasiconvex function
f : R

d×d
sym → R the inequality

f(θA+ (1 − θ)B) � θf(A) + (1 − θ)f(B)

holds for A,B ∈ R
d×d
sym with B −A = a� b for some a, b ∈ R

d and θ ∈ [0, 1]. This is
equivalent to f being symmetric rank-one convex.

The following convexity result for positively 1-homogeneous functions in conjunc-
tion with the BD-analogue of Alberti’s rank-one theorem (cf. theorem 2.4) plays an
important role in the study of the singular part of the relaxation F∗ of F .

Theorem 2.13 Kirchheim–Kristensen [24]. Let C be an open convex cone in a
normed finite-dimensional real vector space V, and let D be a cone of directions in
V such that D spans V.

If f : C → R is D-convex (i.e. its restrictions to line segments in C in directions
of D are convex) and positively 1-homogeneous, then f is convex at each point of
C ∩ D.

More precisely, and in view of homogeneity, for each x0 ∈ C ∩ D there exists a
linear function � : V → R satisfying �(x0) = f(x0) and f � � on C.

We also record the following simple fact.

Proposition 2.14. The set of symmetric and deviatoric matrices SD(d) is spanned
by the set

S :=
{
a� b : a, b ∈ R

d, a · b = 0
}
.

We draw the following important conclusion from theorem 2.13 and proposi-
tion 2.14.
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Corollary 2.15. A symmetric rank-one convex and positively 1-homogeneous
function f : SD(d) → R is convex at each point of the symmetric rank-one cone S.

2.4. Functionals

The functional

LU(Ω) � u �→ F [u,Ω] :=
∫

Ω

f(x, Eu(x)) dx (2.3)

can be extended to the functional

U(Ω) � u �→ F [u,Ω] :=
∫

Ω

f(x, Eu) dx+
∫

Ω

f#
dev

(
x,

dEsu

d|Esu|
)

d|Esu|. (2.4)

The following theorem was proved by Jesenko and Schmidt [22]:

Theorem 2.16. Let f : Ω × R
d×d
sym → [0,∞) be a continuous function satisfying the

following conditions:

(1) there exist constants 0 < m � M such that for all (x,A) ∈ Ω × R
d×d
sym the

growth estimates

m((trA)2 + |devA|) � f(x,A) � M(1 + (trA)2 + |devA|) (2.5)

hold;

(2) f(x, ·) is symmetric rank-one convex;

(3) for every fixed D ∈ SD(d) the map x �→ f#
dev(x,D) is continuous; here f#

dev

is the recession function of the restriction fdev := f |Ω×SD(d) defined by

f#
dev(x,D) := lim sup

D′→D
s→∞

fdev(x, sD′)
s

. (2.6)

Then, the functional (2.3) extends continuously, with respect to the area-strict
convergence in U(Ω), to the functional (2.4).

Remark 2.17. For u ∈ U(Ω) there exists a sequence (vh) ⊂ LU(Ω) ∩ C∞(Ω; Rd)
such that vh → u area-strictly in U(Ω), see theorem 14.1.4 in [7] (the proof is similar
to the proof of lemma 11.1 in [34], with the strong L2-convergence of (div vh) being
a consequence of the mollification). In virtue of theorem 2.16 we have that∫

Ω

f(x, Evh) dx→
∫

Ω

f(x, Eu) dx+
∫

Ω

f#
dev

(
x,

dEsu

d|Esu|
)

d|Esu|.

Remark 2.18.

(1) The recession function f#
dev(x, ·) is positively 1-homogeneous, i.e. for α � 0

and (x,D) ∈ Ω × SD(d) it holds that

f#
dev(x, αD) = αf#

dev(x,D).
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(2) Since the symmetric rank-one cone S from proposition 2.14 spans SD(d),
the function fdev(x, ·) is globally Lipschitz for every x ∈ Ω (this is a conse-
quence of fdev(x, ·) being separately convex with linear growth at infinity and
lemma 5.42 in [4]).

(3) Since fdev(x, ·) is a symmetric rank-one convex function with linear growth
at infinity, the recession function f#

dev(x, ·) is also symmetric rank-one convex
and by (2) we can write

f#
dev(x,D) = lim sup

s→∞
fdev(x, sD)

s
.

(4) By corollary 2.15 the recession function f#
dev is convex at points of S.

3. Proof of theorem 1.1

Our proof is structured as follows. First, in lemma 3.2 we prove that the conclusion
of theorem 1.1 holds for linear weak∗ limits. This step is essential for the blow-up
argument in the proof of the first part of proposition 3.10.

We investigate the relaxation F∗ of F defined in (1.6). In proposition 3.5 we
prove that F∗ is lower semicontinuous with respect to the weak∗ convergence in
U(Ω) (see subsection 2.2.2 for relevant definitions).

Next, we establish that for all u ∈ U(Ω) the map V �→ F∗[u, V ] is a restriction
to open sets of a finite Radon measure. We then decompose this measure into
the absolutely continuous part Fa

∗ and the singular part Fs
∗ (with respect to the

Lebesgue measure) and prove the following lower bounds:

Fa
∗ [u,B] �

∫
B

f(Eu) dx (3.1)

and

Fs
∗ [u,B] �

∫
B

f#
dev

(
dEsu

d|Esu|
)

d|Esu| (3.2)

for all Borel sets B ⊂ Ω. For the proof of the regular bound (3.1) we use the clas-
sical blow-up sequence argument (cf. proposition 5.53 in [4]), whereas the proof of
the singular bound (3.2) relies on the Kirchheim–Kristensen convexity result for
positively 1-homogeneous functions [24].

Finally, together with the upper bound F∗ � F from proposition 3.9 we obtain
that F∗ = F , thus theorem 1.1 follows.

In order to prove theorem 1.1 we use cut-off arguments (see lemmas 3.2 and 3.8).
For a given function u ∈ U(Ω) and some smooth cut-off function ϕ ∈ C1

c(Ω), the
product ϕu is in BD(Ω), but not necessarily in U(Ω). Indeed, we have

div(ϕu) = ∇ϕ · u+ ϕdiv u

and the first term on the right-hand side does not belong to L2(Ω) in general.
The following result due to Bogovskii (see [9,10] or § III.3 in [21] for the proof)

is essential, since it provides a suitable correction term v such that ϕu+ v ∈ U(Ω).
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Theorem 3.1 Bogovskii. Let Ω ⊂ R
d be a bounded Lipschitz domain and 1 <

q <∞. There exists a linear operator B : Lq(Ω) → W1,q
0 (Ω; Rd) with the following

properties:

(i) for every g ∈ Lq(Ω) such that
∫
Ω
g dx = 0 it holds that

divBg = g in Ω;

(ii) for every g ∈ Lq(Ω) the estimate

‖∇(Bg)‖q � Cq‖g‖q

holds with a translation- and scaling-invariant constant Cq > 0, depending
only on Ω and q;

(iii) if g ∈ C∞
c (Ω), then Bg ∈ C∞

c (Ω; Rd).

We begin with a series of lemmas. The first lemma asserts that the conclusion of
theorem 1.1 holds for linear limits.

Lemma 3.2. Let A ∈ R
d×d
sym and let (uh) ⊂ U(Ω) be a sequence such that uh

∗⇁ Ax
weakly∗ in U(Ω). Then

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Euh) dx. (3.3)

Proof. In view of theorem 2.16 and remark 2.17 we can without loss of generality
assume that (uh) ⊂ LU(Ω) ∩ C∞(Ω; Rd). The proof is divided into two steps. In
the first step we prove (3.3) for a sequence (uh) which has linear boundary values.
Then, in the second step we prove, using a cut-off argument, that the assumption
of the linear boundary values can be dropped.

Step 1. Suppose that uh(x) −Ax is compactly supported inside Ω for all
h ∈ N and take ψh(x) := uh(x) −Ax. Clearly, ψh ∈ W1,∞

0 (Ω; Rd). Then, by the
symmetric-quasiconvexity of f we obtain

|Ω|f(A) �
∫

Ω

f(A+ Eψh(y)) dy =
∫

Ω

f(Euh(y)) dy

for all h ∈ N. Therefore,

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Euh) dx.

Step 2. Let uh
∗⇁ Ax weakly∗ in U(Ω). Fix n ∈ N and ε > 0 and choose a Lip-

schitz subdomain Ω0 � Ω such that |Ω \ Ω0| � ε. Let R := dist(Ω0, ∂Ω) and for
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i = 1, . . . , n define the sets

Ωi :=
{
x ∈ Ω : dist(x,Ω0) <

iR

n

}
.

Now, choose cut-off functions ϕi ∈ C1
c(Ω; [0, 1]) such that

1Ωi−1 � ϕi � 1Ωi
and ‖∇ϕi‖∞ � 2n

R
(3.4)

and for x ∈ Ω define

uh,i(x) := Ax+ ϕi(x)(uh(x) −Ax).

We have

Euh,i = A+ ϕi(Euh −A) + ∇ϕi � (uh −Ax) (3.5)

and

div uh,i = trA+ ϕi(div uh − trA) + ∇ϕi · (uh −Ax). (3.6)

Note that the last term in (3.6) belongs only to Ld/(d−1)(Ω) by the embedding
BD(Ω) ⊂ Lq(Ω; Rd) for 1 � q � d/(d− 1), thus uh,i �∈ U(Ω) for d > 2. In order to
overcome this problem we fix some 1 < q < d/(d− 1) and define numbers

ξh,i :=
1

|Si|
∫

Si

∇ϕi(x) · (uh(x) −Ax) dx,

where Si := Ωi \ Ωi−1 is the open strip between Ωi−1 and Ωi. Note that supp∇ϕi ⊂
Si. Define

fh,i := −∇ϕi · (uh −Ax) + ξh,i ∈ Lq(Si). (3.7)

By theorem 3.1 there exist functions zh,i ∈ W1,q
0 (Si; Rd) such that

div zh,i = fh,i in Si

and such that the estimate

‖∇zh,i‖q � Cq‖fh,i‖q (3.8)

holds. We also extend the functions zh,i by zero outside Si. Let wh,i ∈ U(Ω) be
defined as

wh,i := uh,i + zh,i.

The correction term zh,i ensures that divwh,i ∈ L2(Ω).
Henceforth, for simplicity we write C > 0 for a generic constant that changes

from line to line, possibly depending on Ω,M,A,R, n, q, but never on h, i. Note
that we have the following estimate:

‖fh,i‖q � C‖uh −Ax‖q. (3.9)

This estimate, in conjunction with the Poincaré inequality, (3.8), and the compact-
ness of the embedding BD(Ω) � Lq(Ω; Rd), implies that zh,i → 0 in W1,q(Ω; Rd) as
h→ ∞.
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Note that the sequence (wh,i)h is bounded in U(Ω) for fixed i. Indeed, this is a
consequence of the weak∗ convergence uh

∗⇁ Ax in U(Ω) and the estimate

ξ2h,i � C

(
min

�∈{1,...,n}
|S�|
)−2/q

‖uh −Ax‖2
q � C‖uh −Ax‖2

q,

since |Si| > 0 for all i ∈ {1, . . . , n}.
Since wh,i → Ax in L1(Ω; Rd) as h→ ∞, and (wh,i)h is bounded in U(Ω) for all

i = 1, . . . , n, by lemma 2.6 it follows that wh,i
∗⇁ Ax weakly∗ in U(Ω). Moreover,

wh,i|∂Ω = Ax for every i = 1, . . . , n and h ∈ N.
By the upper growth bound (1.7) we obtain

∫
Ω

f(Ewh,i) dx =
∫

Ωi−1

f(Euh) dx+
∫

Si

f(Ewh,i) dx+
∫

Ω\Ωi

f(A) dx

�
∫

Ω

f(Euh) dx+
∫

Si

f(Ewh,i) dx+ |Ω \ Ω0|f(A)

�
∫

Ω

f(Euh) dx+M

∫
Si

|dev Ewh,i| + |divwh,i|2 dx

+ C|Ω \ Ω0|.

The estimates (3.8) and (3.9) together with Hölder’s inequality yield

∫
Si

|dev Ezh,i|dx � C|Ω \ Ω0|1/q′
sup

h
‖uh −Ax‖q,

where 1/q + 1/q′ = 1. Therefore, since |Ω \ Ω0| � ε, we estimate

∫
Si

|dev Ewh,i|dx � |devA| |Si| +
∫

Si

|ϕi| |dev Euh − devA|dx

+
∫

Si

|dev[∇ϕi � (uh −Ax)]|dx+
∫

Si

|dev Ezh,i|dx

� |devA| |Ω \ Ω0| +
∫

Si

|dev Euh − devA|dx

+
∫

Si

|dev[∇ϕi � (uh −Ax)]|dx+ C|Ω \ Ω0|1/q′

� C(ε+ ε1/q′
) +

∫
Si

|dev Euh − devA|dx

+
4n
R

∫
Ω

|uh(x) −Ax|1Si
(x) dx
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� C(ε+ ε1/q′
) +

∫
Si

|dev Euh − devA|dx

+
4n
R

sup
h
‖uh −Ax‖q |Si|1/q′

� C(ε+ ε1/q′
) +

∫
Si

|dev Euh − devA|dx.

Next, we estimate the divergence term:∫
Si

|divwh,i|2 dx

�
∫

Si

| trA+ ϕi(div uh − trA) + ξh,i|2 dx

� 3
∫

Si

| trA|2 + |div uh − trA|2 + ξ2h,i dx

� 3| trA|2|Ω \ Ω0| + 3
∫

Si

|div uh − trA|2 dx+
12n2

R2|Si| ‖uh −Ax‖2
1

� Cε+ 3
∫

Si

|div uh − trA|2 dx+
12n2

R2|Si| ‖uh −Ax‖2
1,

where we used the inequality

ξ2h,i =
1

|Si|2
(∫

Si

∇ϕi(x) · (uh(x) −Ax) dx
)2

� 4n2

R2|Si|2 ‖uh −Ax‖2
1.

Combining the above estimates yields∫
Ω

f(Ewh,i) dx �
∫

Ω

f(Euh) dx+M

∫
Si

|dev Euh − devA|dx

+ 3M
∫

Si

|div uh − trA|2 dx+ C(ε+ ε1/q′
)

+
12Mn2

R2|Si| ‖uh −Ax‖2
1.

By step 1 we have

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Ewh,i) dx

� lim inf
h→∞

[ ∫
Ω

f(Euh) dx+M

∫
Si

|dev Euh − devA|dx

+ 3M
∫

Si

|div uh − trA|2 dx+
12n2

R2|Si| ‖uh −Ax‖2
1

]

+ C(ε+ ε1/q′
).
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Since uh → Ax strongly in L1(Ω; Rd), the term

12n2

R2|Si| ‖uh −Ax‖2
1

vanishes as h→ ∞. Summing up over i = 1, . . . , n, dividing by n, and using the
superadditivity of a lower limit yields

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Ewh,i) dx

� lim inf
h→∞

∫
Ω

f(Euh) dx+
M

n
sup

h

∫
Ω

|dev Euh − devA|dx

+
3M
n

sup
h

∫
Ω

|div uh − trA|2 dx+ C(ε+ ε1/q′
).

Letting ε ↓ 0 and n→ ∞ yields

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Euh) dx. �

Remark 3.3. Clearly, lemma 3.2 also holds for affine limits.

We are now going to prove that the relaxation

F∗[u,Ω] := inf
{

lim inf
h→∞

F [uh,Ω] : (uh) ⊂ LU(Ω), uh
∗⇁ u in U(Ω)

}

satisfies the lower bound

F∗[u,Ω] �
∫

Ω

f(Eu) dx+
∫

Ω

f#
dev

(
dEsu

d|Esu|
)

d|Esu|. (3.10)

We first prove that the relaxation is weakly∗ lower semicontinuous on U(Ω), for
which we need the following lemma (for a proof see lemma 11.1.1 in [7]).

Lemma 3.4 Diagonalization lemma. Let (ak,l)k,l ⊂ X be a doubly-indexed sequence
in a first-countable topological space X such that

(1) liml→∞ ak,l = ak,

(2) limk→∞ ak = a.

Then, there exists a non-decreasing map l �→ k(l) such that

lim
l→∞

ak(l),l = a.

We apply lemma 3.4 in proposition 3.5 below with X = B, where B ⊂ U(Ω) is
a norm-bounded set. This way, X endowed with the weak∗ topology of U(Ω) is
metrizable, thus first-countable.
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Proposition 3.5. The relaxation F∗ is lower semicontinuous with respect to weak∗

convergence in U(Ω).

Proof. We argue by contradiction. To this end suppose there is a sequence (uj) ⊂
U(Ω) such that uj

∗⇁ u for some u ∈ U(Ω) and

F∗[u,Ω] > lim inf
h→∞

F∗[uj ,Ω].

Let (uk)k := (ujk
)k be a subsequence of (uj)j such that

lim
k→∞

F∗[uk,Ω] = lim inf
j→∞

F∗[uj ,Ω].

For each k ∈ N, one can find a sequence (v(l)
k )l ⊂ LU(Ω) such that v(l)

k
∗⇁ uk and

lim inf
j→∞

F∗[uj ,Ω] = lim
k→∞

F∗[uk,Ω] = lim
k→∞

lim
l→∞

F [v(l)
k ,Ω].

By the lower bound on F we obtain

F∗[u,Ω] > lim
k→∞

lim
l→∞

F [v(l)
k ,Ω]

� lim sup
k→∞

lim sup
l→∞

m
(
‖div v(l)

k ‖2
L2 + ‖dev Ev(l)

k ‖L1

)

Therefore, the sequence (v(l)
k ) is uniformly (with respect to both k and l) norm-

bounded in U(Ω), so we can find a large enough ball B ⊂ U(Ω) and apply lemma 3.4
to the doubly-indexed sequence

(v(l)
k ,F [v(l)

k ,Ω])k,l ⊂ B × (R ∪ {+∞}).

Hence, there exists a sequence (kl)l such that v(l)
kl

∗⇁ u as l → ∞ and

lim
l→∞

F [v(l)
kl
,Ω] = lim inf

j→∞
F∗[uj ,Ω].

We have

F∗[u,Ω] > lim
l→∞

F [v(l)
kl
,Ω]

� inf
{

lim inf
h→∞

F [zh,Ω] : (zh) ⊂ LU(Ω), zh
∗⇁ u in U(Ω)

}

= F∗[u,Ω],

which is absurd. Therefore, the relaxation F∗ is weakly∗ lower semicontinuous in
U(Ω). �
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Remark 3.6. Note that the relaxation F∗ can be written as

F∗[u,Ω] = inf
{

lim inf
h→∞

F [uh,Ω] : (uh) ⊂ LU(Ω), uh → u in L1(Ω; Rd)
}
.

Indeed, if this was false, we could find a sequence (uh) ⊂ LU(Ω) with uh → u
strongly in L1(Ω; Rd) such that

F∗[u,Ω] > lim
h→∞

F [uh,Ω] � lim sup
h→∞

m
(
‖div uh‖2

L2 + ‖dev Euh‖L1

)
,

where the last inequality follows from the lower bound on the integrand f . We see
that (uh) is uniformly norm-bounded in U(Ω), hence uh

∗⇁ u weakly∗ in U(Ω) by
lemma 2.6, whereby we get the contradiction F∗[u,Ω] > F∗[u,Ω].

Remark 3.7. The functional F∗ satisfies the following properties.

(1) For any rigid deformation R : R
d → R

d, i.e. R(x) = Wx+ b for x ∈ R
d, where

W ∈ R
d×d
skew is a skew-symmetric matrix and b ∈ R

d is a vector, we have the
rigid invariance

F∗[u+R,Ω] = F∗[u,Ω].

(2) For any x0 ∈ R
d we have the translation invariance

F∗[u(· − x0), x0 + Ω] = F∗[u,Ω].

(3) Let (Rr)r>0 : R
d → R

d be a family of rigid deformations. Then, for a blow-up
of the form

ur(y) =
u(x0 + ry) − u(x0)

r
+Rr(y)

where r > 0 and y ∈ (Ω − x0)/r, we have the scaling property

F∗

[
ur,

Ω − x0

r

]
= r−dF∗[u,Ω].

In order to prove the lower bound, we appeal to lemma 3.8 below, which asserts
that for a given u ∈ U(Ω) the map V �→ F∗[u, V ] is the restriction to the open
subsets of Ω of a Radon measure on Ω, which we still denote by F∗[u, ·]. Then,
we decompose this measure into the absolutely continuous and singular parts with
respect to the Lebesgue measure, i.e.

F∗[u, ·] = Fa
∗ [u, ·] + Fs

∗ [u, ·], Fa
∗ [u, ·] � Ld Ω, Fs

∗ [u, ·] ⊥ Ld Ω

and then prove that

Fa
∗ [u,B] �

∫
B

f(Eu) dx and Fs
∗ [u,B] �

∫
B

f#
dev

(
dEsu

d|Esu|
)

d|Esu|

for any Borel set B ⊂ Ω.
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Lemma 3.8. For all u ∈ U(Ω) the set function V �→ F∗[u, V ] (V ⊂ Ω open) is the
restriction to the open subsets of Ω of a finite Radon measure.

Proof. Fix u ∈ U(Ω).
Step 1. Let A′, A′, B be open subsets of Ω such that A′ � A′′. We first prove that

F∗[u,A′ ∪B] � F∗[u,A′′] + F∗[u,B]. (3.11)

Fix ε > 0. By the definition of relaxation we can find sequences (uε
h) ⊂ LU(A′′) and

(vε
h) ⊂ LU(B) such that uε

h
∗⇁ u weakly∗ in U(A′′), vε

h
∗⇁ u weakly∗ in U(B),

F [uε
h, A

′′] � F∗[u,A′′] + ε, (3.12)

and

F [vε
h, B] � F∗[u,B] + ε. (3.13)

Henceforth, we omit the dependence of sequences uh and vh on ε. For each h ∈ N

extend the functions uh and vh by zero outside A′′ and B, respectively. Let

Cε := sup
h∈N

(∫
A′′

1 + |div uh|2 + |Euh|dx+
∫

B

1 + |div vh|2 + |Evh|dx
)
<∞.

(3.14)
Fix k ∈ N and an increasing family of open sets

A′ = A0 � A1 � . . . � Ak � A′′.

For each i = 1, . . . , k choose the cut-off function ϕi ∈ C1
c(Ai; [0, 1]) such that ϕi ≡ 1

on Ai−1. Next, define maps w̃h,i ∈ L1(A′ ∪B; Rd) via

w̃h,i := ϕiuh + (1 − ϕi)vh, h ∈ N, i = 1, . . . , k.

It is clear that w̃h,i ∈ LU(Ai−1), but w̃h,i �∈ LU(A′ ∪B), since

div w̃h,i = ϕi div uh + (1 − ϕi) div vh + ∇ϕi · (uh − vh)

and the last term on the right-hand side belongs only to Ld/(d−1)(A′ ∪B). To
overcome this problem, as before we fix some 1 < q < d/(d− 1) and define

ξh,i :=
1

|Si|
∫

Si

∇ϕi(x) · (uh(x) − vh(x)) dx,

where Si := Ai \Ai−1 for i = 1, . . . , k. Note that supp∇ϕi � Si. By theorem 3.1
applied in Si and with the right-hand side

fh,i := −∇ϕi · (uh − vh) + ξh,i ∈ Lq(Si),

there exist functions zh,i := Bfh,i ∈ W1,q
0 (Si; Rd) such that

div zh,i = fh,i on Si

and the estimate

‖∇zh,i‖q � C‖fh,i‖q (3.15)
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holds. We also extend zh,i by zero outside Si. Define

wh,i := w̃h,i + zh,i.

The correction term zh,i guarantees that wh,i ∈ LU(A′ ∪B). Indeed,

divwh,i = ϕi div uh + (1 − ϕi) div vh + ξh,i1Si
,

which clearly belongs to L2(A′ ∪B). We have

F [wh,i, A
′ ∪B] =

∫
A′∪B

f(Ewh,i) dx

=
∫

(A′∪B)∩Ai−1

f(Euh) dx+
∫

B\Ai

f(Evh) dx+
∫

B∩Si

f(Ewh,i) dx,

where we used the fact that the corrector zh,i vanishes outside of Si. Hence,

F [wh,i, A
′ ∪B] � F [uh, A

′′] + F [vh, B] +
∫

B∩Si

f(Ewh,i) dx.

The last integral can be estimated as follows:∫
B∩Si

f(Ewh,i) dx � M

∫
B∩Si

1 + |divwh,i|2 + |Ewh,i|dx

� 3M
∫

B∩Si

1 + |div uh|2 + |div vh|2 + ξ2h,i

+ Ck|uh − vh| + |Euh| + |Evh| + |Ezh,i|dx,

where Ck := sup {‖∇ϕi‖∞ : 1 � i � k}. We have for 1 � i � k that

ξ2h,i =
1

|Si|2
(∫

Si

∇ϕi(x) · (uh(x) − vh(x)) dx
)2

� C2
k

|Si|2 ‖uh − vh‖2
1

� C2
k |Si|−2/q‖uh − vh‖2

q.

Here and in all of the following the norms are with respect to the domain A′ ∪B.
Since |Si| > 0 for all i ∈ {1, . . . , k}, we get

ξ2h,i � C2
k

(
min

�∈{1,...,k}
|S�|
)−2/q

‖uh − vh‖2
q � C̃Ω,q,k‖uh − vh‖2

q.

By the estimate (3.15) and Hölder’s inequality we obtain similarly∫
B∩Si

|Ezh,i|dx � ‖∇zh,i‖q |B ∩ Si|1/q′ � C̃Ω,q,k‖uh − vh‖q,
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where 1/q + 1/q′ = 1. Note that for every h ∈ N there exists ih ∈ {1, . . . , k} such
that ∫

B∩Sih

1 + |div uh|2 + |div vh|2 + |Euh| + |Evh|dx

� 1
k

∫
B∩(Ak\A0)

1 + |div uh|2 + |div vh|2 + |Euh| + |Evh|dx

� Cε

k
,

where Cε is defined in (3.14). Therefore, combining the above estimates yields∫
B∩Sih

f(Ewh,ih
) dx

� CΩ,M,q,k

(
‖uh − vh‖2

q + ‖uh − vh‖1 + ‖uh − vh‖q

)
+

3MCε

k
.

Hence, since (uh) and (vh) are chosen such that (3.12) and (3.13) hold, we have

F [wh,ih
, A′ ∪B] � F [uh, A

′′] + F [vh, B]

+ CΩ,M,q,k

(
‖uh − vh‖2

q + ‖uh − vh‖1 + ‖uh − vh‖q

)
+

3MCε

k

� F∗[u,A′′] + F∗[u,B] + 2ε

+ CΩ,M,q,k

(
‖uh − vh‖2

q + ‖uh − vh‖1 + ‖uh − vh‖q

)
+

3MCε

k
.

Note that wh,ih
→ u strongly in L1(A′ ∪B; Rd) and (wh,ih

)h is uniformly norm-
bounded in U(A′ ∪B). Lemma 2.6 thus implies that (wh,ih

)h converges weakly∗ to
u in U(A′ ∪B). Moreover, (uh − vh)h converges strongly to zero in Lq(A′ ∪B; Rd).
Therefore we obtain

F∗[u,A′ ∪B] � lim inf
h→∞

F [wh,ih
, A′ ∪B]

� F∗[u,A′′] + F∗[u,B] +
3MCε

k
+ 2ε.

Letting k → ∞ followed by ε ↓ 0 yields the inequality (3.11).
Step 2. We now prove that for any open subset A ⊂ Ω it holds that

F∗[u,A] = sup {F∗[u,A′] : A′ � A, A′ open} . (3.16)

In virtue of remark 2.17 and the growth assumption on the integrand f , we obtain
the inequality

F∗[u,A] � M

(∫
A

|div u|2 dx+ Ld(A) + |Eu|(A)
)
. (3.17)
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Therefore, for a fixed ε > 0 we can choose a compact set K ⊂ A such that
F∗[u,A \K] � ε. Choose open sets A′ and A′′ such that K ⊂ A′ � A′′ � A. By
step 1 with B = A \K we have

F∗[u,A] � F∗[u,A′′] + F∗[u,A \K] � F∗[u,A′′] + ε

Letting ε ↓ 0 gives (3.16).
Step 3. Let A,B be open subsets of Ω. We now prove that

F∗[u,A ∪B] � F∗[u,A] + F∗[u,B]. (3.18)

Fix ε > 0. By step 2 there exists an open set U � A ∪B such that

F∗[u,A ∪B] − ε � F∗[u,U ].

Choose A′ � A open such that U ⊂ A′ ∪B. By step 1 we have

F∗[u,A ∪B] − ε � F∗[u,A′ ∪B] � F∗[u,A] + F∗[u,B].

Letting ε ↓ 0 yields (3.18).
Step 4. Finally, we prove that for open sets A,B such that A ∩B = ∅ the

inequality

F∗[u,A ∪B] � F∗[u,A] + F∗[u,B] (3.19)

holds.
We choose a sequence (uh) ⊂ LU(A ∪B) converging weakly∗ to u ∈ U(A ∪B)

and such that

lim
h→∞

F [uh, A ∪B] = F∗[u,A ∪B].

Since the sets A and B are disjoint, we have

F∗[u,A ∪B] = lim
h→∞

F [uh, A ∪B]

� lim inf
h→∞

F [uh, A] + lim inf
h→∞

F [uh, B]

� F∗[u,A] + F∗[u,B],

hence we proved (3.19). By theorem 2.1 we infer that the set function V �→ F∗[u, V ]
is a restriction to open sets of a finite Radon measure. �

Proposition 3.9 Upper estimate. The relaxation F∗ satisfies the upper bound

F∗[u,Ω] �
∫

Ω

f(Eu) dx+
∫

Ω

f#
dev

(
dEsu

d|Esu|
)

d|Esu|.

Proof. By remark 2.17 we can find a sequence (uh) ⊂ LU(Ω) ∩ C∞(Ω; Rd) converg-
ing area-strictly to u ∈ U(Ω). Since the area-strict convergence is stronger than the
weak∗ convergence, by the definition of F∗, it follows that

F∗[u,Ω] � lim inf
h→∞

F [uh,Ω] =
∫

Ω

f(Eu) dx+
∫

Ω

f#
dev

(
dEsu

d|Esu|
)

d|Esu|,

where the equality follows from remark 2.17. �
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The conclusion of theorem 1.1 will follow once we prove the lower bound.

Proposition 3.10 Lower estimate. For u ∈ U(Ω) the inequality

F∗[u,Ω] �
∫

Ω

f(Eu) dx+
∫

Ω

f#
dev

(
dEsu

d|Esu|
)

d|Esu|

holds.

Proof. We treat separately Ld-a.e. regular point x0 ∈ Ω and |Esu|-a.e. singular
point x0 ∈ Ω.

Regular points. The proof is based on a blow-up argument. Fix x0 ∈ Ω such
that

(1) u is approximately differentiable at x0,

(2) limr↓0(|Eu|(B(x0, r))/ωdr
d) = (d|Eu|/dLd)(x0) = |Eu(x0)|,

(3) x0 is an Ld-Lebesgue point of div u.

Since u ∈ U(Ω), these properties hold for Ld-almost every x ∈ Ω. In particular (1.1)
is a consequence of theorem 7.4 in [2], whereas (1.2) follows from theorem 2.3. For
y ∈ B(0, 1) define maps

ur(y) :=
u(x0 + ry) − ũ(x0)

r
, 0 < r < dist(x0, ∂Ω),

where ũ is the precise representative of u. For u0(y) := ∇u(x0)y we have the strong
convergence ur → u0 in L1(B(0, 1); Rd). Indeed, by the approximate differentiability
we have∫

B(0,1)

|ur(y) − u0(y)|dy =
1
rd

∫
B(x0,r)

∣∣∣∣u(z) − ũ(x0) −∇u(x0)(z − x0)
r

∣∣∣∣ dz → 0

as r ↓ 0. Moreover, we have strict convergence:

lim
r↓0

|Eur|(B(0, 1)) = ωd lim
r↓0

|Eu|(B(x0, r))
ωdrd

= ωd|Eu(x0)|
= |Eu0|(B(0, 1)),

thus (ur) is bounded in BD(B(0, 1)). Note also that for ϕ ∈ L2(B(0, 1)) we have∣∣∣∣∣
∫

B(0,1)

ϕ(y)(div ur(y) − div u0(y)) dy

∣∣∣∣∣
� ‖ϕ‖2

∫
B(0,1)

|div u(x0 + ry) − div u(x0)|2 dy

= ωd‖ϕ‖2 −
∫

B(x0,r)

|div u(z) − div u(x0)|2 dz.
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The right-hand side vanishes as r ↓ 0 by the Lebesgue point property (1.3). Hence,
ur

∗⇁ u0 weakly∗ in U(B(0, 1)). In virtue of lemma 3.2 and proposition 3.5 and the
scaling properties of F∗ we obtain

lim inf
r↓0

F∗[u,B(x0, r)]
rd

= lim inf
r↓0

F∗[ur, B(0, 1)]

� F∗[u0, B(0, 1)]

�
∫

B(0,1)

f(Eu0(y)) dy

= ωdf(Eu(x0)).

Therefore, by lemma 3.8 and proposition 2.2 we obtain

Fa
∗ [u,B] �

∫
B

f(Eu) dx

for any Borel set B ⊂ Ω.
Singular points. We want to prove that for all Borel sets B ⊂ Ω the inequality

Fs
∗ [u,B] �

∫
B

f#
dev

(
dEsu

d|Esu|
)

d|Esu|

holds. We fix x0 ∈ Ω such that

dEsu

d|Esu| (x0) = a� b, a, b ∈ R
d \ {0}, a ⊥ b.

This property holds for |Esu|-a.e. x0 ∈ Ω by theorem 2.4. It suffices to establish
the inequality

lim
r↓0

F∗[u,B(x0, r)]
|Eu|(B(x0, r))

� f#
dev(a� b)

at any point x0 ∈ Ω for which the limit on the left-hand side exists, which is the
case at |Eu|-almost every x0 (cf. corollary 2.23 in [4] with μ = |Eu|). By the coer-
civity of F and a diagonal argument similar to the one contained in the proof of
proposition 3.5, we can choose a sequence (uh) ⊂ LU(B(x0, r)) such that uh

∗⇁ u
weakly∗ in U(B(x0, r)) and

lim
h→∞

F [uh, B(x0, r)] = F∗[u,B(x0, r)].

We then have

F∗[u,B(x0, r)]

= lim
h→∞

F [uh, B(x0, r)]

= lim
h→∞

∫
B(x0,r)

f(Euh) dx
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= lim
h→∞

∫
B(x0,r)

f(Euh) − f#
dev(dev Euh) dx+

∫
B(x0,r)

f#
dev(dev Euh) dx

=: lim
h→∞

(
I
(1)
h,r + I

(2)
h,r

)
.

In virtue of (1.8) we have

I
(1)
h,r =

∫
B(x0,r)

f(Euh) − f#
dev(dev Euh) dx

� −M
∫

B(x0,r)

1 + |div uh|γ + |dev Euh|δ dx

for γ ∈ [0, 2) and δ ∈ [0, 1). We can assume that

|dev Euh|δ ⇀ ξ weakly in L1/δ(B(x0, r))

for some ξ ∈ L1/δ(B(x0, r)).
For 0 � γ < 2 by Hölder’s inequality we obtain

∫
B(x0,r)

|div uh|γ dx � sup
h

‖div uh‖γ
2 |B(x0, r)|1−γ/2.

Thus,

lim
h→∞

I
(1)
h,r � −CM,γ

(
|B(x0, r)|1−γ/2 + |B(x0, r)| +

∫
B(x0,r)

ξ dx

)
.

Therefore

lim
r↓0

lim
h→∞

I
(1)
h,r

|Eu|(B(x0, r))
� 0.

By proposition 2.14 the set

S :=
{
a� b : a, b ∈ R

d, a · b = 0
}

spans the space of symmetric and deviatoric matrices SD(d). Moreover, the
recession function f#

dev is positively 1-homogeneous and convex at points of S
(see remark 2.18). In virtue of theorem 2.13 for each orthogonal a, b ∈ R

d there
exists a linear function � : SD(d) → R such that f#

dev(D) � �(D) for all D ∈ SD(d)
and f#

dev(a� b) = �(a� b). For all but finitely many r > 0 we can assume that
Λ(∂B(x, r)) = 0, where Λ ∈ M+(Ω) is the weak∗ limit of (a subsequence of) the
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measures |�(dev(Euh))|Ld. Therefore, we have

lim
h→∞

I
(2)
h,r = lim

h→∞

∫
B(x0,r)

f#
dev(dev Euh) dx

� lim sup
h→∞

∫
B(x0,r)

�(dev Euh) dx

= �(devEu(B(x0, r))),

where the last equality follows from the linearity of � and proposition 1.62(b) in [4].
Combining the above estimates yields

lim
r↓0

F∗[u,B(x0, r)]
|Eu|(B(x0, r))

� lim sup
r↓0

�(devEu(B(x0, r)))
|Eu|(B(x0, r))

= lim sup
r↓0

�

(
dev

(
Eu(B(x0, r))
|Eu|(B(x0, r))

))

= �

(
dev

(
lim
r↓0

Eu(B(x0, r))
|Eu|(B(x0, r))

))

= � (dev(a� b))

= �(a� b)

= f#
dev(a� b).

This finishes the proof. �

4. Relaxation in BD

In this section we prove theorem 1.3. The strategy of the proof is effectively the
same as the one used for theorem 1.1, except that we may prove the lower bound at
singular points without using the Kirchheim–Kristensen theorem 2.13. In fact, the
BD counterparts of our auxiliary results are substantially easier to establish than
in the mixed-growth case, so we omit their proofs.

In all of the following we assume that f is already symmetric-quasiconvex. This
is no restriction since an inspection of the proof of the main result in [8, theorem
3.5] yields that the relaxation of the functional∫

Ω

f(Eu) dx

for all u ∈ LD(Ω) is given by ∫
Ω

(SQf)(Eu) dx,

without any restriction on the recession function (the condition (3.2) in [8] is only
used for the jump part).

We have the following analogue of lemma 3.2 (note that there is a BD(Ω)-analogue
of lemma 2.6, see the remark after that lemma).
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Lemma 4.1. Let A ∈ R
d×d
sym and let (uh) ⊂ BD(Ω) be a sequence such that uh

∗⇁ Ax
weakly∗ in BD(Ω). Then

|Ω|f(A) � lim inf
h→∞

∫
Ω

f(Euh) dx. (4.1)

Since the topology of weak∗ convergence in BD(Ω) is metrizable on bounded sets,
it follows that the relaxation F∗, as defined in (1.10), is lower semicontinuous with
respect to this topology (cf. [7] for details).

In the remaining part of this section we will establish an integral representation
for F∗, that is

F∗[u,Ω] =
∫

Ω

f(Eu) dx+
∫

Ω

f#

(
dEsu

d|Esu|
)

d|Esu|. (4.2)

More specifically, we will establish the upper and the lower estimate on the
relaxation F∗ by the right-hand side of (4.2). We begin with the upper estimate.

Let us denote by D(Rd×d
sym) the class of continuous functions f : R

d×d
sym → R with

linear growth at infinity and for which the strong recession function

f∞(A) := lim
A′→A, s→∞

f(sA′)
s

exists. For such functions we have the following continuity result.

Theorem 4.2 Reshetnyak [27]. Let (μh) ⊂ M(Ω; Rd) be a sequence of measures,
such that μh → μ area-strictly for some μ ∈ M(Ω; Rd). Then, for f ∈ D(Rd×d

sym) it
holds that ∫

Ω

f

(
dμh

dLd

)
dx+

∫
Ω

f∞
(

dμs
h

d|μs
h|
)

d|μs
h|

→
∫

Ω

f

(
dμ
dLd

)
dx+

∫
Ω

f∞
(

dμs

d|μs|
)

d|μs|

as h→ ∞.

Furthermore, it turns out that the admissible integrands f in theorem 1.3 can be
approximated by functions in D(Rd×d

sym) (cf. [26, lemma 2.2]).

Lemma 4.3 Pointwise approximation. For every continuous function f : R
d×d
sym → R

with a linear growth at infinity, there exists a decreasing sequence (fk) ⊂ D(Rd×d
sym),

such that

inf
k
fk = lim

k→∞
fk = f and inf

k
f∞k = lim

k→∞
f∞k = f#,

with pointwise convergence.

We are now ready to establish the upper bound.
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Lemma 4.4 Upper estimate. For u ∈ BD(Ω) the inequality

F∗[u,Ω] �
∫

Ω

f(Eu) dx+
∫

Ω

f#

(
dEsu

d|Esu|
)

d|Esu|.

holds.

Proof. Fix u ∈ BD(Ω). There exists a sequence (uh) ⊂ LD(Ω) ∩ C∞(Ω; Rd), such
that uh → u area-strictly (cf. [7, theorem 14.1.1]). Let (fk) ⊂ D(Rd×d

sym) be a
sequence as in lemma 4.3. By theorem 4.2 we have for each k ∈ N:

lim
h→∞

∫
Ω

fk(Euh) dx =
∫

Ω

fk(Eu) dx+
∫

Ω

f∞k

(
dEsu

d|Esu|
)

d|Esu|.

Hence,

lim inf
h→∞

∫
Ω

f(Euh) dx �
∫

Ω

fk(Eu) dx+
∫

Ω

f∞k

(
dEsu

d|Esu|
)

d|Esu|.

Since the area-strict convergence is stronger than the weak∗ convergence, by the
definition of F∗, it follows that

F∗[u,Ω] � lim inf
h→∞

∫
Ω

f(Euh) dx �
∫

Ω

fk(Eu) dx+
∫

Ω

f∞k

(
dEsu

d|Esu|
)

d|Esu|.

By the monotone convergence theorem, letting k → ∞ ends the proof. �

As in the proof of theorem 1.1, to prove the lower estimate, we first prove that
for a given u ∈ BD(Ω) the map V �→ F∗[u, V ] is the restriction to the open subsets
of Ω of some Radon measure, which we still denote by F∗[u, ·]. Then, we decompose
this measure into the absolutely continuous and singular parts with respect to the
Lebesgue measure, i.e.

F∗[u, ·] = Fa
∗ [u, ·] + Fs

∗ [u, ·], Fa
∗ [u, ·] � Ld Ω, Fs

∗ [u, ·] ⊥ Ld Ω

and then prove that

Fa
∗ [u,B] �

∫
B

f(Eu) dx and Fs
∗ [u,B] �

∫
B

f#

(
dEsu

d|Esu|
)

d|Esu|

for any Borel set B ⊂ Ω.

Lemma 4.5. For all u ∈ BD(Ω) the set function V �→ F∗[u, V ] is a restriction to
the open subsets of Ω of a finite Radon measure.

The proof of lemma 4.5 is a straightforward adaptation of lemma 3.8 so we omit
the details here.

Remark 4.6. The relaxation F∗ satisfies the same invariant properties as in
remark 3.7.
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Lemma 4.7. Let Q be an open d-cube with side length 1 and faces either parallel or
orthogonal to a, let v ∈ BD(Q) be representable in Q as

v(y) := g(y · a)b+ c(a⊗ b)y +Wy + v̄,

where g : R → R is a locally bounded and increasing function, a, b ∈ R
d \ {0}, c > 0,

W ∈ R
d×d
skew and v̄ ∈ R

d. Let u ∈ BD(Q) be such that supp(u− v) � Q. Then,

F∗[u,Q] � f(Eu(Q)).

Proof. We only treat the case where a, b are not parallel. The case a, b parallel is in
fact easier. In virtue of the above remark, we may without loss of generality further
assume that a = e1, b = e2 and Q = (0, 1)d. Then,

v(y) = g(y1)e2 + cy2e1 +Wy + v̄.

Let

q := |Dg|(0, 1) = g(1−) − g(0+).

Since u ∈ BD(Q), the function

w(x) := u(x− �x�) + qe2�x1� + ce1�x2� +Wx+ v̄, x ∈ R
d,

is in BDloc(Rd). Here the floor function of a vector x ∈ R
d is understood component-

wise. Let uh(y) := w(hy)/h, h ∈ N. For

u0(y) := qe2y1 + ce1y2 +Wy + v̄

it holds that∫
Q

|uh(y) − u0(y)|dy

=
1
h

∫
Q

|u(hy − �hy�) − qe2(hy1 − �hy1�) − ce1(hy2 − �hy2�)|dy

=
1

hd+1

∫
(0,h)d

|u(x− �x�) − qe2(x1 − �x1�) − ce1(x2 − �x2�)|dx

=
1
h

∫
Q

|w(y) − (qe2y1 + ce1y2 +Wy + v̄)|dy,

hence uh → u0 in L1(Q; Rd). The sequence (uh) is uniformly norm-bounded in
BD(Q), so we also have that uh

∗⇁ u0 weakly∗ in BD(Q) (the argument is the same
as in lemma 2.6).

Let Q1, . . . , Qhd be the canonical decomposition of Q into open cubes with sides
parallel to those of Q and side length 1/h. Then, by the scaling property of F∗, for
all i = 1, . . . , hd it holds that

F∗[uh, Qi] = F∗[uh, (0, 1/h)d] = h−dF∗[u,Q].

Moreover, since supp(u− v) � Q, the measure |Ew| vanishes on every hyperplane
of the form xj = k, with k ∈ Z, j = 1, . . . , d. Thus we have that |Euh|(Q ∩ ∂Qi) = 0
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for all i = 1, . . . , hd. Note that for any open set A ⊂ Q the inequality

F∗[u,A] � M
(Ld(A) + |Eu|(A)

)
holds as a consequence of the linear growth of the integrand and the density
of smooth functions with respect to the strict convergence. By the regularity of
measures this inequality can then be extended to any Borel set, hence

F∗[u,Q ∩ ∂Qi] = 0.

Therefore, for any h ∈ N we obtain

F∗[uh, Q] =
hd∑
i=1

F∗[uh, Qi] =
hd∑
i=1

h−dF∗[u,Q] = F∗[u,Q].

By the weak∗ lower semicontinuity of F∗ we obtain

F∗[u,Q] = lim
h→∞

F∗[uh, Q] � F∗[u0, Q].

Let S ∈ R
d×d
skew be the skew-symmetric matrix defined as

S :=
q − c

2
(e1 ⊗ e2 − e2 ⊗ e1).

Then, by remark 4.6 we obtain

F∗[u0, Q] = F∗[q(e2 ⊗ e1)y + c(e1 ⊗ e2)y +Wy + v̄, Q]

= F∗[q(e2 ⊗ e1)y + c(e1 ⊗ e2)y + Sy,Q]

= F∗[(q + c)(e1 � e2)y,Q].

In virtue of lemma 4.1, for every (vh) ⊂ LD(Q) such that vh
∗⇁ (q + c)(e1 � e2)y

weakly∗ in BD(Q) it holds that

lim inf
h→∞

F [vh, Q] � F [(q + c)(e1 � e2)y,Q].

Taking the infimum over all such sequences yields

F∗[(q + c)(e1 � e2)y,Q] � F [(q + c)(e1 � e2)y,Q].

Since Eu(Q) = Ev(Q) and, by the definition of q, Ev(Q) = Eu0(Q) = (q + c)(e1 �
e2), we can write

F∗[u,Q] � F∗[u0, Q] � F [(q + c)(e1 � e2)y,Q] = f(Eu(Q)).

This proves the lemma. �

Lemma 4.8 Lower estimate. For u ∈ BD(Ω) the inequality

F∗[u,Ω] �
∫

Ω

f(Eu) dx+
∫

Ω

f#

(
dEsu

d|Esu|
)

d|Esu|

holds.
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Proof. We treat separately Ld-a.e. regular point x0 ∈ Ω and |Esu|-a.e. singular
point x0 ∈ Ω.

Regular points. For regular points, the argument is exactly the same as in the
first part of the proof of proposition 3.10.

Singular points. We want to prove that for all Borel sets B ⊂ Ω the inequality

Fs
∗ [u,B] �

∫
B

f#

(
dEsu

d|Esu|
)

d|Esu|

holds. In order to do that we fix x0 ∈ Ω such that

(1) (dEsu/d|Esu|)(x0) = a� b for some a, b ∈ R
d \ {0};

(2) αr := r−d|Eu|(Q(x0, r)) → ∞ as r ↓ 0, where Q(x0, r) := x0 + rQ and Q is a
(fixed) open d-cube with centre 0, side-length 1 and sides either parallel or
orthogonal to a.

These properties hold for |Esu|-a.e. x0 ∈ Ω in virtue of theorem 2.4 and theorem 2.3.
As in the proof of proposition 3.10, it suffices to establish the inequality

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

� f#(a� b)

for all |Eu|-Lebesgue points x0 ∈ Ω such that the limit on the left-hand side exists
(cf. corollary 2.23 in [4] with μ = |Eu|).

Define a blow-up sequence

vr(y) :=
u(x0 + ry) − [u]Q(x0,r)

rαr
+Rr(y), y ∈ Q, 0 < r < dist(x0, ∂Ω),

where Rr : R
d → R

d is a family of rigid deformations and [u]Q(x0,r) := −
∫

Q(x0,r)
u dx

is the average of u over Q(x0, r).
In virtue of lemma 2.14 in [17], up to a subsequence, the blow-up sequence (vr)

converges weakly∗ in BD(Q) to the function

v0(y) := h(y · a)b+ c(a⊗ b)y +Wy + v̄,

with a bounded and increasing function h : (−1/2, 1/2) → R, c > 0, and a rigid
deformation Wy + v̄, where W ∈ R

d×d
skew, v̄ ∈ R

d.
Note that for any Borel set B ⊂ Q we have

Evr(B) =
r1−dEu(x0 + rB)

rαr
=

Eu(x0 + rB)
|Eu|(Q(x0, r))

(4.3)

hence |Evr|(Q) = 1. Consequently, by proposition 1.62(b) in [4], we also have
|Ev0|(Q) � 1.
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Fix 0 < t < 1 and let Qt := tQ be a re-scaled cube. There exists a (not
particularly labelled) sequence of radii r ↓ 0 such that

lim
r↓0

|Eu|(Q(x0, tr))
|Eu|(Q(x0, r))

� td. (4.4)

Indeed, if it was not true, then for some 0 < t0 < 1 we could find 0 < r0 < 1 such
that

|Eu|(Q(x0, t0r)) � td0|Eu|(Q(x0, r))

for all r < r0. Iterating the above inequality yields:

|Eu|(Q(x0, t
k
0r0)) � tkd

0 |Eu|(Q(x0, r0))

for all k ∈ N. Since any 0 < r < r0 is in the interval (tk+1
0 r0, t

k
0r0] for some k ∈ N

we obtain

|Eu|(Q(x0, r)) � |Eu|(Q(x0, t
k
0r0)) � tkd

0 |Eu|(Q(x0, r0)) � |Eu|(Q(x0, r0))
td0r

d
0

rd.

Hence for any 0 < r < r0,

αr � |Eu|(Q(x0, r0))
td0r

d
0

,

which is a contradiction, since αr → +∞ as r ↓ 0. So, (4.4) follows.
Note that (4.4) yields

lim
r↓0

|Evr|(Qt) � td. (4.5)

Then, for any weak∗ limit ν of |Evr| in Q we get by example 1.63 in [4] that
ν(Qt) � td. On the other hand, Evr

∗⇁ Ev0 and Ev0(Q) = (a� b/|a� b|)ν(Q) by
theorem 2.3, (4.3), and (1). Moreover, |Ev0|(Q) � ν(Q) = |Ev0(Q)| � |Ev0|(Q),
hence, together with ν � |Ev0| we obtain that ν = |Ev0| on Q. Thus,
|Ev0|(Qt) � td.

Define wr := ϕvr + (1 − ϕ)v0, where ϕ ∈ C1
c(Q; [0, 1]) with ϕ ≡ 1 on a neigh-

bourhood of Qt. Clearly, the sequence (wr) converges to v0 strongly in L1(Q; Rd)
and

|E(wr − vr)|(Q) � |E(vr − v0)|(Q \Qt) +
∫

Q

|∇ϕ| |vr − v0|dy

� |Evr|(Q \Qt) + |Ev0|(Q \Qt) +
∫

Q

|∇ϕ| |vr − v0|dy.

Therefore, by (4.5), we have

lim sup
r↓0

|E(wr − vr)|(Q) � 2(1 − td).

Similarly,

|Ewr|(Q \Qt) � |Evr|(Q \Qt) + |Ev0|(Q \Qt) +
∫

Q

|∇ϕ| |vr − v0|dy
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and thus we also have

lim sup
r↓0

|Ewr|(Q \Qt) � 2(1 − td).

Using the scaling and growth properties of F∗ we obtain

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

=
F∗[αrvr, Q]

αr

� F∗[αrwr, Qt]
αr

=
F∗[αrwr, Q]

αr
− F∗[αrwr, Q \Qt]

αr

� F∗[αrwr, Q]
αr

−M
(
α−1

r |Q \Qt| + |Ewr|(Q \Qt)
)
.

Since αr → +∞ as r ↓ 0 we obtain

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

� lim sup
r↓0

F∗[αrwr, Q]
αr

− 2M(1 − td).

By lemma 4.7 in conjunction with the Lipschitz continuity of f (cf. [34, lemma 5.6]),
we obtain

F∗[αrwr, Q] � f(αrEwr(Q)) � f(αrEvr(Q)) − αrL|E(wr − vr)|(Q)

for all r > 0. Here L > 0 denotes a Lipschitz constant of f . Therefore

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

� lim sup
r↓0

f(αrEvr(Q))
αr

− 2(L+M)(1 − td).

Since

Evr(Q) =
Eu(Q(x0, r))
|Eu|(Q(x0, r))

→ dEsu

d|Esu| (x0) = a� b as r ↓ 0,

we obtain

lim sup
r↓0

f(αrEvr(Q))
αr

= f#(a� b),

We thus have

lim
r↓0

F∗[u,Q(x0, r)]
|Eu|(Q(x0, r))

� f#(a� b) − 2(L+M)(1 − td).

Letting t ↑ 1 concludes the proof. �
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