
Ergod. Th. & Dynam. Sys. (2018), 38, 143–154
doi:10.1017/etds.2016.30

c© Cambridge University Press, 2016

Orbital shadowing, internal chain transitivity
and ω-limit sets

CHRIS GOOD and JONATHAN MEDDAUGH

University of Birmingham, School of Mathematics, Birmingham B15 2TT, UK
(e-mail: c.good@bham.ac.uk, j.meddaugh@bham.ac.uk)

(Received 16 November 2015 and accepted in revised form 8 February 2016)

Abstract. Let f : X→ X be a continuous map on a compact metric space, let ω f be the
collection of ω-limit sets of f and let ICT( f ) be the collection of closed internally chain
transitive subsets. Provided that f has shadowing, it is known that the closure of ω f in the
Hausdorff metric coincides with ICT( f ). In this paper, we prove that ω f = ICT( f ) if and
only if f satisfies Pilyugin’s notion of orbital limit shadowing. We also characterize those
maps for which ω f = ICT( f ) in terms of a variation of orbital shadowing.

1. Introduction
Let f : X→ X be a continuous map on a compact metric space X . Each x ∈ X has an
associated ω-limit set ω(x) which is defined to be the set of limit points of the orbit of
x . The set ω f is the collection of all ω-limit sets of f , i.e. ω f = {A ⊆ X : ∃x ∈ X with
A = ω(x)}. While it is relatively easy to compute the ω-limit set of a point, it is often quite
difficult to determine whether a given subset A of X belongs to ω f .

As such, finding an alternative characterization of ω-limit sets is desirable. And indeed,
in many contexts, other characterizations exist. Of particular prominence is the notion of
internal chain transitivity. Briefly, a closed set A is internally chain transitive provided
that for all ε > 0 and any pair x, y ∈ A there exists a sequence x = x0, x1, . . . xn = y in A
satisfying d( f (xi ), xi+1) < ε. We denote the collection of internally chain transitive sets
by ICT( f ). It has been shown [11] that every ω-limit set is internally chain transitive,
and the converse has also been shown in a variety of contexts, including Axiom A
diffeomorphisms [7], shifts of finite type [2], topologically hyperbolic maps [3], and in
certain Julia sets [5, 4].

More recently, it has been demonstrated that for systems with the shadowing property,
ω-limit sets are completely characterized by internal chain transitivity if and only if ω f is
closed with respect to the Hausdorff topology [15]. A map f : X→ X has the shadowing
property provided that for all ε > 0 there exists a δ > 0 such that for any δ-pseudo-orbit
〈xi 〉 (i.e. a sequence satisfying d( f (xi ), xi+1) < δ) there exists a point z ∈ X which
shadows it (i.e. d( f i (z), xi ) < ε).
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Meddaugh and Raines [15] establish that, for maps f with shadowing, ω f = ICT( f ).
Since ω f is known to be closed in a variety of maps (maps of the interval [6], circle [19],
and other finite graphs [14]), in these systems, ω-limit sets are completely characterized
by internal chain transitivity. However, it is made clear that there are maps for which
shadowing does not hold, and yet the collections of ω-limit sets and internally chain
transitive sets coincide in this manner.

The purpose of this paper is to find a topological characterization of those systems in
which the coincidence of ω f and ICT( f ) occurs. In particular, §3 explores examples of
systems in which ω f = ICT( f ) occurs. These examples each exhibit a weaker type of
shadowing property that is also sufficient for the equality of ω f and ICT( f ). However, it
is also demonstrated that neither type is necessary for the equality to hold.

Section 4 proposes a novel type of shadowing, that of eventual strong orbital
shadowing. It is then demonstrated that this type of shadowing is necessary and sufficient
for ω f to be equal to ICT( f ). The final section considers asymptotic variants of these
shadowing properties and provides an analogous characterization of maps for which
ω f = ICT( f ).

2. Preliminaries
For the purposes of this paper, a dynamical system consists of a compact metric space X
with metric d and a continuous map f : X→ X . For each x ∈ X , the ω-limit set of x is
the set

ω(x)=
⋂
n∈N
{ f i (x) : i ≥ n},

i.e. the set of limit points of the sequence 〈 f i (x)〉i∈N. The properties of ω-limit sets are
well-studied.

Of particular import is the well-known fact that for each x ∈ X , ω(x) is a compact subset
of X and, as such, belongs to the hyperspace of compact subsets of X . This hyperspace is
a metric space in its own right, using the Hausdorff metric induced by the metric d; given
compact subsets A and B of X , the Hausdorff distance between A and B is given by

dH (A, B)=max
{

sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)
}
.

In this paper, we are primarily concerned with two specific subsets of this hyperspace.
The first is the ω-limit space of f , denoted by ω f , which is the collection of all ω-limit sets
of points in X . The structure of this set is intrinsically related to the dynamics of the map
f . Of particular interest is when this set is closed with respect to the Hausdorff metric.

In [6], Blokh et al demonstrated that for an interval map f : I → I , the set ω f is closed
with respect to this metric. It has also been shown that dynamical systems on circles [19]
and on graphs [14] have the property that ω f is closed. It is not, however, the case that ω f

is always closed. Examples of systems for which ω f is not closed include certain maps on
dendrites [12] and the unit square [13].

The second subset of the hyperspace of compact subsets of X that we are interested in is
the collection of internally chain transitive sets. A closed subset A of X is internally chain
transitive with respect to f , or ICT, provided that, for all ε > 0 and each pair a, b ∈ A,
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there exists an ε-chain from a to b in A, i.e. a sequence x0 = a, x1, . . . , xn = b in A
satisfying d( f (xi ), xi+1) < ε for each i < n. Note that it is an immediate consequence of
the definition that compact, internally chain transitive sets are invariant, i.e. f (A)= A,
and that the closure of an internally chain transitive set is internally chain transitive. We
will denote the collection of (closed) internally chain transitive sets by ICT( f ).

Internally chain transitive sets have also been fairly well-studied. Hirsch [11]
demonstrated that in any dynamical system, the ω-limit sets are internally chain transitive,
i.e. ω f ⊆ ICT( f ). It is also the case that in specific dynamical systems, ω f is equal to
ICT( f ). In particular, this is true for shifts of finite type [2], Julia sets for certain quadratic
maps [4, 5] and certain classes of interval maps [1]. Another class of maps for which this
equivalence holds is that of Axiom A diffeomorphisms [7], although in that paper the term
abstract ω-limit set is used rather than internal chain transitivity.

In many of the systems for which ICT( f )= ω f , it is observed that the system in
question has the shadowing property (sometimes referred to as the pseudo-orbit tracing
property). To define shadowing we first define the notion of a pseudo-orbit. For δ > 0,
a δ-pseudo-orbit is a sequence 〈xi 〉i∈N for which d( f (xi ), xi+1) < δ for all i ∈ N. It is
occasionally useful to talk about the ω-limit set of a pseudo-orbit, given by

ω(〈xi 〉i∈N)=
⋂
n∈N
{xi : i > n}.

We say that a map f has the shadowing property provided that for all ε > 0 there
exists δ > 0 such that for each δ-pseudo-orbit 〈xi 〉, there exists a point z ∈ X for which
d( f i (z), xi ) < ε for all i ∈ N. That is, for every δ-pseudo-orbit, there is a point whose
orbit shadows it.

Maps with shadowing are also well-studied in a variety of contexts, including in the
context of Axiom A diffeomorphisms [7], shifts of finite type [2], and in interval maps
[9]. There have also been many recent results concerning variations of the shadowing
property, including such notions as ergodic shadowing [10], limit shadowing [3, 17],
orbital shadowing [18, 17], and various others [8, 16].

Of particular relevance is the fact that in many systems with shadowing, ω-limit sets
and ICT sets coincide [1, 2, 4, 5]. It has recently been demonstrated, however, that this
coincidence of sets is not a general phenomenon [20].

However, in [15], Meddaugh and Raines prove that, under the assumption that f has the
shadowing property, ω f is closed precisely when it is equal to the set of internally chain
transitive sets of f . The paper demonstrates this by effectively proving the following two
results (the second of which is only implicitly proven in the original paper).

LEMMA 1. (Meddaugh and Raines [15]) Let f : X→ X be a dynamical system. Then
ICT( f ) is closed with respect to the Hausdorff metric.

THEOREM 2. (Meddaugh and Raines [15]) Let f : X→ X be a dynamical system with
the shadowing property. Then the closure of ω f is equal to ICT( f ).

While the first result is perfectly general, the second requires that the system exhibits
the shadowing property. In addition, Meddaugh and Raines [15] note that there are
systems for which ω f = ICT( f ) but which do not exhibit the shadowing property.
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In this paper, we will develop an appropriate notion of shadowing which will characterize
those systems for which ω f = ICT( f ).

3. Variations of shadowing
The concept of shadowing is well-studied and, as mentioned in the previous section, there
are a number of variations of shadowing that are interesting in their own right. The first
variation of shadowing we will consider is the notion of eventual shadowing.

Definition 3. A system f : X→ X has the eventual shadowing property provided that for
all ε > 0 there exists δ > 0 such that for each δ-pseudo-orbit 〈xi 〉, there exists z ∈ X and
N ∈ N such that d( f i (z), xi ) < ε for all i ≥ N .

This property is equivalent to the (N, Fc f )-shadowing property of Oprocha [16]. In
[16], it is demonstrated that shadowing implies eventual shadowing. Despite the fact that
eventual shadowing is weaker than shadowing, it is still sufficient to prove the following
result.

THEOREM 4. Let f : X→ X have the eventual shadowing property. Then ω f = ICT( f ).

Proof. Let A ∈ ICT( f ). Since A is internally chain transitive, as in [15], define a sequence
〈xi 〉i∈N of points in A such that for all N ∈ N, 〈xi 〉i≥N is dense in A and d( f (xi ), xi+1)

converges to zero.
Let ε > 0 and choose δ > 0 to witness the eventual shadowing property for ε/2. Since

d( f (xi ), xi+1) converges to zero, there exists M ∈ N with 〈xM+i 〉i∈N a δ-pseudo-orbit.
Let z ∈ X and N ∈ N as given by eventual shadowing so that d( f i (z), xM+i ) < ε/2 for all
i ≥ N . It then follows that

dH (ω(z), ω(〈xM+i 〉i∈N)) < ε,

and since ω(〈xM+i 〉i∈N)= A, we have

dH (ω(z), A) < ε.

Thus, A ∈ ω f .
Since ω f ⊆ ICT( f ) by [11], ω f = ICT( f ). �

Note that the example of a map without shadowing but with ω f = ICT( f ) described in
[15] does indeed exhibit the eventual shadowing property.

Example 5. The function f : [−1, 1] → [−1, 1] be given as follows:

f (x)=


x3, −1≤ x ≤ 0,

2x, 0≤ x ≤ 1/2,

2(1− x), 1/2≤ x ≤ 1,

with graph shown in Figure 4 has the eventual shadowing property.

This can be observed by noting that for any sufficiently small δ, any δ-pseudo-orbit
eventually lies in a δ neighborhood of the fixed point−1 or a δ neighborhood of the interval
[0, 1]. Since f restricted to either [−1, 0] or [0, 1] has shadowing, the property follows.

However, it is not the case that eventual shadowing characterizes those maps with
ω f = ICT( f ). To see this, consider the following example.
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FIGURE 1. The graph of a function f : [−1, 1] → [−1, 1] which satisfies ICT( f )= ω f but does not
exhibit shadowing.

Example 6. Let f : S1
→ S1 be an irrational rotation of the circle. Then f satisfies

ω f = ICT( f ) but does not have the eventual shadowing property.

To see this, first, observe that the only ω-limit set for such a map is the entire space X .
Furthermore, observe that, as internally chain transitive sets are invariant, if A is internally
chain transitive, and z ∈ A, then ω(z)⊆ A, and hence A = X . Thus, ω f = ICT( f )= {X}.
Note that this same argument demonstrates this equality for any minimal system.

However, the system does not have the eventual shadowing property. To see this,
consider S1 as X = R/Z and let r ∈ (0, 1) be the rotation constant. Consider ε < 1/8 and
let δ > 0. Find a number r ′ such that r > r ′ > r − δ and so that there exists N ∈ N with
3/4> N (r − r ′) > 1/4.

Now, consider the δ-pseudo-orbit 〈ir ′〉. Suppose that z ∈ S1 satisfies d( f i (z), ir ′)
< 1/8. Then |ir + z − ir ′|< 1/8. But then d( f i+N (z), (i + N )r ′)= |(i + N )r + z −
(i + N )r ′| = |ir + z − ir ′ + N (r − r ′)| ≥ |N (r − r ′)| − |ir + z − ir ′| ≥ 1/8.

Example 6, however, does have another form of shadowing, specifically, it has the
orbital shadowing property as discussed in [18, 17]. The orbital shadowing property is
concerned with the structure of pseudo-orbits and orbits as sets rather than as sequences.

Definition 7. A system f : X→ X has the orbital shadowing property provided for all
ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit 〈xi 〉, there exists a point z ∈ X
with

dH ({xi }i∈N, { f i (z)}i∈N) < ε.

While the irrational rotation of the circle as in Example 6 does exhibit orbital
shadowing, there are systems with orbital shadowing that do not have the property that
ω f = ICT( f ).
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Example 8. Consider the two-sided shift space6 = {0, 1}Z with the usual metric and shift
map f . Let X be the subshift of 6 with language consisting of those words in which the
symbol ‘1’ appears no more than once. Then f |X has orbital shadowing but does not have
ω f = ICT( f ).

For this map, it is easy to verify that ICT( f )= {X, {0}} whereas ω f = {{0}} where 0
denotes the word consisting of only zeros. Thus, ω f 6= ICT( f ) for this system. That f has
the orbital shadowing property is observed by noting that for any δ > 0, a δ-pseudo-orbit
〈xi 〉 is either eventually contained in the δ ball around 0 or is δ-dense in X (i.e. every δ
ball contains a point of the pseudo-orbit). In the former case, there is a point z in X which
shadows the pseudo-orbit in the traditional sense, and in the latter case, any point z ∈ X
whose orbit is δ dense in X orbitally shadows 〈xi 〉.

However, a stronger form of orbital shadowing is sufficient for ω f = ICT( f ).

Definition 9. A system f : X→ X has the strong orbital shadowing property provided for
all ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit 〈xi 〉, there exists a point z ∈ X
with

dH ({xN+i }i∈N, { f N+i (z)}i∈N) < ε

for all N ∈ N.

THEOREM 10. Let f : X→ X have the strong orbital shadowing property. Then
ω f = ICT( f ).

Proof. Let A ∈ ICT( f ). Since A is internally chain transitive, as in [15], define a sequence
〈xi 〉i∈N of points in A such that for all N ∈ N, 〈xi 〉i≥N is dense in A and d( f (xi ), xi+1)

converges to zero.
Let ε > 0 and choose δ > 0 to witness the strong orbital shadowing property for ε/2.

Since d( f (xi ), xi+1) converges to zero, there exists M ∈ N with 〈xM+i 〉i∈N a δ-pseudo-
orbit. Let z ∈ X as given by strong orbital shadowing so that

dH ({xM+N+i }i∈N, { f N+i (z)}i∈N) < ε/2

for all N ∈ N. It then follows that

dH (ω(〈xM+i 〉i∈N), ω(z)) < ε,

and since ω(〈xM+i 〉i∈N)= A, we have

dH (A, ω(z)) < ε.

Thus, A ∈ ω f .
Since ω f ⊆ ICT( f ) by [11], ω f = ICT( f ). �

However, as with eventual shadowing, there are systems with ω f = ICT( f ) but without
strong orbital shadowing. In particular, the system in Example 5 is such a system. Thus,
neither eventual shadowing nor strong orbital shadowing is necessary for a system to have
ω f = ICT( f ).
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4. Characterizing ω f = ICT( f )
While each of eventual shadowing and strong orbital shadowing imply that ω f = ICT( f ),
neither is necessary for this property to appear. Thus, if we are to find a shadowing property
which is necessary and sufficient for ω f = ICT( f ), we must look for a weaker notion
of shadowing. Strong orbital shadowing requires that z can be chosen so that the sets
{xN+i }i∈N and { f N+i (z)}i∈N be close for all N ∈ N, whereas eventual shadowing only
requires that z can be chosen so that f i (z) and xi are close for all i larger than some K .
By combining these, we have the following notion of shadowing.

Definition 11. A system f : X→ X has the eventual strong orbital shadowing property
provided that for all ε > 0, there exists δ > 0 such that for any δ-pseudo-orbit 〈xi 〉, there
exists a point z ∈ X and K ∈ N with

dH ({xN+i }i∈N, { f N+i (z)}i∈N) < ε

for all N ≥ K .

In other words, f has the eventual strong orbital shadowing property if z can be chosen
so that the sets {xN+i }i∈N and { f N+i (z)}i∈N are close to for all but finitely many N .
Another form of shadowing can be defined by requiring only that z can be chosen so that
the sets are close for infinitely many N ∈ N.

Definition 12. A system f : X→ X has the cofinal orbital shadowing property provided
that for all ε > 0 there exists δ > 0 such that for any δ-pseudo-orbit 〈xi 〉, there exists a
point z ∈ X such that for all K ∈ N there exists N ≥ K such that

dH ({ f N+i (z)}i∈N, {xN+i }i∈N) < ε.

While it is immediate that the eventual strong orbital shadowing property implies the
cofinal orbital shadowing property, the converse is actually true as well. In fact, these types
of shadowing are precisely the ones which characterize the property of ω f = ICT( f ).

THEOREM 13. Let f : X→ X be a dynamical system. Then the following are equivalent:
(1) f has the eventual strong orbital shadowing property;
(2) f has the cofinal orbital shadowing property;
(3) ω f = ICT( f ).

Proof. Since eventual strong orbital shadowing implies cofinal orbital shadowing, we first
establish that a system with the cofinal orbital shadowing property exhibits ω f = ICT( f ).

Indeed, let A ∈ ICT( f ). As before, since A is internally chain transitive, as in [15],
define a sequence 〈xi 〉i∈N of points in A such that for all N ∈ N, 〈xi 〉i≥N is dense in A and
d( f (xi ), xi+1) converges to zero.

Let ε > 0 and choose δ > 0 to witness cofinal orbital shadowing for ε/2. Since
d( f (xi ), xi+1) converges to zero, there exists M ∈ N with 〈xM+i 〉i∈N a δ-pseudo-orbit.
Let z ∈ X be given by cofinal orbital shadowing so that

dH ({xM+N+i }i∈N, { f N+i (z)}i∈N) < ε/2

for infinitely many N ≥ K . It then follows that

dH (ω(〈xM+i 〉i∈N), ω(z)) < ε,
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and since ω(〈xM+i 〉i∈N)= A, we have

dH (A, ω(z)) < ε.

Thus, A ∈ ω f . Since ω f ⊆ ICT( f ) by [11], ω f = ICT( f ).
Now, let us establish that a system with ω f = ICT( f ) must have the eventual strong

orbital shadowing property. Suppose to the contrary that f : X→ X does not exhibit the
eventual strong orbital shadowing property, and let ε > 0 witness this. Then, for each
n ∈ N there exists a 1/2n-pseudo-orbit 〈xn

i 〉 such that for all z ∈ X and all K ∈ N there
exists N ≥ K with dH ({ f N+i (z)}i∈N, {xn

N+i }i∈N)≥ ε.
For each n ∈ N, let Wn = ω(〈xn

i 〉). Without loss, we may assume that the sequence
〈Wn〉n∈N is convergent, and let W = lim Wn . As W is a limit of compact sets, it is itself
compact. We will show that W is ICT but is not in ω f .

To see that W ∈ ICT( f ), let a, b ∈W and let ξ > 0. By uniform continuity,
choose η > 0 such that d(p, q) < η implies that d( f (p), f (q)) < ξ/2. Without loss, take
η < ξ/2.

Choose N sufficiently large so that 1/2N < η/3 and dH (WN , W ) < η/3. Also, choose
a K ∈ N such that

dH ({x N
K+i }i∈N, WN ) < η/3,

and so we have
dH ({x N

K+i }i∈N, W ) < 2η/3.

Now, choose j ∈ N so that d(x N
K+ j , a) < 2η/3 and choose k > j with d(x N

K+ j , b) < 2η/3.
Now, let z0 = a, zk− j = b and for each i < k − j , choose zi ∈ B2η/3(x N

K+ j+i ) ∩W .
Then for all i < k − j

d( f (zi ),zi+1)≤ d( f (zi ), f (x N
K+ j+i ))+ d( f (x N

K+ j+i ), x N
K+ j+i+1)+ d(x N

K+ j+i+1,zi+1)

< ξ/2+ η/3+ 2η/3

< ξ.

Thus, for all a, b ∈W and all ξ > 0, there is a ξ -chain in W from a to b, and since W is
compact, W ∈ ICT( f ).

To see that W /∈ ω f , suppose to the contrary, i.e. that W ∈ ω f . Then we can find
z ∈ X with dH (ω(z), W ) < ε/4. We can also choose an N ∈ N such that dH (WN , W )

< ε/4. Finally, we can choose a K ∈ N so that both dH ({ f k+i (z)}i∈N, ω(z)) < ε/4 and
dH ({x N

k+i }i∈N, WN ) < ε/4 for all k ≥ K . Then, for all k ≥ K ,

dH ({ f k+i (z)}i∈N, {x N
k+i }i∈N)≤ dH ({ f k+i (z)}i∈N, ω(z))+ dH (ω(z), W )

+ dH (WN , W )+ dH ({x N
k+i }i∈N, WN )

< ε

which contradicts our choice of 〈x N
i 〉.

Thus, W ∈ ICT( f ) \ ω f . �

https://doi.org/10.1017/etds.2016.30 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.30


Orbital shadowing, internal chain transitivity and ω-limit sets 151

It should be noted that in light of the above, we have the following relations among the
various types of shadowing.

Remark 14. Let f : X→ X be a continuous map. Then the following implications hold.
(1) If f has shadowing, then f has strong orbital shadowing.
(2) If f has strong orbital shadowing, then f has orbital shadowing.
(3) If f has shadowing, then f has eventual strong orbital shadowing (cofinal orbital

shadowing).
(4) If f has strong orbital shadowing, then f has eventual strong orbital shadowing

(cofinal orbital shadowing).
(5) If f has eventual shadowing, then f has eventual strong orbital shadowing (cofinal

orbital shadowing).

However, as witnessed by Examples 5, 6, and 8 above, the converse of each of the
above is false. In addition, there are maps with eventual strong orbital shadowing which
have none of the other types of shadowing. One such map can be realized by taking the
system which is the disjoint union of the systems from Examples 5 and 6.

5. Asymptotic shadowing types and characterizations of ω f = ICT( f )
In [15], the authors set out to provide conditions under which ω f = ICT( f ). As
demonstrated in that paper, under the assumption of shadowing, this occurs if and only
if ω f is closed in the Hausdorff metric. In light of the results of the previous section, we
have the following corollary to Theorem 13.

COROLLARY 15. Let f : X→ X be a dynamical system in which ω f is closed. Then
ω f = ICT( f ) if and only if f has the eventual strong orbital shadowing property.

It has been demonstrated that for maps of the finite graphs [14] and, in particular, the
interval [6], the collection of ω-limit sets is closed and, thus, in these contexts, the eventual
strong orbital shadowing property completely characterizes the property of ω f = ICT( f ).

COROLLARY 16. Let f : X→ X be a continuous map on a finite graph. Then
ω f = ICT( f ) if and only if f has the eventual strong orbital shadowing property.

However, there are many more spaces in which ω f is not necessarily closed. In
particular, there are dendrite maps [12], maps of the square [13], and many others.

In these spaces a more careful characterization is required. In [3], Barwell et al
explore the property of asymptotic shadowing, or limit shadowing as it is sometimes
called. A sequence 〈xi 〉 in X is an asymptotic pseudo-orbit for f provided that
lim d( f (xi ), xi+1)= 0.

Definition 17. A system f : X→ X has asymptotic shadowing (limit shadowing) provided
that for each asymptotic pseudo-orbit 〈xi 〉, there exists a point z ∈ X with

lim d( f i (z), xi )= 0.

THEOREM 18. (Barwell et al [3]) Let f : X→ X be a dynamical system with asymptotic
shadowing. Then ω f = ICT( f ).
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However, as with the results of [15], asymptotic shadowing is sufficient for
ω f = ICT( f ), but it is not necessary. The irrational rotation of the circle as in Example 6
has ω f = ICT( f ) but fails to have asymptotic shadowing [17].

In light of these observations, it seems sensible that an asymptotic version of
the eventual strong orbital shadowing property might characterize the property of
ω f = ICT( f ). Indeed, we can develop asymptotic versions of each shadowing property we
have already discussed. We might begin with an asymptotic version of eventual shadowing,
but it is immediately clear that such a shadowing property is equivalent to the usual
asymptotic shadowing property. As for the orbital shadowing properties, we offer the
following two definitions.

Definition 19. A system f : X→ X has the asymptotic orbital shadowing property
provided that for every asymptotic pseudo-orbit 〈xi 〉 there exists a point z ∈ X such that
for all ε > 0 there exists N ∈ N such that

dH ({xN+i }i∈N, { f N+i (z)}i∈N) < ε.

Definition 20. A system f : X→ X has the asymptotic strong orbital shadowing property
provided that for every asymptotic pseudo-orbit 〈xi 〉 there exists a point z ∈ X such that
for all ε > 0 there exists a K ∈ N such that

dH ({xN+i }i∈N, { f N+i (z)}i∈N) < ε

for all N ≥ K .

Note that, while we could similarly define notions of asymptotic eventual strong orbital
shadowing or asymptotic cofinal orbital shadowing, they would be essentially immediately
equivalent to the asymptotic strong orbital shadowing property.

It is also worth noting that there is a shadowing property known as the orbital limit
shadowing property, which has been studied by Pilyugin and others [17].

Definition 21. A system f : X→ X has the orbital limit shadowing property provided that
for every asymptotic pseudo-orbit 〈xi 〉 there exists a point z such that ω(z)= ω(〈xi 〉).

It turns out that all of these properties are equivalent, and indeed also characterize the
property of ω f = ICT( f ).

THEOREM 22. Let f : X→ X be a dynamical system. Then the following are equivalent:
(1) f has the asymptotic orbital shadowing property;
(2) f has the asymptotic strong orbital shadowing property;
(3) f has the orbital limit shadowing property; and
(4) ω f = ICT( f ).

Proof. That (2) implies (1) is immediate.
Now, assume that (1) holds, and let A ∈ ICT( f ). Since A is internally chain transitive,

let 〈xi 〉 be an asymptotic pseudo-orbit contained in, and dense in A. By (1), there exists a
point z such that for all ε > 0, there exists N with

dH ({xN+i }i∈N, { f N+i (z)}i∈N) < ε.

https://doi.org/10.1017/etds.2016.30 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2016.30


Orbital shadowing, internal chain transitivity and ω-limit sets 153

But {xN+i }i∈N = A, and so

dH (A, { f N+i (z)}i∈N) < ε.

Now, for each ε > 0 there is such an N ∈ N so there are two possibilities. Either there is
an increasing sequence N j such that

lim
j→∞

dH (A, { f N j+i (z)}i∈N)= 0

in which case ω(z)= A, or there exists some K ∈ N for which

dH (A, { f K+i (z)}i∈N) < ε

for all ε > 0. But in this latter case, we would have

dH (A, { f K+i (z)}i∈N)= 0,

i.e. A = { f K+i (z)}i∈N, and since A is invariant under f , it follows that

A = f (A)= f ({ f K+i (z)}i∈N)= { f K+1+i (z)}i∈N

and we would have A = ω(z).
In either case, A ∈ ω f , and so ICT( f )⊆ ω f . By [11], the opposite inclusion holds, and

we have property (4).
Now, assume property (4) holds, and let 〈xi 〉 be an asymptotic pseudo-orbit. Then

ω(〈xi 〉) ∈ ICT( f ), and hence ω(〈xi 〉) ∈ ω f . Thus there exists z ∈ X with ω(z)= ω(〈xi 〉).
So, (4) implies (3).

Finally, we need to show (3) implies (2). So, let 〈xi 〉 be an asymptotic pseudo-orbit. By
(3) there is some z ∈ X with ω(z)= ω(〈xi 〉). In particular,

lim
N→∞

dH ({ f N+i (z)}i∈N, {xN+i }i∈N)= dH (ω(z), ω(〈xi 〉))= 0.

Thus, for all ε > 0, there exists K such that

dH ({ f N+i (z)}i∈N, {xN+i }i∈N) < ε

for all N ≥ K . This establishes (2). �

Remark 23. In the event that ω f is closed, the following are equivalent:
(1) orbital limit shadowing;
(2) eventual strong orbital shadowing (cofinal orbital shadowing);
(3) asymptotic (strong) orbital shadowing.
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