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Molecular data on two mitochondrial genes
of a newly discovered crustacean species
(Lightiella magdalenina, Cephalocarida)
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Cephalocarida is a rare and poorly known class of small benthic crustaceans, consisting of only eleven species belonging to five
genera. Thus far, only one species (Hutchinsoniella macracantha) has been studied at molecular level. We report the partial
sequences of two phylogenetically important mitochondrial genes (Cytochrome c Oxidase I and Cytochrome b) from the newly
discovered Mediterranean species, Lightiella magdalenina. The genetic relationships between the two cephalocarid species are

discussed.
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Cephalocarida is a class of small benthic crustaceans distribu-
ted from the intertidal zone to approximately 1550 m depth.
To date, only eleven species belonging to five genera have
been described. Lightiella magdalenina Carcupino, Floris,
Addis, Castelli, Curini-Galletti, 2006, the most recently dis-
covered species from La Maddalena Archipelago (Sardinia,
Italy) (41°13'N 9°25'E), is characterized by a high degree of
endemism. No other species have been reported in Europe,
and the discovery of L. magdalenina in the Mediterranean
Sea (Carcupino et al., 2006) fills a gap in the worldwide distri-
bution of the entire class. Its type locality is characterized by a
muddy sand bottom very rich in organic matter with little sea-
grass beds. Since its first description (Sanders, 1955),
Cephalocarida was considered the most primitive living crus-
tacean class. However, it remains a poorly known taxon, and
its phylogenetic position is controversial. Molecular data are
only available for one species, Hutchinsoniella macracantha
Sanders, 1955, and refer to a complete mitochondrial
genome (Lavrov ef al, 2004), to two mitochondrial genes
(Giribet ef al., 2001) and to six nuclear genes (Spears &
Abele, 1997; Colgan et al, 1998; Regier & Shultz, 1998;
2001; Shultz & Regier, 2000; Giribet et al, 2001; Richter
et al., 2007). Nevertheless, the molecular analyses have not
provided unequivocal results in terms of phylogenetic
relationships: even when the survey was limited to mtDNA,
Cephalocarida has been tentatively related with Remipedia
(Giribet et al, 2001), Maxillopoda and Pentastomida
(Lavrov et al., 2004).

The aim of this short note is to provide molecular data for
this rare and poorly known crustacean class, based on the
sequencing of two mitochondrial genes of L. magdalenina.
These genes, selected for their value in phylogenetic analysis,
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are Cytochrome ¢ Oxidase subunit I (COI) and Cytochrome b
(Cyt-b). The former has been proposed by Hebert et al. (2003)
as a sort of genetic ‘barcode’, which can serve as the core of a
global bioidentification system for animals. The latter, widely
used in vertebrate evolutionary studies, is particularly effective
for the reconstruction of molecular phylogeny in invertebrates
(Simmons & Weller, 2001).

For PCR amplifications of a partial region of both genes, we
used primers designed by Folmer ef al. (1994) for COI, and
Boore & Brown (2000) for Cyt-b. Standard DNA procedures
were used to extract from the whole body of a specimen
about 2 mm long. The PCR amplification mix contained: 0.4
M of each primer; 2.5 U of Taqg DNA Polymerase; 2.5 mM
of MgCl,; 200 uM of dNTPs. The PCR profile consisted of
35 cycles (denaturation: 1’ at 94°C; annealing: 1" at 52°C;
extension: 130" at 72°C).

The PCR amplifications yielded a product of 618 bp for the
COI gene, and 345 bp for the Cyt-b gene (Genbank accession
numbers: EU530536 and EUs30537). Comparison of the two
sequences with those of H. macracantha revealed 143 changes
(66 transitions and 77 transversions) for COI and 126 changes
(44 transitions, 79 transversions, and 3 deletions belonging to
the same codon) for Cyt-b. These mutations led to 38 amino
acid changes over 206 for the COI enzyme, and 50 amino acid
changes and the deletion of one aspartate over 116 for the
Cyt-b enzyme. For further analysis, the two genes were com-
bined, excluding the third base of each codon, for a total of
644 bp.

A median joining network analysis was carried out with
Network 4.5.0.0 software (http://www.fluxus-engineering.com)
(Bandelt et al., 1999), using the sequences of L. magdalenina
and those of 8 representative species of Pancrustacea, whose
complete genomes were reported in Lavrov et al (2004)
(Figure 1). As shown by the short length of the torso, the
network analysis, based on a neighbour joining (NJ) approach,
is not appropriate for deep level phylogeny. However, it allows
discrimination of the phylogenetic status of specific residues.
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Fig. 1. Median joining network of the combined Cytochrome ¢ Oxidase I and Cytochrome b partial genes from Lightiella magdalenina and 8 Pancrustacea species.
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Fig. 2. Maximum likelihood unrooted tree of combined Cytochrome b and Cytochrome ¢ Oxidase I partial genes from Lightiella magdalenina and 36 arthropod

species (above). Numbers refer to the LR-ELW values (10,000 replicates) for the Cephalocarida branch.
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reticulation of the network). The prevalence of apomorphisms
over plesiomorphisms suggests a very ancient separation
of the two species from a common ancestor. Equality of the
evolutionary rate of the two species was tested for both genes
with the method proposed by Tajima (1993) using the
MEGA4 software (Tamura et al, 2007). In spite of the observed
differences in the number of apomorphic nucleotides, the
Tajima relative rate test of neutrality was non-significant
for both genes, whatever the other sequence used as outgroup.
A maximum likelihood (ML) analysis was carried out with
Treefinder (http://www.treefinder.de) (Jobb, 2008), applying
edge support (LR-ELW) (Strimmer & Rambaut, 2002)
(Figure 2). Lightiella magdalenina was analysed together with
another 30 Pancrustacea species, using as outgroup 5
Myriapoda and one Chelicerata species. The general topology
of ML analyses appears to be consistent with the network struc-
ture, showing a deep divergence of the cephalocarid clade and an
ancient separation of the two species. As previously observed by
Hassanin (2006), the affinity between Cephalocarida and
Copepoda suggested by ML analysis, could be interpreted as a
consequence of a long branch attraction phenomenon due to
reverse strand bias (Felsenstein, 1978).

A discussion of arthropod evolution is far beyond the scope
of this short note. Nevertheless, our contribution of molecular
data for a newly discovered species increases the knowledge on
the genetic variation within Cephalocarida, which can be
useful for future research in this strongly debated field.
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