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Object-oriented (OO) programming techniques can be applied to equational specification

logics by distinguishing visible data from hidden data (that is, by distinguishing the output

of methods from the objects to which the methods apply), and then focusing on the

behavioural equivalence of hidden data in the sense introduced by H. Reichel in 1984.

Equational specification logics structured in this way are called hidden equational logics,

HELs. The central problem is how to extend the specification of a given HEL to a

specification of behavioural equivalence in a computationally effective way. S. Buss and

G. Roşu showed in 2000 that this is not possible in general, but much work has been done

on the partial specification of behavioural equivalence for a wide class of HELs. The OO

connection suggests the use of coalgebraic methods, and J. Goguen and his collaborators

have developed coinductive processes that depend on an appropriate choice of a cobasis,

which is a special set of contexts that generates a subset of the behavioural equivalence

relation. In this paper the theoretical aspects of coinduction are investigated, specifically its

role as a supplement to standard equational logic for determining behavioural equivalence.

Various forms of coinduction are explored. A simple characterisation is given of those HELs

that are behaviourally specifiable. Those sets of conditional equations that constitute a

complete, finite cobasis for a HEL are characterised in terms of the HEL’s specification.

Behavioural equivalence, in the form of logical equivalence, is also an important concept for

single-sorted logics, for example, sentential logics such as the classical propositional logic.

The paper is an application of the methods developed through the extensive work that has

been done in this area on HELs, and to a broader class of logics that encompasses both

sentential logics and HELs.

1. Introduction

Equational logic serves as the underlying logic in many formal approaches to program

specification. The algebraic data types specified in this formal way can be viewed as

abstract machines on which the programs are to be run. This is one way of giving a

precise algebraic semantics for programs, against which the correctness of a program

can be tested. Object-oriented (OO) programs, however, present a special challenge for

equational methods. A more appropriate model for the abstract machine in the case of an
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OO program is, arguably, a state transition system: like a state of such a system, a state

of an OO program can be viewed as encapsulating all pertinent information about the

abstract machine when it reaches the state during execution of the program. As a way of

meeting this challenge, the standard equality predicate can be augmented by behavioural

equivalence; in this way many of the characteristic properties of state transition systems

can be grafted onto equational logic.

In this approach the data are partitioned into visible and hidden parts, with the latter

representing the objects in the object-oriented paradigm. Procedures that take hidden data

as input (the methods associated with an object) are assumed to output only visible data.

Hidden data can only be indirectly compared by comparing the outputs of the procedures.

Two hidden data elements are behaviourally equivalent if every procedure returns the

same value when executed with either of the data elements as input. In formalising

the equational logic intended to specify behavioural equivalence, only equations and

conditional equations between visible terms are used in axiomatising the logic, since only

visible data are used to define behavioural equivalence. Such logics are referred to as

hidden equational logics, or HELs. Here we follow Goguen and Malcolm (2000) in the

choice of the descriptive term ‘hidden’.

The central problem is how to specify behavioural equivalence in a computationally

effective way, more precisely, how to do this for behavioural validity. An equation is

said to be behaviourally valid over a given HEL L if its left- and right-hand sides

are behaviourally equivalent under all possible interpretations in the models of L. A

natural extension of this idea gives a corresponding notion of the behavioural validity of

a conditional equation. It is known that this problem is not solvable in general. More

specifically, Buss and Roşu (2000) gives an example of a hidden equational logic defined

by a finite number of equations and conditional equations with the property that the

set of behaviourally valid equations (and hence, in particular, the set of behaviourally

valid conditional equations) fails to be either recursively enumerable (RE) or co-RE. So

attention has been focused on partial solutions to the problem.

The analogy between hidden equational logic and state-transition systems suggests

the use of coalgebraic methods in the verification of behavioural validity, and, indeed,

various forms of coinduction in combination with standard techniques of equational

logic have been developed for this purpose – see Bouhoula and Rusinowitch (2002),

Goguen and Malcolm (1999), Goguen and Malcolm (2000), Roşu (2000), Roşu and

Goguen (2000), Roşu and Goguen (2001) and Goguen et al. (2002). More abstract

studies of the behavioural equivalence and validity relations can be found in Bidoit and

Hennicker (1996) and Hennicker (1997).

Research in the area has generally focused on computationally effective coinductive

and specialised rewriting techniques that can serve as the basis of special languages that

support automated behavioural reasoning. Bouhoula and Rusinowitch (2002) proposed

an automatic method for proving behavioural validity of conditional equations in

conditional specifications based on the fact that there are specifications for which

a small set of contexts, called critical contexts, is sufficient to determine behavioural

validity. This is the genesis of the SPIKE language (Berreged et al. 1998), which uses

context induction (see http://www.loria.fr/bouhoula/spike.html). The language
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CafeOBJ was developed by Diaconescu and Futatsugi (Diaconescu and Futatsugi 1998)

(see http://www.ldl.jaist.ac.jp/Research /CafeOBJ/). It implements behavioural

rewriting to make behaviourally sound reductions of terms, and is based on a behavioural

version of the well-known efficient method of rewriting for automated theorem proving.

Joseph Goguen and his collaborators have developed coinductive algorithms that

depend on an appropriate choice of a cobasis, which is a special set of contexts that

generates a subset of the behavioural equivalence relation. Those algorithms have been

implemented in the language BOBJ (Lin et al. 2000). Roşu and Goguen (2001) presented

a new technique, which combines behavioural rewriting and coinduction (see also Lin

et al. (2000)). The most recent version is CCCRW, called conditional circular coinductive

rewriting with case analysis (Goguen et al. 2002).

In contrast, our work is more theoretical, like that of Buss and Roşu (2000), Bidoit

and Hennicker (1996) and Hennicker (1997). We investigate the theoretical aspects of

coinduction and its role as a supplement to standard equational logic for determining

behavioural equivalence. We explore the various forms coinduction can assume and how

they interact with the deductive process of standard equational logic. In order to do

this properly, we must first describe in some detail the underlying logical formalism, and

precisely define within that context what behavioural equivalence is. Although the work

here may eventually lead to computationally effective ways of determining behavioural

equivalence in practical situations, this is not one of our goals, and we do not explore the

possibility.

There are some consequences of this aspect of our work, which set it apart from

others in the area, that we feel compelled to mention because they have proved somewhat

controversial. Various examples of HELs and other kinds of logics are given illustrating

our theoretical results, and we have deliberately chosen simple, some would say trivial,

examples because these best serve our purpose. The example of stacks of natural numbers

is one whose familiarity seems to have bred disdain in some quarters, but it is just this

familiarity that makes it well suited for our purpose. More complex examples would be

appropriate only if we were presenting case studies for specific deductive algorithms.

Another controversial aspect of our work is the requirement that axioms refer only to

visible data. For example, in axiomatising stacks of natural numbers we chose the infinite

set of visible axioms top(popn+1(push(x, s))) ≈ top(popn(s)), for all natural numbers n,

instead of the familiar single, hidden axiom pop(push(x, s) ≈ s. Given the object-oriented

paradigm guiding us, this is the only coherent choice. Hidden objects can only be specified

in terms of the data the applicable methods return, and these are necessarily visible. A

simpler axiomatisation can, of course, be obtained by replacing the infinitely many

hidden equations with the single hidden one, but to assure this replacement is sound, the

behavioural validity of pop(push(x, s) ≈ s must first be verified by some means using the

original axiom system.

The authors came to this project with a background in algebraic logic, more precisely,

abstract algebraic logic, which is an area of mathematical logic that has been quite

active recently (for surveys of the subject, see Font et al. (2003) and Pigozzi (2001)).

Roughly speaking, abstract algebraic logic (AAL) is the study of the relation between

logical assertion (that is, asserting that a sentence is logically true) and logical equivalence
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(asserting that two sentences are logically equivalent). Historically, logics, like the classical

propositional logic (CPL), have been formalised as one-sorted assertional systems, that

is, sentential logics, and it turns out that in such systems logical equivalence can be

characterised precisely as behavioural equivalence. In CPL, behavioural (that is, logical)

equivalence is defined by an explicit logical connective, the biconditional ↔, but in

arbitrary sentential logics it has to be captured by other means, and this, essentially, is

the subject matter of AAL. In this paper we apply the methods of AAL to HELs and to

a broader class of logics that encompasses both sentential logics and HELs.

The special feature of this approach is the characterisation of behavioural equivalence as

a congruence relation on the term algebra of a special kind (called the Leibniz congruence

in AAL). This congruence has been used before in hidden equational logic (Roşu and

Goguen 2000; Roşu and Goguen 2001), but plays a greatly expanded role in our work.

The role that algebraic data structures traditionally play in hidden equational logic is in

large part supplanted by the theory of the Leibniz congruence. This gives our work a

distinctive combinatorial flavour, which, in our view, adds much to the understanding of

the subject.

1.1. Outline of the paper

A large part of our theory applies to a much more general class of logical systems than

hidden equational logics. In the first part of Section 2 we define the notion of a hidden

k-logic. The elementary part of its semantics is developed in Section 2.2.

Hidden k-logics encompass not only the hidden and standard equational logics, but

also Boolean logics (that is, multi-sorted logics with a Boolean sort in place of equality

predicates). They also include sentential logics, the purview of abstract algebraic logic.

In Section 2.3 we specialise to the hidden equational logics (HELs) and present several

representative examples of HELs and an example of a hidden 3-logic (Example 2.11).

The standard definition of behavioural equivalence of elements of an hidden algebra

(in terms of contexts) is given in Section 2.4. This is followed by the generalisation of the

notion to k-data structures, the natural models of hidden k-logics. The next section, 2.5,

is a brief detour into abstract algebraic logic where we define the Leibniz congruence and

develop some of its basic properties. We also present in this section a general version of

the completeness theorem for HELs that involves some special hidden algebras that are

defined in terms of the Leibniz congruence.

Section 3 forms the core of the paper. We give precise definitions of behaviourally

valid equations and conditional equations over a hidden k-logic and, as a special case, a

HEL. In the main lemma of the paper (Theorem 3.4), behavioural validity is characterised

in terms of combinatorial properties of Leibniz congruences on the term algebra; this

characterisation can be viewed as the most abstract form of coinduction for conditional

equations, and all subsequent results of the paper derive from it.

In Section 3.1 we prove that all members of a set of conditional equations E are

behaviourally valid over a HEL if and only if every conditional equation with visible

consequent that is derivable using E as a set of additional inference rules is already deriv-

able without the aid of E (Theorem 3.10). This gives an alternative form of coinduction
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for conditional equations that uses only standard equational logic. It generalises in a

natural way a similar result in Leavens and Pigozzi (2002, Theorem 3.18) for equations.

As a consequence (Corollary 3.13), we get that the set of conditional equations that are

behaviourally valid over a HEL is closed under equational consequence in the sense that

any conditional equation that is derivable using any set of behaviourally valid conditional

equations as additional rules is itself behaviourally valid. Thus coinduction (in either of

the alternative forms mentioned above) remains sound as well as complete with respect to

behavioural validity when augmented by the standard deductive apparatus of equational

logic. This turns out to be especially useful in the case of behaviourally specifiable HELs

(see following paragraph) for which there are just a few behaviourally valid equations

and conditional equations that, once their behavioural validity is verified in some way, for

example by coinduction, can be used to derive all other behavioural validities by means

of standard equational logic. An example of the use of this technique for establishing the

behavioural validity of equations can be found in Leavens and Pigozzi (2002).

In Section 3.2 we apply the results of the previous sections to the theory of cobases.

Roughly speaking, a cobasis (in the sense of Roşu and Goguen (2001)) is a collection of

possibly infinite conditional equations (that is, each conditional equation may have an

infinite number of conditions), that when adjoined as new inference rules to those of a

specifiable HEL is sound with regard to behavioural validity; a cobasis is called finite if

each conditional equation only has a finite number of conditions. As indicated earlier, the

search for effective cobases has played an important part in the research on behavioural

equivalence. We say a HEL, more generally any hidden k-logic, is behaviourally specifiable

if there is a finite cobasis that is complete, as well as sound, for the HEL. According to

Buss and Roşu (2000), not every specifiable HEL is behaviourally specifiable. The main

result of Section 3.2 is a simple characterisation of those HELs that are behaviourally

specifiable. More specifically, we characterise, entirely in terms of the underlying equational

logic of the HEL, those sets of conditional equations that constitute a complete, finite

cobasis (see Theorems 3.19 and 3.20, and the remarks following Definition 3.21). These

cobases turn out to be the analogue of the so-called finite equivalence systems of abstract

algebraic logic.

If L has an equivalence system, then every conditional equation can be transformed into

a set of visible conditional equations with possibly infinitely many conditions such that the

original conditional equation is behaviourally valid if and only if each of its transforms

is derivable in L; in the case of a finite equivalence system, the set of transforms is finite

and each is a standard conditional equation (Theorem 3.22). This result can be useful in

practice since many HELs have equivalence systems and even finite equivalence systems.

2. Hidden logics

From the start, we will distinguish visible and hidden data by separating the set of sorts

into two parts, visible and hidden, in the definition of signature.

A hidden (sorted ) signature is a triple

Σ = 〈SORT,VIS, 〈OPτ : τ ∈ TYPE〉 〉 ,
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where SORT is a non-empty, countable set whose elements are called sorts, VIS is a subset

of SORT, called the set of visible sorts, TYPE is a set of non-empty sequences S0, . . . , Sn of

sorts, called types, and, for each τ ∈ TYPE, OPτ is a countable set of operation symbols

of type τ. Those sorts in SORT \ VIS, that are not visible, are called hidden sorts. The set

of hidden sorts is denoted by HID. A hidden signature Σ is said to be standard if there

is a ground term of every sort.

We get from each hidden signature Σ the associated un-hidden signature Σuh by making

all the sorts of Σ visible:

Σuh = 〈SORT, SORT, 〈OPτ : τ ∈ TYPE〉 〉 .

A SORT-sorted set, or just a sorted set when SORT is clear from context, is a sequence

A = 〈AS : S ∈ SORT 〉 indexed by SORT. A sorted set A is locally countable (finite) if for

every sort S , AS is a countable (finite) set.

A Σ-algebra is a pair

〈A, 〈 σA : τ ∈ TYPE, σ ∈ OPτ〉 〉 ,
where A is a SORT-sorted set and σA is an operation on A of type τ. As usual, we use

the same symbol to denote an algebra and the the carrier of the algebra. We assume

in addition that the domain AS is non-empty for each sort S . This simplifies the logical

arguments, and all results of the paper extend mutatis mutandis to the more general case.

An algebra A is locally countable (finite) if its carrier set is locally countable (finite).

To simplify the notation and terminology, we occasionally identify a sorted set such as

〈AS : S ∈ SORT 〉 with the corresponding unsorted set
⋃
S∈SORT AS when no confusion

seems likely.

Let X = 〈XS : S ∈ SORT〉 be a fixed locally countable sorted set of variables. We

define the sorted set TeΣ(X) of terms over the signature Σ as usual. We use the lower case

Greek letters ϕ,ψ, ϑ, . . . to represent terms, possibly with annotations to indicate the sort

and variables. Specifically, writing ϕ in the form

ϕ(x1 :T1, . . . , xn :Tn):S (1)

indicates that ϕ is of sort S and that the variables that actually occur in ϕ are included

in the list x1, . . . , xn of sorts T1, . . . , Tn, respectively.

We define, in the usual way, operations over TeΣ(X) to obtain the term algebra over

the signature Σ (also denoted by TeΣ(X)). It is well known that TeΣ(X) has the universal

mapping property over X in the sense that, for every Σ-algebra A and every sorted map

h : X → A, called an assignment, there is a unique sorted homomorphism h∗ : TeΣ(X) → A,

which extends h. From now on we will not distinguish between these two maps. If ϕ is the

term (1), and ai ∈ ATi , we write ϕA(a1, . . . , an) for the image h(ϕ) under any homomorphism

h such that h(xi) = ai for all i.

A map from X to the set of terms, and its unique extension to an endomorphism of

TeΣ(X), is called a substitution. Substitutions are represented by the Greek letters σ, τ, . . . .

Since X is assumed fixed throughout this paper, we normally write TeΣ instead of TeΣ(X).

To provide a context that allows us to deal simultaneously with specification logics that

are assertional (for example, ones with a Boolean sort but no equality) and equational,
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we introduce the notion of a k-formula for any non-zero natural number k. A k-formula

of sort S over Σ is a sequence of k Σ-terms all of the same sort S . We indicate k-formulas

by overlining, for example, ϕ̄:S = 〈ϕ0 :S, . . . , ϕk−1 :S〉. When we do not need to make the

common sort S of each term of ϕ̄:S explicit, we simply write it as ϕ̄. TekΣ is the sorted

set of all k-formulas over Σ. Hence, TekΣ = 〈(TeΣ)kS : S ∈ SORT〉. The set of all visible

k-formulas (TekΣ)VIS is the VIS-sorted set 〈(TeΣ)kV : V ∈ VIS〉. More generally, for any

subset S of sorts and any sorted set A, the S-sorted set 〈As :S ∈ S〉 is denoted by AS.

The paradigm for 1-formulas are Boolean terms over an arbitrary hidden signature with

a Boolean sort (the only visible sort). The main examples of 2-formulas are the equations

of free hidden equational logic over any hidden signature Σ (free HELΣ) considered below

(Definition 2.6); here the equation φ ≈ ψ is identified with the 2-formula 〈φ,ψ〉. Higher

dimension formulas are less common but not unnatural. For example, in a signature for

reasoning about certain kinds of sets, the set containment relation ϑ ∈ [ϕ,ψ] can be

identified with the 3-formula 〈ϑ, ϕ, ψ〉.
If A is a Σ-algebra and ϕ̄(x1 :T1, . . . , xn :Tn) is a k-formula and a1 ∈ AT1

, . . . , an ∈ ATn ,

we use ϕ̄A(a1, . . . , an) to denote the value that ϕ̄ takes in A when the variables x1, . . . , xn
are interpreted by a1, . . . , an, respectively. More precisely, if

ϕ̄(x1, . . . , xn) = 〈ϕ1(x1, . . . , xn), . . . , ϕk(x1, . . . , xn)〉,

then ϕ̄A(a1, . . . , an) = h(ϕ̄) = 〈h(ϕ1), . . . , h(ϕk)〉, where h is any homomorphism from TeΣ

to A such that h(xi) = ai for all i � n.

Definition 2.1. A visible k-data structure over the hidden signature Σ is a pair A = 〈A, F〉,
where A is a Σ-algebra and F ⊆ AkVIS :=〈AkV :V ∈ VIS〉.

In the rest of the paper, we will normally omit the term ‘visible’ and simply say a k-data

structure. An example of a 2-data structure is any model of the free hidden equational

logic over Σ. The standard model of the free HELΣ is of the form 〈A, idAVIS
〉, where A

is a Σ-algebra and idAVIS
is the identity relation on the visible part of A, but one gets

more general 2-data structures as models by taking any congruence relation on the visible

part of A in place of idAVIS
. By a congruence relation on the visible part of A, or simply a

VIS-congruence, we mean a VIS-sorted set 〈FV : V ∈ VIS 〉 such that, for every V ∈ VIS,

FV is an equivalence relation on AV , and for every term ϕ(x1 :V1, . . . , xn :Vn):V , with

V1, . . . , Vn, V ∈ VIS, if 〈ai, bi〉 ∈ FVi for all i� n, then 〈ϕA(a1, . . . , an), ϕ
A(b1, . . . , bn)〉 ∈ FV .

The admission of equality, or, more generally, equivalence, only between visible elements

in the specification of the data structure reflects the basic premise of hidden logic, namely,

that only properties of visible elements can be known a priori : hidden data elements

are equal or equivalent just when they have the same visible properties in a sense made

precise below.

We can also consider the free Boolean logic over Σ, provided Σ has a Boolean sort. Here

the standard models are the 1-data structures 〈A, {true}〉, where A is a Σ-algebra such

that AVIS is the two-element Boolean algebra. In a general model, AVIS is an arbitrary

Boolean algebra and {true} is replaced by an arbitrary Boolean filter on AVIS.
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2.1. Consequence

For our purposes it is convenient to define a hidden k-logic as an abstract consequence

relation on the set of k-formulas, independently of any specific choice of axioms and rules

of inference. Let S be a subset of SORT. By a consequence relation, or closure relation, on

(TekΣ)S we mean a binary relation 
 ⊆ P((TekΣ)S) × (TekΣ)S between subsets of k-formulas

and individual k-formulas of sort S ∈ S satisfying the following conditions:

(a) Γ 
 γ̄ for each γ̄ ∈ Γ;

(b) Γ 
 ϕ̄, and ∆ 
 γ̄ for each γ̄ ∈ Γ, imply ∆ 
 ϕ̄.

The consequence relation is finitary (or compact) if Γ 
 ϕ̄ implies ∆ 
 ϕ̄ for some

globally finite subset ∆ of Γ (note that a set ∆ of formulas is said to be globally finite

if
⋃
S∈SORT ∆S is finite). It is substitution invariant if Γ 
 ϕ̄ implies σ(Γ) 
 σ(ϕ̄) for every

substitution σ : X → TeΣ. The relation 
 has a natural extension to a relation, also

denoted by 
, between subsets of (TekΣ)S. It is defined by Γ 
 ∆ if Γ 
 ϕ̄ for each ϕ̄ ∈ ∆

(that is, ϕ̄ ∈ ∆S , for some S ∈ S).

Definition 2.2. A hidden k-logic over a hidden signature Σ is a pair L = 〈Σ,
L〉, where 
L
is a substitution-invariant consequence relation on the set (TekΣ)VIS of visible k-formulas.

A hidden k-logic is specifiable if 
L is finitary (this terminology will soon be justified).

By an unhidden k-logic over Σ we mean a hidden k-logic over Σuh. A hidden k-logic

(without reference to a signature) can mean either a hidden or unhidden logic over some

unspecified hidden signature Σ.

Meseguer (Meseguer 1989) presents a similar general notion of logic, which is also

defined as a consequence relation. Meseguer’s system is called an entailment system and

combines a consequence relation with the notion of institution (see also Fiadeiro and

Sernadas (1988)).

Hidden k-logics are useful mainly because they encompass not only the 2-dimensional

hidden and unhidden equational logics, but also Boolean logics; these are 1-dimensional

multisorted logics with Boolean as the only visible sort, and with equality-test operations

for some of the hidden sorts in place of equality predicates. They also include all assertional

logics, the purview of abstract algebraic logic. In this way we obtain a unified theory for

a variety of logical systems. In this paper we are mainly concerned with a special hidden

2-logic – the hidden equational logic (see Section 2.3).

Normally, a specifiable hidden k-logic is presented by a set of axioms (visible k-formulas)

and inference rules of the general form

ϕ̄0 :V0, . . . , ϕ̄n−1 :Vn−1

ϕ̄n :Vn
, (2)

where ϕ̄0, . . . , ϕ̄n are all visible k-formulas. A visible k-formula ψ̄ is directly derivable from

a set Γ of visible k-formulas by a rule such as (2) if there is a substitution h : X → TeΣ

such that h(ϕ̄n) = ψ̄ and h(ϕ̄0), . . . , h(ϕ̄n−1) ∈ Γ. ψ̄ is derivable from Γ by a given set of

axioms and rules of inference if there is a finite sequence of k-formulas ψ̄0, . . . , ψ̄n−1 such
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that ψ̄n−1 = ψ̄, and for each i < n either:

(a) ψ̄i ∈ Γ, or (b) ψ̄i is a substitution instance of an axiom; or

(c) ψ̄i is directly derivable from {ψ̄j : j < i} by one of the rules of inference.

It is well known, and straightforward to show, that a hidden k-logic L is specifiable if

and only if there exists a (possibly) infinite set of axioms and rules of inference such that,

for any visible k-formula ψ̄ and any set Γ of visible k-formulas, Γ 
L ψ̄ if and only if ψ̄

is derivable from Γ by the given set of axioms and rules.

Let L be a (not necessarily specifiable) hidden k-logic. By a theorem of L, we mean

a (necessarily visible) k-formula ϕ̄ such that 
L ϕ̄, that is, � 
L ϕ̄. The set of all

theorems is denoted by Thm(L). A rule such as (2) is said to be a derivable rule of L if

{ϕ̄0, . . . , ϕ̄n−1} 
L ϕ̄n.

A set of visible k-formulas T closed under the consequence relation, that is, T 
L ϕ̄

implies ϕ̄ ∈ T , is called a theory of L. The set of all theories is denoted by Th(L). It is

closed under arbitrary intersection, that is, {Ti : i ∈ I } ⊆ Th(L) implies
⋂
i∈I Ti ∈ Th(L).

Moreover, if L is specifiable, then Th(L) is closed under unions of upward directed sets,

that is, if {Ti : i ∈ I } ⊆ Th(L) and for every i, i′ ∈ I there is a j ∈ I such that Ti∪Ti′ ⊆ Tj ,

then
⋃
i∈I Ti ∈ Th(L).

The set of all L-consequences of Γ ⊆ (TekΣ)VIS, { ϕ̄ ∈ (TekΣ)VIS : Γ 
L ϕ̄}, is the smallest

theory that includes Γ. It is denoted by CnL(Γ). So a hidden k-logic is completely

determined by its set of theories.

The restriction to axioms and rules of inference involving visible k-formulas only is

natural in view of the special role visible data play in hidden logic. Axioms and rules

involving hidden data can also play an important part as well, as we shall see, but only

in an auxiliary role.

2.2. Semantics

Definition 2.3. Let K be a class of k-data structures over a hidden signature Σ.

(i) A visible k-formula ϕ̄:V is said to be a valid consequence of a set of visible k-formulas

Γ in K , in symbols Γ �K ϕ̄, if

(∀ 〈A, F〉 ∈ K)(∀ h:X → A)
[(

(∀ ψ̄ :W ∈ Γ) (h(ψ̄) ∈ FW )
)

⇒ h(ϕ̄) ∈ FV
]
.

(ii) A visible k-formula ϕ̄ is valid in K if h(ϕ̄) ∈ FV for every 〈A, F〉 ∈ K and every

assignment h:X → A, that is, if it is a valid consequence, in K , of the empty set of

k-formulas, in symbols �K ϕ̄.

(iii) A rule like (2) is a valid rule of K , if {ϕ̄0, . . . , ϕ̄n−1} �K ϕ̄n.

For simplicity, we write Γ �A ϕ in place of Γ �{A} ϕ for a single k-data structure A.

It is easy to see that �K is a substitution-invariant consequence relation on the set

of k-formulas. However, it is not in general finitary; hence the associated hidden k-logic

〈Σ,�K〉 is not in general specifiable.

Definition 2.4. A k-data structure A is a model of a hidden k-logic L if every L-

consequence is a semantic consequence of A, that is, Γ 
L ϕ̄ always implies Γ �A ϕ̄. The

class of all models of L is denoted by Mod(L).
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If L is a specifiable hidden k-logic, then A is a model of L if and only if every axiom

is valid in A and every inference rule is a valid rule of A.

The proof of the following theorem is straightforward and can be found in

Martins (2004). For sentential logics the result is well known; see Wójcicki (1988),

for example.

Theorem 2.5 (Completeness of Hidden k-logics (Martins 2004)). For any hidden k-logic L,


L = �Mod(L),

that is, for every set of k-formulas Γ and any k-formula ϕ̄, Γ 
L ϕ̄ if and only if

Γ �Mod(L) ϕ̄.

Strictly speaking, this completeness theorem only holds when the models of L are

restricted to k-data structures with a non-empty domain of each sort. In the rest of the

paper we assume all k-data structures have this property.

2.3. Hidden equational logic

In the present context, hidden equational logic is a special class of 2-logics in which a

2-formula 〈t, s〉 is intended to represent an equation, which we denote by t ≈ s, and a rule

〈t0, s0〉, . . . , 〈tn−1, sn−1〉
〈tn, sn〉

represents a conditional equation, denoted by

t0 ≈ s0, . . . , tn−1 ≈ sn−1 → tn ≈ sn .

Since the basic premise of hidden logics is that only visible data can be compared

directly, in hidden equational logic there is no way of directly asserting the equality of

terms of hidden sort. In fact no representation of the equality predicate between elements

of the hidden domains exists in the object language, and in reasoning about hidden data,

only visible properties expressible in the form of conditional equations are admitted. The

rationale behind this restriction was discussed in the introduction. Of course, the equality

of hidden elements can be inferred indirectly by comparing their visible behaviour, and

it is convenient for this purpose to consider an expanded class of equational logics, the

so-called unhidden equational logics, which admit equality predicates over hidden domains.

Definition 2.6 (Free hidden and unhidden equational logic). Let Σ be a hidden signature

and VIS its set of visible sorts.

(i) The free hidden equational logic over Σ (or the free HELΣ) is the specifiable hidden

2-logic presented as follows.

Axioms:

x:V ≈ x:V , for all V ∈ VIS

Inference rules:

For each V ,W ∈ VIS:

(IR1) x:V ≈ y :V → y :V ≈ x:V
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(IR2) x:V ≈ y :V , y :V ≈ z :V → x:V ≈ z :V ,

(IR3) ϕ:V ≈ ψ :V → ϑ(x/ϕ):W ≈ ϑ(x/ψ):W, for every ϑ ∈ TeW and every

x ∈ XV .

(ii) The free unhidden equational logic over Σ (or the free UHELΣ) contains an equality

predicate for each sort, visible and hidden. The axioms and inference rules are the

same as those of the free HELΣ, except that V and W are now allowed to range over

all sorts. Thus UHELΣ = HELΣuh .

We assume here that the set of variables associated with each term coincides with the set

of variables that actually occur in the term. As a consequence, in Theorem 2.25 below we

must assume that all the sort domains of each model are non-empty.

As indicated earlier, the models of the free HELΣ are the 2-data structures A = 〈A, F〉
where A is an arbitrary Σ-algebra and F is a VIS-congruence on A, that is, a congruence

on the visible part of A. The theories of the free HELΣ are the VIS-congruences on the

term algebra.

The models of the free UHELΣ are the 2-data structures 〈A, F〉 where F is a congruence

on the entire algebra A; the theories are the congruences on the term algebra.

For every congruence F of A, whether on the visible part or the entire algebra, we write

a ≡ a′ mod FS , or simply a ≡ a′ (FS ) or a ≡FS a
′, alternatively for 〈a, a′〉 ∈ FS ; we also

may omit explicit reference to the sort S in these expressions if no confusion is possible.

If A is the term algebra and ϕ,ϕ′ are terms, we might also write ϕ ≈ ϕ′ ∈ FS .

An applied hidden equational logic over Σ, called simply a HELΣ, is any hidden 2-logic

L over Σ that satisfies all axioms and rules of inference of the free hidden equational logic

over Σ; an applied unhidden equational logic over Σ is defined similarly, and it is simply

called a UHELΣ; the subscript Σ may be omitted if it is clear from the context. We are

almost always interested exclusively in those applied hidden equational logics L that are

specifiable, that is, that are obtained from the free logic by adding new, so-called extra-

logical axioms and inference rules to the logical axioms and rules of Definition 2.6. In

view of the completeness theorem (Theorem 2.25 below), they correspond to the identities

and conditional identities, respectively, of the class of models of L. In particular, the

visible conditional equation

t0(x̄) ≈ s0(x̄), . . . , tn−1(x̄) ≈ sn−1(x̄) → tn(x̄) ≈ sn(x̄) (3)

is a valid rule of a model A = 〈A, F〉 of the free HELΣ (free UHELΣ) if, for every

assignment ā of the elements of A to x̄ (of the appropriate sorts),

tAn (ā) ≡F s
A
n (ā) if tA0 (ā) ≡F s

A
0 (ā), . . . , tAn−1(ā) ≡F s

A
n−1(ā) .

The applied unhidden equational logics we deal with are, on the contrary, normally

unspecifiable since they come from the behavioural equivalence of hidden equational

logics and more general hidden k-logics.

We give several examples of specifiable hidden logics. We have deliberately chosen

simple, well-known ones that allow us to illustrate the basic ideas without burdening the

reader with irrelevant detail. The first two illustrate how the logic of a particular data

structure can be alternatively formalised as a Boolean 1-logic or as an equational 2-logic,

https://doi.org/10.1017/S0960129507006305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006305


M. Martins and D. Pigozzi 1086

a HEL. The flag logics provide two different ways of specifying semaphores, which are

commonly used in scheduling resources (Goguen and Malcolm 1999).

Example 2.7 (Flags as a Boolean 1-logic). Consider the hidden signature Σflag :

SORT = {flag , bool}, with bool the unique visible sort and the operation symbols

up : flag → flag rev : flag → flag

dn : flag → flag up? : flag → bool ;

and the operation symbols ¬,∧,∨, true, false for the Boolean part.

The Boolean biconditonal ϕ ↔ ψ is an abbreviation for the compound operation

(¬ϕ ∨ ψ) ∧ (¬ψ ∨ ϕ).

The Boolean logic of flags, Lbflag , is the 1-logic with the extra-logical axioms

up?(up(F)) up?(rev (F)) ↔ ¬(up?(F))

¬up?(dn(F)) ,

together with the usual logical axioms for the classical propositional logic. There are no

extra-logical rules of inference.

Example 2.8 (Flags as a HEL). The signature is the same as above.

The equational logic of flags, Leflag , is the HELΣflag
with the extra-logical axioms

up?(up(F)) ≈ true up?(rev (F)) ≈ ¬(up?(F))

up?(dn(F)) ≈ false

together with the usual logical axioms for Boolean algebra. There are no extra-logical

rules of inference.

As expected, Lbflag and Leflag are equivalent. To be precise,

ϕ1 ↔ ϕ′
1, . . . , ϕn ↔ ϕ′

n

ψ ↔ ψ′

is a derivable rule of Lbflag if and only if

ϕ1 ≈ ϕ′
1, . . . , ϕn ≈ ϕ′

n

ψ ≈ ψ′

is a derivable rule of Leflag .

Example 2.9 (Stacks of Natural Numbers as a HEL). As in the standard specification

of the logic of stacks, only the natural numbers are visible. Consequently, the axioms

and rules of inference can only reference the ‘numerical behaviour’ of stacks rather than

the stacks themselves. In particular, there can be no axiom or rule involving equality

between stacks. Because of this, we get an infinite number of axioms, where in the

standard formalisations, where assertions about the equality of stacks are allowed, the

axiomatisation is finite and, on the face of it, conceptually simpler. We will have more to

say about this later.
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The specification differs from the usual one in another regard. The top of the empty

stack is zero, and pushing zero on the empty stack gives the empty stack. This is

done to simplify the specification logic and agrees with what is done in Goguen and

Malcolm (2000).

Consider the hidden signature Σstacks :

SORT = {nat , stack}, with nat the unique visible sort and the operation symbols

empty : → stack top : stack → nat

zero : → nat pop : stack → stack

push : nat , stack → stack s : nat → nat ;

The specification logic of stacks, Lstacks , is the logic with hidden signature Σstacks and

the following axioms and inference rules.

Extra-logical axioms:

top(popn(empty)) ≈ zero, for all n

top(push(x, y)) ≈ x

top(popn+1(push(x, y))) ≈ top(popn(y)), for all n .

Extra-logical inference rule:

s(x) ≈ s(y) → x≈ y.

Example 2.10 (Sets). This example is the usual specification of sets (see Bouhoula and

Rusinowitch (2002)). There are three sorts, set, elt and bool , with elt and bool as the

visible sorts. The visible operations are the operations true, false, ¬, ∧ and ∨ for the

Booleans. And the hidden operations are the constant empty to represent the empty set,

and ∪, & and neg to represent the set theoretical union, intersection and complement,

respectively. The action of adding an element to a set is represented by add, and in is

the operation symbol used to test whether an element belongs to a set, that is, in(e, X)

expresses the fact that ‘e is in X’.

Consider the hidden signature Σsets:

SORT = {set , bool , elt}, with {bool , elt} the set of visible sorts and the operation symbols

empty : → set; neg : set → set in : elt, set → bool

& : set, set → set; add : elt, set → set .

and the operation symbols ¬,∧,∨, true, false for the Boolean part.

The extra-logical axioms are the axioms of the Boolean algebra together with

in(n, empty) ≈ false in(n, (∪(x, y))) ≈ in(n, x) ∨ in(n, y)

in(n, neg(x)) ≈ ¬(in(n, x)) in(n, (&(x, y)) ≈ in(n, x) ∧ in(n, y) ;

and the extra-logical inference rule is

in(z, x) ≈ in(z, y) → in(z, add(n, x)) ≈ in(z, add(n, y))
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Example 2.11 (Interval sets). We now give an example of a hidden 3-logic that formalises

the sets of intervals of an abstract ordered set. The 3-formula 〈x, y, z〉 may be thought of as

the ternary partial ordering relation x � y � z, although there is no formal representation

of the binary relation �. A set s is the interval [ n,m ] = {x : n � x � m } of numbers

in the partial ordering, where n, m are respectively the lower bound (lb(s)) and the upper

bound (ub(s)) of the interval.

SORT = {set , num}, where num is the only visible sort.

The operations are

lub, glb :num , num → num

ub, lb :set → num

elt-of:set → num

∪,&:set , set → set .

The axioms are

〈x, x, x〉
〈glb(x, y), x, lub(x, y)〉
〈glb(x, y), y, lub(x, y)〉
〈lb(s), elt-of(s), ub(s)〉
〈glb(lb(s), lb(t)), elt-of(∪(s, t)), lub(up(s), ub(t)〉
〈lub(lb(s), lb(t)), elt-of(&(s, t)), glb(up(s), ub(t)〉 .

The rules of inference are

〈x, y, w〉, 〈y, z, w′〉
〈x, y, z〉

〈w, x, y〉, 〈w′, y, z〉
〈x, y, z〉

〈x, z, x′〉, 〈y, z, y′〉
〈lub(x, y), z, glb(x′, y′)〉 .

A theory of a HEL L is also called an L-congruence on the term algebra. For any set

E of equations, the theory of L generated by E, CnL(E), is the smallest L-congruence

that contains the pair 〈t, t′〉 for each equation t ≈ t′ in E.

A visible conditional equation (3) is a quasi-identity of a Σ-algebra A if it is a valid

rule of 〈A, idAVIS
〉, or of 〈A, idA〉 if it is of arbitrary sort. Models of the free HELΣ

(the free UHELΣ) of the form 〈A, idAVIS
〉 (〈A, idA〉) are called equality models. The class

of all equality models of a HELΣ (or a UHELΣ) L is denoted by Mod=(L). Since

every equality model is uniquely determined by its algebraic reduct, we shall not bother

distinguishing them in the rest of the paper. Thus, for every HELΣ L we identify

Mod=(L) with {A : 〈A, idAVIS
〉 ∈ Mod=(L) }, and similarly for the equality models of a

UHELΣ.
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2.4. Behavioural equivalence

In hidden equational logic, two hidden data elements of the same sort are behaviourally

equivalent if, roughly speaking, any visible procedure returns the same value when executed

with either of the two objects as input. The notion arises from the alternative view of a

data structure as a transition system in which the hidden data elements represent states

of the system and the operations (that is, the methods) that return hidden, as opposed to

visible, elements induce transitions between states.

In the HEL formalism, the concept of a procedure takes the form of a context. Formally,

an S-context over a hidden signature Σ is a term

ϕ(z :S, u1 :T1, . . . , um :Tm):U (4)

with a distinguished variable z of sort S , and parametric variables u1, . . . , um of arbitrary

(visible or hidden) sort. It is a visible context if the sort U of ϕ is visible.

Definition 2.12. Let A be a Σ-algebra and S be an arbitrary sort. Then, a, a′ ∈ AS
are behaviourally equivalent in A, in symbols a ≡beh

A a′, if for every visible S-context

ϕ(z :S, u1 :T1, . . . , um :Tm) and for all b1 ∈ AT1
, . . . , bm ∈ ATm ,

ϕA(a, b1, . . . , bm) = ϕA(a′, b1, . . . , bm) .

Variants of this notion of behavioural equivalence can be found in the literature. For

example, Goguen and Malcolm (Goguen and Malcolm 2000) restrict the set of contexts

to those built from a predefined set of observational operational symbols – see the

Conclusion section (Section 4) for more details.

To generalise the notion of behavioural equivalence so that it applies to hidden k-logics,

we first generalise the notion of context. A (k, S)-context over a hidden signature Σ is a

k-term

ϕ̄(z :S, u1 :T1, . . . , um :Tm):U

= 〈ϕ1(z :S, u1 :T1, . . . , um :Tm), . . . , ϕk(z :S, u1 :T1, . . . , um :Tm)〉:U (5)

with a distinguished variable z of sort S and parametric variables u1, . . . , um. It is a visible

context if the sort U of ϕ̄ is visible.

Definition 2.13. Let A = 〈A, F〉 be a k-data structure over a hidden signature Σ. Two

elements a, a′ of A of arbitrary sort S are said to be behaviourally equivalent in A, in

symbols a ≡beh
A a′, if for every visible (k, S)-context ϕ̄(z :S, u1 :T1, . . . , um :Tm):V and for

all b1 ∈ AT1
, . . . , bm ∈ ATm ,

ϕ̄A(a, b1, . . . , bm) ∈ FV iff ϕ̄A(a′, b1, . . . , bm) ∈ FV . (6)

This notion does indeed generalise behaviour equivalence in equational logic, since, as a

consequence of Theorem 2.23 below, we have that a and a′ are behaviourally equivalent

in a Σ-algebra A if and only if they are behaviourally equivalent in the 2-dimensional

equality data structure 〈A, idAVIS
〉 in the sense of Definition 2.13.
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2.5. Leibniz congruence

Behavioural equivalence over a k-data structure turns out to be a congruence relation

on the underlying algebra of the data structure with special properties. In the 1-sorted,

1-data structures (called matrices) that constitute the natural models of sentential logic,

the detailed combinatorial analysis of this congruence constitutes the basis of a branch

of mathematical logic called abstract algebraic logic. Our intention here is to extend this

analysis to the behavioural congruences of arbitrary multi-sorted k-data structures and,

in particular, to the models of hidden equational logic.

Let A = 〈A, F〉 be a k-data structure. A congruence relation Θ on A is VIS-compatible

(or simply compatible) with F if for all V ∈ VIS and for all ā, ā′ ∈ AkV the following

condition holds:

if ai ≡ a′
i(ΘV ) for all i � k then, ā ∈ FV if and only if ā′ ∈ FV .

That is, each FV is the union of a cartesian product of ΘV -classes, that is,

FV =
⋃
ā∈FV

(a1/ΘV ) × (a2/ΘV ) × · · · × (ak/ΘV ) .

Lemma 2.14. Let A = 〈A, F〉 be a k-data structure. There is a largest congruence relation

on A compatible with F .

Proof. Let Φ and Ψ be two congruences on A compatible with F . The relative product

Φ ◦ Ψ, defined for each S ∈ SORT by

(Φ ◦ Ψ)S := {〈a, b〉 ∈ A2
S : ∃c ∈ AS

(
〈a, c〉 ∈ ΦS and 〈c, b〉 ∈ ΨS

)
},

is also compatible with F . Since the join Φ ∨ Ψ, in the lattice of congruences, is defined by⋃
i<ω Φ ◦i Ψ, where Φ ◦0 Ψ = ∆A and Φ ◦i+1 Ψ = (Φ ◦i Ψ) ◦ (Φ ◦ Ψ), we have that Φ ∨ Ψ is

also compatible with F . Hence, the set of all congruence relations on A compatible with

F is directed in the sense that, for any pair of congruences compatible with F , there is

a third congruence with the same property that includes both of them. We can conclude

from this that the union of all compatible congruences is again a compatible congruence.

Therefore, the largest congruence compatible with F always exists.

Definition 2.15. Let A = 〈A, F〉 be a k-data structure. The largest congruence relation on

A compatible with F is called the Leibniz congruence of F on A and is denoted by ΩA(F).

The Leibniz congruence plays a central role in abstract algebraic logic when restricted

to single-sorted, k-data structures; see, for example, Pigozzi (2001) and Font et al. (2003).

The term was introduced in Blok and Pigozzi (1989), but the concept appeared much

earlier. The motivation behind the choice of the term Leibniz will become clear after the

next theorem.

A systematic study of the Leibniz congruence in hidden k-logics can be found in

Martins (2004) – in particular, a proof of the following characterisation. In the case of

single-sorted 1-data structures, this result was well known in the literature of sentential

logic; see, for example, Blok and Pigozzi (1989).
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Theorem 2.16. Let Σ be a hidden signature and A = 〈A, F〉 be a k-data structure over Σ.

Then, ≡beh
A = ΩA(F), that is, for every S ∈ SORT and for all a, a′ ∈ AS , a ≡beh

A a′ if and

only if a ≡ a′ (ΩA(F)S ).

Proof. It is easy to see that ≡beh
A is an equivalence relation on A. To see that it is a

congruence relation, let O be an operation symbol of type T1, . . . , Tn → S and suppose

ai ≡beh
A a′

i, 1 � i � n. We must show that, for any visible (k, T )-context ϕ̄(z :S, ū:Q̄):V ,

with the designated variable z :S , and for all parameters b̄ ∈ AQ̄, we have

ϕ̄A
(
OA(ā), b̄

)
∈ FV iff ϕ̄A

(
OA(ā′), b̄

)
∈ FV . (7)

Consider any i � n. Using the assumption ai ≡beh
A a′

i, and taking xi as the desig-

nated variable, x1, . . . , xi−1, xi+1, . . . , xn, u1, . . . , un as parametric variables, and a1, . . . , ai−1,

a′
i+1, . . . , a

′
n, b1, . . . , bm as parameters, we have

ϕ̄A
(
OA(a1, . . . , ai−1, ai, a

′
i+1, . . . , a

′
n), b̄

)
∈ FV

iff ϕ̄A
(
OA(a1, . . . , ai−1, a

′
i, a

′
i+1, . . . , a

′
n), b̄

)
∈ FV .

Since this equivalence holds for all i � n, (7) holds, so ≡beh
A is a congruence on A.

To see that ≡beh
A is compatible with F , consider ā, ā′ ∈ AkV such that ā

(
≡beh

A
)k
V
ā′.

Consider the k-sequence of pairwise distinct variables x̄ = 〈x1 :V , . . . , xk :V 〉 (called a

k-variable, a special k-formula). For each i, 1 � i � k, we view x̄ as a (k, V )-context

with designated variable xi and treat a1, . . . , ai−1, a
′
i+1, . . . , a

′
k as parameters. Then, from the

assumption ai
(
≡beh

A
)
V
a′
i, we conclude that

〈a1, . . . , ai−1, ai, a
′
i+1, . . . , a

′
n〉 ∈ FV iff 〈a1, . . . , ai−1, a

′
i, a

′
i+1, . . . , a

′
n〉 ∈ FV .

So ā ∈ FV if and only if ā′ ∈ FV . Thus ≡beh
A is compatible with F .

Finally, we must show that ≡beh
A is the largest congruence on A compatible with F .

Let Θ be any congruence on A that is compatible with F . Assume a ≡ a′ (ΘS ). Let

ϕ̄(z :S, ū:Q̄):V be a visible (k, S)-formula with designated variable z :S , and let b̄ ∈ AQ̄
be a system of parameters. By the congruence property, ϕ̄A(a, b̄) ≡ ϕ̄A(a′, b̄)

(
Θk

)
. So, by

the compatibility of Θ with F , we have ϕ̄A(a, b̄) ∈ FV if and only if ϕ̄A(a′, b̄) ∈ FV . Thus

Θ ⊆ ≡beh
A .

So ≡beh
A is a congruence relation on the whole algebra A, and hence for any k-data

structure A over the hidden signature Σ, the associated 2-data structure 〈A,≡beh
A 〉 is a

model of the free UHELΣ.

According to Leibniz’s famous criterion, two objects in the universe of discourse are

equal if they share all properties that can be expressed in the language of discourse. In the

universe represented by a k-data structure A = 〈A, F〉, the condition that two elements

a, a′ of A have the same properties is expressed exactly by the equivalence (6), and hence,

in view of the last theorem, by the equivalence a ≡ΩA(F) a
′. This is the motivation for

choosing the term Leibniz congruence for ΩA(F).

Definition 2.17.

(i) A k-data structure A = 〈A, F〉 is reduced if two elements are behaviourally equivalent

only if they are equal, that is (in view of Theorem 2.16), if ΩA(F) = idA.
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(ii) The class of all reduced models of a hidden k-logic L is denoted by Mod∗(L).

The reduced models of one-sorted k-logics, in particular, sentential logics, play an

important role in abstract algebraic logic. For instance, the reduced models of the classical

propositional calculus are exactly the Boolean algebras, which constitute just a small part

of the class of all models.

The reduced models of a hidden k-logic can be obtained by taking the quotient of an

arbitrary model by its Leibniz congruence. If A = 〈A, F〉 is a k-data structure over Σ, we

can form the quotient structure A/ΩA(F) = 〈A, F〉/ΩA(F) = 〈A/ΩA(F), F/ΩA(F)〉, where

A/ΩA(F) is the quotient of A by ΩA(F), and F/ΩA(F) = { 〈a1/ΩA(F), . . . , ak/ΩA(F)〉 :

〈a1, . . . , ak〉 ∈ F }. The quotient A/ΩA(F) is called the reduction of A and is denoted by

A∗ = 〈A∗, F∗〉.
A∗ is indeed always reduced. To see this, we will need the following technical lemma.

But first we introduce some convenient shorthand notation. Let h : B → A be a mapping

between sets. For every k-sequence b̄ = 〈b1, . . . , bk〉 over B, we write h(b̄) for the k-sequence

〈h(b1), . . . , h(bk)〉 over A; and for every k-sequence ā = 〈a1, . . . , ak〉 over A, h−1(ā) denotes

the set of all k-sequences over B that map onto ā, that is, h−1(ā) = { b̄ ∈ Bk : h(b̄) = ā }.

Lemma 2.18. Let A = 〈A, F〉 be a k-data structure over Σ, and B be a Σ algebra. Also, let

h : B → A a surjective homomorphism (that is, a homomorphism such that h(BS ) = AS
for every sort S of Σ. Then

h−1(ΩA(F)) = ΩB(h−1(F)) . (8)

Proof. It is not difficult to see that h−1(ΩA(F)) is a congruence on B. It is an equivalence
relation since the inverse image of any equivalence relation is an equivalence relation. To
verify the congruence property, let ϕ(x1 :S1, . . . , xn :Sn):T be a Σ-term, and let bi, b

′
i ∈ BSi

such that bi ≡h−1(ΩA(F)) b
′
i, for all i, 1 � i � n. Then h(bi) ≡ΩA(F) h(b

′
i) for all i, and hence,

since h is a homomorphism and ΩA(F) is a congruence,

h
(
ϕB(b1, . . . , bn)

)
= ϕA

(
h(b1), . . . , h(bn)

)
≡ΩA(F) ϕ

A
(
h(b′

1), . . . , h(b
′
n)

)
= h

(
ϕB(b′

1, . . . , b
′
n)

)
.

Moreover, h−1(ΩA(F)) is compatible with h−1(F). To see this, suppose b̄ = 〈b1, . . . , bk〉 ∈
h−1(F) and b̄ ≡ b̄′ (h−1(ΩA(F)k)

)
. Then h(b̄) ∈ F and h(b̄) ≡ h(b̄′)

(
ΩA(F)k

)
. Thus h(b̄′) ∈ F ,

since ΩA(F) is compatible with F , and hence b̄′ ∈ h−1(ΩA(F)).

So h−1(ΩA(F)) ⊆ ΩB(h−1(F)) by definition of the Leibniz congruence. To prove the

reciprocal inclusion, it suffices to prove that h(ΩB(h−1(F))) ⊆ ΩA(F), since if this inclusion

holds, ΩB(h−1(F)) ⊆ h−1h(ΩB(h−1(F))) ⊆ h−1(ΩA(F)). Let Θ be the congruence generated

by h(ΩB(h−1(F))). Since h is surjective, Θ is the transitive closure of h(ΩB(h−1(F))). Hence

it is enough to prove that h(ΩB(h−1(F))) is compatible with F .

Let ā, ā′ ∈ AkS such that ā ∈ FS and ā ≡ ā′ (h(ΩB(h−1(F))kS
)
. Let b̄, b̄′ ∈ BkS such that

b̄ ≡ b̄′ (ΩB(h−1(F))kS
)

and h(b̄) = ā and h(b̄′) = ā′ Then b̄ ∈ h−1(FS ). Hence b̄′ ∈ h−1(FS )

since ΩB(h−1(F)) is compatible with h−1(F). So ā′ ∈ FS .

Theorem 2.19. The reduction of any k-data structure is reduced.
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Proof. Let 〈A, F〉 be a k-data structure and h : A → A/ΩA(F) be the natural homo-

morphism, and note that ΩA(F) is the kernel of h. By Lemma 2.18,

h−1
(
ΩA/ΩA(F)(F/ΩA(F))

)
= ΩA

(
h−1(F/ΩA(F))

)
= ΩA(F) .

So Ω
(
F/ΩA(F)

)
is the identity congruence on A/ΩA(F).

As a corollary, we have that if A is reduced, then A∗ is isomorphic to A, and, up to

isomorphism, Mod∗(L) = { A∗ : A ∈ Mod(L) }.
In the next theorem we see that Mod∗(L) forms a complete set of models of L. This

is a consequence of a more general result that proves useful in other contexts.

Definition 2.20. Let A = 〈A, F〉 and B = 〈B,G〉 be k-data structures over the same hidden

signature Σ. B is said to be a strict homomorphic image of A, in symbols A � B, if there

exists a surjective homomorphism h:A → B of algebras such that h−1(G) = F .

Theorem 2.21. Let A = 〈A, F〉 and B = 〈B,G〉 be two k-data structures. If A � B, then

�A = �B, that is, for any set Γ ∪ {ϕ̄} of visible k-formulas, we have Γ �A ϕ̄ if and only

if Γ �B ϕ̄.

Proof. Let h:A → B be a strict homomorphism. Since h−1(G) = F , we have that, for

every visible k-formula ψ̄(x̄: S̄),

for all ā ∈ AS̄ , ψ̄A(ā) ∈ F iff ψ̄B(h(ā)) = h
(
ψ̄A(ā)

)
∈ G.

Then, letting S̄ be the list of all variables occurring in Γ∪{ϕ̄}, we have that, for all ā ∈ AS̄ ,(
∀ γ̄ ∈ Γ (γ̄A(ā) ∈ F)

)
=⇒ ϕ̄A(ā) ∈ F iff

(
∀ γ̄ ∈ Γ (γ̄B(h(ā)) ∈ G

)
=⇒ ϕ̄B(h(ā)) ∈ G .

As h is surjective, h(ā) ranges over all b̄ ∈ BS̄ as ā ranges over all of AS̄ . Thus Γ �A ϕ̄ if

and only if Γ �B ϕ̄.

As in the case of Theorem 2.5, the following theorem, and the completeness theorem

for hidden equational logic given below (Theorem 2.25), are valid in general only under

the assumption that all sort domains of all models are non-empty.

Theorem 2.22 (Reduced completeness of hidden k-logics). For any hidden k-logic L,


L = �Mod∗(L) .

That is, for every set of k-formulas Γ and any k-formula ϕ̄, Γ 
L ϕ̄ if and only if

Γ �Mod∗(L) ϕ̄.

Proof. In view of the Completeness Theorem (2.5) and the fact that, by Theorem 2.19,

Mod∗(L) = { A∗ : A ∈ Mod(L) }, it suffices to prove that for any k-data structure

A = 〈A, F〉, we have �A = �A∗ . Thus, by Theorem 2.21, it suffices to show that A∗ is a

strict homomorphic image of A.

Let h:A → A∗ be the natural homomorphism. We must show h−1(F∗) = F , so suppose

ā ∈ A and h(ā) ∈ F∗ = F/ΩA(F). This means that ā ≡ ā′ (ΩA(F)k) for some ā′ ∈ F . Thus,

since ΩA(F) is compatible with F , we have ā ∈ F .
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When applied to hidden equational logics, Theorem 2.16 takes a more natural form in

terms of 1-dimensional contexts as we now see.

Theorem 2.23. Let Σ be a hidden signature and A = 〈A, F〉 be a model of the free

HELΣ, that is, F is a VIS-congruence on A. Then, for every S ∈ SORT and all a, a′ ∈ AS ,

a ≡Ω(F)S a
′ if and only if for every visible S-context ϕ(z :S, u1 :Q1, . . . , um :Qm):V and for

all b1 ∈ AQ1
, . . . , bm ∈ AQm ,

ϕA(a, b1, . . . , bm) ≡ ϕA(a′, b1, . . . , bm) mod FV . (9)

Proof. By Theorem 2.16, a ≡Ω(F)S a
′ if and only if, for every (2,S)-context

〈ϕ(z :S, ū:Q̄), ψ(z :S, ū:Q̄)〉

of sort V and every b̄ ∈ AQ̄, we have

ϕA(a, b̄) ≡ ψA(a, b̄) mod FV iff ϕA(a′, b̄) ≡ ψA(a′, b̄) mod FV . (10)

Suppose (9) holds for every S context ϕ(z, ū) and every b̄ ∈ AQ̄. If ϕA(a, b̄) ≡FV ψ
A(a, b̄),

then

ϕA(a′, b̄) ≡ ϕA(a, b̄) ≡ ψA(a, b̄) ≡ ψA(a′, b̄) mod FV

(the first and third equivalences hold because F is a VIS-congruence). Thus, (10) holds

for every pair of S-contexts and every sequence of parameters b̄, that is, a ≡Ω(F)V a
′.

Conversely, assume a ≡Ω(F)V a
′. Let ϕ(z :S, ū:Q̄):V be an arbitrary visible S-context,

where ū:Q̄ = 〈u1 :Q1, . . . , um :Qm〉. Let un+1 be a new parametric variable of sort V ; the

single term un+1 can be viewed as a visible S-context with designated variable z (which

does not actually occur) and parametric variables ū+ := 〈u1, . . . , un, un+1〉. We can also view

ϕ as an S-context with the same parametric variables. Let 〈b1, . . . , bn〉 be any system of

parameters of sort Q̄, and extend it to a system b̄+ := 〈b1, . . . , bn+1〉, where bn+1 = ϕA(a, b̄).

Thus ϕA(a, b̄+) = bn+1 = uAn+1(a, b̄
+). So by (10), ϕA(a′, b̄+) ≡FV u

A
n+1(a

′, b̄+). But uAn+1(a
′, b̄+)

also equals bn+1. So ϕA(a, b̄) ≡FV ϕ
A(a′, b̄). Thus (9) holds for every S context ϕ(z, ū) and

every b̄ ∈ AQ̄.

Applying this result to equality models, we get that a and a′ are behaviourally

equivalent in the sense of Definition 2.12 if and only if a ≡ a′ (ΩA(idAVIS
)
)
; hence

behavioural equivalence over k-data structures does indeed generalise the familiar notion

of behavioural equivalence over a sorted algebra. This result was obtained independently

by Goguen and Malcolm (Goguen and Malcolm 2000).

The Leibniz relation has the following useful property for hidden equational logics; this

can also be found in Goguen and Malcolm (1999; 2000) for the case of equality models.

Corollary 2.24. Let A = 〈A, F〉 be a model of the free HELΣ. Then ΩA(F) is the largest

congruence in A whose visible part is F .

Proof. Suppose a ≡ a′ (ΩA(F)V
)

with V ∈ VIS. Let z be a variable of sort V . Then z is

a visible V -context, so a = zA(a) ≡ zA(a′) = a′ mod FV . Thus ΩA(F)VIS ⊆ F . Conversely,

assume a ≡ a′ mod FV . Then for every V -context ϕ(z, ū) and every choice of parameters

b̄ ∈ AQ̄, we have ϕA(a, b̄) ≡ ϕA(a′, b̄) mod FV . Thus a ≡ a′ (ΩA(F)V ), so ΩA(F)VIS = F . If
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Θ is any other congruence on A such that ΘVIS = F , then Θ is compatible with F , and

thus Θ ⊆ ΩA(F).

As a special case we have that ΩA(idAVIS
)VIS = idAVIS

, that is, two visible elements of a

Σ-algebra are behaviourally equivalent only if they are equal.

The following completeness theorem for hidden and unrestricted equational logic is

special case of Theorems 2.5 and 2.22. Recall that Mod=(L) is the set of all equality

models of a HEL or UHEL L.

Theorem 2.25 (Completeness theorem for equational logic). Let L be a HELΣ or a

UHELΣ. Then the following are equivalent for every visible conditional equation ξ in the

HEL case and every arbitrary conditional equation ξ in the UHEL case.

(i) ξ is a derivable rule of L.

(ii) ξ is a valid rule of Mod(L).

(iii) ξ is a quasi-identity of Mod=(L).

(iv) ξ is a quasi-identity of Mod∗(L).

In particular, a visible or unrestricted equation ψ is a theorem of L if and only if it is

a validity of Mod(L) if and only if it is an identity of Mod=(L) if and only if it is an

identity of Mod∗(L).

Proof. The equivalence of items (i), (ii) and (iv) follows immediately from Theorem 2.5.

The equivalence of these with (iii) is an immediate consequence of the fact that Mod∗(L) ⊆
Mod=(L), which follows from Corollary 2.24.

As in the case of the completeness theorems for hidden k-logic, this theorem is valid

in general only under the assumption that all sort domains of models are non-empty.

If this restriction is lifted, a more complex formalisation of equational logic is required;

see, for example, Ehrig and Mahr (1985). This is a well-known theorem for single-sorted

equational logics; see, for example, Gorbunov (1998).

It is commonplace in the literature of hidden equational logic to restrict attention

exclusively to equality models that are not necessarily reduced; see, for instance, Goguen

and Malcolm (2000). The completeness theorem shows that this is justified.

3. Behavioural reasoning

The concept of a behaviourally valid consequence (Definition 3.1 below) was introduced in

order to reason effectively about behavioural equivalence. It has been a useful device for

importing the techniques and intuitions of transition systems into the equational paradigm.

In the present context it takes the form of an unhidden and normally non-specifiable HEL

associated with every k-logic. The basis of behaviourally valid consequence proof theory

has been coinduction, in some form, in combination with ordinary equational deduction.

The behavioural validity for equations and conditional equations was introduced by

Reichel in 1984 (Reichel 1985). These notions and their proof theory have been studied

by a number of researchers: Goguen, Malcolm and Roşu (Goguen and Malcolm 1999;

Goguen and Malcolm 2000; Roşu and Goguen 2000; Roşu 2000; Roşu and Goguen 2001);
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Bidoit and Hennicker (Bidoit and Hennicker 1996; Hennicker 1997); and Leavens and

Pigozzi (Leavens and Pigozzi 2002). We will concentrate here on the behavioural validity

of conditional equations and the methods by which this validity can be established.

Following the abstract algebraic logic approach, we take Leibniz congruences on the term

algebra and their combinatorial properties as the basis for our investigations.

Our particular characterisation of behavioural validity of a conditional equation is

given in Theorem 3.4. The use of unhidden equational logic in verifying behavioural

validity of conditional equations is addressed in Theorem 3.10. As a corollary, we get

that the set of all behaviourally valid conditional equations is closed under unhidden

equational deduction (Corollary 3.13).

In the final part of the section we consider the important problem of determining when

a HEL L has specifiable behaviour, that is, when there exists a set of axioms and rules

in the form of equations and conditional equations, respectively, such that an equation

t ≈ s (of arbitrary sort) is a behaviourally valid consequence of a set E of equations if

and only if t ≈ s is derivable from E in standard equational using the given axioms and

rules. Several characterisations of this property are obtained. Possibly the most interesting

deals with the notion of a cobasis. This concept, which was introduced in Roşu and

Goguen (2001), has served as the principal method of partially verifying the behavioural

validity of hidden equations in a large class of HELs. We show that the behaviour of a

HEL is specifiable only when it has a cobasis of a very special kind (Theorem 3.20).

The definition of a behaviourally specifiable HEL is given in Definition 3.14. In

Theorem 3.19 those HELs that are behaviourally specifiable are characterised in terms

of the consequence of the HEL. As a consequence, in Theorem 3.22 we obtain for

behaviourally specifiable HELs a characterisation of behaviourally valid conditional

equations.

Definition 3.1. Let K be a class of k-data structure over the hidden signature Σ.

(i) An equation t ≈ t′ of arbitrary sort is said to be a behaviourally valid consequence

of a set E of equations (of arbitrary sorts) over K , in symbols E �beh
K t ≈ t′, if, for

every A ∈ K and every assignment h : X → A, we have h(t) ≡beh
A h(t′) whenever

h(s) ≡beh
A h(s′) for every equation s ≈ s′ in E.

(ii) An equation t ≈ t′ is behaviourally valid over K if �beh
K t ≈ t′, and a conditional

equation t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n is behaviourally valid over K if {t0 ≈
t′0, . . . , tn−1 ≈ t′n−1} �beh

K tn ≈ t′n.

We write �beh
A for �beh

{A}.

By Theorem 2.16, the behavioural equivalence relation over a k-data structure A =

〈A, F〉 coincides with the Leibniz congruence ΩA(F). So the 2-data structure 〈A,≡beh
A 〉 is a

model of the free UHELΣ. Moreover, �beh
K coincides with the valid consequence relation

�K ′ (Definition 2.3), where K ′ = { 〈A,ΩA(F)〉 : 〈A, F〉 ∈ K }. So 〈Σ,�beh
K 〉 is a UHELΣ.

In this way we can associate a generally unspecifiable UHEL with every hidden k-logic

L by taking the behavioural consequence relation determined by the class of models

of L.
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Definition 3.2. Let L be a hidden k-logic over a hidden signature Σ.

(i) An equation t ≈ t′ is said to be a behaviourally valid consequence of a set E of

equations over L, in symbols E �beh
L t ≈ t′, if E �beh

Mod(L) t ≈ t′.

(ii) An equation or conditional equation is behaviourally valid over L if it is behaviourally

valid over Mod(L).

One of the central problems of hidden k-logic is specifying in some effective way the

behavioural validities of a given L. This can sometimes be facilitated by isolating a

subclass K of Mod(L) with special properties such that it is behaviourally complete for L
in the sense that ≡beh

L = ≡beh
K . A Lindenbaum model of L (the term comes from abstract

algebraic logic) is a model whose underlying algebra is the term algebra, that is, a model

of the form 〈TeΣ, T 〉 (so T is a theory of L). In the rest of the paper, the Leibniz

congruence over a theory T on TeΣ will be denoted by Ω(T ) instead of ΩTeΣ
(T ). In order

to show that the Lindenbaum models are behaviourally complete for L, we require the

following technical lemma.

A k-data structure B = 〈B,G〉 is a substructure of a k-data structure A = 〈A, F〉 over

the hidden signature Σ if B is a subalgebra of A and G = F ∩ Bk , that is, the sorted

intersection of F = 〈FS : S ∈ SORT 〉 and Bk = 〈BkS : S ∈ SORT 〉. It is easy to see that

B ∈ Mod(L) whenever A ∈ Mod(L). It is also easy to see that the inverse image of a

model under an algebra homomorphism is also a model. More precisely, if L ∈ Mod(L)

and h:B → A is a homomorphism of algebras, then 〈B, h−1(F)〉 ∈ Mod(L). In particular,

σ−1(T ) is a theory of L for every theory T and every substitution σ :X → TeΣ. This fact

is used in the proof of Corollary 3.6 below.

Lemma 3.3. Let A = 〈A, F〉 be an arbitrary k-data structure over a hidden signature

Σ. Let t ≈ t′ be any equation and E be any set of equations (all of arbitrary sort). If

E �beh
B t ≈ t′ for every locally countable substructure B of A, then E �beh

A t ≈ t′.

In particular, if a conditional equation is behaviourally valid in every locally countable

substructure of A, then it is behaviourally valid in A.

Proof. Assume E ��beh
A t ≈ t′. Then there is an assignment g : X → A such that

g(s) ≡beh
A g(s′) for all s ≈ s′ in E, but g(t) �≡beh

A g(t′). Let S be the common sort of

t and t′. Then, by the definition of behavioural equivalence, there is a visible (k, S)-

context ϕ̄(z :S, ū:T̄ ):U, with ū:T̄ = 〈u1 :T1, . . . , um :Tm〉 and b̄ ∈ AT1
× · · · ×ATm such that

ϕ̄A(g(t), b̄) ∈ FU and ϕ̄A(g(t′), b̄) /∈ FU or vice versa.

Let B = 〈B, F ∩ Bk〉 be the subalgebra of A generated by g(X) ∪ b̄. We know that B is

locally countable since X is locally countable and b̄ is finite. Then g(t), g(t′) ∈ B for all

t ≈ t′ in E, and ϕ̄B(g(t), b̄) = ϕ̄A(g(t), b̄) ∈ F ∩ Bk and ϕ̄A(g(t′), b̄) = ϕ̄B(g(t′), b̄) /∈ F ∩ Bk ,

or vice versa. So g(t) �≡beh
B g(t′).

On the other hand, for each s:S ≈ s′ :S in E, g(s), g(s′) ∈ B, and hence for every visible

(k, S)-context ψ̄(z :S, ū:Ū):W and all c̄ ∈ BŪ , we have ψ̄B(g(s), c̄) = ψ̄A(g(s), c̄) ∈ F ∩ Bk

if and only if ψ̄B(g(s′), c̄) = ψ̄A(g(s′), c̄) ∈ F ∩ Bk . So g(s) ≡beh
B g(s′) for each s ≈ s′ in E.

Thus E ��beh
B t ≈ t′
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The following theorem may be viewed of as a form of coinduction for conditional

equations. It gives a characterisation, in terms of combinatorial properties of Leibniz

congruences on the term algebra, for a conditional equation to be behaviourally valid

in a given hidden k-logic. It should be compared with the coinduction rule in Roşu and

Goguen (2000) for verifying the behavioural validity of equations in HELs.

Theorem 3.4. Let L be a hidden k-logic. Then the Lindenbaum models of L are

behaviourally complete for L. More precisely:

(i) Let t ≈ t′ be an equation and E a set of equations (all of arbitrary sort). Then

E �beh
L t ≈ t′ if and only if

∀T ∈ Th(L)
((

∀ (s ≈ s′ ∈ E) (s ≡Ω(T ) s
′)
)

⇒ t ≡Ω(T ) t
′) . (11)

(ii) A conditional equation

t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n. (12)

is behaviourally valid over L if and only if

∀T ∈ Th(L)
((

∀ i < n (ti ≡Ω(T ) t
′
i)
)

⇒ tn ≡Ω(T ) t
′
n

)
.

Proof.

(i) Assume E �beh
L t ≈ t′. Let T ∈ Th(L) such that s ≡Ω(T ) s

′ for all s ≈ s′ in E.

Let A = 〈TeΣ, T 〉. We know that A ∈ Mod(L) by the definition of a theory. Thus

s ≡beh
A s′ for all s ≈ s′ in E by Theorem 2.16. It follows that t ≡beh

A t′ by the assumption

E �beh
L t ≈ t′. So the condition (11) holds

Conversely, assume (11) holds. By Lemma 3.3(ii), it suffices to show that E �beh
A t ≈ t′

for every locally countable model of L.

Without loss of generality, we assume that for each sort S there are a countable

number of variables of sort S that are not contained in t ≈ t′ or in any of the

equations in E; if this were not the case, then, by replacing variables uniformly on

a one-to-one basis, we can obtain t̂ ≈ t̂′ and Ê = { ŝ ≈ ŝ′ : (s ≈ s′) ∈ E } with this

property and such that Ê �beh
L t̂ ≈ t̂′ if and only if E �beh

L t ≈ t′.

Let A = 〈A, F〉 ∈ Mod(L) be locally countable, and let h : X → A be an arbitrary

assignment such that h(s) and h(s′) are behaviourally equivalent in A, that is,

h(s) ≡ΩA(F) h(s
′), for every s ≈ s′ in E. If h (more precisely, its unique extension

h∗ : TeΣ → A) is not surjective, it is clear that it can be replaced by an assignment

that is surjective and such that t and t′ take the same value, and also s and s′ take

the same value for each s ≈ s′ in E. (This uses the assumption that for each sort S

there are a countable number of variables of sort S that are not contained in t ≈ t′

or in any of the equations in E.) Thus we may assume h itself is surjective without

loss of generality.

Let T = h−1(F). Then T is a theory of L and, by Lemma 2.18, ΩTeΣ
(T ) = h−1(ΩA(F)).

Thus, s ≡Ω(T ) s
′ for each s ≈ s′ in E. So, by hypothesis, t ≡Ω(T ) t

′. Hence, h(t) ≡Ω(F) h(t
′)

by Lemma 2.18.

(ii) This is an immediate consequence of part (i).
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This result takes a simpler form when it is applied to hidden equational logic, but

this requires the notion of an extension of a k-logic by additional axioms and rules of

inference.

Definition 3.5. Let L be a HELΣ and E a set of equations and conditional equations of

arbitrary, possibly unhidden, sort. We define Luh[E] as the natural extension of L by E

to a UHEL over the same signature.

If L is specifiable, Luh[E] is the specifiable UHEL whose extra-logical axioms and

inference rules are obtained by adjoining E to those of L. For an arbitrary L, Luh[E] is

the UHEL whose theories are the congruence relations Θ on the entire term algebra TeΣ

such that:

— Θ ∩ (Te2
Σ)VIS ∈ Th(L).

— Θ is closed under the equations and conditional equations of E in the following

sense. For every equation t ≈ t′ ∈ E and substitution σ :X → TeΣ, σ(t) ≈ σ(t′) ∈ Θ,

and for every conditional equation t0 ≈ t′0, . . . , tn−1 ≈ t′n−1 → tn ≈ t′n in E and every

σ :X → TeΣ, if h(ti) ≈ σ(t′i) ∈ Θ for all i < n, then σ(tn) ≈ σ(t′n) ∈ Θ.

Luh is the extension of L to a UHEL with no additional axioms and rules of inference;

its theories are the congruences on TeΣ whose visible part is a theory of L. If E is a set of

visible equations and conditional equations, then L[E] is the HEL obtained by adjoining

E as new axioms and rules of inference.

For each theory T of L we have Ω(T ) ∩ (Te2
Σ)VIS = T by Corollary 2.24. Thus Ω(T ) ∈

Th(Luh). More generally, it follows easily from Corollary 2.24 that, if 〈A, F〉 ∈ Mod(L),

then 〈A,Ω(F)〉 ∈ Mod(Luh).

Corollary 3.6. Let L be a HEL and E be a set of equations and conditional equations of

arbitrary type. Then every equation and conditional equation in E is behaviourally valid

over L if and only if for every T ∈ Th(L), Ω(T ) ∈ Th(Luh[E]).

Proof. Assume each conditional equation of E is behaviourally valid over L. (For

simplicity we treat equations as conditional equations with an empty set of antecedents.)

Let T ∈ Th(L). As we have previously observed, Ω(T ) ∈ Th(Luh). Thus, to show

Ω(T ) ∈ Th(Luh[E]), it suffices to show that Ω(T ) is closed under each conditional

equation in E. Let ξ ∈ E be of the form (12) and σ : X → TeΣ be a substitution such

that, for all i < n, σ(ti) ≡ σ(t′i)
(
Ω(T )

)
, that is, ti ≡ t′i

(
σ−1(Ω(T ))

)
. Assume for the time

being that σ is surjective (as an endomorphism of the term algebra). Then, for each i < n,

ti ≡ t′i
(
Ω(σ−1(T ))

)
by Lemma 2.18. Thus, since σ−1(T ) ∈ Th(L) and ξ is behaviourally

valid over L by assumption, we have, by Theorem 3.4, that tn ≡ t′n
(
σ−1(Ω(T ))

)
, that is,

σ(tn) ≡ σ(t′n)
(
Ω(T )

)
.

Suppose now that σ is not surjective. Let τ : X → TeΣ be a surjective substitution such

that τ(x) = σ(x) for each variable occurring in ξ; this is possible since there are only

finitely many of these variables. Then τ(ti) ≡ τ(t′i)
(
Ω(T )

)
for each i < n, since τ(ti) = σ(ti)

and τ(t′i) = σ(t′i). So, by the first part of the proof, σ(tn) = τ(tn) ≡Ω(T ) τ(t
′
n) = τ(tn). Thus

Ω(T ) is closed under ξ for every ξ ∈ E, and hence Ω(T ) ∈ Th(Luh[E]).
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For the implication in the other direction, assume Ω(T ) ∈ Th(Luh[E]) for each T ∈
Th(L). Let T ∈ Th(L) and ξ be a conditional equation in E of the form (12). Suppose

that for all i < n, we have ti ≡ t′i
(
Ω(T )

)
. Then tn ≡ t′n

(
Ω(T )

)
since Ω(T ) ∈ Th

(
Luh[E]

)
by assumption. So ξ is behaviourally valid over L by Theorem 3.4.

As a special case of this result, we have that an equation t ≈ t′ is behaviourally valid

over L if and only if t ≡ t′
(
Ω(Thm(L)

)
.

In the following corollaries we give two simpler characterisations for conditional

equations of a special kind to be behaviourally valid in a HEL L; in the first case

the antecedents are all visible and in the second it is the consequent that is visible.

If the antecedents of the conditional equation (12) are all visible, condition (ii) of

Theorem 3.4 can be simplified since, in this case, ti ≡ t′i
(
Ω(T )

)
if and only if ti ≡ t′i (T ) by

Corollary 2.24. Thus we get the following result. Recall that, for any set of E equations,

CnL(E) is the intersection of all theories of L that include E.

Corollary 3.7. Let L be a HEL. A conditional equation (12) with visible antecedents is

behaviourally valid over L if and only if tn ≡ t′n
(
Ω(CnL{ ti ≈ t′i : i < n })

)
.

Furthermore, if the antecedents of the conditional equation are visible ground terms,

then condition (ii) of Theorem 3.4 can be written in the form

tn ≡ t′n
(
Ω(Thm(L[{ ti ≈ t′i : i < n }]))

)
. (13)

For this it is enough to note that CnL{ ti ≈ t′i : i � n} is the set of all theorems of the

HEL L[{ ti ≈ t′i : i < n }]. This result can be found in Roşu (2000), where it is called the

Deduction Theorem.

If the consequent tn ≈ t′n of the conditional equation (12) is visible, then the character-

isation of behavioural validity given in Theorem 3.4 can be simplified as follows.

Corollary 3.8. Let L be a HEL. A conditional equation (12) with a visible consequent is

behaviourally valid over L if and only if

tn ≡ t′n
(
CnL(

⋃
i<n{ϕ(ti, x̄) ≈ ϕ(t′i, x̄) : ϕ an appropriate context for ti, t

′
i })

)
.

Proof. Let

G = CnL(
⋃
i<n{ϕ(ti, x̄) ≈ ϕ(t′i, x̄) : ϕ an appropriate context for ti, t

′
i }) .

Assume (12) is not behaviourally valid over L. Then, by Theorem 3.4, there is a theory

T of L such that

ti ≡ t′i (Ω(T )), for all i < n, and tn �≡ t′n (Ω(T )) . (14)

From the first condition we conclude by Theorem 2.23 that ϕ(ti, x̄) ≡ ϕ(t′i, x̄) (T ) for each

i < n, and hence, by definition of G, that G ⊆ T . Since tn, t
′
n are visible, from the second

condition of (14), we conclude that tn �≡ t′n (T ). So tn �≡ t′n (G).

Assume now that (12) is behaviourally valid over L. G ∈ Th(L) and, by definition of

G, ti ≡ t′i (Ω(G)). Hence, by Theorem 3.4, we get that tn ≡ t′n (Ω(G)). Thus tn ≡ t′n (G) since

tn, t
′
n are visible.
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The next corollary states another straightforward consequence of Theorem 3.4, the

theorems of the UHEL-expansion Luh of L are all behaviourally valid over L, and,

more interestingly, the same is true for any extension of Luh obtained by adjoining a

behaviourally valid conditional equation as a new inference rule.

Corollary 3.9. Let L be a HELΣ and ξ be a conditional equation (of arbitrary sort)

that is behaviourally valid over L. Then for every Σ-equation s ≈ s′ (of arbitrary sort),


Luh[ξ] s ≈ s′ implies that s ≈ s′ is behaviourally valid over L.

Proof. We want to show that s ≡ s′ (Thm(Luh[ξ])
)

implies s ≡ s′ (Ω(Thm(L)
)
. But

Thm(Luh[ξ]) ⊆ Ω(Thm(L)) because Ω(Thm(L)) is a theory of Luh, and hence also a

theory of Luh[ξ] since, by Theorem 3.4, it is closed under ξ as an inference rule.

3.1. Closure of behavioural validity under equational consequence

Intuitively, since the terms of a behaviourally valid equation have exactly the same visible

properties, adjoining it as a new axiom should not result in the provability of any new

visible equations. And it has been shown (Leavens and Pigozzi 2002, Theorem 3.18)

that, not only is this indeed the case, but the property serves to actually characterise

behaviourally valid equations. In the next theorem this result is generalised in a natural

way to conditional equations. This gives another characterisation of the conditional

equations that are behaviourally valid over a given HEL entirely by means of standard

equational logic, and it can be viewed as an alternative form of coinduction for conditional

equations.

Theorem 3.10. Let L be a HEL, and let E be a set of (unrestricted) conditional equations.

Then every rule in E is behaviourally valid over L if and only if every conditional equation

with visible consequent that is a derivable rule of Luh[E] is already a derivable rule of

Luh, that is, for every conditional equation s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1 → sm ≈ s′
m with a

visible consequent,

{s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1} 
Luh[E] sm ≈ s′
m

implies {s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1} 
Luh sm ≈ s′
m . (15)

Proof. Assume that each rule in E is behaviourally valid over L. Assume also that

{s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1} 
Luh[E] sm ≈ s′
m (16)

with sm ≈ s′
m visible. Let G be any theory of Luh such that si ≡ s′

i (G) for all i < m.

GVIS is a theory of L and Ω(GVIS) is a theory of Luh[E] by Corollary 3.6, and since

G ⊆ Ω(GVIS), we have that si ≡ s′
i (Ω(GVIS)) for each i < m. So, by assumption (16),

we have sm ≡ s′
m (Ω(GVIS)). But then sm ≡ s′

m (GVIS) since sm ≈ s′
m is visible. Thus

{s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1} 
Luh sm ≈ s′
m. This verifies (15).

Assume now that (15) holds for every conditional equation s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1 →
sm ≈ s′

m with visible consequent. By Corollary 3.6 it suffices to show that

Ω
(
Th(L)

)
⊆ Th(Luh[E]) . (17)
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Suppose T ∈ Th(L) and let G = CnLuh[E]

(
Ω(T )

)
, the Luh[E]-theory generated by Ω(T ).

We claim that GVIS = T . To see the inclusion from left to right, assume s, s′ are visible terms

such that s ≡ s′ (G). Since G is generated as a Luh[E]-theory by Ω(T ), there are equations

s0 ≈ s′
0, . . . , sm−1 ≈ sm−1 such that si ≡ s′

i

(
Ω(T )

)
, for i < m, and {s0 ≈ s′

0, . . . , sm−1 ≈
s′
m−1} 
Luh[E] s ≈ s′. Thus, by assumption, {s0 ≈ s′

0, . . . , sm−1 ≈ s′
m−1} 
Luh s ≈ s′. Hence

s ≡ s′ (Ω(T )
)
, since Ω(T ) is an Luh-theory, as previously observed. But s ≈ s′ is visible,

so s ≡ s′ (T ). Thus GVIS ⊆ T . Since the opposite inclusion is obvious, we have verified the

claim. Then Ω(T ) = Ω(GVIS) ⊇ G; but obviously Ω(T ) ⊆ G. So Ω(T ) = G ∈ Th
(
Luh[E]

)
.

Hence (17) holds and thus every rule in E is behaviourally valid over L by Corollary 3.6.

Considering the analogous characterisation of behavioural validity of equations (see

Leavens and Pigozzi (2002)), one might expect to be able to characterise the behavioural

equivalence of the set E of conditional equations by the condition that any completely

visible conditional equation that is a derivable rule of Luh[E] is already a derivable rule of

Luh, that is, by the weaker version of (15) where the antecedents s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1

are all required to be visible. However, the following counterexample shows that condition

(15) in its full strength is necessary.

Consider the Flags example and the conditional equation

rev (rev (F)) ≈ F → dn(F) ≈ F . (18)

On the one hand, since rev (rev (F)) ≈ F is behaviourally valid while dn(F) ≈ F is not,

this is not a behaviourally valid conditional equation. On the other hand, the weaker

version of (15), where the conditional equations are restricted to be visible, holds. This

follows from the easily verified fact that no substitution instance of rev (rev (F)) ≈ F can

be deduced from a visible set of equations; this implies that in deducing a visible equation

from a set of visible equations, the inference rule (18) can never be applied.

Note that if the set of derivable (visible) conditional equations of L is recursive, then

the set of behaviourally valid conditional equations over L is co-RE. This gives the

following corollary.

Corollary 3.11. Let L be a HEL. If the set of derivable rules of L is recursively

enumerable (RE), then the set of behaviourally valid conditional equations over L is at

level
∏0

2 in the arithmetical hierarchy.

It is shown in Buss and Roşu (2000) that there are HELs with a finite presentation for

which the set of behavioural valid equations is
∏0

2-complete.

The following obvious consequence of Theorem 3.10 shows that the converse of

Corollary 3.9 holds for visible equations.

Corollary 3.12. Let L be a HEL and let ξ be a behaviourally valid conditional equation

over L. Then, for every s, s′ ∈ (TeΣ)VIS,


Luh[ξ] s ≈ s′ iff 
L s ≈ s′ . (19)
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In the final result of this subsection we show that the set E of all conditional equations

that are behaviourally valid over a HEL L is closed under equational consequence in

the sense that any conditional equation that is a derivable rule of Luh[E] is already a

member of E.

Corollary 3.13. Let L be a HEL and let E be the set of all conditional equations that

are behaviourally valid over L. Then any conditional equation that is a derivable rule of

Luh[E] is itself behaviourally valid over L and hence a member of E.

Proof. Let ξ be a conditional equation that is a derivable rule of Luh[E]. It is then

clear that


Luh[ξ] ⊆ 
Luh[E] . (20)

Then, applying Theorem 3.10, we get that ξ is behaviourally valid. In fact, let s0 ≈
s′
0, . . . , sm−1 ≈ s′

m−1 → sm ≈ s′
m be any conditional equation with visible consequent, and

suppose that {s0 ≈ s′
0, . . . , sm−1 ≈ s′

m−1} 
Luh[ξ] sm ≈ s′
m. Then, by (20), {s0 ≈ s′

0, . . . , sm−1 ≈
sm−1} 
Luh[E] sm ≈ s′

m. Hence, applying Theorem 3.10, we get {s0 ≈ s′
0, . . . , sm−1 ≈ sm−1} 
L

sm ≈ s′
m. Applying the theorem again, this time in the other direction and with {ξ} in

place of E, we conclude that ξ is behaviourally valid over L.

This result can lead to a greatly simplified specification of a HEL L by allowing

hidden equations and conditional equations in the specification. But one must first verify

that the new hidden axioms and rules are behaviourally valid over L (with its original

specification). Because only then can one be assured, by Corollary 3.13, that the new

specification is sound in the sense that it does not lead to behaviourally invalid conditional

equations. This process is illustrated in the canonical case of stacks where the infinite list

of visible axioms can be replaced by a finite number of hidden axioms. We will show in

Example 3.24 that the following equations are behaviourally valid over Lstacks :

pop(push(x, S)) ≈ S and pop(empty) ≈ empty . (21)

Hence, these equations can be added to the specification of stacks, as new axioms, without

having unexpected behavioural consequences. Moreover, each of the infinite number

of axioms of the original specification is an equational consequence of the equations

pop(push(x, S)) ≈ S and pop(empty) ≈ empty together with top(push(x, S)) ≈ x, so they

can be replaced by these three simple equations.

3.2. The specification of behavioural validity

Recall that a k-logic is behaviourally specifiable if its behavioural consequence relation

can be axiomatised in standard equational logic by a possibly infinite set of equations and

conditional equations. We present several characterisations of the behavioural specifiability

of HELs in this subsection, one of which (the existence of a finite equivalence system) can

be useful in practice. The behavioural specification problem for arbitrary k-logics is more

complicated and will not be treated here; see Martins (2004).

Definition 3.14. Let L be a k-logic. We say that L is behaviourally specifiable if there

is a specifiable UHEL L′, over the same signature, such that �beh
L = 
L′ , that is, for
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every set of equations E ∪ {t ≈ t′} (of arbitrary sort) we have E �beh
L t ≈ t′ if and only if

E 
L′ t ≈ t′. We call L′ a behavioural specification of L.

The theory of behavioural specifiability is much simpler when it is restricted to hidden

equational logic, and that is what we shall do in this subsection, with only an occasional

reference to general k-logics.

If a HEL L is behaviourally specifiable, it must be specifiable in the standard sense, that

is, its consequence relation 
L is finitary in the sense that E 
L t ≈ s implies E ′ 
L t ≈ s

for some finite subset E ′ of E. To see this, let L be a behavioural specification of L.

Then, since the equations are all visible, E 
L t ≈ s if and only if E �beh
L t ≈ s if and

only if E 
L′ t ≈ s if and only if for a finite E ′ ⊆ E such that E 
L′ t ≈ s if and only if

E ′ 
L t ≈ s.

Theorem 3.15. Let L be a HEL. A UHEL L′ over the same signature is a behavioural

specification of L if and only if Ω
(
Th(L)

)
= Th(L′).

In order to prove this theorem, it is useful to first establish some properties of Ω as an

abstract mapping from the set of theories of L into the set of congruences of the term

algebra TeΣ.

— Ω is monotonic, that is, if T ,G ∈ Th(L) and T ⊆ G, then Ω(T ) ⊆ Ω(G).

Note that Ω(T ) is compatible with G. Indeed, suppose t, t′, s, s′ are visible terms such that

t ≡G s, t ≡Ω(T ) t
′, and s ≡Ω(T ) s

′. Since the terms are all visible and Ω(T )VIS = T ⊆ G, we

have that t ≡G t
′ and s ≡G s

′. Hence, t′ ≡G s
′. Consequently, Ω(T ) ⊆ Ω(G) since Ω(G) is

the largest congruence of TeΣ compatible with G.

In abstract algebraic logic a logical system with the property that Ω is monotonic is

said to be protoalgebraic. Although every HEL is protoalgebraic, not every hidden k-logic

is. The characterisation of behaviourally specifiable HELs given in Theorem 3.20 can only

be naturally generalised to protoalgebraic k-logics.

— For any, possibly infinite, set {Ti : i ∈ I } of L-theories, Ω
(⋂

i∈I Ti
)

=
⋂
i∈I Ω(Ti).

In fact, Ω
(⋂

i∈I Ti
)

⊆ Ω(Ti) for each i ∈ I by the monotonicity of Ω. Thus Ω
(⋂

i∈I Ti
)

⊆⋂
i∈I Ω(Ti). But

⋂
i∈I Ω(Ti) is a congruence compatible with each Ti and hence with

⋂
i∈I Ti.

So Ω
(⋂

i∈I Ti
)

⊇
⋂
i∈I Ω(Ti).

Proof of Theorem 3.15. By Theorem 3.4 the condition that Ω
(
Th(L)

)
= Th(L′) is

clearly sufficient for L′ to be a behavioural specification of L. To see that it is necessary,

assume that L′ is a behavioural specification of L. By Theorem 3.4, for each T ∈ Th(L),

we have Ω(T ) is closed under behaviourally valid consequences in L, and hence Ω(T ) ∈
Th(L′). Conversely, suppose G ∈ Th(L′). Let K = {T ∈ Th(L) : G ⊆ Ω(T ) }. Then by

Theorem 3.4 again we have G =
⋂
T∈K Ω(T ). Hence G = Ω

(⋂
T∈K T

)
. So G ∈ Ω

(
Th(L)

)
.

Lemma 3.16. Let L be a behaviourally specifiable HEL and L′ be a behavioural

specification. If G ∈ Th(L′) is finitely generated, then GVIS is also finitely generated as an

L-theory.
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Proof. Let K = {T : T ∈ Th(L), T is finitely generated, and T ⊆ GVIS }. Since GVIS

is itself an L-theory, GVIS =
⋃
T∈K T . We show that G =

⋃
T∈K Ω(T ). We first show

that
⋃
T∈K Ω(T ) is an L′-theory. K is obviously upward directed since any finite subset

K ′ of K is included in the theory generated by the union of the set of finite generating

sets of the members of K ′. Thus { Ω(T ) : T ∈ K } is an upward directed set of L′-

theories since Ω is monotonic. So
⋃
T∈K Ω(T ) is an L′ theory, since L′ is specifiable.(⋃

T∈K Ω(T )
)
VIS

=
⋃
T∈K Ω(T )VIS =

⋃
T∈K T = GVIS. Thus, since

⋃
T∈K Ω(T ) is an L′-

theory,
⋃
T∈K Ω(T ) = Ω

(
(
⋃
T∈K Ω(T ))VIS

)
= Ω(GVIS) = G.

Assume now that G is finitely generated, say by a finite set of equations E. So there is a

finite subset K ′ of K such that E ⊆
⋃
T∈K ′ Ω(T ), and hence, since Ω(K) is upward directed,

there is a T ∗ ∈ K such that E ⊆
⋃
T∈K ′ Ω(T ) ⊆ Ω(T ∗) ⊆ G. Since Ω(T ∗) is a L′-theory

and contains a generating set of G, it must equal G. Hence GVIS = Ω(T ∗)VIS = T ∗, and

GVIS is finitely generated.

Many HELs that arise in practice are behaviourally specifiable, Leflag for example (see

Examples 2.7 and 2.8). However, many are not; for example, Lstacks is not behaviourally

specifiable (see Martins (2004)). Our characterisation of those HELs that are behaviourally

specifiable is based on the concept of an equivalence system.

Let Σ be an arbitrary hidden signature. By a pre-equivalence system over Σ we mean a

double sorted set

E := 〈 〈ES,H (x:H, y :H, ū:Q̄) : S ∈ SORT 〉 : H ∈ HID 〉,

where ES,H (x:H, y :H, ū:Q̄) is a possibly infinite set of equations of the form

ϕ(x:H, ū : Q̄) ≈ ϕ(y :H, ū : Q̄), (22)

where ϕ(z :H, ū:Q̄) is an S-context and x, y are variables distinct from the parametric

variables ū:Q̄ := u1 :Q1, u2 :Q2, u3 :Q3, . . . . To simplify the notation, we assume that this

sequence is the same for all of the equations of E, and hence it may be infinite since there

may be an infinite number of equations; any given equation (22) can, of course, only

contain a finite number of them. We also assume that the distinguished variables x and y

of (22) and all variables substituted for them in the rest of the paper are distinct from the

parametric variables. To ensure this is possible, we assume that ū:Q̄ excludes an infinite

number of variables of each sort in SORT.

A pre-equivalence system E is visible if all the equations (22) of E are visible, that is,

ES,H = � for each S ∈ HID. In this case we think of EH as a VIS-sorted set and write E

in the form

E := 〈 〈EV,H (x:H, y :H, ū:Q̄) : V ∈ VIS 〉 : H ∈ HID 〉 .
In the rest of the paper all pre-equivalence systems are assumed to be visible unless

explicitly indicated otherwise. If

EH (x:H, y :H, ū:Q̄) := 〈EV,H (x:H, y :H, ū:Q̄) : V ∈ VIS〉

is globally finite for each H ∈ HID (that is,
⋃
V∈VIS EV,H is finite), then E is said to be

locally globally finite. As in similar situations earlier, we will sometimes abuse notation by

identifying the VIS-sorted set EH with its union
⋃
V∈VIS EV,H .
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The following definition of an equivalence system for hidden equational logics is a

special case of a more general notion of arbitrary hidden k-logics given in Martins (2004).

Definition 3.17. A (visible) pre-equivalence system E = 〈EH (x:H, y :H, ū:Q̄) : H ∈ HID〉
is said to be an equivalence system for a HEL L if the following conditions hold for every

H ∈ HID.

(i) 
L EH (x:H, x:H, ū:Q̄).

(ii) EH (x:H, y :H, ū:Q̄) 
L EH (y :H, x:H, ū:Q̄).

(iii) EH (x:H, y :H, ū:Q̄), EH (y :H, z :H, ū:Q̄) 
L EH (x:H, z :H, ū:Q̄).

(iv) For each operation symbol O of type S0, . . . , Sn−1 → Sn:

1 If Sn /∈ VIS, then

⋃
i<n

{ESi (xi :Si, yi :Si, ū:Q̄) : Si ∈ HID } ∪ {xi ≈ yi : Si ∈ VIS }


L ESn(O(x0, . . . , xn−1):Sn, O(y0, . . . , yn−1):Sn, ū:Q̄) .

2 If Sn ∈ VIS, then

⋃
i<n

{ESi (xi :Si, yi :Si, ūi :Q̄i) : Si ∈ HID } ∪ {xi ≈ yi : Si ∈ VIS }


L O(x0, . . . , xn−1) ≈ O(y0, . . . , yn−1) .

For technical reasons it is sometimes convenient to think of an equivalence system as

a SORT-sorted set E where EV = {x:V ≈ y :V } for each visible sort V .

If a HEL L has an equivalence system, it is said to be equivalential. Moreover, if E is

locally globally finite (that is,
⋃
V∈VIS EV,H is finite for each H ∈ HID), then L is said to

be finitely equivalential.

Not every HEL is equivalential, a counter-example can be found in Martins (2004);

this reference also has details of the following two examples.

Example 3.18.

I - Flags. The specification of flags Leflag is finitely equivalential with finite system

E = 〈Ebool , Eflag〉, where Ebool (x:bool , y :bool ) = {x ≈ y} and

Eflag (x:flag , y :flag) = {up?(x) ≈ up?(y)}.

II - Stacks. The specification of stacks Lstacks is equivalential with equivalence system

E = 〈Enat, Estack 〉

where

Enat(x:nat, y :nat) = {x ≈ y}
and

Estack (x:stack , y :stack ) = {top(popn(x)) ≈ top(popn(y)) : n � 0} .
However, Lstacks is not finitely equivalential.

Note that neither of these equivalence systems contains a parametric variable. This

is not an uncommon situation. If a HEL is (finitely) equivalential, then it has a (finite)
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equivalence system without parametric parameters, provided its signature has the property

that every sort contains a ground term. This is because any (finite) equivalence system with

parameters can be converted into one without parameters by replacing each parametric

variable by an arbitrary ground term of the same sort.

Theorem 3.19. Let L be a HEL and E be a pre-equivalence system over the same

signature. Then E is an equivalence system for L if and only if, for every H ∈ HID and

every pair of H-terms t, t′,

EH (t, t′, ū) �beh
L t ≈ t′. (23)

Proof. Suppose E is an equivalence system for L. Let T be an arbitrary L-theory, and

define G(T ) = 〈G(T )S : S ∈ SORT 〉 as follows:

G(T )H := { 〈t, t′〉 : EH (t, t′, ū) ⊆ T } for H ∈ HID, and G(T )VIS := T .

The claim is that G(T ) = Ω(T ). It is easy to see directly from the definition of an

equivalence system that G(T ) is a congruence on TeΣ. To see that it is the largest

congruence with visible part T , let Θ be any congruence on TeΣ whose visible part is T .

Assume that t ≡ t′ (ΘH ). Then for every V ∈ VIS and every equation ϕ(x:H, ū:Q̄):V ≈
ϕ(y :H, ū:Q̄):V in EV,H , we have ϕ(t, ū) ≡ ϕ(t′, ū) (ΘV ) by the congruence property of

Θ, and hence ϕ(t, ū) ≡ ϕ(t′, ū) (TV ) since ΘV = TV . Therefore, EH (t, t′, ū) ⊆ T , that is,

t ≡ t′ (G(T )H ). Thus Θ ⊆ G(T ). Hence G(T ) = Ω(T ), as claimed.

We have shown that for every T ∈ Th(L) and H ∈ HID,

((∀ϕ(t, ū) ≈ ϕ(t′, ū) ∈ EH (t, t′, ū)) (ϕ(t, ū) ≡T ϕ(t′, ū))) ⇐⇒ t ≡Ω(T ) t
′ . (24)

Thus EH (t, t′, ū) �beh
L t ≈ t′ by Theorem 3.4.

Conversely, suppose now that (23) holds for all H ∈ HID and t, t′ ∈ (TeΣ)H . Applying

Theorem 3.4 (and the fact that the equations ϕ(t, ū) ≈ ϕ(t′, ū) are all visible), we get the

equivalence (24) for every T ∈ Th(L), that is,

Ω(T )H = { 〈t, t′〉 : EH (t, t′, ū) ⊆ TH } for every H ∈ HID .

The properties of Ω(T ) as a congruence now translate directly into properties that define

E as an equivalence system. For example, condition 3.17(iii) can be established as follows.

Let T ∈ Th(L) and suppose EH (t, t′, ū), EH (t′, t′′, ū) ⊆ T . Then t ≡ t′ ≡ t′′ (Ω(T )). Hence

t ≡ t′′ (Ω(T )) by transitivity of Ω(T ), that is, EH (t, t′′, ū) ⊆ T . Since this is true for every

T , 3.17(iii) holds

Note that in the course of the proof it has been shown that, as a consequence of

Theorem 3.4, the theorem can also be expressed as follows:

E is an equivalence system for L if and only if, for every T ∈ Th(L) and every sort

H ∈ HID,

Ω(T )H = { 〈t, t′〉 : EH (t, t′, ū) ⊆ TH } .

We are now finally ready to give the promised characterisation of behaviourally

specifiable HELs.

https://doi.org/10.1017/S0960129507006305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006305


M. Martins and D. Pigozzi 1108

Theorem 3.20. A specifiable HEL L is behaviourally specifiable if and only if it is finitely

equivalential.

Proof. Assume E = 〈EH (x:H, y :H, ū:Q̄ : H) ∈ HID 〉 is an equivalence system for L
such that EH is globally finite for each H ∈ HID. Define L′ to be the UHEL obtained

from L by adding, for each hidden sort H , the new inference rule

ϕ1(x, ū) ≈ ϕ1(y, ū), . . . , ϕn(x, ū) ≈ ϕn(y, ū) → x ≈ y, (25)

where EH (x:H, y :H, ū:Q̄) = {ϕ1(x, ū) ≈ ϕ1(y, ū), . . . , ϕn(x, ū) ≈ ϕn(y, ū)}, and x, y are

variables of sort H distinct from all the variables in ū. To see that L is a behavioural

specification of L, it suffices by Theorem 3.15 to show that

{ Ω(T ) : T ∈ Th(L) } = Th(L′) .

Let T ∈ Th(L). We have already seen that Ω(T ) ∈ Th(Luh), so in order to get

Ω(T ) ∈ Th(L′), it is enough to show that Ω(T ) is closed under the new inference rules

(25). Let t, t′ be H-terms such that ϕi(t, ū) ≡ ϕi(t
′, ū) (Ω(T )) for i � n. Then t ≡ t′ (Ω(T ))

by Theorem 3.19.

To prove the other inclusion, let G ∈ Th(L′). Since G ∈ Th(Luh), we have GVIS ∈
Th(L), so G ⊆ Ω(GVIS) because Ω(GVIS) is the largest congruence whose visible part

is GVIS. Suppose t ≡ t′
(
Ω(GVIS)H

)
. Then, by the congruence property, ϕi(t, ū) ≡

ϕi(t
′, ū) (GVIS) for all i � n. Using the inference rule (25), we conclude that t ≡ t′ (GH ).

Hence Ω(GVIS) ⊆ G, and thus G = Ω(GVIS).

Therefore, L′ is the behavioural specification of L.

Suppose that L is behaviourally specifiable and let L′ be its behavioural specification.

Let H be a fixed but arbitrary hidden sort, and let x, y be two distinct variables of sort

H . Let G be the L′-theory generated by the pair 〈x, y〉, that is, G = CnL′({〈x, y〉}). Then

GVIS is generated by the set

{ 〈ψ(x:H, ϑ̄:R̄), ψ(y :H, ϑ̄:R̄)〉 : ψ ∈ CH, ϑ̄ ∈ (TeΣ)R̄ }, (26)

where CH is the set of all visible H-contexts ψ(z :H, ū:R̄). Indeed, if T is the L-

theory generated by this set of equations, then x ≡ y (Ω(T )) by Theorem 2.23, and

hence, since Ω(T ) is an L′-theory (Theorem 3.15), we have G ⊆ Ω(T ). It follows that

GVIS ⊆ Ω(T )VIS = T . On the other hand, T ⊆ GVIS since G obviously includes the set of

generators (26) of T . So T = GVIS.

GVIS is finitely generated by Lemma 3.16 since G is finitely generated. So there is a finite

subset of (26) that generates it. (If a theory is finitely generated, any set of generators

must include a finite generating subset.) Let

{〈ψi(x:H, ϑ̄i(ū:Q̄):R̄i), ψi(y :H, ϑ̄i(ū:Q̄):R̄i)〉 : i � m }

be such a subset, where ū:Q̄ is a finite list of all variables different from x or y that occur

in this set of equations. For simplicity, we write ψi(x:H, ϑ̄i(ū:Q̄)) in the form ϕi(x:H, ū:Q̄).
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Then

{ϕi(x:H, ū:Q̄) ≈ ϕi(y :H, ū:Q̄) : i � m }

L ψ(x:H, ϑ̄:R̄) ≈ ψ(y :H, ϑ̄:R̄) for every ψ ∈ CH and ϑ̄ ∈ (TeΣ)R̄ . (27)

Consider any t, t′ ∈ (TeΣ)H and any ϑ̄ ∈ (TeΣ)R̄ . By the substitution invariance of 
L, we

have

{ϕi(t:H, ū:Q̄) ≈ ϕi(t
′ :H, ū:Q̄) : i � m }


L ψ(t:H, ϑ̄:R̄) ≈ ψ(t′ :H, ϑ̄:R̄) for every ψ ∈ CH and ϑ̄ ∈ (TeΣ)R̄ . (28)

Let

E := 〈 {ϕi(x:H, ū:Q̄) ≈ ϕi(y :H, ū:Q̄) : i � m } : H ∈ HID 〉 .
E is a pre-equivalence system over Σ with EH globally finite for each H ∈ HID, and

from (28) we conclude by Theorem 2.23 that, for every H ∈ HID and every pair of

H-terms t, t′,

EH (t, t′) �beh
L t ≈ t′.

So E is a finitary equivalence system for L by Theorem 3.19.

Roşu and Goguen in Roşu and Goguen (2001) introduced a concept of cobasis that is

closely related to our notion of equivalence system.

Definition 3.21. Let L be a HEL over the signature Σ. By a cobasis for L we mean a

not necessarily visible pre-equivalence system

E := 〈 〈ES,H (x:H, y :H, ū:Q̄) : S ∈ SORT 〉 : H ∈ HID 〉

with the property that for every H ∈ HID and every pair of H-terms t, t′,

EH (t, t′, ū) �beh
L t ≈ t′ .

Strictly speaking, a cobasis in the sense of Roşu and Goguen is the set of S-contexts

ϕ(z : H, ū) that are used to form the equations of ES,H .

In the light of Theorem 3.19, an equivalence system is a cobasis where all the equations

are visible. While a non-visible finite cobase can be useful in establishing behavioural

equivalence, Theorem 3.20 shows that if it is complete in this regard, then it must be

visible, or at least some visible finite cobasis must exist.

The following theorem gives us a method of verifying that a conditional equation is

behaviourally valid over an equivalential HEL L entirely in terms of its consequence

relation 
L.

Theorem 3.22. Let L be an equivalential HEL with equivalence system E. Then the

following are equivalent:

(i) The conditional equation

t0 :S0 ≈ t′0 :S0, . . . , tn−1 :Sn−1 ≈ t′n−1 :Sn−1 → tn :Sn ≈ t′n :Sn

is behaviourally valid over L.
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(ii)
⋃

{ESi (ti :Si, t′i :Si) : i < n } 
L ESn(tn :Sn, t
′
n :Sn).

Furthermore, if L is finitely equivalential, that is, if EH is globally finite for each

H ∈ HID, then both conditions are equivalent to the following:

(iii) For every s ≈ s′ in ESn(tn :Sn, t
′
n :Sn), the visible conditional equation

⋃
{ESi (ti :Si, t′i :Si) : i < n } → s ≈ s′

is a derivable rule of L.

Proof.

(i) ⇒ (ii) Define G = CnL
(⋃

{ESi (ti :Si, t′i :Si) : i < n}
)
. For each i < n, we have ti ≡

t′i (Ω(G)) by Theorem 3.19. Then, from Theorem 3.4 and (i), we get tn ≡ t′n (Ω(G)). So,

applying Theorem 3.19 again, we get ESn(tn, t
′
n) ⊆ G, that is, (ii) holds.

(ii) ⇒ (i) Let T ∈ Th(L). Suppose that ti ≡ t′i (Ω(T )) for each i < n. Then, by

Theorem 3.19,
⋃

{ESi (ti :Si, t′i :Si } ⊆ T . Hence, by (ii), ESn(tn :Sn, t
′
n :Sn) ⊆ T , and

thus tn ≡ t′n (Ω(T )).

The equivalence of (ii) and (iii) is immediate if E is globally finite.

It follows easily from this theorem that if a HEL L is equivalential and some equivalence

system for it is RE, in particular, if L is finitely equivalential, then the set of conditional

equations that are behaviourally valid over L is RE. Moreover, in view of the remarks

following Theorem 3.10, the set is recursive if the set of derivable (visible) conditional

equations of L is recursive.

Many HELs encountered in practice are equivalential, and in these cases Theorem 3.22

seems to be a useful way of verifying that a conditional equation is behaviourally valid.

The following two examples illustrate this phenomenon.

Example 3.23. (Flags) We will use Theorem 3.22 to prove that rev (G) ≈ F → rev (F) ≈ G

is behaviourally valid in Leflag . Using the equivalence system given in Example 3.18,

together with condition (ii) of Theorem 3.22, it is enough to prove that

up?(rev (G)) ≈ up?(F) 
Leflag
up?(rev (F)) ≈ up?(G) . (29)

We have the following deduction in Leflag :

up?(rev (G)) ≈ up?(F)

¬(up?(G)) ≈ up?(F) (axiom and IR2)

¬(¬(up?(G))) ≈ ¬(up?(F)) (IR3)

up?(G) ≈ ¬(up?(F)); (¬¬x ≈ x and IR2)

up?(G)) ≈ up?(rev (F)) (axiom and IR2)

So, (29) is proved. Hence, rev (G) ≈ F �beh
Leflag

rev (F) ≈ G.

Example 3.24. (Stacks) Using the equivalence system given in Example 3.18, in order to

show

S ≈ push(n, S ′) �beh
LStacks

pop(pop(S)) ≈ pop(S ′) ,

https://doi.org/10.1017/S0960129507006305 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129507006305


Behavioural reasoning for conditional equations 1111

it is enough to prove that

{top(popn(S)) ≈ top(popn(push(n, S ′))) : n � 0} 
LStacks

{top(popn(pop(pop(S)))) ≈ top(popn(pop(S ′))) : n � 0} .
This is a straightforward consequence of the axioms and rules for Lstacks given in

Example 2.9.

The equivalence system can also be used to show that the two hidden equations (21)

at the end of section 3.1 are behaviourally valid. Substituting the two terms of the first

equation, pop(push(x, S)) ≈ S , into the equations of the equivalence system, we get for

every n � 0,

top
(
popn

(
pop(push(x, S))

))
≈ top

(
popn(S)

)
.

But this is just an instance of the axiom top(popn+1(push(x, y))) ≈ top(popn(y)). The

second equation of (21), pop(empty) ≈ empty , is verified similarly using the axiom

top(popn(empty)) ≈ zero.

Martins (2004) showed that Lstacks is not finitely equivalential, hence it is not behavi-

ourally specifiable. However, the above equivalence system is clearly RE (indeed recursive),

since the set of derivable rules of Lstacks is recursive (this is easily seen), we have that the

set of behaviourally valid conditional equations of Lstacks is recursive.

4. Conclusion

In this paper we have presented a generalisation of the theory of behavioural equivalence

in abstract algebraic logic that encompasses multi-sorted signatures and the ‘visible–

hidden’ dichotomy. This establishes a new bridge between AAL and the specification

and verification theory of programs that provides an efficient way of applying the

powerful machinery of abstract algebraic logic to the behavioural specification domain.

In particular, we have specialised to the study of HELs. Our method is novel in that

it relies almost exclusively on combinatorial properties of the theories over an arbitrary

HEL and their Leibniz congruences.

We investigated the behavioural validity of conditional equations in hidden equational

logics, HELs; these are multi-sorted equational logics that contain a formal representation

of equality between visible data only. We obtained characterisations of the behavioural

validity of conditional equations, some of which can be viewed as alternative methods of

coinduction, and we showed how a HEL remains sound for behavioural validity when

any number of behaviourally valid conditional equations are adjoined as new inference

rules. This can be an effective way of verifying the behavioural validity of equations and

conditional equations in many practical situations.

On a more theoretical note, we presented a pair of syntactical conditions that individu-

ally are both necessary and sufficient for the behaviourally valid conditional equations of

a given HEL to be specifiable by some (non-hidden) equational logic. The conditions are

simple enough to be useful in deciding in many cases whether the behaviour of a HEL

is specifiable or not. We also applied this generalised theory of AAL to the theory of

cobases (see Section 3.2). We explained how they are closely related to the well-known
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notion of equivalence systems in the AAL field. In Theorem 3.20 we characterised the

HELs that have a complete finite cobasis.

Generalisations of the notion of behavioural equivalence have been considered in the

literature. Some authors require that each context contains only one occurrence of the

distinguished variable z; however, they generate exactly the same behavioural equivalence

relation. Another generalisation is due to Goguen et al., who consider Γ-behavioural

equivalence, with Γ a subset of the set of all operation symbols in the signature. A

Γ-congruence is a relation compatible with all interpretations of the operation symbols

in Γ. The Γ-behavioural equivalence is defined analogously to ordinary behavioural

equivalence; it is also the largest Γ-congruence with the identity as the visible part. It

is easy to extend our approach to accommodate Γ-behavioural equivalence. In fact, one

needs only to change the definition of hidden equational logic by considering; precisely

in the inference rule (IR3) of Definition 2.6, the term t ranging among the ones generated

using the operations symbols in Γ. Clearly, the notions of Leibniz congruence Ω(F) and

the equivalence system have to be redefined to develop a parallel theory to ours. Some

interesting questions arise in this context, such as the study of the compatibility of some

operation symbols outside of Γ with respect to Γ-behavioural equivalence. This problem

has been studied in Diaconescu and Futatsugi (2000) and Bidoit and Hennicker (1999).
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Roşu, G. and Goguen, J. (2001) Circular coinduction. In: Proceedings, International Joint Conference

on Automated Reasoning, IJCAR’01, Siena.
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