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ABSTRACT

Deformation in intraplate domains is usually considered as a consequence of tectonic events at
plate boundaries. Nevertheless, the occurrence of intraplate earthquakes such as the recent Le
Teil event in the south of France along the Cévennes Fault System (CFS), on 11November 2019,
Mw= 4.9, questions whether this far-field deformation only occurs during tectonic pulses at
plate boundaries, or if it corresponds to low-intensity but regional continuous deformation
through time. To address this question, we have coupled U–Pb geochronology of fault-related
calcites with structural analysis along a major fault system (the CFS) in the South-East Basin,
France.We evidence (1) anAlbian activity of the CFS and (2) a continuous compressional activ-
ity of the CFS and satellite structures during the whole Eocene and probably during the Late
Cretaceous – Palaeocene, including periods (e.g. Lutetian) usually considered as phases of tec-
tonic quiescence. We thus demonstrate that the tectonic reactivation of this intraplate fault sys-
tem is not restricted to periods of high rates of deformation at plate boundaries.

1. Introduction

Intraplate deformation is often ignored in geodynamic reconstructions because it is expressed in
small-amplitude deformations that are often difficult to observe and quantify. This deformation,
defined here as the deformation beyond the chain front, is often guided by the reactivation of
deeply rooted faults (Lacombe & Mouthereau, 1999). The reactivation of these inherited struc-
tures induced by far-field stresses may accommodate the deformation, particularly when tec-
tonic events such as continental collision occur at plate boundaries (Ziegler et al. 1995,
1998; Dèzes et al. 2004; Willingshofer & Sokoutis, 2009; Willingshofer et al. 2013; Dielforder
et al. 2019). The tectonic heritage thus plays an important role, especially by localizing the defor-
mation in these weakly deformed zones, as is the case, for example, in the central Indian Ocean
(Chamot-Rooke et al. 1993; Beekman et al. 1996), in the North Sea (Ziegler, 1987; Nielsen et al.
2007) or in the Paris Basin (Cazes et al. 1985). Intraplate deformation may be studied through
the definition of the stress state from structural measurements (Constantin et al. 2002) or from
geophysical measurements such as velocity wave anisotropy (Fagereng et al. 2010). More recent
methods of quantifying the amplitude of movements from low-temperature thermochronology
(Leprêtre et al. 2017) or the age of movements (U–Pb dating of syn-faulting calcites (Beaudoin
et al. 2018; Roberts et al. 2020; Bilau et al. 2021) allow us to go further and to propose a precise
timing of intraplate deformation, in order to determine how andwhy older faults are reactivated,
and what the impact of those faults is.

So far, the degree of sensitivity of these inherited intraplate structures remains largely
unknown. Do faults only react to major pulses at plate boundaries? Or do they constitute weak
areas deforming through time long before and/or long after deformation peaks? Answering this
question requires specifying the age of these deformations along inherited structures, which is
often challenging due to a missing or limited syn-tectonic sedimentary record and very low rate
of deformation.

Because it is known that the Pyrenean stresses were transmitted very far into the Pyrenean
foreland (in the Paris Basin (Lacombe & Obert, 2000); in eastern France (Bergerat, 1987); and
even in the UK (Parrish et al. 2018)), in this study we investigate the effect of the Pyrenean
compressive tectonics on the Cévennes Fault System (CFS) and related structures such as
the Pic Saint-Loup thrust (Mattei, 1986) or the Dalle des Matelles (Petit & Mattauer, 1995;
Fig. 1b). The CFS constitutes the NW border of the South-East Basin, France (Fig. 1a). It is
a major intraplate structure that has been reactivated several times during its history.
Located NE of the Pyrenees and extending NE to the Alpine arc (Fig. 1a), this 400 km long fault
system is known to be polyphased, its formation beginning during the Variscan cycle (Séguret &
Proust, 1965; Arthaud & Matte, 1975), continuing during the Tethys rifting, Pyrenean
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Fig. 1. Location of the study area and sampling outcrops. (a) Structural map of southern France after 1:1 000 000 BRGM geological map; (b) structural scheme and sampling
outcrops (with stars). Modified using 1:50 000 BRGM geological maps.
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compression and Mediterranean rifting (Séguret & Proust, 1965;
Arthaud & Mattauer, 1969; Le Pichon et al. 1971; Bodeur, 1976;
Roure et al. 1992; Séranne, 1999; Sanchis & Séranne, 2000;
Séranne et al. 2002) and lasting until the Quaternary (although this
recent history has sparked debate: see Ambert et al. 1998; Lacassin
et al. 1998;Mattauer, 1998; Sébrier et al. 1998). The CFS constitutes
a good candidate to address the question of the sensitivity of intra-
plate inherited faults to the plate-edge deformation over long dura-
tions. Furthermore, this fault zone has been the subject of much
recent discussion and preliminary work (Ritz et al. 2020) since
11 November 2019, when the Teil earthquake (Mw= 4.9, intensity
VII to VIII EMS98) occurred along the La Rouvière Fault belong-
ing to the CFS, although this fault had been considered inactive.
This recent event also raises the question of the long-term evolu-
tion of such an intraplate fault system.

In this study, we dated compressive or strike-slip related syn-
faulting calcites from the southern half of the CFS by U–Pb geo-
chronology. Our results are discussed in the light of a wider geo-
dynamical frame and compared to the relative chronology
previously established.

2. Geodynamic context

This study focuses on the Cévennes Fault System and adjacent
structures located in the Languedoc region (Fig. 1a–b). This
domain is characterized by a polyphased tectonic history that
begins with the Variscan orogen formation. The latter resulted
from a compressive tectonic regime associated with various stress
field orientations until Carboniferous times (Arthaud & Matte,
1975; Blés et al. 1989; Faure et al. 2009). After that, during the
Permian–Triassic, a long period of ~N–S extension in the south
of Massif Central is associated with the formation of basins with
clastic deposits of several thousand metres and NE–SW-trending
faults such as the CFS (Blés et al. 1989).

During the Triassic to the Early/Middle Jurassic, an extensional
episode (Dreyfus & Gottis, 1948) due to the east–west opening of
the Tethys Ocean in southern France (Lemoine, 1982; Dumont
et al. 1984; Dercourt et al. 1986; Lemoine & Graciansky, 1988;
Bonijoly et al. 1996; Frizon de Lamotte et al. 2011) reactivated
the CFS as a normal fault dipping SE (Séguret & Proust, 1965;
Roure et al. 1992).

During the Early Cretaceous, a major reorganization of the
Ligurian Tethys margin led to the formation of the Durancian
Isthmus, separated by two marine troughs (the Vocontian and
the Pyrenees–Provence basins) (Masse & Philip, 1976).
Extensive structures observed near and north of Montpellier have
been associated to this event (Dreyfus & Gottis, 1948; Arthaud &
Séguret, 1981; Marchand et al. 2020). Further west, the opening of
the Biscay Bay controlled by the rotation of the Iberian plate led to
the formation of narrow Pyrenean basins filled up by turbidites
(Choukroune & Mattauer, 1978; Puigdefàbregas & Souquet,
1986; Debroas, 1987; Roest & Srivastava, 1991; Rosenbaum et al.
2002; Sibuet et al. 2004; Jammes et al. 2009; Tugend et al. 2014;
Tavani et al. 2018).

Shortening in the Pyrenean belt began as early as the Coniacian
according to Andrieu et al. (2021). This early episode is known
throughout the Pyrenean belt as the first phase of compressive
deformation (Filleaudeau et al. 2012; Mouthereau et al. 2014;
Grool et al. 2018; Ternois et al. 2019). It is also highlighted in many
studies focusing on the geodynamic history of the South-East Basin
– in Provence (Lacombe et al. 1992; Leleu et al. 2005; Espurt et al.
2012) as well as in Languedoc (Mattauer & Proust, 1962; Freytet,

1971; Arthaud & Séguret, 1981; Combes et al. 2007; Schreiber et al.
2011; Hemelsdaël et al. 2021)-. In the latter, the record of the
Pyrenean orogen early building begins in the Campanian–
Maastrichtian period, according to many authors (Freytet, 1971;
Combes et al. 2007; Schreiber et al. 2011), although Arthaud &
Séguret (1981) attribute this beginning to the Palaeocene – Early
Eocene. Although this early event seems difficult to constrain in
time, Mattauer & Proust (1962), Arthaud & Séguret (1981), and
Hemelsdaël et al. (2021) mainly associate theMontpellier Fold for-
mation with this phase of shortening.

The Lutetian period in the study area corresponds to the deposit
of lacustrine limestones, in a quiescent tectonic context (Arthaud&
Séguret, 1981). The so-called Pyrenean phase of Upper Eocene age
is associated in Languedoc with (1) the formation of Bartonian
breccias and Priabonian fluvial conglomerates with internal onlap
illustrating syn-depositional deformation (Séranne et al. 2021), (2)
the formation or reactivation of most major structures such as the
Pic Saint-Loup thrust (Arthaud & Séguret, 1981) (Fig. 1b), and (3)
a σ1 direction of the main stress of ~N15°E as recorded for instance
on the Dalle des Matelles (Fig. 1b) (Arthaud & Laurent, 1995; Petit
& Mattauer, 1995). Therefore, the Languedoc region records two
tectonic episodes associated with the convergence of the Iberian
and Eurasian plates at ages ~ Late Cretaceous – early Eocene
and late Eocene (Bartonian–Priabonian). Distinction between
these two tectonic phases is, however, not recorded in the intra-
plate domain to the north, where recent work shows a weak but
continuous record of deformation in the Grands Causses area
(Fig. 1a) from the Late Cretaceous to the late Eocene (Parizot et al.
2020). Regarding the CFS, as well as the Nimes and Durance faults,
many authors show reverse-sinistral strike-slip motion during
Palaeogene times at the origin of elevated horsts such as the
Jurassic Thaurac plateau (between Ganges and Saint-Bauzille-
de-Putois; Fig. 1b) (Séguret & Proust, 1965; Arthaud &
Mattauer, 1969; Lacombe & Jolivet, 2005; Hemelsdaël et al.
2021; Séranne et al. 2021). This motion is coeval with E–W com-
pressive structures growth, and Bodeur (1976) describes a strike-
slip throw of almost 15 km along the CFS.

The Priabonian period for Languedoc corresponds to a switch-
ing from compression to extension (Séranne et al. 2021). Since this
time, and until the Aquitanian (Oudet et al. 2010), the geodynamic
context of the Mediterranean domain (Fig. 1a) is associated with
convergence of Eurasia and Africa plates and the retreat of the
African slab to the SE that induced the opening of the Gulf of
Lion and the rotation of the Corso-Sardinian Block. This exten-
sional phase involves the whole Southern European margin (Le
Pichon et al. 1971; Séranne, 1999; Jolivet et al. 2020; Hemelsdaël
et al. 2021; Séranne et al. 2021), and is characterized by (1) a
NW–SE opening direction recorded in the whole Languedoc
region (Séguret & Proust, 1965; Arthaud et al. 1981), and (2)
the reactivation of the CFS with normal kinematics, which is
responsible for the development of NE–SW-trending Oligocene
basins (e.g. the Montoulieu and Alès basins; Fig. 1a–b) (Le
Pichon et al. 1971; Roure et al. 1992; Séranne, 1999; Sanchis &
Séranne, 2000).

Since the beginning of Neogene times, the region has been rel-
atively quiet from a tectonic point of view, although Roy &
Trémolières (1992) documented Miocene N–S-trending reverse
faults in the Alès basin and Bergerat (1987) reported activity of
the CFS in a dextral movement during the Aquitanian, associated
with a tectonic episode recorded on the whole European platform
and interpreted as a resumption of the Africa/Europe convergence.
According to Séranne et al. (2002), this major fault was
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subsequently reactivated during post-Langhian – pre-Messinian
times. Currently, the Teil earthquake (11 November 2019) located
at the NE extremity of the CFS reveals ongoing activity (Ritz
et al. 2020).

3. Samples and methods

A total of 54 calcites were microstructurally studied and sampled in
22 outcrops on decimetric to metric faults. We only focused on
syn-faulting calcites corresponding to calcites with stair-step mor-
phology demonstrating their syntectonic origin (Vergely & Xu,
1988) (Fig. 2a–b). Moreover, we decided to sample only calcites
with a single striation generation, in order to limit age mixing
and the possible reopening of the isotopic system.

Petrographic and geochemical analyses were performed on
polished samples mounted in epoxy. Petrographic observation
was conducted using a binocular, as well as optical and cathodo-
luminescence (CL), microscopy. CL observations were carried
out on an Olympus BX41 microscope coupled to a Cathodyne®
cold-cathode cathodoluminescence device (NewTec, Nîmes,
France) operating at 10–12 kV and 200–300 μA, and a Qicam
Fast® 1394 digital camera (TELEDYNE QIMAGING®, Surrey,
Canada).

Calcite samples were dated by U–Pb geochronology using a
high-resolution inductively coupled plasma mass spectrometry
(HR-ICP-MS) Element XR® from Thermo Scientific® coupled to
a Laser Ablation system (LA) ArF 193 nm from Teledyne
Photon Machines® at the Paris-Saclay University – GEOPS labo-
ratory. Details on syn-faulting calcite samples and methods can
be found in the Supplementary Material (available online at
https://doi.org/10.1017/S0016756822000152).

4. Results

Dating was successful for ~25 % of the samples (13/54 samples).
Dated samples correspond to syn-kinematic calcites with single gen-
eration (see for instance Fig. 2a–b) associated with reverse and
strike-slip faults. Petrographic observations in reflected light and
CL have been used to delimit zones for U–Pb geochronology: areas
where calcite crystals were not milky white or clear white grey in
reflected light were excluded. These excluded areas generally corre-
spond to the edges of the samples, and often show a colour variation
in CL in comparison with the determined ablation areas. In CL
microscopy, calcite crystals show a relatively homogeneous lumines-
cence without zoning (Fig. 2c) (see the online Supplementary
Material at https://doi.org/10.1017/S0016756822000152 for more
details and petrographic illustrations).

4.a. SB samples

‘SB’ calcites were sampled on an outcrop corresponding to a Malm
limestone lens, at Saint-Bauzille-de-Putois (Figs 1b, 3a). This out-
crop is 150 m long and a few metres wide over a height of 2 m,
along the Demoiselles cave road. The lens, oriented 40° N, is
included between Oligocene formations to the SE and Lower
Cretaceous formations to the NW and is separated from them
by two major faults of the CFS. The outcrop is strongly deformed
with vertical sigmoidal planes, attesting to a reverse-sinistral activ-
ity of the CFS. Four fault-related calcites were sampled in the
Jurassic formation on these vertical planes. SB-1 and SB-4 come

from dextral strike-slip faults oriented N78°–84°N – p58°NE
and N76°SV – p51°NE respectively (Fig. 3a). SB-2 and SB-3 are
sinistral strike-slip fault-related calcites oriented N66°–74°S –
p17°SO and N59°–84°N – p0° respectively (Fig. 3a). U–Pb ages
are c. 40 Ma (Lutetian/Priabonian): 36.6 ± 1.8 Ma for sample
SB-1, 39.6 ± 3.4 Ma for SB-2, 40.8 ± 3.3 Ma for SB-3 and 41.3 ±
2.1 Ma for SB-4 (Fig. 4).

4.b. GD samples

‘GD’ calcites come from another outcrop located 600 m west of the
entry of the Demoiselles cave (Figs 1b, 3b). It corresponds to a 30 m
high Kimmeridgian–Tithonian limestone cliff, forming the
southern end of the Thaurac plateau. This outcrop is further sep-
arated from the Lower Cretaceous outcropping a few metres to the
south by a secondary fault of the CFS, 8 km long in a 60° N direc-
tion. Three calcite samples were dated and correspond to two dex-
tral fault-related calcites (GD-1: N63°–29°NO – p56°N; GD-3:
N73°–47°NO – p45°W) and one sinistral strike-slip fault-related
calcite (GD-2: N52°–65°NO – p7°SO) (Fig. 3b). The U–Pb ages
are respectively 48.3 ± 2.7 Ma (Early Eocene; GD-1), 52.9 ± 6.3
Ma (Early Eocene; GD-2) and 63.8 ± 11.9 Ma (Palaeocene;
GD-3) (Fig. 4).

4.c. PB samples

At 3 km SW of Pégairolles-de-Buèges, a large fault mirror, 20 m
wide and >15 m high, in a Kimmeridgian formation corresponds
to the major fault of the CFS according to the 1:50 000 French
Geological Survey (BRGM) geological map of Le Caylar
(Alabouvette et al. 1987; Figs 1b, 3c). This mirror includes large
grooves without calcite. Within 5 m of the main mirror, small met-
ric fault planes are composed of fault-related calcites. Two dated
calcite samples were collected on these strike-slip faults, corre-
sponding to a sinistral fault (PB-1: N34°–52°SE – p2°SO) and a
dextral fault (PB-2: N171°–86°NE – p9°NO) (Fig. 3c). The
U–Pb ages indicate an activity of these faults during Albian times:
101.8 ± 8.9 Ma for PB-1 and 104.2 ± 6.2 Ma for PB-2 (Fig. 4).

4.d. Peripheral structures: SL and DM samples

Fault-related calcites collected south of the Saint-Martin-de-
Londres basin (SL-1 to 3 and DM-1) and corresponding to
peripheral metric-scale faults of the CFS (10 km to the SW) have
been dated. SL-1 is located on a fault plane corresponding to the
fault-propagation fold affecting Berriasian limestones, near the
Corconne Fault, on the NE termination of the Pic Saint-Loup
thrust (near D1 road) (Figs 1b, 3d). This sample is related to a
reverse fault (N90°–85°S – p90°), and its U–Pb age is 34.6 ±
3.2 Ma (Priabonian; Fig. 4). SL-2 is a syn-faulting calcite sampled
in the Bartonian Formation, SE of Saint-Martin-de-Londres
(Figs 1b, 3e). The present-day orientation shows a reverse fault
(N120°–30°NE – p47°NO). When corrected from strata-tilting,
this fault is a normal fault (Fig. 3e). U–Pb age is 39.9 ± 6.8 Ma
(Bartonian; Fig. 4). Considering that this age is similar to that
of other dated strike-slip or reverse faults (SB-1, SB-2, SB-3,
SB-4, SL-1), it is likely that this fault plane results from a com-
pressive regime in a formerly folded formation. Calcite SL-3
comes from a Kimmeridgian–Tithonian outcrop, NW of
Puéchabon, on the SW lateral termination of the Pic Saint-
Loup thrust (Figs 1b, 3f). It corresponds to a sinistral strike-slip
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fault-related calcite (SL-3: N43°–47°SE – p13°NE; Fig. 3f) with an
Ypresian U–Pb age of 50.4 ± 8.3 Ma (Fig. 4). Finally, a sinistral
strike-slip fault-related calcite (DM-1: N176°–86°O – p0°) from
the Malm Dalle des Matelles (near the Matelles Fault; Figs 1b, 3g;

Petit & Mattauer, 1995) has been dated at 45.0 ± 8.5 Ma (Fig. 4).
Exact locations of dated samples are given in the online
Supplementary Material at https://doi.org/10.1017/S001675
6822000152.

REFLECTED LIGHT CATHODOLUMINESCENCE
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Fig. 2. Syn-faulting calcite samples. (a) Schematic sketch of a portion of a fault mirror with fault-related calcites (modified from Vergely & Xu, 1988) and example of a syn-faulting
calcite observed in the field. (b) Illustrations of two sinistral fault-related calcites observed near Les Matelles and Puéchabon (Fig. 1b). (c) Petrographic observations: reflected light
and CL images of syn-faulting calcites. See text and the online Supplementary Material (https://doi.org/10.1017/S0016756822000152) for details of petrographic observations.
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5. Discussion

5.a. Activity of the CFS during Albian times

The ages obtained on syn-faulting calcites, associated with the CFS,
coupled with the structural data, indicate a reactivation of the CFS
during the Albian (Fig. 4). This deformation episode is also
recorded in the Montoulieu Basin (north of Saint-Bauzille de
Putois; Fig. 1b) by an unconformity between the Neocomian for-
mations and the base of the Upper Cretaceous deposits
(Alabouvette et al. 1988). At the scale of the South-East Basin,
the major regional strike-slip structures were also active during
the Albian, with a dextral movement for the Toulourenc Fault (cor-
responding to the Ventoux thrust since its tectonic inversion in the
Cenozoic; Montenat et al. 2004), and a sinistral movement for the
Nîmes and Durance faults (Montenat et al. 2004; Fig. 5a). This
reactivation of the NE–SW inherited structures is coeval with
(1) denudation recorded by thermochronological data in the
Massif Central 100–130 Ma ago (Barbarand et al. 2001, 2020;

Peyaud et al. 2005; Fig. 5a), (2) tectonics highlighted by
Guyonnet-Benaize et al. (2010) and (3) formation of bauxites along
the Durancian Isthmus (Combes, 1990; Chanvry et al. 2020;
Marchand et al. 2020; Fig. 5a).

Our U–Pb dataset and geochronological data from previous
authors testify to a major deformation event in the intraplate
domain during the Albian, as recorded in the Causses domain area
at that time by the formation of normal faults, according to Parizot
et al. (2020). We propose that this event could be a consequence of
the opening of the Pyrenean basins to the south in Lower Cretaceous
times (Choukroune et al. 1973). Indeed, some recent studies have
shown a major implication of the inherited NE–SW structures in
the opening of the Pyrenean basins along a NE–SW axis, from
the Santander Fault to the west to the Limone–Viozene northern
Fault to the east (Jammes et al. 2009; Tugend et al. 2014; Tavani
et al. 2018). In this way, the activity of the CFS may be directly
related to the formation of the extensive Pyrenean basins although
a precise kinematic model remains to be established.

Fig. 4. Results of syn-faulting calcite U–Pb geo-
chronology in comparison with the deformation
chronology in Languedoc domain. The U–Pb ages
are represented by the white circles for samples of
the CFS and black squares for samples from
related structures, all with their propagated
uncertainties (2σ).
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5.b. The activity of the CFS during the Pyrenean phase

Ages obtained on the fault-related calcites of the Demoiselles cave
Fault (samplesGD-1,GD-2,GD-3), from~76 to 45Ma (2σ included),
and Saint-Bauzille-de-Putois Fault (samples SB-1, SB-2, SB-3, SB-4),
from ~ 43 to 35 Ma (2σ included), show continuous tectonic activity
during the whole Eocene (from Ypresian (GD-2) to Priabonian
(SB-1); Fig. 4) and perhaps since the Palaeocene (GD-3; Fig. 4).
We therefore assimilate all of these fault-related calcites to the
Pyrenean episode at the origin of the reactivation of the CFS in
reverse-sinistral movement throughout the Eocene (Séguret &
Proust, 1965; Arthaud & Mattauer, 1969; Arthaud & Séguret,
1981) (Fig. 5b).

The U–Pb ages obtained on the peripheral structures of the CFS
(such as the Dalle des Matelles and the faults around the Pic Saint-
Loup thrust) also point to a deformation phase during the Eocene.
Although debatable due to analytical uncertainties, the U–Pb ages
may reflect a continuous growth of the Pic Saint-Loup structure
from the Ypresian to the Priabonian.

As a whole, this study highlights brittle deformation in the
Languedoc region contemporary with the formation of the orogen
in Palaeocene and Eocene times (Grool et al. 2018), as also
observed during the emplacement of the SE Pyrenean thrust sheet
sequence (see fig. 6 of Cruset et al. 2020), a result that is in agree-
ment with those obtained in the Grands Causses area, to the north,
also showing a long and continuous deformation during the
Eocene (Parizot et al. 2020). On the other hand, this deformation
chronology highlighted in the Languedoc region does not mimic
the sequence of paroxysmic events in the orogen. Indeed, neither
the Bartonian–Priabonian exhumation event (Morris et al. 1998;
Fitzgerald et al. 1999; Sinclair, 2005; Curry et al. 2019) nor the
Lutetian deformation phase (Parizot et al. 2021) and even less
the Miocene event (Parizot et al. 2021) stand out on our dataset.

The absence of age clusters during Palaeogene times, like the
ones outlined by Parizot et al. (2021), demonstrates a continuum
of deformation in the Languedoc domain through the Eocene. This
Eocene continuum of the deformation of the sedimentary cover at
themeso-structural scale contrasts with the jerky calendar deduced
from sedimentary-based interpretations at the regional scale
(Philip et al. 1978). It implies that the occurrence of detrital series,
such as the Bartonian breccias on top of the Lutetian lacustrine
limestones in the Saint-Martin-de Londres-Basin, does not reflect
a specific regional tectonic event as previously interpreted (Philip
et al. 1978). These detrital series may be the consequence of local
exhumation along the Pic Saint-Loup thrust at that time, or of
external processes, such as climate change or drainage network
evolution.

Finally, the absence of deformation in the CFS associated with
the early Miocene event highlighted by Parizot et al. (2021) and
Hoareau et al. (2021), respectively on the northern and southern
foreland of the Pyrenean belt, could reflect that it is restricted to
the belt core, although we suggest here the potential sensitivity
of the CFS to such an event. Further exhaustive sampling and dat-
ing along the strike of the CFS will probably allow this phase along
this inherited structure to be seen, as proposed by Bergerat (1987).

6. Conclusion

The Cévennes Fault System is well known to have been reactivated
several times from its formation to current days. Indeed, according

to previous authors this Variscan fault system was first reactivated
during the Jurassic rifting and the opening of the Tethyan Ocean.
This study highlights an additional reactivation of the CFS during
the Albian (c. 100Ma) associated with the opening of the Pyrenean
basins.

During the N–S convergence between the Iberia and Eurasia
plates (Fig. 5b), our U–Pb dataset demonstrates continuous com-
pressional deformation throughout the Eocene and probably dur-
ing the Late Cretaceous to the Palaeocene. Thus, deformation in
the Languedoc domain did not occur only during short events
as previously interpreted from the sedimentary record, but lasted
way longer.

Considering these new results and the fact that the CFS was also
latter reactivated as a normal fault during the Oligocene, as a dex-
tral strike-slip fault during the Aquitanian, and is currently still
active to the north (Teil earthquake, 11 November 2019), it appears
that the CFS constitutes a weak domain very sensitive to plate
boundary evolution. These results suggest a discontinuous but
long-lasting activity a few tens to hundreds of kilometres from
the plate boundary. The extreme sensitivity of this fault system
raises the question of stress transmission modalities from the plate
boundaries to the intraplate domain. To address this question,
future thermomechanical modelling integrating the rheology of
the lithosphere coupled with additional U–Pb ages will be essential.
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