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SUMMARY
Cooperative manipulators have uncertainties in their structure; therefore, an optimal sliding mode
control method is derived from a combination of the sliding mode control (SMC) and the state-
dependent Riccati equation (SDRE) technique. This proposed combination is applied to a class of non-
linear closed-loop systems. One of the distinguished features of this control method is its robustness
toward uncertainty. Due to the lack of optimality in the SMC method, in this paper, a robust and
optimal method is presented by considering the SDRE in design of the sliding surface. Due to the fact
that cooperative manipulators have been used for carrying loads, the percentage of load distributions
between each manipulator has been derived to increase the dynamic load carrying capacity (DLCC).
The proposed control structure is implemented on a Scout robot with two manipulators in cooperative
mode, theoretically and practically using LabVIEW software; and the results were compared by
considering the uncertainty in its structure. In comparison with the SDRE, the proposed method
increased the DLCC almost 10% in the Scout case.

KEYWORDS: Optimal sliding mode controller, Algebraic sliding surface, Cooperative manipulators,
DLCC, Load distribution

1. Introduction
Most mechanical systems, especially robotic ones, possess non-linear dynamics and various methods
in non-linear control domain are available for their navigation. In order to control cooperative arms,
inverse dynamic method was used by Kokkinis.1 Joint connections of the two arms, were caused the
excess constraint of the problem. This issue resolved with regarding the internal force in the dynamic
equations. Yun et al. introduced an algorithm to control the cooperative arms by taking rotation
and sliding constraints into account.2 In that case, due to arm’s dynamics, input–output linearization
was considered. Moreover, Wen and Delgado, introduced a position and force control algorithm
for cooperative arms which decouples the motion and force control problem.3 Gao and Xiao used
two cooperative arms in order to move massive objects by considering tracking tasks.4 Moreover,
Li proposed the formalism of cooperative manipulator’s dynamic and optimal load distribution.5

Optimization was carried out by minimizing of the arm’s energy and finding a solution to Lagrange
multipliers. Lin and Tsai provided a technique in order to apply the impedance control with two arms.6

Also, the neural network compensation was considered to improve the behavior of controller with
unknown parameters. Liu and Chen provided an algorithm for robust control of cooperative robots
through decomposing of equations from constraints.7

A new method proposed to design the optimal path with two degrees of excess freedom for the
cooperative rigid arm8 and the arm with the flexible joints.9 Subbarao et al. used the base model and
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322 Optimal sliding mode control design

adaptive control method to control two cooperative arms forming a closed chain with consideration of
the kinematic constraints.10 Ge and Wang provided robust adaptive control for the cooperative mobile
robots.11 Moreover, Ghasemi and Keshmiri presented an algorithm for determining the load carrying
capacity on the predefined path, by separating controller methods into two distinct systems.12 Yagiz
et al. considered sliding mode control (SMC) method in order to carry loads by two arms.13 As far as
dynamic load carrying capacity (DLCC) is concerned, Korayem et al. calculated the amount of DLCC
by using SMC and adding disturbances to a cable-suspended robot.14 Chinelato et al. investigated the
control of two cooperative mobile manipulators for carrying the payload.15

On the other hand, there exist various methods to control dynamical systems. Suzuki et al. designed
a controller for an inverted pendulum and used the state-dependent Riccati equation (SDRE) method to
solve the Hamilton–Jacobi–Bellman equation.16 Moreover, they completed the control relationships
by defining a different sliding surface which was based on the theory of variable structure control. The
control structure considering the effects of disturbance and noise on the governing equations was also
proposed.17 Due to the fact that there are different models to define the sliding surface, Korayem et al.
proposed a robust and suboptimal method by considering the SDRE in design of the sliding surface in
two types of algebraic and integral sliding surfaces.18 Moreover, due to the use of the state-dependent
differential Riccati equation (SDDRE) in the integral form of the sliding surface, their method is able
to provide a robust attitude with the desired finite time control option.

In this paper, the extracted optimality condition from the SDRE is inserted into the sliding surface
equation which generates a robust controller with an optimality condition. Moreover, by considering
the cost function, which experienced the effects of the applied load, the optimal distribution of the load
is investigated. The main contribution of this paper is to present a robust and optimal control method
by applying optimality conditions of the SDRE within the sliding surface. According to the defined
weighting matrix, the percentage of load distribution can be changed for any manipulator. In Section
2, the optimal sliding mode control (OSMC) structure is expressed. Moreover, Section 3 presents
governing relations on the mechanical cooperative arms and section 4 expresses the implementation.
Section 5 includes the experimental results and Section 6 discusses the DLCC.

2. Structure of Optimal Sliding Mode Control
In this section, the OSMC is introduced with the aim of the SDDRE and the stability of the method
is investigated using the Lyapunov approach. Consider the non-linear time-varying affine system:

ẋ(t ) = f (x(t ), t ) + g(x(t ), u(t ), t ), (1)

where vectors f (x(t ), t ) and g(x(t ), u(t ), t ) in Eq. (1) are presenting actual system and the exact values
of them are not available, however, they are bounded and the bound values are known. The next step is
to extract the state-dependent coefficient (SDC) parameterization of the system (1) from the nominal
system as represented in Eq. (2).

ẋ(t ) = f̂ (x(t ), t ) + ĝ(x(t ), u(t ), t ) = Â(x(t ), t )x(t ) + B̂(x(t ), t )u(t ),
y(t ) = C(x(t ), t )x(t ),

(2)

where x(t ) ∈ �n is the state variable vector, y(t ) ∈ �l is the output vector and u(t ) ∈ �m is the control
input vector. Â(x(t ), t ) : �n × �+ → �n×n, B̂(x(t ), t ) : �n × �+ → �n×m and C(x(t ), t ) : �l ×
�+ → �l×n are called system input and output matrix, respectively. The “∧” indicate the nominal
value of the parameter. Â(x(t ), t ) and B̂(x(t ), t ) are expressing the nominal SDC parameterizations
of the system (2) based on the nominal parameters for control design. Generally, changing system (1)
to (2) is called SDC parameterization or apparent linearization.19 This step of design is not unique and
may lead to the different parameterization; however, the concept of this method is on factorization
of a vector from a non-linear one to shape multiplication of a matrix to a vector. For the case of
robotic manipulators, a structured systematic way to make SDC parameterization is proposed and
the controllability of the SDC matrices is investigated.20 To generate Â(x(t ), t ) and B̂(x(t ), t ), the
dynamic of the system must be expressed with the nominal values of the robot.
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It is assumed that system (1) satisfies the Lipschitz condition and is piecewise continuous. Due to
the control system requirements, vectors g(0, 0, t ) and f (0, t ) are uniformly bounded in t ∈ [0, t f ].
Moreover, the matrix B̂(x(t ), t ) should be at least one time differentiable and the first derivative must be
non-singular. Moreover, it is assumed that the pairs {Â(x(t ), t ), B̂(x(t ), t )} and {Â(x(t ), t ),C(x(t ), t )}
in system (2) are the controllable and the observable parameterizations of the system.

Now, consider the algebraic sliding surface as in the form of

s(x(t ), t ) = B̂T (x(t ), t )K̂(x(t ), t )x̃(t ), (3)

where x̃(t ) = x(t ) − xdes(t ) is the error of state vector in which xdes(t ) is the desired value for the
states and K̂(x(t ), t ) which is the suboptimal symmetric gain, is the solution of the SDDRE:20

J = 1

2

(
xT (t f )Fx(t f ) +

∫ t f

0
xT (t )Q(x(t ), t )x(t ) + uT (t )R(x(t ), t )u(t )dt

)
, (4)

− ˙̂K = ÂT K̂ + K̂Â − K̂B̂R−1B̂T K̂ + Q, (5)

with the final boundary condition K̂(x(t f ), t f ) = F, regarding the cost function which is represented in
(4) where Q ∈ �n×n is the weighting matrix for the state variables (in t ∈ [0, t f )) which is symmetric
positive semi-definite, and R ∈ �m×m is the weighting matrix for inputs which is symmetric positive
definite.

Instead of solving the SDDRE (5) directly, the Lyapunov-based method is considered. The first
step is to solve the steady-state form of (5) to reach20

ÂT K̂ss + K̂ssÂ − K̂ssB̂R−1B̂T K̂ss + Q = 0. (6)

When t → ∞, K̂(x(t ), t ) is represented by K̂ss(x(t ), t ). By subtracting (6) from (5),

− ˙̂K = ÂT [K̂ − K̂ss] + [K̂ − K̂ss]Â − K̂B̂R−1B̂T K̂ + K̂ssB̂R−1B̂T K̂ss, (7)

and introducing

P̂−1(x(t ), t ) = K̂(x(t ), t ) − K̂ss(x(t ), t ),
Âcl(x(t )) = Â(x(t ), t ) − B̂(x(t ), t )R−1B̂T (x(t ), t )K̂ss(x(t ), t ),

(8)

a state-dependent differential Lyapunov equation results in

˙̂P(x(t ), t ) = Âcl(x(t ), t )P̂(x(t ), t ) + P̂(x(t ), t )ÂT
cl(x(t ), t ) − B̂(x(t ), t )R−1B̂T (x(t ), t ), (9)

with the final boundary condition P̂(x(t f ), t f ) = [F − K̂ss(x(t ), t )]−1. Then, the closed-form answer
to (9) is presented as20

P̂(x(t ), t ) = Ê(x(t ), t ) + eÂcl (x(t ),t )(t−t f )(P̂(x(t f ), t f ) − Ê(x(t ), t ))eÂT
cl (x(t ),t )(t−t f ), (10)

where the solution Ê(x(t ), t ) is to be found by a state-dependent algebraic Lyapunov equation:

Âcl(x(t ), t )Ê(x(t ), t ) + Ê(x(t ), t )ÂT
cl(x(t ), t ) − B̂(x(t ), t )R−1B̂T (x(t ), t ) = 0. (11)

Finally, the suboptimal gain of the SDDRE is obtained as

K̂(x(t ), t ) = K̂SS(x(t ), t ) + P̂−1(x(t ), t ). (12)
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The equivalent control law is obtained by solving ṡ(x(t ), t ) = 0 for u(t ):

ṡ = ˙̂B
T

K̂x̃ + B̂T ˙̂Kx̃ + B̂T K̂[f̂ + B̂u] − B̂T K̂ẋdes = 0, (13)

which results in an equivalent control law as shown in (14):

un = [B̂T K̂B̂]−1[B̂T K̂ẋdes − ˙̂B
T

K̂x̃ − B̂T ˙̂Kx̃ − B̂T K̂f̂]. (14)

Now, by considering a correction control law as in the form of

ucorr (t ) = −[B̂T (x(t ), t )K̂(x(t ), t )B̂(x(t ), t )]−1Kcorr (x(t ), t )sgn(s(x(t ), t )), (15)

where Kcorr (x(t ), t ) : �n × �+ → �m×m. The final control law is obtained as (16)

u(t ) = un(t ) + ucorr (t ) = [B̂T K̂B̂]−1[B̂T K̂ẋdes − ˙̂B
T

K̂x̃

−B̂T ˙̂Kx̃ − B̂T K̂f̂] − [B̂T K̂B̂]−1Kcorrsgn(s).
(16)

Substituting ˙̂K(x(t ), t ) results

u = [B̂T K̂B̂]−1[B̂T K̂ẋdes + B̂T {ÂT K̂ + K̂Â − K̂B̂R−1B̂T K̂ + Q}x̃
− ˙̂B

T
K̂x̃ − B̂T K̂f̂] − [B̂T K̂B̂]−1Kcorrsgn(s).

(17)

The bounds of the uncertainty for the system are considered as21

∣∣∣f (x(t ), t ) − f̂ (x(t ), t )
∣∣∣ ≤ F(x(t ), t ),

B(x(t ), t ) = [I + �] B̂(x(t ), t ),
(18)

β(x(t ), t ) = B̂T (x(t ), t )K̂(x(t ), t )B(x(t ), t )[B̂T (x(t ), t )K̂(x(t ), t )B̂(x(t ), t )]−1, (19)

where F(x(t ), t ) represents deviation of the vector f (x(t ), t ) from a nominal value f̂ (x(t ), t ), � is the
deviation in B̂(x(t ), t ) matrix, represented as21

∣∣�i j

∣∣ ≤ Di j, (20)

Bmax(x(t ), t ) = [I + D] B̂(x(t ), t ) ⇒ D = Bmax(x(t ), t )B̂−1(x(t ), t ) − I, (21)

where D is the maximum changes in any element of B̂(x(t ), t ) matrix. By considering the presented
assumptions in (20) and (21), the modified form of (19) is

β(x(t ), t ) = B̂T (x(t ), t )K̂(x(t ), t ) [I + D] B̂(x(t ), t )[B̂T (x(t ), t )K̂(x(t ), t )B̂(x(t ), t )]−1. (22)

The non-linear time-varying affine system (1) and the nominal system (2) can be stabilized by control
input (17) with the algebraic sliding surface (3) in which the non-linear correction gain of control law
Kcorr (x(t ), t ) is to be found by

Kcorr (x(t ), t ) ≥ |β(x(t ), t )|−1 (η + |w(x(t ), t )|) , (23)

where η is a strict positive vector and

w = ˙̂B
T

K̂x̃ − B̂T [ÂT K̂ + K̂Â − K̂B̂R−1B̂T K̂ + Q]x̃ + B̂T K̂F
− B̂T K̂DB̂[B̂T K̂B̂]−1B̂T K̂f̂ − B̂T K̂ẋdes + B̂T K̂B{[B̂T K̂B̂]−1[B̂T K̂ẋdes

+ B̂T {ÂT K̂ + K̂Â − K̂B̂R−1B̂T K̂ + Q}x̃ − ˙̂B
T

K̂x̃]}.
(24)
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Considering the Lyapunov candidateVi(x(t ), t ) = 1
2 s2

i (x(t ), t ), for i = 1, ..., m, where m is the number
of actuators in (2).

V̇i(x(t ), t ) = si(x(t ), t )ṡi(x(t ), t ) ≤ −ηi |si(x(t ), t )| . (25)

The relation (25) must be held to prove the stability of the system (1) which provides

sT { ˙̂B
T

K̂x̃ + B̂T ˙̂Kx̃ + B̂T K̂(ẋ − ˙̃xdes)} ≤ −ηT |s| . (26)

In order to provide a robust input gain respect to uncertainty of the system, actual system (1) will be
substituted in (23) to elicit the known bounds:

sT { ˙̂B
T

K̂x̃ + B̂T ˙̂Kx̃ + B̂T K̂f + B̂T K̂Bu − B̂T K̂ẋdes} ≤ −ηT |s| . (27)

Substituting input (17) in (27) and rearrangement results in

sT (x(t ), t )β(x(t ), t )Kcorr (x(t ), t )sgn(s(x(t ), t )) ≥ ηT |s(x(t ), t )| + sT (x(t ), t )w(x(t ), t ). (28)

The scalar form of (28) could be represented as

m∑
i=1

m∑
j=1

si(x(t ), t )βi, j (x(t ), t )Kcorr,i,i(x(t ), t )sgn(si(x(t ), t ))

≥
m∑

i=1
(ηi |si(x(t ), t )| + si(x(t ), t )wi(x(t ), t )).

(29)

Dividing (29) by si(x(t ), t ) and computing absolute value of (29) results in (30):

m∑
i=1

m∑
j=1

βi, j (x(t ), t )Kcorr,i,i(x(t ), t ) ≥
m∑

i=1

(ηi + |wi(x(t ), t )|). (30)

The matrix form of (30) eventually leads to

Kcorr (x(t ), t ) ≥ |β(x(t ), t )|−1 (η + |w(x(t ), t )|) , (31)

in which Kcorr (x(t ), t ) = diag(Kcorr,1,1(x(t ), t ), ..., Kcorr,m,m(x(t ), t )) is the non-linear positive
diagonal gain of input (17) without any unknown parameters of the uncertain system.

OSMC, for control coefficient calculation in each loop, is very time consuming for simulation.
This problem also exists in the implementation of this method. In general case for systems with
complicated dynamic equations such as mechanical manipulators, exact solution of (12) cannot be
found analytically. In this paper, the methodology of Taylor series approximation is used for finding
numerical solution of (12). This method is also called power series approximation (PSA).22−24 For
finding the numerical solution to SDRE, consider a non-linear system (2). By rewriting Â(x(t ), t ) in
the following form:23

Â(x(t ), t ) = Â0 + ε�Â(x(t ), t ). (32)

And, representing X as a Taylor series

K̂ss(x(t ), ε) = K̂ss(x(t ), t )|ε=0ε + ∂2K̂ss(x(t ), t )

∂ε2
|ε=0

ε2

2
+ · · · , (33)
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by substituting Â(x(t ), t ), K̂ss(x(t ), t ) into the SDRE equation, the result will be in the following
form:23

(Â0 + ε�Â)T
[
K̂ss|ε=0ε + ∂2K̂ss

∂ε2 |ε=0
ε2

2 + · · ·
]

+
[
K̂ss|ε=0ε + ∂2K̂ss

∂ε2 |ε=0
ε2

2 + · · ·
]

(Â0 + ε�Â)

−
[
K̂ss|ε=0ε + ∂2K̂ss

∂ε2 |ε=0
ε2

2 + · · ·
]

B̂0R−1B̂T
0

[
K̂ss|ε=0ε + ∂2K̂ss

∂ε2 |ε=0
ε2

2 + · · ·
]

+ Q = 0.
(34)

By expanding this equation and collecting a similar power of ε, three iterative equations are
generated: the first equation is an algebraic Riccati equation, the second and third are the state-
dependent Lyapunov equations (please see the details in ref. [24]). These equations are simplified by
substitution of �Â(x(t ), t ) = g(x(t ), t )�Â0 and result in

ÂT
0 K̂ss,0 + K̂ss,0Â0 − K̂ss,0B̂0R−1B̂T

0 K̂ss,0 + Q = 0, (35)

K̂ss,0�Â + �Â
T

K̂ss,0+K̂ss,1(Â0 − B̂0R−1B̂T
0 K̂ss,0)+(ÂT

0 − K̂ss,0B̂0R−1B̂T
0 )K̂ss,1 = 0, (36)

K̂ss,n−1�Â0 + �Â
T
0 K̂ss,n−1 + K̂ss,n(Â0 − B̂0R−1B̂T

0 K̂ss,0) + (Â
T
0 − K̂ss,0B̂0R−1B̂T

0 )K̂ss,n

−
n−1∑
m=1

K̂ss,mB̂0R−1B̂T
0 K̂ss,n−m = 0.

(37)

Similarly, the state-feedback control gain is obtained

K̂ss(x(t ), t ) = K̂ss,0 +
∑
n=1

gn(x(t ), t )K̂ss,n(x(t ), t ). (38)

By using the PSA after simulation, the input signal will be defined by an equation which is released
from PSA and then the equation of input signal will implement on real robot.

3. Cooperative Arms
In this section, dynamic of cooperative arms is expressed. For this purpose, a comprehensive form
is intended for cooperative arms. The intention of citing the comprehensive form is that n number
of mechanical arms has being kept the mass mp and are being moved on a path. Consider (39); this
equation displays general dynamics equation of an arm.

Mi (qi) q̈i + Ci (qi, q̇i) + Gi (qi) + bi (q̇i) = ui + JT
i (qi) fe,i, (39)

where i index refers to the arm number, Mi(q(t )) ∈ Rn×n represents the inertia matrix and vector
Ci(q(t ), q̇(t )) ∈ Rn×1 represents the forces of centrifugal and Coriolis force, Gi(q(t )) ∈ Rn×1

represents force of gravity, bi is friction vector and fe,i is external force vector exerting to arm i
by the object. According to Newton and Euler’s equation, fe vector is obtained as25

⎡
⎣mpI3×3 | 03×3

− − − | − − −−
03×3 | [

Ip
]

3×3

⎤
⎦

⎡
⎣p̈des

−−
ω̇des

⎤
⎦ +

⎡
⎣ mpg

− − − − − − − − −
ωdes × (Ipωdes)

⎤
⎦ = −

∑
fe,i = −fe. (40)

In (40), I3×3 is identity matrix, Ip is object moment of inertia matrix, mp is mass of the object,
p̈des = [ ẍdes ÿdes z̈des ]T considered linear acceleration in main axis direction, ωdes is angular velocity
vector and ω̇des is angular acceleration vector. fe is a vector which represents external forces as well
as angular motion value, H = Iω, respect to time. bi is friction vector, and it can be calculated from
(41):22

bi (qi(t )) = bV
i q̇i(t ) + sgn(q̇i(t ))

[
bd

i + (
bS

i − bd
i

)
exp

(−q̇i(t )

ε

)]
, (41)
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where bV
i is viscous friction, bd

i is dynamic friction, bS
i is static friction and ε is a small positive

constant. In (41), only unknown parameter is how to divide fe into fe,i components. Now, by writing
fe,i equation in form of (42):

fe,i = JT
i (qi)

−1 (Mi (qi) q̈i + Ci (qi, q̇i) + bi (q̇i) + Gi (qi) − ui) , (42)

and using Lagrange multipliers optimization methods which is expressed in (43), the unknown
parameter can be obtained.

L (τ, γ ) =1

2

∑
uT

i Q̄iui+γ T
(∑

JT
i (qi)

−1 (Mi (qi) q̈i+Ci (qi, q̇i) +Gi (qi) + bi (q̇i) − ui) − fe,i

)
.

(43)
The goal of optimization is distribution of load by constraint (42), into (43), that Q̄i is weighing matrix
for load distribution among arms, and γ is Lagrange coefficient vector. Also, the weight matrixQ̄i

consisting of all arms relations, which means load to be coupled optimality. For establishing optimal
condition the derived (43) must be equal to zero; therefore, it can be written as

∂L (τ, γ )

∂ui
= Q̄iui − (

JT
i (qi)

−1
)T

γ = 0; ui = Q̄−1
i

(
JT

i (qi)
−1

)T
γ . (44)

Now, by substituting ui into (43), the amount γ is obtained:25

γ=
∑ (

JT
i (qi)

−1Q̄−1
i

(
JT

i (qi)
−1

)T
)−1 (

JT
i (qi)

−1 (Mi (qi) q̈i+Ci (qi, q̇i) +Gi (qi) +bi (q̇i)) − fe,i
)
.

(45)
And finally,

fe,i = JT
i (qi)

−1
(

Mi (qi) q̈i + Ci (qi, q̇i) + Gi (qi) + bi (q̇i) − Q̄−1
i

(
JT

i (qi)
−1

)T
γ
)

. (46)

(46) represents the load distribution for each arm. It should be noted that, in order to calculate
the load distribution, the end-effector’s path should be identified and designated. In other words,
the point to point motion in this section is not referred. (47) is written in state-space form and
x(t ) = [ q1(t ) ... qm(t ) q̇1(t ) ... q̇m(t ) ]T is represented the state variables.

ẋ(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

q̇1(t )
...

q̇m(t )
M−1

1 (x(t ))
[
u1(t ) − C1 (x(t )) − G1 (x(t )) − b1 (x(t )) + JT

1 (x(t )) fe,1(t )
]

...
M−1

m (x(t ))
[
um(t ) − Cm (x(t )) − Gm (x(t )) − bm (x(t )) + JT

m (x(t )) fe,m(t )
]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (47)

Parameterization of (47) should be taken into account to form the two A(x(t )) and B(x(t )) matrices
and use them in control equations. The parameterization is for n robot with m degree of freedom
(DoF):25

A(x(t )) =
[

0nm×nm Inm×nm

0nm×nm Wr (x(t ))

]
2nm×2nm

, (48)

B(x(t )) =
[

0nm×nm

M−1
nm×nm

(x(t ))

]
2nm×nm

, (49)
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Fig. 1. Scout Robot and its schematic three-DoF modeling.

where Wr (x(t )) is defined as25

Wr (q(t )) =

⎡
⎢⎢⎢⎢⎢⎢⎣

Wr
1(x(t )) 0 · · · 0 0

0
. . . 0

... 0
... 0 Wr

i (x(t )) 0
...

0 · · · 0
. . . 0

0 0 · · · 0 Wr
m(x(t ))

⎤
⎥⎥⎥⎥⎥⎥⎦

, (50)

and Wr
i (x(t )) = M−1

i (x(t ))[C̄i(x(t )) + diag(bV
i,1, ..., bV

i,n)]. Corrective control law term is defined in
(51). (51) shows the corrective control input signal in matrix form for m cooperative arms.

uadd(t ) =

⎡
⎢⎣

uadd
1 (t )

...
uadd

m (t )

⎤
⎥⎦ (51)

in which uadd
i (t ) = Gi(x(t )) − bSDC

i (x(t )) + JT
i (x(t ))fe,i(t ).

4. Simulation and Experiment

4.1. Scout model
A Scout mobile robot has two mechanical arms mounted on its base. Each arm has five-DoF. In
addition, the Scout robot uses three ultrasonic sensors in the front, a camera on the left arm wrist and
six infrared sensors around to detect its surroundings. In Fig. 1, a view of the Scout robot is shown.
The robot base has two main wheels and a DC motor is connected to each of them. The third wheel
is also located at the end of the robot which is freewheeling to keep the balance. Moreover, all joints
in the arms of the Scout robot are rotational.

Specifications of the Scout robot including mass and moment of inertia of the arms and base are
expressed in Table I.

Due to the fact that the first link rotate around Z0 axis aligned with Y1 axis (Fig. 1), and based on
Denavit–Hartenberg direct method, the Ixx1 and Izz1 do not appear in the dynamic equation of motion
and they are not relevant because they do not appear in equations. Therefore, their values assume to
be constant. The inertia matrix assumed to be diagonal and the entries outside the main diagonal are
neglected and assumed to be zero. Moreover, the neglected elements are so small by comparison with
the main diagonal values. Since the angular velocity and torque in each of the motors are limited,
the torque value of each motor has been considered as saturation function.20 Via using the saturation
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Table I. Scout properties26.

Description Values

Links mass (kg) m1 = 0.028, m2 = 0.1, m3 = 0.231
Moment of inertia of fist link (kg.m2) Ixx1 = constant, Iyy1 = 0.0005, Izz1 = constant
Moment of inertia of second link (kg.m2) Ixx2 = 0.000016, Iyy2 = 0.000034, Izz2 = 0.000021
Moment of inertia of third link (kg.m2) Ixx3 = 0.000923, Iyy3 = 0.000915, Izz3 = 0.000085

Table II. The amount of stop torque and no-load speed of Scout robot motors.

Value Parameter Description

0.55, 0.96, 0.96 τstall,l,1, τstall,l,2, τstall,l,3 Torque stall properties of arm’s actuator (N.m)
5.85, 3, 3 ωnl,l,1, ωnl,l,2, ωnl,l,3 Angular velocity stall properties of arm’s actuator (rad/s)
6.85 τstall,w Torque stall properties of base’s actuator (N.m)
14 ωnl,w Angular velocity stall properties of base’s actuator (rad/s)

Table III. Denavit–Hartenberg parameters of Scout robot.

Joint ai(m) di(m) αi(deg) θi

1 0 d1 = 0.06 −90 θ1

2 a2 = 0.1 0 0 θ2

3 a3 = 0.21 0 0 θ3

function, if in each joint the amount of calculated torque for the actuator is between the minimum
and maximum torque value, the calculated control input value will apply to the actuators. But if its
amount is less than lower bound or higher than upper bound, the control input value will be equal to
the minimum and maximum value which is calculated by (52), respectively.

τi,max(t ) = τi,stall − τi,stall

ωi,nl
ωi(t ),

τi,max(t ) = −τi,stall − τi,stall

ωi,nl
ωi(t ).

(52)

Parameters τi,min(t ) and τi,max(t ) show the minimum and maximum torque value applied to each joint,
respectively. Moreover, τi,stall and ωi,nl are, respectively, stall torque and the angular velocity of the
motor i in no-load speed that their amount for arm motors and base motors is expressed in Table II.

After introducing the Scout robot, its dynamics equations will be expressed. In Table III, the
value of its Denavit–Hartenberg parameters has been reported. In this experiment, the first three-
DOF of each arm have been considered because the feedback for control processes is needed and
the potentiometers are available only for the first three-DoF (set-up limitation). By having Denavit–
Hartenberg parameters, direct and inverse kinematic of the Scout robot can be achieved and both of
them are expressed in reference.26

After determining the coordinates of the arms and Denavit–Hartenberg parameters, transformation
matrices can be calculated. Therefore, in this part, first, the existing constraints on mobile robot are
explained and then by considering the constraints of the system, the dynamic equation of the Scout
robot is simplified using the method described in ref. [21]. Because in this paper, robotic arms are
more important, Scout robot is considered fix in base mode. Considering the generalized coordinates
as (53)

qT = [
θ1r θ2r θ3r θ1l θ1l θ1l

]
. (53)

And also to show the equations presented in the previous section, state variables will be considered
as (54)

x(t ) =
[

q
q̇

]
. (54)
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Table IV. Control gain values.

Parameters R Q Q̄r Q̄r

Values 0.01 I6×6 100 I12×12 I6×6 I6×6

Finally, dynamic equations of the system can be considered as (55)

ẋ(t ) =
[

06×6 I6×6

06×6 −M−1
T

(q(t )) × C̄T (q(t ), q̇(t ))

]
x(t ) +

[
06×6

M−1
T (q(t ))

]
u(t ) (55)

in which

MT (q(t )) =
[

Mr (q(t )) 03×3

03×3 Ml (q(t ))

]
, (56)

C̄T (q(t ), q̇(t )) =
[

C̄r (q(t ), q̇(t ))
C̄l (q(t ), q̇(t ))

]
. (57)

Moreover, as it has been mentioned, the vector u(t ) is considered as

u(t ) =
[

uadd
r (t )

uadd
l (t )

]
6×1

. (58)

4.2. Experimental setup of Scout
In order to simulation as well as implementation of the complex non-linear control relationships, it is
needed to establish a relationship between robot and computing system; therefore, in this paper, the
LabVIEW software is considered to establish the communication between the robot and computer. In
this software, feedbacks are calculated for each motor individually and the presented control method
is described and implemented through a MATLAB port environment inside the LabVIEW software.
It should be noted that in the embedded MATLAB environment in the LabVIEW software, control
equations are calculated as a chain and correspondingly with control equation modes for each motor
and chain transfer is applied to Arduino Due and ultimately to the motor. In this simulation Latin
z-shaped path (the z-shaped path has been selected because in this special path there are two critical
points where in them the robot should stop and change the direction of each manipulator) and 6 s run
time is considered with [ 0.05 −0.05 0.3 ] initial point. There is a basket which is connected by two
ropes to the Scout’s arms and the loads which are several blocks by the mass of 100 g, have been
added to the basket which is held by Scout arm’s gripper step by step in order to compute the DLCC.
In this experiment, the load’s momentum of inertia neglected and the load considered as a spot load.
Moreover, the controller constants are represented in Table IV.

Finally, the covered path shape of two arms is as illustrated in Fig. 2. The z-shaped path has been
selected because it has two critical points where in them the robot should stop and change the direction
of its movement. The results of this simulation are in Figs. 2 and 3.

According to the results, it is clear that the related control signal to the right arm, respect to left
arm is tripled. This is due to the difference between each end-effector’s path and that is why controller
parameters for both arms are the same as they have been intended.

Figure 4 shows the tracking errors. By regarding the Fig. 4 which is depicted the errors, it can
be concluded that if the tolerance is allowed only 1 cm, robot can move the object. Therefore, by
designing joint points, and taking into account the displacement of the terminal link to maximum of
1 cm, object can be moved.

The specific path (z-shaped path) causes the large change in the angular velocity at the junction of
the path (see the Fig. 2). In the experiment set-up although the large change have been created from
the algorithm, actually the duration of the large change in junction is very short and causes a little
shake in manipulator but the vibrations are not that much high that make problem.

https://doi.org/10.1017/S0263574718001030 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574718001030


Optimal sliding mode control design 331

Fig. 2. The simulation results for the cooperative arms. (a) End-effector path. (b) Generalized coordinate values.
(c) Variation of generalized coordinate values.

5. Experimental Results
In performed experimental test, all the conditions including desired path and starting point are as
like as simulation conditions. Moreover, the amount of gains which are considered in the previous
section, are applied in this test too. Therefore, considering the same conditions for both modeling
and experimental test parts, a good comparison on these two different modes can be done. The
schematic block diagram of the process is represented in Fig. 5. The actual and nominal error which
are represented in Fig. 5, refer to the error for the system with and without uncertainty, respectively.
In Fig. 5, the real state and nominal state which are presented by x, x̂.

By using the PSA, the control signals “u” (see Fig. 5 inside Matlab Script section) is defined
by equations which are solved numerically based on the methodology of Taylor series. After that,
the calculated control signals implement on the real robot. With using the PSA approach, the delay
between decision and acting become less because the huge number of equations are solved quickly
in each loop of the program. The control law is an algebraic equation and can be programmed into
the controller, however, solution to the Riccati equation needs numerical computation methods. In
this work, the PSA method provides a set of closed-form equations that provide optimal gain to the
SDRE. For the cases that the finite time implementation is required, the use of the PSA is no longer
possible and numerical implementation is necessary. So, the optimal gain, generated from PSA for
the optimal part (38), is inserted to (15), and is programmed into the Arduino controller. With proper
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Fig. 3. The input torque values for the cooperative arms. (a) Input torque of first left arm actuator. (b) Input
torque of first right arm actuator. (c) Input torque of second left arm actuator. (d) Input torque of second right
arm actuator. (e) Input torque of third left arm actuator. (f) Input torque of third right arm actuator. (g) Norm of
input torque.

selection of time step, the controller act in the experimental setup and computes the necessary PWM
of servo motors.

The results of experimental test are shown in Fig. 6. Object manipulation task in theoretical and
experimental implementation is defend as carrying an object with two arms in a cooperative mode;
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Fig. 4. Norm of the end-effector errors.

Fig. 5. The schematic block diagram of structure of control system.

the task of holding the object has not been considered yet. Two arms share the load in same trajectory
that the cooperation increases the load capacity.

According to Fig. 6, it is seen that in the initial and final moments, end-effector is to some extent
away of the desired path (the z-shaped path), however, on the middle of the path it is almost coincident
with the desired path. The results are noisy because the potentiometers model “RV24YN” are used
for feedback. The robot is supposed to follow the desired path which is in Z shape; therefore, by using
the inverse kinematic of the robot, the desired joint angles obtained which are shown by the red dash
line in Fig. 7. According to Fig. 7, it is observed that the error value in the earliest moments has the
maximum value so that the maximum error value at the time of 1 s is equal to 32 mm and the end-
effector error value of the intended desired path is 15.3 mm. Moreover, by considering the forward
kinematic which is used to transform the joint angles to the end-effector path, the small error in joint
angle’s value may causes larger error in the end-effector path. Moreover, it should be mentioned that,
the observed deviations from the desired path are due to non-linearities in the potentiometers.

As it is observed in Fig. 7, the results recorded in the first potentiometer and its curve fitting almost
match the desired angle on the first link. The maximum recorded error value by first potentiometer
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of the desired amount is 0.1 radians and the medium error value is 0.03 radians. In the third joint,
the recorded data is different from the desired value. The maximum error value of the recorded data
into recorded desired angle in the third joint is 0.12 radians and its medium value is 0.04 radians.
According to Fig. 7, it is obtained that data recorded in the first joint at the beginning and end of the
path are a bit away of the desired value. The maximum error value of the recorded data is 0.21 radians
and its medium value is 0.08 radians.

6. Dynamic Load Carrying Capacity (DLCC) Algorithm
DLCC is one of the important features that is discussed in robotics. The DLCC magnitude, by the
amount of position error on the end-effector that should not be exceeded than permitted value, is
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Fig. 8. The control algorithm for computing DLCC.

limited. The tracking error is obtained from (59).

E (t ) =
√

(xe(t ) − xed (t ))2 + (ye(t ) − yed (t ))2 + (ze(t ) − zed (t ))2, (59)

which Re = [ xe ye ze ]T is the actual position of the end-effector and Red = [ xe yde zed ]T is the end-
effector desired position vector. The other constraint that limits the amount of allowable load can be
pointed out to restrictions on motor (DC motor) torque of each joints. In fact, it is needed to match
with the capability of applying the minimum and maximum torque of the motor which is calculated
in (52). With this constraint, an iterative trend for load carrying capacity that has been illustrated in
Fig. 8 is offered.

The equations of motion for the Scout robot which were explained in the previous section, as
well as the control algorithm are considered to calculate the maximum DLCC as shown in illustrated
algorithm in Fig. 8. In order to test the amount of DLCC, the loads are increased in each loop of
the mentioned algorithm. Therefore, the small basket (connected by two ropes to the Scout’s arms)
is used and the loads which are several blocks by the mass of 100 g, have been added to the basket
step by step in order to compute the DLCC. Moreover, torque values in a state of exhaustion and the
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angular velocity are required in no-load speed mode that their values for arm’s and wheel’s actuators
are expressed in Table II, which related results of the simulations with different applied loads are
shown in Fig. 9.

Also, a comparison of the amount of DLCC by the usual method SDRE has been done and its
results are brought in Fig. 10.

After applying the method of calculating the DLCC, results for OSMC method, presented in this
paper, have been improved compared to the SDRE control technique and reached to mp = 0.756 kg.

7. Conclusion
In this paper, by considering the algebraic sliding surface, an OSMC method is derived from
combination of the SMC and the SDRE technique and the stability of the mentioned method
investigated based on Lyapunov second method. By considering both certain and uncertain system
in the control algorithm, the control output signal is designed based on the system with uncertainty,
however, the control gains are derived for the assumed certain system. Moreover, the OSMC method
has been applied for cooperative arms. In addition, the percentage of load distribution between each
manipulator has been derived based on cost function in order to increase the DLCC and by comparison
with SDRE technique, DLCC increased almost 15% while using OSMC. Although one of the problem
in optimal control is the delay for real time implementation, PSA is used for implementation.
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