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Most turbulent flows are characterized by coherent motion (CM), whose dynamics
reflect the initial and boundary conditions of the flow and are more predictable than
that of the random motion (RM). The major question we address here is the dynamical
interaction between the CM and the RM, at a given scale, in a flow where the CM
exhibits a strong periodicity and can therefore be readily distinguished from the RM.
The question is relevant at any Reynolds number, but is of capital importance at finite
Reynolds numbers, for which a clear separation between the largest and the smallest
scales may not exist. Both analytical and experimental tools are used to address
this issue. First, phase-averaged structure functions are defined and further used to
condition the RM kinetic energy at a scale r on the phase φ of the CM. This tool
allows the dependence of the RM to be followed as a function of the CM dynamics.
Scale-by-scale energy budget equations are established on the basis of phase-averaged
structure functions. They reveal that energy transfer at a scale r is sensitive to an
additional forcing mechanism due to the CM. Second, these concepts are tested using
hot-wire measurements in a cylinder wake, in which the CM is characterized by a
well-defined periodicity. Because the interaction between large and small scales is
most likely enhanced at moderate/low Reynolds numbers, and is also likely to depend
on the amplitude of the CM, we choose to test our findings against experimental data
at Rλ ∼ 102 and for downstream distances in the range 10 6 x/D 6 40. The effects
of an increasing Reynolds number are also discussed. It is shown that: (i) a simple
analytical expression describes the second-order structure functions of the purely CM.
The energy of the CM is not associated with any single scale; instead, its energy is
distributed over a range of scales. (ii) Close to the obstacle, the influence of the CM
is perceptible even at the smallest scales, the energy of which is enhanced when the
coherent strain is maximum. Further downstream from the cylinder, the CM clearly
affects the largest scales, but the smallest scales are not likely to depend explicitly on
the CM. (iii) The isotropic formulation of the RM energy budget compares favourably
with experimental results.
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1. Introduction

Turbulent flows give rise to a wide and continuous range of scales. The largest
eddies reflect the way the kinetic energy is injected in the system and therefore
depend on the type of flow. In contrast, one frequently asserts that the anisotropic and
non-universal influence of the largest scales diminishes during the first nonlinear local
interactions and is thus expected to decline at the smallest scales. Consequently, it is
still often postulated that the smallest scales have the best prospect of being universal
or quasi-universal (Sreenivasan & Antonia 1997) a paradigm usually attributed to
Kolmogorov (1941a,b) (hereafter K41). One of the premises of K41 is that small-scale
turbulence at sufficiently high Reynolds numbers is statistically independent of the
large scales, and is stationary, homogeneous and isotropic. Taking these premises for
granted, K41 states that (i) the statistical properties of the small scales are determined
universally by ν and ε (the kinematic viscosity and the mean energy dissipation rate);
(ii) those in the inertial range (if the Reynolds number allows one to exist) are
determined by ε only.

K41 was formulated for large Reynolds numbers, whereas the turbulent flows
generally encountered in practical situations are characterized by low to moderate
Reynolds numbers. It is essential to recall at this stage that significant departures from
the scaling proposed by K41 are due to finite Reynolds number effects. Although the
small scales have indeed the ‘best prospect’ of being universal, they may also exhibit
strong departures from universality, depending both on the statistics used to filter
the small scales and on the physical quantity chosen to represent the largest ones.
Pragmatically speaking, testing small-scale universality (SSU) involves at least three
parameters: the mathematical functions used to filter both the small scales and the
large scales, as well as the Reynolds number of the flow. In this regard, the validity
of SSU may depend on the severity of the chosen test. Before providing a general
classification of these tests, it should be kept in mind that ‘universality’ implicitly
supposes local isotropy. Testing SSU can be done at several levels.

(i) A basic level, which involves low- (second- and third-)order statistics, e.g. spectra,
second- and third-order structure functions. In physical space, one common way
to retain small scales is considering increments at that scale, which represent
motions at scales 6r (not only at the particular scale r). It can be argued
that (Kholmyansky & Tsinober 2008) neither the original derivation of the
Kolmogorov 2/3 and 4/5 laws, nor all of the subsequent derivations of the
4/5 law use the assumption of locality of interactions and the existence of a
cascade. In obtaining the 5/3 and 2/3 laws, only phenomenological assumptions
are necessary (K41), underpinned by the local isotropy hypothesis. Nothing is
supposed about either the nature of the large scales, or the exact dynamics of
the cascade, i.e. how energy flows from one scale to another scale. Nonetheless,
results such as 5/3, 2/3 and 4/5 (the latter is ensuing from the Navier–Stokes
equations) are extremely robust and ubiquitous, provided that the Reynolds
number (the single parameter that dictates whether SSU is verified at this level)
is sufficiently high.
Danaila, Anselmet & Zhou (2004) made a further step in understanding the role
of large scales in transport equations for the second-order structure functions, thus
allowing the finite Reynolds number effects to be quantified. The effect of the
‘large scales’ is generally represented by the processes associated with the decay,
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production and turbulent diffusion of the turbulent energy. The dependence of
small-scale statistics on large-scale effects is in general enhanced as the Reynolds
numbers decreases. This framework led Antonia & Burattini (2006) to assess
the Reynolds number that ought to be reached for K41 to be satisfied and it
was proven that a Taylor-based Reynolds number as high as 50 000 is needed
for decaying turbulence to reach the 4/5 law. A similar result was obtained
in spectral space for Lin’s equation (closed via the eddy-damped quasi-normal
Markovian approach), which includes the decay term (e.g. Tchoufag, Sagaut &
Cambon 2012). Even though analyses in spectral space can provide significant
insight into the degree of the interactions between different scales in some
canonical situations (Domaradzki et al. 1987), even when the flow is slightly
inhomogeneous (e.g. Cambon & Gréa 2013), the strong inhomogeneity generally
encountered in complex flow configurations does not allow the use of spectra
and dynamical equation in Fourier space. Considerations in physical space are
thus likely to be the best solution for investigating these flows. In addition,
we have to mention that the analogy between the real-space and spectral-space
expressions of different physical quantities is not straightforward, as the spectra
strictly correspond to the energy distribution at a given wavenumber, whereas
the second-order structure functions tend to represent the energy at all scales
6r (Townsend 1956; Davidson & Pearson 2005; Mouri & Hori 2010; Danaila,
Antonia & Burattini 2012a). Cambon et al. (2013) discussed in detail the
differences and analogies between analyses in spectral and physical space.
Finally, as far as we are aware, conditional statistics are not usually considered
in spectral space, whereas these are often utilized in physical space.

(ii) A refined level, for which low-order statistics representing small scales (often,
increments) are conditioned by quantities representing large scales (either the
mean shear, the local value of the velocity, the local phase of the coherent
motion (CM) when this is pertinent, etc.). This conditioning represents a priori
a more stringent test of SSU and allows for the correlations between the large
scales and small scales to be highlighted.
A statistical measure of the effect of the large scales is the sum of velocities at
two points separated by a distance r (Hosokawa 2007; Mouri & Hori 2010). An
interesting analysis along this direction is provided by Hosokawa (2007), who
demonstrated the statistical dependence of the difference and sum of velocities
at two points, thus underlining the statistical dependence of small scales on
the larger ones. Moreover, this author has shown that this clear dependence is
fully compatible with the 4/5 law. This analytical treatment was then accurately
confirmed by the experiments of Kholmyansky & Tsinober (2008) in different
high Reynolds number flows. Hence, we now possess strong evidence, on both
theoretical and experimental fronts, that even at very high Reynolds numbers, the
way energy is distributed between different scales depends on the large scales
and most likely involve both local and non-local interactions. Consequently, one
should expect these interactions to be even more predominant for Reynolds
numbers normally encountered in the laboratory. This issue is worth being
explored and characterized analytically and hence some new statistical tools that
quantify the interactions between large (and in particular the CM) and small
scales has to be developed.
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To this end, one possibility is to consider velocity increments, which represent
motions at scales 6 r (e.g. Mouri & Hori 2010 and Danaila et al. 2012a),
conditioned by another parameter characterizing motions at scales > r (Mouri &
Hori 2010). The first study based on conditional structure functions is that of
Praskovsky et al. (1993). The latter reported structure functions conditioned by
the instantaneous velocity in two different high Reynolds number shear flows.
These suggested a strong correlation between large and inertial subrange scales.
Praskovsky et al. (1993) finally concluded that these findings are in contradiction
with the random sweeping decorrelation hypothesis (Tennekes 1975) which was
first stated by supposing statistical independence between eddies. Subsequently,
measured structure functions were conditioned by the instantaneous velocity in
the atmospheric boundary layer (Sreenivasan & Dhruva 1998). Despite the very
high Reynolds number, a strong correlation between large and small scales also
emerged. According to Sreenivasan & Dhruva (1998), this result may highlight
the persisting influence of the mean shear on the smallest scales.
More recently, Blum et al. (2010, 2011) measured structure functions conditioned
by the average of the velocity at points x and x+ r in different shearless flows.
These authors pointed out that small scales were perturbed by the large scales at
very different levels depending on the flow type. They concluded that conditional
structure functions provide a reference tool for comparing large-scale effects in
different flows.

To summarize this overview, (i) at a basic level, considering low-order statistics of
velocity increments as a small-scale filter unconditioned by large scales, leads to the
SSU to be valid (2/3, 5/3, 4/5), provided the Reynolds number is sufficiently high.
(ii) At a refined level, if we consider small-scale statistics that are conditioned on large
scales, SSU seems to break down, at least for Reynolds numbers encountered in the
laboratory. This violation of SSU is not in contradiction with K41, as the latter was
aimed at unconditioned statistics. Therefore, the validity of SSU clearly depends on
the chosen test and the way the effect of the large scales is quantified.

A further step in understanding and quantifying the interaction between large and
small scales is done in the present work. We address the issue of the dynamical
dependence of low-order statistics on the large-scale activity of a CM. More precisely,
rather than investigating the plausibility of SSU which is likely to be pertinent at very
large Reynolds numbers, we focus here on such interactions that may occur in finite
Reynolds number flows. This choice is motivated by the fact that (i) finite Reynolds
flows are encountered in practical situations and (ii) these interactions are likely to be
more perceptible at low Reynolds number. Investigating the nature of the interactions
between CM and the small-scale motion is the principal motivation of the present
work. A better understanding of the effect of the large-scale CM on the smallest scales
is of major practical interest, for example for designing new efficient sub-grid scale
models (O’Neil & Meneveau 1997; Kang & Meneveau 2002).

Because of the pioneering work of Townsend (1956) and many other researchers
(e.g. Brown & Roshko 1974, 2012), it is now well known that most shear flows
contain so-called coherent structures. These are energy-containing eddies present
at rather large scales, which strongly persist in time and/or in space. In terms of
characteristic time-scales, Thiesset, Danaila & Antonia (2013b) showed that the
life-time of the CM is much larger than that of the small scales. The topology of
the organized motion depends on initial conditions and their related statistics are
not universal (Antonia, Zhou & Romano 2002; Thiesset et al. 2013b). The plane
wake flow is one possible candidate for studying the degree of SSU in presence of
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a CM. As a reminder, at a Reynolds number ReD (≡ U0D/ν, U0 is the upstream
velocity, D the cylinder diameter and ν the kinematic viscosity) of approximately
45 (Williamson 1996), the well-known two-dimensional Bénard–von Kármán appears
and degenerates in three dimensions at a Reynolds of approximately 150 (Williamson
1996). Then, for Reynolds numbers ReD > 103, the shear layers emanating from the
sides of the cylinder destabilize and start being turbulent. The normalized shedding
frequency, i.e. the Strouhal number, monotonically increases for a Reynolds number
ReD between 45 and 1000, before reaching a plateau in the range 103 < ReD < 104

with a value of approximately 0.21 (Roshko 1954). The wake flow is particularly
suited for investigating the interactions between the CM and small scales for the
simple reason that the CM is sharply identified in spectral space, and its frequency
(or, Strouhal number) remains constant over a long distance downstream the obstacle
(Roshko 1954; Williamson 1996). In other words, in contrast with some other flows
as the shear layer for which the CM reveals some cycle-to-cycle variations, or the
boundary layer for which a large variety of coherent structures are present, the CM
pertaining to the wake flow is characterized by strongly stable structures that are
advected almost identically in the direction of mean flow. The information contained
within the CM persists until the far field (Bisset, Antonia & Browne 1990; Zhou
& Antonia 1995; Thiesset et al. 2013b) and influence small-scale statistics due to
non-local interactions and to a larger extent to finite Reynolds numbers effects. As
far as the wake flow is concerned, it was proven that the CM can induce a strong
anisotropy through the additional effect of the coherent strain (Thiesset et al. 2013b).
It was also stated that the energy distribution and the maximum value of the energy
transfer may be altered significantly depending on the amplitude of the CM (Thiesset,
Antonia & Danaila 2013a). The results presented by Thiesset et al. (2013a,b) suggest
that significant progress are needed to unravel the physical processes at play in the
dynamical relationship between coherent and small scales.

The present study addresses a few specific issues: (i) What is the nature and
degree of interaction between large and small scales? (ii) What are the energy budget
equations at a given scale in flows where a CM may be discernible? (iii) Can
we determine a reliable analytical expression for the distribution of energy among
different scales in the presence of the CM?

To unravel these issues, the way we condition structure functions is somewhat
different to that presented previously. Based on the approach advocated by Reynolds
& Hussain (1972), we propose to condition structure functions by a particular value
of the phase φ arising from the phase-averaging operation.

This study focuses entirely on a circular cylinder wake flow, which is investigated
by means of hot wire experiments. Different streamwise locations were studied, from
x= 10D to x= 40D (D is the cylinder diameter) leading to a decreasing amplitude of
velocity coherent fluctuations. Investigations concentrate mostly on the wake centreline,
where the mean shear is absent. This allows us to focus only on the influence of the
CM, thus avoiding the additive effect of the mean shear.

Following the definition of the phase-conditioned structure functions (§ 2.1), energy
budget equations for both CM and random motion (RM) are first derived in § 2.2.
This allows us to highlight the relevant quantities that ought to be assessed for
the interactions between the CM and the small scales to be unravelled. Then,
measurements in the intermediate wake of a circular cylinder are described in § 2.3.
One-point statistics are then presented in § 3.1, with particular emphasis on the
typical topology of the CM pertaining to the wake flow. The interactions between
coherent and random fluctuating fields are illustrated by means of second (§ 3.2)
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and third-order (§ 3.3) phase-averaged structure functions. The isotropic formulation
of the scale-by-scale budget of the RM is tested against experimental data in § 4.
Conclusions are drawn in § 5.

2. Tools of investigation
2.1. Phase-averaged structure functions

Before describing in detail the main achievements of the present study, we first briefly
discuss the tools that allow us to highlight the features of the CM pertaining to the
wake flow. To this end, it is first useful to separate the contribution of the CM from
that of the turbulent RM. In flows where a CM is discernible, one often invokes the
triple decomposition (Reynolds & Hussain 1972) according to which any fluctuating
quantity β is decomposed as

β = β + β̃ + β ′ (2.1)

where β, β̃ and β ′ denote the mean, coherent and purely turbulent components of β,
respectively. To extract the information on the CM, a phase-averaging is performed
(hereafter denoted by angular brackets), namely

〈β〉 (φ)= β + β̃(φ) (2.2)

since by definition 〈β ′〉 = 0. Here φ characterizes the phase of the CM. As far as the
velocity and pressure fields are concerned, the triple decomposition reads (Reynolds
& Hussain 1972)

Ui =Ui + ũi + u′i, P= P+ p̃+ p′ (2.3a)
ui = ũi + u′i, p= p̃+ p′, (2.3b)〈

u′i
〉= 0, 〈p′〉 = 0. (2.3c)

In the past, phase-averaging has been applied mostly to the velocity one-point
statistics, in order to emphasize for example the energy contribution of the CM to the
Reynolds stress. However, similar treatments can be carried out concerning two-point
statistics with the view of relating the temporal dynamics of the energy distribution
across the scales to that of the organized motion.

Phase-averaging is thus applied to the nth-order structure functions (here, n ranges
from one to three). Second- and third-order structure functions are as usually functions
of r, but specific to our methodology, they are also functions of the phase φ

〈(1uα)n〉 (r, φ) =
〈[

uα
(

X + 1
2 r
)− uα

(
X − 1

2 r
)]n〉

(r, φ) (2.4a)
= 〈[uα (x+ r)− uα (x)]n〉 (r, φ) (2.4b)

which represents the ensemble average of the nth-order increment 1uα = uα(x+ r)−
uα(x) of the velocity component uα, knowing φ(X). Here X is the midpoint between
two points of space x and x + r. Classical time-averaged structure functions are
calculated by integrating 〈(1uα)n〉 over all values of φ ∈ [−π;π] and are denoted by
〈(1uα)n〉. An important remark is that for n= 1,

〈1uα〉 =1ũα 6= 0. (2.5)
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Unlike the classical structure function, the first-order phase-averaged structure function
is not zero for r 6= 0. However, 〈1uα〉 = 0. Another result concerns the second-order
structure functions of the total fluctuating velocity field uα, which is the sum of the
second-order structure functions of the random and coherent motions, namely〈

(1uα)2
〉= (1ũα)

2 + 〈(1u′α)
2
〉
. (2.6)

The influence of the phase, on the total, organized and random kinetic energy at a
given scale, can thus be assessed separately. Similar results can be obtained for third-
order structure functions.

2.2. Dynamical transport equations for phase-conditioned two-point statistics
As a further step for investigating flows populated by CM, it is of interest to derive
an energy budget equation for second-order phase-averaged structure function. The
particular expected outcome is to highlight the influence of the CM dynamics on the
energy distribution and thereof on the energy transferred at a scale r (and smaller).
One advantage of phase-averaging is that it allows transport equations to be written
for both the CM as well as the purely RM.

2.2.1. General formulation
The starting point is the Navier–Stokes equation

∂Ui

∂t
+Uj

∂Ui

∂xj
=− ∂P

∂xi
+ ν ∂

2Ui

∂xj∂xj
, (2.7)

where P is the kinematic pressure and ν the kinematic viscosity. The summation
convention applies to repeated Roman indices. By further using (2.3c), Reynolds
& Hussain (1972) obtained the dynamical equations of the coherent and random
components, which are respectively

Dũi

Dt
+ ũj

∂Ui

∂xj
+ ∂

∂xj

(
ũiũj − ũiũj

)
+ ∂

∂xj

(〈
u′iu
′
j

〉− u′iu′j
) = − ∂ p̃

∂xi
+ ν ∂

2ũi

∂x2
j
, (2.8a)

Du′i
Dt
+ ũj

∂u′i
∂xj
+ u′j

∂Ui

∂xj
+ u′j

∂ ũi

∂xj
+ ∂

∂xj

(
u′iu
′
j −
〈
u′iu
′
j

〉) = −∂p′

∂xi
+ ν ∂

2u′i
∂x2

j
. (2.8b)

Here D/Dt= ∂/∂t+Uj(∂/∂xj) is the material derivative. Equations (2.8a) and (2.8b)
are written at points x and x+ = x+ r separated by a distance r. Then, the equation
at point x is subtracted from that at point x+, so that

∂∆ũi

∂t
+∆

(
Uj
∂ ũi

∂xj

)
+∆

(
ũj
∂Ui

∂xj

)
+∆

(
∂

∂xj

(
ũiũj − ũiũj

))
+∆

(
∂

∂xj

(〈
u′iu
′
j

〉− u′iu′j
))=−∆( ∂ p̃

∂xi

)
+ ν∆

(
∂2ũi

∂x2
j

)
, (2.9a)

∂∆u′i
∂t
+∆

(
Uj
∂u′i
∂xj

)
+∆

(
ũj
∂u′i
∂xj

)
+∆

(
u′j
∂Ui

∂xj

)
+∆

(
u′j
∂ ũi

∂xj

)
+∆

(
∂

∂xj

(
u′iu
′
j −
〈
u′iu
′
j

〉))=−∆(∂p′

∂xi

)
+ ν∆

(
∂2u′i
∂x2

j

)
. (2.9b)
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Equation (2.9a) is the dynamical equation of coherent velocity increments, and
(2.9b) the dynamical equation of random velocity increments. We consider that the
mean velocity field is sufficiently uniform for its spatial increments to be negligible
compared with those of both the random and coherent motions, namely 1Ui�1ũi,
1Ui � 1u′i. Hence, the two following transport equations for 1ũi and 1u′i can be
derived

D∆ũi

Dt
+∆ũj

∂Ui

∂xj
+∆

(
∂

∂xj

(
ũiũj − ũiũj

))
+∆

(
∂

∂xj

(〈
u′iu
′
j

〉− u′iu′j
))=−∆( ∂ p̃

∂xi

)
+ ν∆

(
∂2ũi

∂x2
j

)
, (2.10a)

D∆u′i
Dt
+∆

(
ũj
∂u′i
∂xj

)
+1u′j

∂Ui

∂xj
+∆

(
u′j
∂ ũi

∂xj

)
+∆

(
∂

∂xj

(
u′iu
′
j −
〈
u′iu
′
j

〉))=−∆(∂p′

∂xi

)
+ ν∆

(
∂2u′i
∂x2

j

)
. (2.10b)

As proposed by Hill (2001) and Danaila, Anselmet & Antonia (2002), Danaila et al.
(2004), we use derivatives with respect to the midpoint X defined by X= (x+ x+

)
/2,

so that ∂/∂xj = −∂/∂rj + ∂/2∂Xj and ∂/∂x+j = ∂/∂rj + ∂/2∂Xj. We further assume
that the two points x and x+ are independent (Hill 2001; Danaila et al. 2002, 2004),
namely ∂ui/x+j = ∂u+i /xj= 0. After multiplying (2.10a) by 21ũi and (2.10b) by 21u′i,
applying phase-averaging followed by time-averaging, and noting that〈

1u′j1u′i
〉= 〈1ui1uj

〉−1ũi1ũj (2.11a)〈
1uj1q2

〉=1ũj1q̃2 +1ũj
〈
1q′2

〉+ 〈1u′j1q′2
〉+ 21ũi

〈
1u′j1u′i

〉
, (2.11b)

we finally obtain the scale-by-scale energy budget of the CM (Thiesset et al. 2011)

D
Dt
1q̃2 + ∂

∂Xj

[
Σ ũj1q̃2 + 2

〈
Σu′j1u′i

〉
1ũi + 21ũi1p̃

]
+ 21ũi1ũj

∂Ui

∂xj

− 〈Σu′j1u′i
〉 ∂

∂Xj
1ũi + ∂

∂rj
1ũj1q̃2 + 21ũi

∂

∂rj

〈
1u′i1u′j

〉
− ν

[(
2
∂2

∂r2
j
+ 1

2
∂2

∂X2
j

)
1q̃2 + 2Σ

(
∂ ũi

∂xj

∂ ũj

∂xi

)]
=−2Σε̃. (2.12)

For the RM, the corresponding energy budget equation is (Thiesset et al. 2011)

D
Dt
1q′2 + ∂

∂Xj

[
Σu′j1q′2 +Σ ũj

〈
1q′2

〉+ 21u′i1p′
]
+ 21u′i1u′j

∂Ui

∂xj

+ 〈Σu′j1u′i
〉 ∂

∂Xj
1ũi + ∂

∂rj

(〈
1uj1q2

〉−1ũj1q̃2
)
− 21ũi

∂

∂rj

〈
1u′i1u′j

〉
− ν

[(
2
∂2

∂r2
j
+ 1

2
∂2

∂X2
j

)
1q′2 + 2Σ

(
∂u′i
∂xj

∂u′j
∂xi

)]
=−2Σε ′. (2.13)

Here 1q̃2=1ũi1ũi and 1q′2=1u′i1u′i are the coherent and random kinetic energies
at a given scale, respectively, and Σ•= •(x+ r)+•(x) is the sum of any quantity •
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at two points separated by a distance r. The quantities ε̃ = (ν/2)(∂ ũi/∂xj + ∂ ũj/∂xi)2

and ε ′ = (ν/2)(∂u′i/∂xj + ∂u′j/∂xi)2 are the mean energy dissipation rates of the CM
and the RM, respectively.

For the sake of clarity, these equations are formally rewritten as

Ic +Acm +Dcc +D†
rc +Dcp +Pcm −Prc +Tc +Fc + Vc = −2Σε̃;

(2.14a)
Ir +Arm +Drr +D††

rc +Drp +Prm +Prc +T −Tc −Fc + Vr = −2Σε ′.
(2.14b)

where I , A , D , P , T , F and V denote the non-stationarity, advection, diffusion,
production, transfer, forcing and viscous terms, respectively. The subscripts m, c, r
correspond to the mean, CM and RM, and Dp indicates the pressure diffusion. When
two indices are present, the first identifies the quantity on which that effect applies,
whereas the second index points to the effect responsible for that effect (e.g. Drc
indicates the diffusion of RM through the CM). Further, we can shed light on D†

rc
and D††

rc , the transport of random statistical quantities by the organized motion.
By comparison with Danaila et al. (2002, 2004), there are additional terms which

emerge in the present equations, e.g. the terms Prc, Tc and Fc which can be
identified as the production of random fluctuations by the CM, the coherent kinetic
energy transfer and the forcing associated by the presence of a CM. All three are
present in (2.12) and (2.13), but with opposite signs. This means that the terms which
can be identified as a loss of energy for the CM (2.12), represent a gain of energy
for randomly fluctuating motion (2.13). Equations (2.12) and (2.13) provide a general
framework which allows the physics of the interaction between coherent and random
fields to be unravelled.

In a globally homogeneous context, the limit at the largest scales of (2.12) and
(2.13) is twice the one-point energy budgets provided by Reynolds & Hussain (1972)

1
2

D
Dt

q̃2 + ũiũj
∂Ui

∂xj
+ ∂

∂xj

(
ũjp̃+ 1

2 ũjq̃2 + ũi
〈
u′iu′j
〉)− 〈u′iu′j〉 ∂ ũi

∂xj
= −ε̃; (2.15a)

1
2

D
Dt

q′2 + u′iu′j
∂Ui

∂xj
+ ∂

∂xj

(
u′jp′ + 1

2 u′jq′2 + 1
2 ũj
〈
q′2
〉)+ 〈u′iu′j〉 ∂ ũi

∂xj
= −ε ′. (2.15b)

At this stage, (2.12) and (2.13) are functions of the time t, the reference point vector x
and the separation vector r. This leads to a problem in seven dimensions (eight before
time-averaging). In order to reduce the number of degrees of freedom, one generally
invokes the local isotropy assumption. The practical consequence is that these isotropic
forms lend themselves to be tested experimentally, with the constraint that two-point
statistics are usually evaluated along one particular direction. Further, this allows us
to compare the present considerations with those developed over the last half century
(Kolmogorov 1941a; Yaglom 1949; Antonia et al. 1997; Danaila et al. 2002, 2004).

2.2.2. Locally homogeneous and isotropic context
First, if homogeneity holds at the level of the viscous scales, then the viscous term

of, e.g., the RM reduces to (Hill 2001)

− ν
[(

2
∂2

∂r2
j
+ 1

2
∂2

∂X2
j

)
1q′2 + 2Σ

(
∂u′i
∂xj

∂u′j
∂xi

)]
=−2ν

∂2

∂r2
j
1q′2. (2.16)
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Then, in a locally isotropic context, the divergence and the Laplacian operators are
expressed as (Danaila et al. 2002, 2004)

∂

∂rj
= 2

r
+ ∂

∂r
,

∂2

∂r2
j
=
(

2
r
+ ∂

∂r

)
∂

∂r
. (2.17a,b)

By further using (2.17), after multiplying (2.12) and (2.13) by r2 = rjrj, integrating
with respect to r and dividing by r2, we obtain

1
r2

∫ r

0
s2
(
Ic +Acm +Dcc +D†

rc +Pcm −Prc +Dcp
)

ds

+1ũ‖1q̃2 + 2
r2

∫ r

0
1ũi

∂

∂s
s2
〈
1u′‖1u′i

〉
ds− 2ν

∂

∂r
1q̃2 =−4

3
ε̃r; (2.18a)

1
r2

∫ r

0
s2
(
Ir +Arm +Drr +D††

rc +Prm +Prc +Drp
)

ds+ 〈1u‖1q2〉

−1ũ‖1q̃2 − 2
r2

∫ r

0
1ũi

∂

∂s
s2〈1u′‖1u′i〉 ds− 2ν

∂

∂r
1q′2 =−4

3
ε ′r. (2.18b)

Equations (2.18a) and (2.18b) are the energy budget equations for the coherent and
random components in a locally isotropic context. Here, s is a dummy variable and
the subscript ‖ denotes the direction parallel to the separation vector. When the spatial
separation is inferred using Taylor’s hypothesis, this direction coincides with that of
the mean flow.

The first line of (2.18a) and (2.18b) represents the energy contribution of the largest
scales (Danaila et al. 2002, 2004). The main difference with respect to the extended
form of Kolmogorov equation (Antonia et al. 1997), is the appearance of several extra
terms due to the presence of CM. The effective energy transfer of the random velocity
component is explicit and consists of the total energy transfer

〈
1u‖1q2

〉
(including

the coherent and random contributions), from which are subtracted the coherent energy
transfer 1ũ‖1q̃2 and the forcing term (2/r2)

∫ r
0 1ũi(∂/∂s)s2〈1u′‖1u′i〉ds. In § 4, results

based on experimental data will be shown.

2.3. Experiments
We recall briefly the most important features of the experimental set-up and
measurement technique. The principal characteristics of the measurements reported
here (performed at three downstream locations) are reported in table 1. For more
detailed information, the reader can refer to Zhou et al. (2003).

Measurements were carried out in an open-circuit wind tunnel with a working
section of 0.35 m× 0.35 m and 2.4 m long. The cylinder of diameter D= 12.7 mm
(figure 1) is placed horizontally, across the working section. The upstream velocity
U0 is 3 m s−1 corresponding to a Reynolds number ReD = (U0D)/ν = 2540 (ν is
the kinematic viscosity). Larger values of the upstream velocity U0 than reported by
Zhou et al. (2003), were also used, leading to larger values of the Taylor micro-scale
Reynolds number Rλ = (

√
u2λ)/ν. u2 is the streamwise velocity variance, λ is

the Taylor micro-scale: λ2 = 15νu2/ε and ε the mean energy dissipation rate (see
Zhou et al. (2003) for the values and the procedure employed for measuring ε).
Measurements were made at different downstream locations, x = 10, 20, 40D, and
different transverse positions, from y= 0 to y= 3D.
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x/D 10 20 40

u2 (m2 s−2) 0.276 0.133 0.045
v2 (m2 s−2) 0.716 0.208 0.047
w2 (m2 s−2) 0.137 0.097 0.42

ε (m2 s−3) 6.4 2.2 0.48
Lv/D 4.15 4.13 4.24
λ (mm) 3.1 3.7 4.6
η (mm) 0.15 0.20 0.29

Rλ 109 90 65

TABLE 1. Relevant flow parameters on the centreline of the wake for downstream

distances of 10, 20 and 40D. The Reynolds number Rλ = (u2)1/2λ/ν, with λ=
√

15νu2/ε

is based on the longitudinal velocity fluctuations since u is weakly influenced by the CM.

(b)(a)

x

x

y

z

y

z

Side viewFront view

y

FIGURE 1. (a) Definition of the coordinate system. (b) Sketches of the vorticity probe.

A hot-wire probe, consisting of four cross-wires (figure 1) was used to measure
simultaneously all three vorticity components (see Zhou et al. (2003) for more details
about the probe).

Phase-averaged statistics are obtained as follows. The transverse velocity component
v was digitally band-pass filtered at the Strouhal frequency, using a eighth-order
Butterworth filter. The filtering operation is implemented on the Fourier transform of
v in order to avoid any phase shift. As proposed by Perrin et al. (2007), the Hilbert
transform h of the filtered signal vf is subsequently calculated and the phase φ inferred
from the relation φ= arctan(h/vf ). Finally, the phase is divided into 41 segments and
phase-averaged statistics are calculated for each segment. The statistical convergence
of calculated structure functions is known to be a common issue (Nichols-Pagel
et al. 2008), and more especially when conditional structure functions are needed. In
the present study, the convergence of statistics for second- and third-order moments
were checked, by reducing the number of segments for the phase, and found to
be satisfactory. By means of our method, phase-averaged quantities are calculated
over the period [−π, π]. As was done by O’Neil & Meneveau (1997), the phase is
doubled up to [−2π, 2π] by taking advantage of the periodicity, in order to enhance
the visual display.

In Marati, Casciola & Piva (2004), the geometrical space (location in the flow)
and the separation space (turbulent scales) are made independent by considering the
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FIGURE 2. Energy contribution of the CM (◦, 10D; �, 20D; ♦, 40D): (a) ũ2/u2;
(b) ṽ2/v2; (c) w̃2/w2.

location specified by the midpoint X = 1
2

(
x+ x+

)
with x+= x+ r. The same idea is

applied here to phase-averaged structure functions for which the phase φ is defined
as the phase at the midpoint φ = φ(X). Defining φ = φ(x) or φ = φ(x+) would have
led to a linear dependence between φ and r.

3. Results: phase-averaged statistics in the wake flow
3.1. Flow topology and one-point, time-averaged quantities

The kinetic energy of the organized motion is compared with that of the total
fluctuating field (figure 2a–c). Ratios ũα

2
/u2

α are calculated at several lateral y/D, as
well as three downstream locations (10D, 20D and 40D).

On the wake centreline, one observes that the organized motion is mostly
perceptible on the transverse velocity component v. Its energy contribution represents
≈70 % of the transverse velocity variance at 10D, and is still perceptible at 40D
where ṽ2/v2 ≈ 10 %. In contrast, ũ2 represents only 5 % of the total variance at
x = 10D, y = 0 and is negligible beyond 20D. The location of the maximum of
ũ2/u2 lies between y = 1D and y = 2D, depending on the downstream distance.
This transverse position is related to the position of the coherent structures which
move away from the centreline when the downstream distance increases. At this
particular transverse position, ũ2/u2≈ (1/2)ṽ2/v2. Finally, the spanwise kinetic energy
w is entirely uncorrelated with the organized motion, as emphasized by Kiya &
Matsumura (1988) in the wake of a normal plate.

One of the main advantages of phase-averaging is that it permits temporal
and/or spatial dynamics associated with the presence of the organized motion to
be emphasized. With regard to the wake flow, one generally displays statistics in the
(φ, y) plane (Bisset et al. 1990; Zhou & Antonia 1995) to relate, e.g., the spatial
organization of kinetic energy to that of the CM. The phase-averaged sectional
streamlines of the half-wake are reported in figure 3(a–c) for downstream positions
varying from 10 to 40D. These are calculated and displayed following the procedure
of Bisset et al. (1990), Zhou & Antonia (1993) and Zhou et al. (2003). Sectional
streamlines are observed in a frame of reference moving at a convection velocity of
the coherent structures Uc (see Zhou & Antonia (1992), Lin & Hsieh (2003) and Zhou
et al. (2003) for values of Uc), the direction of which is from the right to the left,
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FIGURE 3. (Colour online) (a–c) Phase-averaged sectional streamlines. (d–f ) Contours of
ũ/U0. (g–i) Contours of ṽ/U0. (j–l) Contours of S̃D/U0. The flow direction is from left
to right: (a,d,g,j) x= 10D; (b,e,h,k) x= 20D; (c,f,i,l) x= 40D.

while the main flow is from left to right. Phase-averaged sectional streamlines reveal
the position of the vortex cores which are centred around φ=π/2± 2kπ (k ∈N) and
at lateral positions varying between 0.25D at 10D and 1D at 40D. The saddle points
are located at φ =−π/2± 2kπ and y≈ 1− 1.5D as x increases. Moreover, near the
cylinder the coherent structures are skewed along the y direction, with the highest
intensity located very nearly the wake centreline. Further downstream, the coherent
structures cores are located away from the centreline (y ≈ 1D), and they occupy a
smaller volume due to the total circulation (Γ ) being very nearly conserved in the
near-field of the wake.

We now turn our attention to the repartition of coherent kinetic energy in the (φ, y)
plane. Isovalues of ũ are reported in figure 3(d–f ) and those of ṽ in figure 3(g–i). Note
that φ= 0± kπ and y= 0 correspond to the location of the absolute maximum of the
coherent transverse velocity fluctuation ṽ. In contrast, local maxima of the longitudinal
component ũ is phase-shifted by φ=π/2, with maximum values corresponding to the
upper boundary of the positive vortex (φ=π/2± 2kπ) (Matsumura & Antonia 1993).
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Minimum values are located at the upper boundary of vortices of negative sign
(φ = π± 2kπ) (Matsumura & Antonia 1993). Note also that on the wake centreline,
ũ reveals a periodicity of period π due to the symmetric arrangement of vortices
with respect to the centreline. In figure 3(j–l) is displayed the coherent strain
S̃ = (∂〈U〉/∂y) + (∂〈U〉/∂x) in the (φ, y) plane at the three downstream positions
investigated. The coherent strain is of particular interest since it may induce an
additional production term of both coherent and random fluctuations (Reynolds &
Hussain 1972). In the wake flow, this quantity reveals local maxima located at saddle
points, i.e. φ = −π/2 ± 2kπ. The strong connection between the energy distribution
across turbulent scales and the coherent strain will be emphasized in § 3.2.

In summary, it is highlighted that the CM is mostly discerned on v with local
extrema of ṽ located at φ = 0± kπ and y= 0d. Phase-averaged sectional streamlines
show that coherent structures are centred around φ = π/2± 2kπ and 0.25d < y< 1d
depending on the streamwise location.

In the light of the previous remarks, this study will focus entirely on the wake
centreline where the energy contribution of the CM is maximum. In addition, this
allows the effect of the coherent strain to be separated from that of the mean shear
which is absent on the wake axis. It has been well established that the mean shear
influences the behaviour of the smallest scales even at large Reynolds numbers
(Praskovsky et al. 1993; Sreenivasan & Dhruva 1998; Shen & Warhaft 2000).

3.2. Second-order phase-averaged structure functions
We begin with phase-averaged second-order structure functions of the longitudinal
velocity component u. We report the scale-by-scale energy distribution, of the total
fluctuating field (figure 4a–c), of the CM (figure 4d–f ) and of the random part
(figure 4g–i) in the (φ, r) plane, for x varying from 10 to 40D. The separation r is
calculated by means of Taylor’s hypothesis (i.e. r=Ucτ =Uc/Fs, Fs is the sampling
frequency) and thus coincides with the direction of the mean flow x. The r axis is
normalized by Lv, the streamwise distance between two consecutive vortices of the
same sign: Lv = 4.15D, 4.13D and 4.24D for x= 10, 20 and 40D respectively.

A careful analysis of figure 4(a–c) reveals the range of scales which are influenced
by the CM. At x= 10D, the kinetic energy at the smallest scales is strongly enhanced
at φ = −π/2 ± kπ. This phase location corresponds to the maxima (in amplitude)
of the coherent strain. At 20D, the dependence of the phase is no longer visible at
the smallest scales, but it still persists at the largest scales (r/Lv > 0.2). At 40D, the
influence of the CM among all values of the separation r is not discernible.

Concerning the (r, φ)-energy distribution of the CM (figure 4d–f ), we observe
that (1ũ)2 is zero for a phase φ = 0 ± k(π/2). Also, (1ũ)2 = 0 for r = Lv/2 +
k(Lv/2). This indicates that the periodicity in u is half the distance between
two vortices so that ũ(x) − ũ(x + Lv/2 + k(Lv/2)) = 0 and, thus, 〈(1u)2〉(r =
Lv/2 + k(Lv/2)) = 〈(1u′)2〉(Lv/2 + k(Lv/2)). At 40D, the amplitude of ũ is too
small for the phase-average operation to reliably capture the energy distribution of
the CM.

An important remark is that even though the r-axis is limited to 3Lv, the pattern
observed in (1ũ)2 continues indefinitely. Indeed, since the periodicity leads to a Dirac
function in spectral space, the same periodicity has an infinite extent in physical space.
Therefore, the localization in terms of scales of the CM energy is lost in physical
space, and its energy distribution is spread over an infinite range of scales.

The (r, φ) energy distribution of the RM along the longitudinal direction, for
downstream distances varying from x = 10D to 40D, are plotted in figure 4(g–i).
The topology of 〈(1u′)2〉(r, φ) is very similar to that of the total fluctuating field.
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FIGURE 4. (Colour online) Phase-averaged second-order structure function of the
longitudinal velocity component u (in logarithmic scales log10): (a–c)

〈
(1u)2

〉
/u2; (d–f )

(1ũ)2/ũ2; (g–i)
〈
(1u′)2

〉
/u′2; (a,d,g) x = 10D; (b,e,h) x = 20D; (c,f,i) x = 40D. Vertical

lines correspond to φ = 0 and φ =±3π/2.

This reveals that the phase-correlation observed in figure 4(a,b) is not representative
of the longitudinal coherent forcing ũ, whose topology is clearly different. In contrast,
the phase-correlation at small scales may be caused by a forcing in another direction,
most likely in the y direction associated with ṽ. To unravel this issue, we now focus
on the transverse velocity, whose contribution to the total kinetic energy is much
more significant than that of u.
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FIGURE 5. (Colour online) Phase-averaged second-order structure function of the
transverse velocity component v (in logarithmic scales log10): (a–c)

〈
(1v)2

〉
/v2; (d–f )

(1ṽ)2/ṽ2; (g–i)
〈
(1v′)2

〉
/v′2; (a,d,g) x = 10D; (b,e,h) x = 20D; (c,f,i) x = 40D. Vertical

lines correspond to φ = 0 and φ =±3π/2.

The phase-averaged transverse structure functions of the total fluctuating field
v (figure 5a–c), of the coherent component ṽ (figure 5d–f ), and of the randomly
fluctuating field v′ (figure 5g–i) for downstream distances varying from 10 to 40D
are now presented. The phase-correlation of the total fluctuating field (figure 5a–c) is
clearly visible. A distance of 40D is needed before the phase-correlation disappears
for small scales; however, it is still perceptible for scales beyond r = 0.2Lv ≈ 2λ.
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As in the case of u, the energy at any scale r of the transverse velocity component
v is enhanced at a phase φ = π/2± kπ and is much smaller at a phase φ = 0± kπ.
The topology of 〈(1v)2〉 is very analogous to that of (1ṽ)2 (figure 5d–f ) which was
not the case for u. For example, the phase π-periodicity and separation Lv-periodicity
are recovered. Further, the local maxima and minima correspond to those of the
CM. Hence, this statistical tool allows us to assert that the CM makes a strong
energy contribution to the total fluctuating field, especially in the intermediate wake.
By virtue of (2.6), we can calculate the random structure function of the velocity
component v (figure 5g–i). At 40D, the phase-averaged structure function is of similar
shape to the usual time-averaged structure function, and the phase-correlation is lost.
However, at 10D and 20D, there is still a strong influence of the phase, even at very
small scales. Note also that the topology in the (r, φ) plane is quite comparable with
that of u, but amplitudes differ significantly (by a factor ≈2).

We have emphasized that ṽ is the most important fluctuation. It is therefore
important to dispose of a model for its statistics. Figure 5(d–f ) emphasize that the
coherent fluctuations contours in the (φ, r) plane are very similar. This particular
feature indicates that a possible analytical expression can be applied to model the
energy distribution among different scales. The phase-averaged structure function can
be for example written as the product of two sinus functions parametrized by Lv, the
streamwise distance between two consecutive vortices, and ṽ2, the variance of the
coherent part of the transverse velocity, namely

(1ṽ)2/ṽ2 = 8 sin2(φ) sin2

(
π

r
Lv

)
. (3.1)

Therefore, for φ=0± kπ, (1ṽ)2=0 and for φ=π/2± kπ (1ṽ)2/ṽ2=8 sin2(π(r/Lv)),
as is observed experimentally. Further, (1ṽ)2 = 0 for r = Lv ± kLv, and (1ṽ)2/ṽ2 =
8 sin2(φ) for r = Lv/2± kLv in agreement with figure 5(d–f ). Note also that, due to
the symmetry of the sinus function

(1ṽ)2
(
φ ± k

π

2

)
= (1ṽ)2

(
−φ ± k

π

2

)
. (3.2)

Then, the time-averaged structure function is obtained by integrating (3.1) over the
period φ ∈ [−π;π]

(1ṽ)2/ṽ2 = 4 sin2

(
π

r
Lv

)
. (3.3)

Equation (3.3) can be easily demonstrated by supposing ṽ = cos(2π(x/Lv)) and
applying a spatial average over the period [0; 2π]. In figure 6(a–c), we compare the
experimental phase-averaged structure functions with those modelled by (3.1) for the
three values of x/D and three different phase references. At x= 10D (figure 6a), the
model is qualitatively able to reproduce the shape of the phase-averaged structure
functions. However, there are quantitative differences. For example, for φ = π/2,
the maximum value is weaker than that predicted by the model. In contrast, at
the same phase reference, the model underestimates the energy distribution at the
smallest scales. Further, the symmetry property (3.2) is violated since (1ṽ)2(3π/4) 6=
(1ṽ)2(π/4). This asymmetry is discernible in figure 5(d), and may be associated
with another superposed sinusoidal signature. The latter may be phase-shifted
from the main sinusoidal function that is accounted for in (3.1). At x = 20D
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FIGURE 6. Phase-averaged second-order structure function of the coherent transverse
velocity component ṽ, 〈(1ṽ)2〉/ṽ2: (a) 10D, (b) 20D, (c) 40D. Symbols: �, φ = π/2;◦, φ = π/4; ♦, φ = 3π/4. Comparison with the analytical expression (3.1):- - - -,
φ =π/2; ——, φ =π/4 and φ = 3π/4.
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FIGURE 7. Time-averaged second-order structure function of the coherent velocity
component v: ——, analytical expression based on (3.3);◦, 10D; �, 20D;
♦, 40D.

and x = 40D (figure 6b,c), the symmetry (3.2) is recovered and the sine-type model
closely follows the experimental phase-averaged structure functions.

To summarize, the sine-type model for phase-averaged structure functions indicates
only small departures from the measurements, especially at 10D. However, as
emphasized by figure 7, the time-averaged structure function of the CM is very
well reproduced by (3.3). This provides very encouraging experimental support
for the ability of this very simple model to represent the essential physics of the
CM, that is the distribution of energy among scales. In addition, let us recall that
some analytical expressions of time-averaged structure functions have already been
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proposed, for example by Kurien & Sreenivasan (2000); Aivalis et al. (2002), and
recently successfully invoked by Antonia et al. (2003), Antonia & Burattini (2006)
in grid turbulence. These expressions which relate mostly to a purely random field
can be added to (3.3) by virtue of (2.6) to assess the energy distribution of the total
kinetic energy in a flow where a CM persists.

3.3. Third-order phase-averaged structure functions
We now turn our attention to third-order phase-averaged structure functions, and
especially the mixed structure function 〈1u1v2〉. After applying the triple decomposition
to 〈1u1v2〉 and with 〈1u′α〉 = 0 we obtain

〈1u(1v)2〉 =1ũ(1ṽ)2 + 〈1u′(1v′)2〉 +1ũ〈(1v′)2〉 + 21ṽ〈1u′1v′〉. (3.4)

Obviously, the phase-averaged third-order structure function of the random field can be
assessed from (3.4), knowing 1ũ and 1ṽ, 〈(1v)2〉 and

〈
1u(1v)2

〉
. In figure 8(a–c)

are represented the third-order structure functions of the total fluctuating field for x=
10D, 20D and 40D, respectively. Here 〈1u1v2〉 is divided by εr, where ε is the mean
kinetic energy dissipation rate reported by Zhou et al. (2003).

First, one observes a strong small-scale phase-correlation, even at 40D. This
indicates that the phase-correlation is clearly much more significant for third-order
moments than for second-order structure functions. We can thus expect that for
higher moments and especially for fourth-order moments which give a first indication
or measure of internal intermittency, the phase-correlation may be more significant,
whether the order of the moment is even or odd may also play a significant role.
This issue is left for future work.

In the inertial range and in a locally isotropic context, we expect

−〈1u(1v)2〉 =− 1
3〈(1u)3〉6 4

15εr≈ 0.267εr. (3.5)

We observe that the maximum of the phase-averaged third-order structure functions
can achieve some very high values, especially at 10D and 20D where −〈1u(1v)2〉/εr
is ≈20 and ≈6 times greater than the expected isotropic value of 4/15. These maxima
are located at φ = π/2 ± kπ where the coherent strain is maximum. This is the
experimental evidence of a strong anisotropy of the total fluctuating field at rather
small scales. The connection between the positions of the latter anisotropy and that
of the coherent strain is fully consistent with the conclusions of Thiesset et al. (2013b).
The coherent third-order structure function (figure 8d–f ), is not negligible at 10D and
tends to decrease as x increases. At x= 40D, the maximum value of the third-order
structure function is two orders of magnitude smaller than that of the total fluctuating
field. However, irrespectively of x, since positive and negative coherent fluctuations
are of the same amplitude, the time-averaged third-order structure function of the CM
is particularly weak.

In figure 8(g–i), we represent the random phase-averaged third-order structure
functions between x = 10D and x = 40D. Here again, the phase-correlation is
easily discernible, and more accentuated than that of the second-order moments. At
x = 20D, 40D, the maximum value exceeds the isotropic expectation of 4/15, while
at 40D the maximum value is roughly consistent with isotropy. The phase location of
these maxima is φ =π/4± kπ. By comparison with figure 8(a–c), these maxima are
also localized at smaller scales (r≈ 1− 2λ) and have a smaller magnitude. Since the
third-order structure function of the CM is particularly small especially at 40D, the
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FIGURE 8. (Colour online) Phase-averaged third-order structure functions: (a–c)
−〈1u(1v)2〉/εr; (d–f ) −1ũ(1ṽ)2/εr; (g–i): − 〈1u′(1v′)2

〉
/εr; (a,d,g) x = 10D; (b,e,h)

x = 20D; (c,f,i) x = 40D. The horizontal dashed line represents the Taylor microscale λ.
Vertical lines correspond to φ = 0 and φ =±3π/2.

difference between 〈1u(1v)2〉 and 〈1u′(1v′)2〉 is mostly due to the other subtracted
terms and particularly to 21ṽ〈1u′1v′〉 (not shown), which may be interpreted as the
sweeping of the random Reynolds stress by the organized motion.

In summary, phase-averaged structure functions are an adequate tool for highlighting
the influence of the CM. The latter persists even at the smallest scales and relatively
far downstream of where the energy was injected. The influence is more perceptible
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on third-order moments than on second-order moments. For example, at x=40D, there
is no more footprints of the CM on phase-averaged second-order structure functions.
However, the interaction persists in third-order moments. Other measurements were
made with the same vorticity probe, at the same spatial locations, but at a higher
Taylor microscale Reynolds number (up to Rλ ≈ 300). Although these data are not
reported in this study, they reveal that the scale beyond which the CM has an
influence remains constant (in terms of Lv, which does not vary over the range of
Reynolds numbers investigated). This observation was already predicted by Thiesset
et al. (2013b) using dimensional arguments. Nevertheless, since the Taylor and
Kolmogorov length scales progressively diminish as the Reynolds number increases,
the range of scales which is not influenced by the dynamics of the CM extends. In
other words, the degree of interactions between the CM and small scales must be
understood as a finite Reynolds number effect and should be discernible especially
at small Reynolds numbers. We can thus expect SSU to be recovered at infinite
Reynolds numbers since the degree of the interactions between the CM and the small
scale progressively diminishes.

On the other hand, we have to mention that it would be incorrect to conclude
that the phase-correlation at the smallest scales is the experimental evidence for the
existence of non-local interactions between separated scales. Indeed, it was shown
that the CM energy is not precisely localized in physical space (in contrast with the
spectral space) and extends over an infinite range of scales. This conclusion queries
the ability of second-order structure functions to describe effectively the energy at a
particular scale r. According to Townsend (1956) Davidson & Pearson (2005) Mouri
& Hori (2010) and Danaila et al. (2012a), second-order structure functions represent
the energy of every scale smaller than r rather than the energy of a scale of typical
size r.

4. Experimental assessment of scale-by-scale energy budget
At the centreline, the locally isotropic scale-by-scale budget of the RM can be

written

− 1
r2

∫ r

0
s2Arm ds− 〈1u‖1q2〉 +1ũ‖1q̃2

+ 2
r2

∫ r

0
1ũi

∂

∂s
s2〈1u′‖1u′i〉 ds+ 2ν

∂

∂r
1q′2 = 4

3ε
′r, (4.1)

which means that in the limit of large scales, the advection term is almost entirely
compensated by the energy dissipation rate; other large scale terms such as
longitudinal production or turbulent diffusion are, as a first approximation, negligible
compared with the advection term.

First, let us assess the adequacy of the local isotropy hypothesis on the wake
centreline. To this end, we use the isotropic relation between second-order structure
functions (Monin & Yaglom 2007)

(1u⊥)2|iso = (1u)2 + r
2
∂

∂r
(1u)2, (4.2)

in which u⊥ denotes either v or w. In figure 9(a), we report the ratio between
measured and calculating structure functions (using (4.2)) of the velocity component
v, v′ and w. If isotropy holds, the ratio must be equal to one for all values of r.

First, the spanwise velocity component w closely follows the isotropic relation.
The departure from local isotropy does not exceed 10 %. At the smallest scales,
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FIGURE 9. (a) Ratios between measured and calculated second-order structure functions:
�, (1v)2/(1v)2|iso; ◦, (1v′)2/(1v′)2|iso; ♦, (1w)2/(1w)2|iso. Here · · · · · · and - - - -
represent a departure of 10 % and 20 % respectively. (b) Nonlinear transfer term divided
by ε ′r: ——, total transfer term −〈1u‖1q2

〉
; — ·—, coherent transfer and forcing term

1ũ‖1q̃2 + (2/r2)
∫ r

0 1ũi(∂/∂s)s2
〈
1u′‖1u′i

〉
ds; - - - -, sum −〈1u‖1q2

〉 + 1ũ‖1q̃2 +
(2/r2)

∫ r
0 1ũi(∂/∂s)s2

〈
1u′‖1u′i

〉
ds. (c) Scale-by-scale budget of the RM (4.1) divided by

ε ′: ——, (4/3)ε ′r; ×, −(1/r2)
∫ r

0 s2Arm ds; �, −〈1u‖1q2
〉
; ◦, −〈1u‖1q2

〉+1ũ‖1q̃2+
(2/r2)

∫ r
0 1ũi(∂/∂s)s2〈1u′‖1u′i〉ds; +, 2ν(∂/∂r)1q′2 ; 4, left-hand side of (4.1).

the transverse component v respects isotropy and the ratio increases as we progress
through to larger scales. The maximum deviation from isotropy is observed at
r/Lv ≈ 0.5≡ r ≈ 5λ and the value of the ratio approaches 50 %. As was emphasized
by Thiesset et al. (2013b), this departure from local isotropy can be explained by
the presence of the coherent strain associated with the organized motion. However,
statistics of the random part of the fluctuating transverse motion are much closer to
the isotropic value, and (4.2) is respected with a maximum departure of approximately
30 %. Therefore, isotropy is roughly verified on the centreline of the wake for scales
smaller than ≈3λ. For larger scales the departure from local isotropy attains 30 %
which does not seem unreasonable as far as experimental sources of errors are
concerned.

Note that the local axisymmetry hypothesis should have been a more comfortable
approximation since (1v′)2 ≈ (1w′)2 for r < 2 − 3λ. This indicates that a possible
extension of the present work is to derive the axisymmetric energy budgets equations
which account for the CM, following the procedure outlined for example by Danaila
et al. (2012b). However, the comparison with experiments is much more difficult since
this requires the measurements of three-point correlation functions using, at least, two
X-probes separated in the transverse direction (Sjögren & Johansson 1998; Valente
2013). For this reason, we are interested here only in the isotropic formulation of the
scale-by-scale energy budgets.

Let us now turn our attention to the effective transfer term that was emphasized
in the previous analytical section. Figure 9(b) shows the total nonlinear transfer
−〈1u‖1q2〉, the additional coherent transfer and forcing due to the CM 1ũ‖1q̃2 +
(2/r2)

∫ r
0 1ũi(∂/∂s)s2〈1u′‖1u′i〉 ds as well as the effective transfer inferred from their

sum, as a function of the separation r/Lv.
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For weakly turbulent flows, the nonlinear transfer term is smaller than (4/3)εr,
because of the cross-over between viscous and large-scale effects (Danaila et al.
2002, 2004). Here, −〈1u‖1q2〉/ε ′r ≈ 0.63. The additional energy transfer associated
with the CM is negative, its value being quite small, although not negligible. Its
contribution is non-zero for all separations with a maximum contribution at about 2λ.
Finally, the maximum effective transfer of the RM is smaller than the total transfer
by approximately 12 %. Even though the difference of 12 % between the total energy
transfer and the effective energy transfer is not large, its influence may persist far
from the injection of energy (Thiesset et al. 2013b) and thus remains the key for
providing some insight into the energy transfer along the cascade in the wake flow,
for which the CM is discernible. In a recent study (Thiesset et al. 2013a), it was
observed that the maximum value of nonlinear transfer term measured in the wake
of different generators was always larger than that expected for grid turbulence for
which the CM is absent. We thus prove here that this difference is associated with
the presence of the CM whose macroscopic effect (i.e. when the RM and CM are
not dissociated) is to enhance the total energy transfer.

The Reynolds number also has an influence on the amplitude of the effective
energy transfer. Using the data at higher Reynolds numbers, it was observed that
the difference between the total and the effective energy transfers diminishes as the
Reynolds number is enhanced, and might be negligible beyond Rλ = 250–300 for
the circular cylinder wake. Therefore, the effect of the CM on the energy transfer
must be interpreted as a finite Reynolds number effect. On the other hand, this
difference between the total and the effective energy transfer depends also on initial
conditions since different generators lead to different amplitudes of the CM (see e.g.
Antonia et al. 2002; Thiesset et al. 2013a,b). Therefore, the Reynolds number that is
required for the forcing due to the CM to be negligible depends on initial conditions,
and is expected to be larger for porous generators than for impervious ones. The
extra-transfer term is non-zero over a large range of scales. However, one cannot
claim that this quantifies the non-local interactions between coherent and random
fields because of the loss of localization in physical space, as mentioned previously.

The balance between right- and left-hand sides of (4.1) is reasonably satisfied at all
scales (figure 9c). The weak imbalance at rather large scales implies that either local
isotropy no longer holds or that other production and/or diffusion terms must be taken
into account in (4.1).

5. Conclusions
The connection between the temporal dynamics of the CM and the energy

distribution across all scales has been highlighted by means of phase-averaged
structure functions. This original statistical tool allows us to assess the range of
scales affected by the CM dynamics. Moreover, we are able to separate the energy
contributions of the coherent and random fluctuations. Phase-averaging the structure
functions measured in a cylinder wake yields three main outcomes.

First, it is shown that, as the distance downstream of the cylinder increases, (i) the
scale at which the forcing associated with the CM is perceptible continually increases,
(ii) phase-scale structure functions reveal also that a scale r is correlated with that of
the coherent strain, the effect of the latter being to locally enhance the energy at any
scale r.

Second, we have proposed a simple analytical expression for the CM energy
distribution. This treatment relies on two parameters that may depend on the type
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flow: the length scale Lv and the variance ṽ2. This expression can be used together
with available analytical expressions for the second-order structure functions which
relate to the RM, therefore providing an analytical description of the total fluctuating
field statistics.

Finally, energy budget equations which account for the organized motion are derived.
Both general and isotropic formulations are obtained. They highlight a few additional
terms. One of these is interpreted as an additional forcing exerted by the CM on
the RM. At x = 40D, this term represents approximately 12 % of the total transfer
term, but its influence may persist far downstream. The isotropic formulation is tested
against experimental data at the wake centreline. The weak imbalance between the
analytical formulation and the measurements at rather large scales appears to underline
the inadequacy of local isotropy at these scales.
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