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CONSERVATIVITY FOR THEORIES OF COMPOSITIONAL TRUTH
VIA CUT ELIMINATION

GRAHAM E. LEIGH

Abstract. We present a cut elimination argument that witnesses the conservativity of the compositional
axioms for truth (without the extended induction axiom) over any theory interpreting a weak subsystem
of arithmetic. In doing so we also fix a critical error in Halbach’s original presentation. Our methods show
that the admission of these axioms determines a hyper-exponential reduction in the size of derivations of
truth-free statements.

81. Overview. Let [Ag + exp and 1Ag + exp; be the first-order theories extend-
ing Robinson’s arithmetic by Ag-induction and, respectively, axioms expressing the
totality of the exponentiation and hyper-exponentiation function. If S is a first-order
theory interpreting |Ag + exp then by CT[S] we denote the extension of S by a fresh
unary predicate T and the compositional axioms of truth for T.!

In this paper we provide syntactic proofs for the following theorems.

THEOREM 1.1. Let S be an elementary axiomatised theory in a finite language
interpreting |Ag + exp. Then CT[S] conservatively extends S. Moreover, this fact is
verifiable in 1A + exp;.

Let p be a fresh unary predicate symbol not present in the language £ of S. An
L-formula D is an S-schema if S+ D" — o for every L-formula ¢ and there exists
a finite set of formule U such that S = Dx — Jy \/ c;(x = "p[w/p]7).

THEOREM 1.2. Let S be as above. For any S-schema D, the theory CT[S] +
Vx(Dx — Tx) is a conservative extension of S. Moreover, this fact is verifiable in
[Ag + exp;.

The first part of Theorem 1.1 was first established by Barwise and Schlipf in the
early 70s (see Theorem IV.5.3 of [1]) and later independently proved by Kotlarski,
Krajewski, and Lachlan [13] for the case of S = PA, also establishing the first
part of Theorem 1.2 in this case. Both proofs are model-theoretic, showing that a
countable nonstandard model of S contains a full satisfaction class if it is recursively
saturated. Since every model of S is elementarily extended by a recursively saturated
model of the same cardinality, conservativity is obtained. Recently, Enayat and
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Visser [2] provided an alternative argument (again model-theoretic) that establishes
both theorems as well as their formalisation in weak arithmetic (the special case of
S = PAis outlined in [3]).

Halbach [7] offers a proof-theoretic account of Theorem 1.1. The strategy pro-
ceeds as follows. First the theory CT[S] is reformulated as a finitary sequent calculus
with a cut rule and rules of inference in place of each of the compositional axioms
for truth. A typical derivation in this calculus features cuts on formulz involving the
truth predicate and for general S the system will not admit cut elimination. Instead,
Halbach outlines a method of partial cut elimination whereby every cut on a for-
mula involving the truth predicate is systematically replaced by a derivation with
cuts only on truth-free formule. Halbach’s proof, however, contains a critical error
(see Section 3.7 below and also Theorem 8.5 of [9]). Nevertheless, the argument
yields a method to eliminate cuts of a very particular kind, namely those on formulae
T(s) for which it is derivable (within S) that the logical depth of the formula coded
by s is bounded by some closed term.

The present paper provides the necessary link between the CT[S] and its frag-
ment with bounded cuts. This takes the form of the following lemma (proved in
Section 53).

BoUNDING LEMMA. If T and A are finite sets consisting of truth-free and atomic
formulew only, and the sequent I = A is derivable in CT[S], then there exists a
derivation of this sequent in which all cuts are either truth-free or bounded.

Let CT*[S] denote the subsystem of CT[S] featuring only bounded cuts. Halbach’s
result shows that this calculus permits the elimination of all cuts containing the truth
predicate. Thus the first part of Theorem 1.1 is a consequence of the above lemma.
Moreover, the proof determines bounds on the size of the resulting derivation from
which the second part of Theorem 1.1 can be readily deduced.

A particular instance of Theorem 1.2 of interest is if S is a schematic theory
(in the sense of [4]) and D is the predicate Axs expressing the property of encoding
an axiom of S. Axpa, for instance, can be seen as a PA-schema by choosing U to
consist of p(0) AVx(p(x) = p(x +1)) = Vx p(x) and the noninduction axioms
of PA. In this case we notice that the reduction of CT[S] to CT*[S] also yields a
reduction of CT[S] + Vx(Axsx — Tx) to the extension of CT*[S] by the rule

I' = A, Axss

ATy )

It is not immediately clear whether this new theory admits a cut elimination process
for T-cuts. Instead we show that this extension of CT*[S] is relatively interpretable
in CT[S], whence Theorem 1.1 yields Theorem 1.2.

1.1. Outline. In Sections 2 and 3 we formally define the theory CT[S] for suit-
able S and its presentation as a sequent calculus, as well as the sub-theory with
bounded cuts, CT*[S]. Section 4 contains the technical lemmas necessary for the
Bounding Lemma and main Theorems, the proofs of which form the content of
Section 5. In Section 6 we present applications of our analysis to questions relating
to interpretability and speed-up and in the final section we discuss future avenues
of research.
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§2. Preliminaries. We are interested in first-order theories that possess the math-
ematical resources to develop their own meta-theory. It is well-known that only
a weak fragment of arithmetic is required for this task, namely 1Ay + exp. For
our purposes we therefore take the interpretability of 1Ay + exp as represent-
ing that a theory possess the resources to express basic properties about its own
syntax.

Let £ be a finite first-order language and S an £-theory interpreting 1Aq + exp. It
will be useful to work with an extension of £ that includes a countable list of fresh

constant ¢; we denote this extended language by L. The logical depth of a formula
o in L7, denoted d(a). is given by: d (o) = 0 if o is atomic; d (Vxa) = d (Ixa) =
d(-a)=d(a)+ l;and d(ap V a1) = d(ap A ay) = max{d(ag),d(a1)}.

We fix some standard representation of £ in 1Ag + exp, which takes the form of
a fixed simple Godel coding of £ into £ with:

1. Predicates Term ) x, Form ) x, Sent . x, and Var x of L expressing respec-
tively the relations that x is the code of a closed term, a formula, a sentence,
and a variable symbol of £(*)

2. A X;-predicate val(x, y) such that val("¢7,¢) is provable in the base theory
for every term ¢. We view val as defining a function, writing val x, and write
eq(r, s) in place of VxVy(val(r, x) Aval(s. y) — x = y).

3. Predicates defining operations on codes; namely the binary terms =, A, V, —,
V. 3, p. unary terms Q for each relation Q in £ and d, and a ternary term sub
with:

QU™ ....7, ) ="Q(t1.....1,) foreach Q € L,

p(Z. (Tn ) =Rl t)",

d("a) = x if the logical depth of the £ formula « is x, and

sub(x. y. z) denoting the usual substitution function that replaces in the

term or formula (encoded by) x each occurrence of the variable with

code y by the term with code z. We abbreviate uses of this function by

writing x[z/y] in place of sub(x, y. z).

DEerFmNITION 2.1. Let S be some fixed theory in a recursive language £ which
interprets 1Ag + exp. The theory CT[S] is formulated in the language L1 = LU {T}
and consists of the axioms of S together with

Termyx A Termzy — (T(x=y) « eq(x.y)).

Sentyx ASentgy — (T(x Ay) < Tx ATy),

Sent,x ASentzy — (T(xV y) < Tx vV Ty),
Sentsx ASentey — (T(x — p) < (Tx — Ty)),
Sent,x — (T(=x) « =Tx),
Var y A Sentz (Vyx) — (T(Vyx) <> Vz(Termzz — T(x[z/1]))).
Var y A Sentz (Vyx) — (T(Jyx) <> Fz(Termzz A T(x[z/¥]))).
Termexy A--- A Termex, = (T(Q(xy..... xn)) < Q(valxy, ..., valx,)).

for each relation Q of £ (with arity n). We call the formula above the compositional
axioms for £ and any formula not containing the truth predicate T-free.

T(Q
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REMARK 2.2. The quantifier axioms of CT[S] formalise the thought that a for-
mula Vxo is true iff ¢[s/x] is true for every term s. It is necessary, therefore, that
the encoding of £ provides a name for every element in the intended domain. This
is already the case if S is an arithmetic theory. For set theories it can be achieved
by adding a term, say (0, x), to the (encoded) lanaguage with the interpretation
val(, x) = x for every x, whereby the quantifier axiom would read Vx¢p is true
iff p[(D,y)/x] is true for every »” and from the final axiom one can conclude
VxVy(T({0. x)€(@.»)) < x € y).

An alternative approach. used for example in [3] and [11]. is to consider CT[S]
derived from the theory ‘S with a full satisfaction class’. In place of the composi-
tional axioms for truth one instead states axioms for a binary satisfaction predicate
S(x, y) expressing ‘x is a variable assignment satisfying »’ in accordence with
usual Tarskian semantics. Truth, in the sense of CT[S], becomes a defined notion:
T(y) > Sentz(¥) AVxS(x, y).

For the purposes of the present paper there is no essential difference between the
two formulations. We opt for the former as it permits a more concise presentation
(at least from the perspective of cut elimination) and matches more closely with the
formulations of Halbach.

Finally, we fix a few notational conventions for the remainder of the paper. The
start of the Greek lower-case alphabet, a, f, y, etc.. will be used to represent formulae
of L1 = LU {T}, while the end, ¢, y, v, ®, as well as Roman lower-case symbols
r. s, etc. denote terms in £ (the former list will be used exclusively as meta-variables
ranging over terms representing formule of £1). Upper-case Greek letters. I'. A, T
etc., are for finite sets of L1 formulae and boldface lower-case Greek symbols ¢, .

etc. represent finite sequences of £-terms. For a sequence ¢ = (¢o.. ... i), Ty
denotes the set {Ty; | i < k}. Asusual, I', o is shorthand for 'U {a} and I, A for
TuA.

§3. Two sequent calculi for compositional truth. Let S be a fixed theory extending
[Ag + exp formulated in the language £. We present sequent calculi for CT[S] and
CT*[S]. In the former calculus, derivations are finite and the calculus supports the
elimination of all cuts on nonatomic formula containing the truth predicate. The
latter system replaces the cut rule of CT[S] by two restricted variants: one of these
is the ordinary cut rule applicable to only formul® not containing T; the other is
a cut rule for the atomic truth predicate which is only applicable if the formula
under the truth predicate subject to the cut has, provably, a fixed finite logical
depth. This second variant turns out to be admissible, so any sequent derivable
in CT*[S] has a derivation containing only T-free cuts. It follows therefore, that
CT*[S] is a conservative extension of S. We show that any CT[S] derivation can
be transformed into a derivation in CT*[S] and hence obtain the conservativity of
CT[S] over S.

We now list the axioms and rules of CT[S] and CT*[S].

3.1. Axioms.

1. I'= A ¢ if ¢ is an axiom of S,
2. I.r =s5.Tr = A, Ts for all terms r and s,
3. I.Tr = Sent(r). A for every r.
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3.2. Basic rules.
I'= A« [a(s/vi) = A

——F F (VR VL
I'= A Vv« 7R IVva = A VL)
'=Aa/f INa=A r.p=A
—— 5 (VR) (VL)
Fr'=Aavp avp=A
INa=A (=R) I'=sAa (=L)
r = A, % B r, 0 = A B
(Cut*) La= Ar . Ar =4 provided « is T-free
3.3. Truth rules.
I'= A,TWo,Tl/ll , I'= A,T(Wo[vi/s])
(\/TR) \VTR)
I Senty,w =woVwi = ATy I.Senty, v =Vswo = A, Ty
(vaL) . Tyy= A I Ty; = A vl [, T(wolt/s]) = A
T Senty,w =woVy1. Ty =A " T, Senty, w = Vsyo. Ty = A
(-1R) — (-rL) —
I, Senty. v = ~wo = A, Ty I, Senty. v = -wo, Ty = A
I'= A eq(r.s) Ieq(r.s) = A
(=1 (=1L)

R
) I.Senty.y = (r=s) = A Ty I.Senty.w = (r=s). Ty = A

3.4. T-cutrules. In CT[S]:

T =A I'=ATp

(Cutr) I'=A

In CT*[S]:

Ty = A I'= ATy [.Sentp =* d(p) <k

'=A
Normal eigenvariable conditions apply to the four quantifier rules. In the final rule
(Cutk) the sequent arrow =* expresses that this sequent has a derivation using only
axioms and basic rules (called a truth-free derivation). We refer to the two rules
(Cutr) and (Cutk) collectively as T-cuts.

(Cutk)

3.5. Derivations. Derivations in either CT[S] or CT*[S] are finite trees defined in
the ordinary manner; the truth depth of a derivation is the maximum number of
truth rules occurring in a path through the derivation. The truth rank is the least r
such that for any rule (Cuty’) occurring on the derivation, m < r. The rank of a
derivation is the pair (a.r), where «a is the truth depth of the derivation and r the
truth rank. By definition, a truth-free derivation has rank (0,0). We say (a.r) is
bounded by (b.s)ifa < bandr < s.

3.6. Meta-theorems for compositional truth. The key fact we require from 1Ag +
exp is that the theory suffices to show that codes for £1 formule are uniquely
decomposable.

https://doi.org/10.1017/js1.2015.27 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2015.27

850 GRAHAM E. LEIGH

LemMA 3.1 (Unique readability lemma). The sequent I' = A is derivable in
[Ag + exp whenever one of the following conditions hold.
1. T is a doubleton subset of {x = yo \V z0. x =Vy1z1,x = ()r=22). x = =y3}.
2. {Sentz(y).Sentp(z2)} CT.ITN{x=yVzx=zVyx=VYzy.x =y} #0
and {Sentz(x)} C A;
3. {vo=mANzo=z1} CAandT extends
(@) {x=ypoVzo.x=y1V 21}
(b) {x =VYyoz0.x = Yyi121}. or
(c) {x = (yo=z0).x = m=21)}:
4. {vo=n}CAand{x =7yo.x =7y} CT.
LemMma 3.2. T' = A is derivable in |Ag + exp whenever one of the following
conditions hold.
LOATC{x=pVzx=zVyx=Vanx =y} and {d(y) < d(x)} C A
20#T C{x=yVzx=zVyx=Yoy.x = 2p.x = (y=z2).x = (z=y)}
and{y < x} CA;
3. {d(x) < x} CA.
LemMA 3.3 (Embedding lemma for CT). Suppose T does not occur in L and
CT[S]+ . Then the sequent ) = « has a derivation according to the rules of CT[S].

Halbach’s Theorem 3.1 of [7] (see also Theorem 8.10 of [8]) aims to provide an
argument for eliminating T-cuts in CT[S] derivations. An important case is omitted
which cannot be resolved within the context of the Theorem (this is outlined in
the next section). The missing case turns out to unproblematic if the derivation in
question satisfies additional assumptions that are present in CT*[S] derivations.

LemMA 3.4. If the sequents T = A, Ty and T', Ty = A have derivations in CT*
with ranks (a.r) and (b. r) respectively, and U = d (y) < 7 has a truth-free derivation,
then the sequent T = A has a derivation with rank bounded by ((a + b) - 2. r).

ProoF. We provide only a sketch of the argument. The missing elements can be
readily constructed from the outline below and other cut-elimination arguments on
theories of truth (see, for example, [8, Thm 8.10]. [15]. and [14]) and are left as an
exercise for the reader.

The proof proceeds via induction on the sum of the heights of the two derivations.
We may assume that in each of the two derivations the final rule applied introduces
the (distinguished) formula T . Suppose the first derivation ends with an application
of (¥tR). Then ¢ = a’ + 1 and there are terms sy and o such that the formula
% = Ysoxo i1s a member of I' and the sequent

['= A Ty, T(xo[vi/so])

is derivable with rank (a’, r). As Ty is assumed principal in ', Ty = A, the final rule
applied in this derivation is one of (vVrL), (VrL). (-rL). and (=tL). If this is any
rule other than (VrL) there will be terms y; and y{ such that either {y = Vsoxo. x =
xo Vot €T {x =Ysoxo.x = (o=x1)} € Tor {x = Y¥soxo.x = 710} €I
whence I' = A follows by the unique readability lemma. Thus we may assume
(VL) is applied to obtain I'. Ty = A and so there are terms s1. y;. and ¢ such that
{x =Ysox0.x =Ys1x1} €T and

[Ty, Trlt/s1]1= A
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has a derivation with rank (b’.r) for some b’ < b. Then there is some ' < r for
which the sequents

IT'=so=s1\xo=n I = d(yo[vi/so]) <7
are truth-free derivable and so by term substitution we obtain a derivation of
I, Ty, Tyolt/so] = A,
with rank (b’. 7). Applying the induction hypothesis yields derivations of
L. Tyolt/s0] = A I'= A Tyolvi/so0]

with ranks bounded by ((a +5’)-2.7) and ((a@’ + b) - 2. r) respectively. Substituting

¢ for v; in the second derivation and applying (Cut’y ) yields a derivation of T’ = A

with appropriate rank. -
Iterating applications of the lemma, we obtain.

THEOREM 3.5 (Cut elimination for CT*). Suppose I = A is derivable in CT* with
rank (a.r + 1). Then the same sequent is derivable with rank bounded by (3. 7).

COROLLARY 3.6. If the language of S does not contain T then CT*[S] is a conser-
vative extension of S.

PRrOOF. Suppose I' = A is a T-free sequent with a derivation in CT*[S] of rank
(a.r). Iterating Theorem 3.5 yields a second derivation of the same sequent with
rank (a’,0) for some a’. This derivation is. by necessity, free of T-cuts whence the
sub-formula property implies ¢’ = 0. i.e. the derivation involves only axioms and
basic rules, and so is derivable in S. -

3.7. Halbach’s proof and remaining obstacles. Halbach’s Theorem 3.1 of [7]
(see also Theorem 8.10 of [8]) aims to provide an argument for the elimination
of T-cuts in CT[S] derivations. The method assigns a measure, called T-complexity,
to each T-cut and proves that the T-complexity of the bottom-most cut in a deriva-
tion can be reduced through local operations. The T-complexity of a cut is the
number of T-rules applied to ancestors of cut formula on either side of the cut.

Consider the following derivation (the presentation of which has been intention-
ally simplified) where ¢, denotes p[x/1].

LTy, T, = A

VL :
(VTL) [TpTp A N=STe (1)
' [LTVxp = A  I1= X TVxp (CTt :
[LIl=AX o

The standard reduction process transforms the derivation into the following in
which both cuts have lower T-complexity than in the derivation above.

[Ty, Ty, = A M= X Ty, : (2)

. :
(Cutr) oy TR > AT M=% T,
o Il=AX
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A problem arises, though, when one wishes to proceed further. There is nothing to
stop reductions of the top cut (on Te, ) increasing the T-complexity of the bottom
cut. Suppose, for example, I' = 0, To, € A, {Tepy, s = (woAw1)} C I, the left-
most sub-derivation is an axiom and I1 = X, Ty; is obtained by an application of
(V¢L) to I, Tyy = X, Tep,. Thus derivation (2) has the form

Axiom 2 I1. Tyo = Z. Te,

L .
Ter. Tos = A M=3Te (IV;) MTyo=>STp (3)
iy Ty = A o =2 T, T
o M= Ax

The upper cut has a trivial reduction which turns (3) into

I1.Tyy = X, T, II. Ty, =X T

oy LTv0=ZTer DTy = ETp, @)
I, Ty, = X I =% Ty

(Cuty)

I'=%2

The remaining cut in (4), however, now has a higher T-complexity than in (3) and
one cannot proceed further via an inductive argument. It is such a scenario that
Halbach’s argument does not cover. The critical question, therefore, is how to assign
a rank to each of the two cuts in (2) that is i) strictly smaller than the rank of the
cut in (1), and ii) is preserved when further reductions are made to (arbitrary)
sub-derivations.

The example demonstrates that the rank associated to the cut on Te; in (2) should
depend on the rank assigned to the cut on Ty, and this dependence should be more
significant than it’s own T-complexity (which is, of course, still relevant). Thus, if
there is an appropriate way to assign ranks to occurrences of the truth predicate
so the natural reduction procedure can be proven to succeed, it will require a deep
analysis of the derivation as a whole.

Consider, for example, a derivation with a subderivation of the form

: Tr = Tr
= Tr s=(rVvr),Tr=Ts
s =(rvr) = Ts

VTR)

CutT)

The formula Ts in the conclusion has T-complexity 1. However, interpreting the
terms in the right sub-derivation it is clear that s should be viewed as a formula with
logical depth one more than that of r. After eliminating the displayed cut, which
is simply matter of applying the rule (VTR) to the left sub-derivation, this measure
of complexity remains unchanged. If cuts further down the derivation are assigned
ranks derived from this measure, removal of the displayed cut will not alter ranks
assigned to them either.

In the following we show how the observation above can be generalised in order
to define a robust rank operation that permits standard cut elimination arguments.
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§4. Approximations. Recall the language £ which extends £ by countably many
fresh predicate symbols

P ={p) | i.j < wandp is a predicate symbol of arity i} U {e}.

where ¢ is a fresh propositional constant. The additional predicate symbols enable
us to explicitly reduce the complexity of formula that occur under the truth predicate
in CT-derivations. This is achieved by the use of approximations. an idea utilised by
Kotlarski et al in [13].

The definitions and lemmas of Sections 4.1-3 are taken from [13] with only
minor modification; in Section 4.4 we present their formal counterparts. The reader
familiar with the concepts involved in [13] may wish to skip directly to Section 4.5
which contains the technical applications of these results to CT-derivations.

An assignment is any function g: X — L£* such that X C P is a finite set and
for every i, j. if p§- € X then g(p;) is a formula with at most variables xi,....x;
occurring free. If ¢ € X, g(&) may be an arbitrary formula. Given an assignment g
and an £ formula ¢, we write p[g] for the result of replacing each occurrence of ¢ by
the formula g (¢) and each predicate p’; (s1, . . . . 5;) occurringin ¢ by g (p ) (s1. . . .. 5),
if g(p;) is defined. and ¢ otherwise. Note that some variables free in g(¢) may
become bound in this substitution. We write @[] as shorthand for ¢[g, ] where
gy fet = {w}

If o = (o.....0,) and y = (wo.....w,) are two sequences of closed £+
formule we say ¢ approximates w if there exists an assignment g such that y; =
pilg] foreach i < m.

For a given sequence ¢ of £, a collection of approximations to ¢ are distin-
guished. The n-th approximation of ¢, defined below, is a particular approximation
to ¢ that has logical depth no more than /() - 2", where I/h(p) denotes the length
of the sequence ¢.

4.1. Occurrences. Letw. z, zj, z3, . . . be fresh variable symbols. Given a formula
o of £ we first define a formula ¢ of £L U {w} in two steps: ¢* is the result of
replacing in ¢ every free variable by w, and ¢ is obtained from ¢* by replacing each
term in which the only variable that occurs is w, by w. Thus any term occurring
in @ is either simply the variable w or contains a bound occurrence of a variable
different from w.

For each formula ¢, we let O(yp) denote the set of occurrences in . pairs (y. s)
such that y is a formula of LU{w, z} in which the variable z occurs exactly once, s is
a term of LU {w} which is free for z in w and ¢ = w([z/s] (the result of substituting
in y all occurrences of z by ). Notice that if (. s) € O(@) then s = w.

The construction of ¢ and O(y) is such that for each formula ¢ of £ there is
a uniquely determined function #,: O(%) — Term, for which ¢ is the result of
replacing within ¢ each occurrence of the variable w by the appropriate value of 7.
We call two formula ¢, w equivalent, written ¢ ~ ., if ¢ = .

LEmMMA 4.1. Let ® be a set of L formule such that for every ¢,y € @, ¢ ~ y.
Then there exists a number | and formula 9(z1, . ... z;), called a template of ®, such
that for every ¢ € @ there are terms sy. . .., 51 50 that @ = 9(sy1,....s).

PrOOF. Suppose @ is a set of formula satisfying the hypotheses of the lemma.
As O(@) = O(w) for every ¢. y € ®, O(®) has a natural definition as O(p) for
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some ¢ € ®. The functions {7, | ¢ € ®} induce an equivalence relation Eq on
O(®) by setting

(.5) Eo (y.1) < forevery ¢ € @. 1,(y.5) = t,(y.1).

Let / be the number of Eg-equivalence classes in ®. For each ¢ € ®, the function
1, is constant on O(®)/Eq. whence 9(zy. . ... z;) is easily defined. -

4.2. Parts. If o = (pg. @1.....px) is a nonempty sequence of £ formule, then
the set of parts of . I1(¢p). is the collection of pairs (. ) such that y is a formula
of £ U {¢} in which ¢ occurs exactly once, y is a formula of £ and for some i < n,
@i = w[y]. the result of substituting y for ¢ in w. Notice that |[[1(¢)| < k - 2¢(¥)
where d (@) denotes maximal logical depth of formule occurring in ¢ with atomic
formulee having depth 0.

We now define an ordering < on I1(y). Given pairs (¢, ), (¢’, ') of LT formule,
(p. ) = (¢’ x') iff there exists w € LT such that ¢'[w] = ¢ and y[y] = x'. Notice
that in this case we also have ¢[y] = ¢'[x'].> Let < be the irreflexive version of
=. The depth of a part (p, ) € I(p). denoted d(p, y). is its (reverse) order-
type in <. that is the number of logical connectives and quantifiers between ¢
and the occurrence of ¢ in . Making use of < and ~ the following sets can be

defined.
M(p.n) = {(¢.x) €N(p) | d(p. ) <n}
" (. n) = {(¢. x) € D) | Aeo. 20) € M°(@.n) Ip1. x1) € 1" (p.n)

Ao~ i A(e. ) = (@1 )
Nd(p. ) —d(pr. ) <n—dl(eo. x0)}
(p.n) = J 0" (¢.n).

m<w

The requirement ‘3(¢yg. v0) € I1°(p.n) serves only to ensure the set 1"+ (. n) is
bounded in size. Thus IT"*! (. 1) consists of those parts of ¢ that are approximated
by some (1. 1) in I1" (. n) such that

i) a template for y; appears somewhere in ¢ with depth at most n, and

ii) the depth of (i, ¥) is regulated by the position of this template in ¢ and the

depth of (¢1. x1).

The following two lemmas are consequences of the definition.

LemMmA 4.2, For every (@, ) € M(p.n) there exists (@', x') € M°(p.n) with
x~

Lemma 4.3. For all (go. x0). (p1. 11). (p2. 22) € Hlp.n). if (0. x0) = (1. 11)
and yy ~ y then there exists (3. x3) € I(p, n) such that (@3, y3) = (@2, x2) and
A3~ X0-

EXAMPLE 4.4. Let 0 be an atomic formula and set **! = 0 v ©* with ©° = 6.
We calculate (", n) forn < k. Set y* = e and y'™! = w'[0Vve]. The set I1°(p*. n)

2 As such the definition of < presented here is equivalent to the relation denoted as < in [13. p. 286]

whose (precise) definition is “(¢. x) < (', z’) iff (. ). (¢’. 7') € (o) for some (single) formula
o € L and there exists w € £ U {¢} such that ¢'[y] = ¢’
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consists of all parts of ¢* with depth no greater than n:

(8,901() (l//l,(pkfl) (l//n,(pkfn)

(e\/gok’l,ﬁ) (l//l[e\/gok*z],ﬁ) (t//"’l[a\/gok*"],@).

In this example, in fact TTI(oX.n) = TI°(p*.n). We show, for example, that
(w'. ") € I(@*. n) implies (y'. ") € TI(pF. n).

Fix / < k and suppose (y', ") € T+ (¥ n). Let (o1, y1) € T (¥, n)
and (go. y0) € T°(p*.n) the witnesses to this fact as given by the definition of
I/+! ((Pk, }’l)l

(' ") < (1. 11)
z0 ~ 21
d(y' ") —d(p1. x1) <n—dlpo. x0).

From the first line it follows that ¢; = y” and y; = " for some m < I.
Moreover, yo ~ y1 implies (¢o. x0) = (¢1. x1). so

I=d(y'.¢"") <n—d(p. x0)+d(er ) =n.

ExAMPLE 4.5. Suppose v = Vx(0y V Iy—0;) where 6y ~ 0, are nonatomic
formule possibly containing variables x and y free. Denote by o and ; the
formule Vx (¢ vV 3y—6;) and Vx(0y V Jy—e) respectively.

Consider (o, y0) € () such that 0 < d (o, y0) < 2. Let (1. 1) € T1(6)
be chosen such that y; ~ yo and d(p;. ;) = d(p. x). Such formule must exist
as 0y and 0, have the same ‘logical’ form. Notice w = wo[0o] = w1[01] (even
if x or y appears free in 6y or 0;). We have (yq.0p). (y1.0;) € TI°(w.4) and

(wolol. x0). (wiler]. x1) € M(y) but only (wolpol. xo) € M°(w.4). Lemma 4.3
implies (w1[¢1]. x1) € I(w,4). but we can see this explicitly by observing

(wo.00). (w1.01) € I°(w. 4),
Oy ~ 0.

(wilei]. x1) < (wi.61).
dyilei]. 1) —d(wi.00) =4 —d(wo.0).

whence (w1[¢1]. x1) € IT' (. 4) follows. Lemma 4.2 and 4.3 combine to imply

(y.4) = {(e.w) . (Vxe. 00 V Jy=01) . (0. 00) . (VX (00 V &), 3p01) . (y1.01) }
U{(wilel. x) li<2A(p.x) €1°(6:.2)} .

Notice the above is entirely independent of the actual arrangement of free variables
in 0y and 0. For example if 0y = 3z(x = t(r.z)) and 6; = 3z(y = ¢(s.z)) then
provided neither r nor s contains z we have 0y ~ 0.

EXAMPLE 4.6. Let ¢* and w* be as in Example 4.4 and let ¢ be the sequence
("1 Ixk . k). Although we have

%@, n) = M=+ n) UTI’(3xe" . n) UTI®(p* . n)

https://doi.org/10.1017/js1.2015.27 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2015.27

856 GRAHAM E. LEIGH

it is not the case that IT(p.n) = II(=p ! n) U II(3xp*, n) U (k. n) unless
n > k + 2. Suppose k > 3; we determine I1(¢p, 3). We have, for example

N°(=p*1.3) = {(&. ~p"*). ( =, ") (=0 ve). ") (—u o )}
U{(=(eve).0).(=(0V (e V& ).0)}
°(3xp". 3) = { (e, Ixep" ),(er, ¢"). Bxy' ") Bxy? o)}
U{Bx(eVve).0).3x(0 Vv (e ve"2)).0)}
(0. 3) = {(e. ") . (w'. " ). (W2 " 7). (. ")}
U{(eVve"1.0).(0Vv(eve"2).0). (y’eve*L0)}.
Notice that (y3 ¢©F3) is an element of IT°(¢p.3) whereas (y*. ©*3) and

(Ixy3. oF3) are not. Consider the parts (w', ¢*~1) and (Sxy'. o*"!) from
IT°(¢p, 3). We have (3xy?, o*—3) < (Fxy!. p*~1) and

d(3xy’ ") —d(@xy' ") =2=3-d(y'.o" ).

whence (Exy/ ©*3) e 1 (. 3). Applying Lemma 4.3 we deduce that (—y*, o< —3)
and (-3, p*~2) are elements of T1(¢.3) (the former entering first at I1>(¢, 3)).
Thus

M(p.3) 2 (. 3) U{(OV . 2). (50 v y). ) | (w.2) € (4. 3) |

Lemma 4.2 (and the fact that I1(¢.3) is closed upwards in <) implies the above
inclusion is indeed equality.

We finish the section with an important consequence of Lemma 4.2.
LemMA 4.7. Tl(p. n) is a finite set. Indeed, |T1(p, n)| < 21h(e)-2"
ProoOF. Lemma 4.2 implies that if

(p.n) 3 (po. x0) < (@1, 1) < -+ < (@r. xk)

is a sequence of parts of ¢ increasing with respect to < thenindeed k < |T1%(¢. n)| <
Ih(p) - 2", from which we deduce that IT(¢p. 1) is a subset of I1°(¢. Ih(¢) - 2") and
(. n)| < 202", =

4.3. Approximating formule. Given I1(y.n), two further sets can be defined:

Clp.n) ={w € L|3p(p.w) € Up.n)}.
[i(p.n)={y € L] 3o (p.y) is <-minimal in [1(p,n)}.

We now define a function Fy, ,,: T'(¢p.n) — L by recursion through < that generates
the particular approximations we require.

Fix an enumeration ®. . ... ®, of the ~-equivalence classes of I';(¢.n) and for
each j < nlet ¥;(z..... zq;) be a template for ®@; and let ¢}'..... 17 denote the
terms for which GD Sy = 19 G 1;,). We begin by defining Fy, , on I'; (¢. n).

If w € T7(¢p. n) is atomic set FS”,((//) = y. otherwise set F, ,(y) = pj’(tf’, Sty
where y € @;. In the remaining cases F, ,(y) is defined to commute with the
external connective or quantifier in .
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The n-th approximation of ¢ = (¢y. . ...y ) is chosen to be the sequence

Fap,n(ﬁa) = (Fap,n((PO)a cee eFap,n((Pk))~

ExampLE4.8. Let ok = (=pF*!, Ixpk, o*[x/p]) where ©* is as defined in Exam-
ple4.4. k > 3 and assume x appears free in 0. In this example we calculate F, 3 (o).

Let y, abbreviate w[x/y]. Since w ~ w, for every w. I1(¢*. 3) is straightforward
to calculate given I1(¢p, 3) in Example 4.6 and we deduce

F((.pk, 3) _ {_‘(pk+1,(pk+l’ ngok’ (pk,gok*l,(pk*z, on73, 0}
U o). o) ol 200,
Ti(".3) ={p" .0} 7.0.0,}.

The ~-equivalence classes of I'; (¢ 3) are therefore {¢* 2. ¥ 3} and {6. 6, }. The
definition of F 3 yields

Fi3(9* %) = p(x) Foi3(0) =10

Fes(py ™) = p(y) Fe3(0,) =0,
for p(x) a fresh unary predicate symbol. Notice that if x did not occur in ¢,
p(x) and p(y) above would be replaced by a propositional constant and if k = 3.
Fépk73 gOk_3) = 0. Thus

Fa (") = (my*[e/p(x)]. 3xy[e/p(x)]. v [e/p(1)])
for every k > 3.

The following simple lemmas establish the main properties of the approximations.

LEMMA 4.9. For every wo. w1 € T(p.n). if Fpu(wo) ~ Fpn(y1) if and only if
Yo~ ¥1.

Lemma 4.10. The i-th approximation of ¢ is an approximation to ¢ and an
approximation to the j-th approximation whenever i < j.

LEmMMA 4.11.  Every occurrence of a predicate symbol from P in the n-th approxima-
tion of @ has depth at least n in . Moreover, every formula in the n-th approximation
of @ has logical depth no greater than Ih(y) - 2".

LEMMA 4.12. If @' = (@}. ....p}) is an approximation to ¢ and for each i < n.
@i has logical depth at most n., then ' is an approximation to the n-th approximation
of p.

The upper bound of Lemma 4.11 holds on account of Lemma 4.7. A consequence
of the previous lemmas is the following.

LemMA 4.13. For all sequences . @’. formule yo, w1. w{. w1, and m < n.,

1. If (¢’ w( V w}) is the n-th approximation of (@.wo V 1) then the m-th

approximation of (¢, ;) is an approximation to (¢, w}).

2. If (¢’. () is the n-th approximation of (¢, =) then the m-th approximation

of (p. wo) is an approximation to (', ).

3. If (¢'.Vxw|) is the n-th approximation of (p.Vxwo) then for every a < w the

m-th approximation of (. wo[x/a]) is an approximation to (@', y([x/al).
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4.4. Approximating sequents. We begin by noting that all the definitions and
results of the previous section can be formalised and proved within 1A + exp. Thus
we fix the following formal notation.

1. s[g] = t expresses that either g is not an assignment and s = ¢ or g is an
assignment and ¢ is the result of replacing within the £ formula s, each
occurrence of the predicate symbol p; by g(p! ) if defined, otherwise by ¢.

2. For ¢ = (@o.....om) weset " = (T¢ ,...,"(pmj)

3. F(s) =t expresses that there exists a sequence ¢ and w € ['(¢. k) such that
r="¢ s ="y and 1 = "F,;(y)": if there is no sequence of £L-formule ¢
such that r = rcp1 then s = 1.

4. Fors = (so,....5,)and t = (f.....1,) (external) sequences of terms of the
same length we introduce
(a) s =1 toabbreviate A\, (s; = 1;):

(b) s[g] to abbreviate the sequence of terms (so[g]. . ... Sn[g]):
(c) F,,(s) to abbreviate the sequence (F,,(so).....F,,(sm)):
(d) d(s) < u to abbreviate the formula /\l<m 1(s;) < u.

5. A A predicate Seq(x) expressing that x encodes a sequence and additional
terms and terms:

(a) Ih(r) denoting the length of the sequence encoded by r:
(b) (r); denoting the i-th element of the sequence r:

(c) ;h’ES) denoting ((r)o.....(")u()—1-(8)o- ... (8)p(s)—1) of length Ih(r) +

The above notation is expanded to cover complex expressions involving sequences.
For example, F, ,(s)[g] = F ., (t) is shorthand for the formula A, F, ,(s:)[g] =

Fr/‘ul (tl)'
Collecting together the results of the previous section we obtain

LeMMA 4.14. The following sequents are (truth-free) derivable in |Aq + exp.
0= (x vyl = (x[z]V ylz]).
0= (2x)[z] = 2(x[2]).
0= (Yxp)lz] = ¥x(y[z]).
0= (y(x/w))lz] = (y[z])(x/w).
Seq(x) (x), yVvz= wa+1(y \ Z) = Frerl(y) \ Fx‘wﬁ»l(z)a
Seq(x). (x)i =7y = F 1 (0) = 2F . (),
Seq(x). (x); =Yyz = F 1 (Yyz) = Vp(F,,11(2)),
Seq(yo”"y17y2) = F (00”317 32) = F (00”317 02).

0= d(F,.(s) <Ilh(x) 2°

LemMMA 4.15. There is a term g(w. x. y.z) such that the following sequents are
truth-free derivable in 1Ay + exp.

0 =d(g) <Ih(x)-2°,
]

y<zw=x=F, (ulgl=F, ()
y<zx=x"(xoVx).w=x"x=F, (w)g]= F”(w)
y<z.x=x"(wx)w=x"x = F, (w)g]=F,_ (0),
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y<z.x =x""(¥Vxox1), w = x' " subn(xy, xp,u)
= F, (w)g]l=F, (X)) subn(F . _(x2),x1,u).

w = x"w Vuld(F,,, W) < 2) = F, ()lg] = F..(x).

The first sequent of Lemma 4.15 formalises Lemma 4.11, the second Lemma 4.10,
the third, fourth, and fifth Lemma 4.13 (the last of these expressing that the
y-th approximation of (¢, ¢[a/x;]) can be viewed as an approximation to the
z-th approximation of (¢, Vxp) whenever y < z), and the final line combines
Lemmas 4.12 and 4.11.

Tying in approximations with derivations we have:

LEMMA 4.16. Let ', A be sets consisting of T-free formule, and ¢ . w be sequences
of terms. If T', T = A, Ty is derivable with truth depth a then for every term g,

[ Telg] = A Tylg]

is derivable with truth depth < a. Moreover, if the first derivation contains no T-cuts,
neither does the second.

The lemma is not difficult to prove. We require, however, a more general version
from which we may infer bounds on the truth rank of the resulting derivation. The
next lemma achieves this.

LemMa 4.17. Let I'. A, @ and w be as in the statement of the previous lemma. If
the sequents T, Ty = A, Ty, and T = d(g) < k are derivable with rank (a,r) and
(0.0) respectively, the sequent

[ Telg]l = A Tylg]
is derivable with rank bounded by (a.r + k).
ProoF. The only nontrivial case is if the last rule is (Cut}) for some / < r. So
suppose a = a’ 4+ 1 and we have the following derivation
[.Te.Ty= ATy [T = A Ty. Ty F=d(y) <l
Ty = ATy
with the two left-most premises derivable with rank (a’, ) and the right-most with
rank (0,0). By the induction hypothesis, the sequents

[ Telgl. Txlg]l = A. Ty[g] [ Telg]l = A Tylgl. Ty(g]

are both derivable with rank bounded by («’. r+k). Since the sequent I' = d (g) < k
is truth-free derivable, so is

(Cut/T)

T =d(xlg]) <I+k.
whence the rule (Cut;*) yields the desired sequent. -

4.5. Approximating derivations. Given a sequent I', T = A, Ty, we define its
k-th approximation to be the sequent
rvT(FLp"y/,]_((P) : AvT(FLpAy/,]_('II)'

Let H be the function given by
H(k.n) =n-2F.

https://doi.org/10.1017/js1.2015.27 Published online by Cambridge University Press


https://doi.org/10.1017/jsl.2015.27

860 GRAHAM E. LEIGH

By Lemma 4.11 each member of the k-th approximation of ¢ has depth at most

H (k. lh(p)).

The following lemmas hold for arbitrary derivations in CT*[S].

LEmMMA 4.18. Suppose a,r.m.n, k < w, I', and A are finite sets of L-formule,
and y are sequences of terms. y. s, and t are terms, and lh(p) + [h(y) = n. If the
k-th approximation to the sequent U, T = A, Ty, T(y[s/t]) is derivable with rank
(a.r) then there is a derivation with rank bounded by (a +1.r + H(k + 1.n+ 1)) of
the (k + 1)-th approximation to T, T = A, Ty . T(Vsy).

PrOOF. Let y = "y~ (w[s/t]). Assume the sequent
I, T( Ik‘P) = A T( ka) (FIJ}(‘//[S/I]))

is derivable with rank (a.r). Let g(x, y.z) be the term given by Lemma 4.15 and set
g = g(y.k.k +1). Lemma 4.17 implies there is a derivation with rank bounded
(a.r + H(k + 1.n+ 1)) of the sequent

LT(E, p00) = ATE,, 1w). T(F, £ (wls/DIg').

where y’ = ¢ "y~ (Vsy). Combining this derivation with those of Lemma 4.14
and the penultimate sequent in 4.15 and using only T-free cuts, yields a derivation
of the sequent

F,T(Fl k+1‘P) = A, T( -~ k+1'//) T(Elf]}+1(‘;”)[s/t])
withrank (a, r+H (k+1,n41)). whence (VTR ) and Lemma 4.14 yield a derivation of

0= ATE, 1,w). TE, 1., (Isy))

with rank bounded by (@ + 1,7 + H(k + 1,n + 1)). =

LemMa 4.19. If the k-th approximation to I'. T = A, Ty, Ty; is derivable with
rank (a,r) then the (k + 1)-th approximation to U, T = A, Tw.T(wo V w1) is
derivable with rank (a +1.v + H(k +1,n)). where n = Ih(p) + lh(y) + 1

LemMma 4.20. If the k-th approximation to I', Ty, Ty = A. Ty is derivable with
rank (a, r) then the (k + 1)-th approximation to the sequent T', T = A, Ty . T(—y)
is derivable with rank (a + 1.7 + H(k + 1.n)), where n = lh(y) + [h(y) + 1

Additionally, the variations of the above relating to the rules (VtL), (VtL), and
(—=tL) also hold, though we omit them here.

LemMa 4.21. Let n = lh(p) + lh(w) and suppose r < H(k.n + 1). If the k-th
approximation to the sequents I', T = ATy . Ty, and I', T, Ty = A, Ty are
derivable with rank (a.r) then the H (k,n + 1)-th approximation to T', T = A, Ty
is derivable with rank bounded by

(a+1,H(k,n+1)+ H(H(k.,n+1),n))).

PROOF. Let N = H(k.n+1) > 7. 0 = ¢~ y, 0 = o~ . By Lemma 4.14 there
is a truth-free derivation of ) = d(F ,, z(x)) < N. so by an application of (Cuty)
to the two derivations in the statement of the lemma yields a derivation of

LLT(E , 10) = AT(E 1) (5)
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- _er) Let g be the term given by Lemma 4.15 and set g’ =
glo' . k.N). The second line of Lemma 4.15 induces a truth-free derivation of

0= (F, zulgl=F, zu
whence we apply Lemma 4.17 to (5) to obtain a derivation of
L.T(F, 59) = ATE, 3v)
with rank bounded by (¢ + 1. N + H(N. n)). -

85. Proofs of the main theorems. We now have all the ingredients to establish the
Bounding Lemma described in Section 1 that provides an interpretation of CT[S] in
CT*[S]. The next lemma is a generalisation incorporating all the relevant bounds.

LemMA 5.1 (Bounding lemma). There are elementary functions Gy, G such that
Jorevery a,n < w, if lh(yp) +h(w) < nand the sequent T, T = A, Ty is derivable
in CT[S] with truth depth a. then its G (a.n)-th approximation is derivable in CT*[S]
with rank bounded by (a, G>(a.n)).

ProOF. The idea is to copy the CT[S] derivation into CT*[S] replacing the rule

(Cutr) by (Cutk) for k determined inductively. The functions G, and G, are defined
according to the bounds obtained in the previous section:

Gl(O,r) = 0,
Gila+1.r)=H(G(a.r+1),r+1).
Gy(a,r)=Gila+1.a+r).

We argue by induction on a. Suppose the last rule applied to obtain I, T = A, Ty
is a T-cut on Ty and that this derivation has height a + 1. Let ® = ¢ " and o’ =
" y. The induction hypothesis implies that the G| (a.n + 1)-th approximations to

[LTe, Ty = ATy LTy =ATyr. Ty

are each derivablein CT*[S] with ranks bounded by (a. G»(a. n+1)). By Lemma 4.21
there is a derivation with height @ + 1 of the G;(a + 1.n)-th approximation to
I''Te = A.Ty. This derivation has truth rank bounded by G>(a + 1.7n) so we
are done. The other cases are similar and follow from applications of Lemmas 4.18
and 4.19. -

A combination of Lemmas4.16and 5.1 implies that CT[S] permits the elimination
of all T-cuts.

COROLLARY 5.2. IfT" = Ais derivable in CT[S] then it is derivable without T-cuts.

THEOREM 5.3. Let S be an elementary axiomatised theory in a finite language
interpreting | Ag +exp. CT[S] conservatively extends S. Moreover, this fact is verifiable
in 1Ay + exp;.

PrOOF. Let ¢ be an T-free theorem of CT[S]. By the Embedding Lemma, the
sequent ) = ¢ has a derivation within CT[S]. Lemma 5.1 implies that the same
sequent is derivable in CT*[S] and the cut elimination theorem for CT*[S] shows
() = ¢ is derivable without truth cuts. But this derivation is also a derivation

within S. Notice that this final derivation has height bounded by 25 Gilatlatl):
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where a bounds the height of the original derivation of § = ¢ in CT[S], G; is
as defined in the proof of the Bounding Lemma, and 2/, represents the function
of hyper-exponentiation: 2§ = 2" and 2, ., = 2%, Thus this reduction can be

formalised within 1Aq + exp;. -

THEOREM 5.4. Let S be an elementary L-theory in a finite language interpreting
Ao + exp. For any S-schema D, the theory CT[S] + Vx(Dx — Tx) is a conservative
extension of S. Moreover, this fact is verifiable in 1y + exp;.

Proor. Let S and D be as given in the statement of the theorem and let U be the
finite set of LU { p} formula associated with the S-schema D. First we note that the
additional axiom can formulated as the sequent rule

II = X, Ds
MI=2xTs

Suppose d is a derivation with truth depth a of the truth-free sequent I' = A in
the expansion of CT[S] by the rule (D). By redefining the functions G; and G, so
that G1(0, n) bounds the logical depth of the (finitely many) formul in U for each
n, the proof of the Bounding Lemma can be carried through to obtain a derivation
with rank (a. G»(a,0)) of the same sequent in the system CT*[S] expanded by a
bounded version of (D):

(D)

I, Ty =% Ty,Do
I1.Te = 2. Ty, T(F , ;o)
where IT and X are truth-free, k = G1(a.0) and v = ¢ "y 0.

Let d* denote this derivation. Fix n such that for each instance of (D,,) occurring
ind*, Ih(w) < n, and set U* to be the finite set of instantiations of formula from
U by L-formulé that have logical depth at most G, (a. n). It follows that the sequent
Dx,d(x) < Ga(a.n) = {x ="¢ | ¢ € U'}is derivable in S. Because the sequent
o = T" o 'is derivable in CT[S] for each L-sentence ¢ we may deduce

Dx = T(Fr-jx)

(Do)

is derivable in CT[S] whenever lh(w) < n. Thus d* can be interpreted in CT[S] and
an application of Theorem 1.1 completes the proof. -
Instead of providing an interpretation of CT[S] into CT*[S], Lemma 5.1 can be read
as assigning ranks to T-cuts in CT[S] derivations. A corollary of this observation is
that the cut-elimination argument for CT*[S] can be transferred directly to CT[S]
and these rank assignments. Thus we have

COROLLARY 5.5. CT supports cut-elimination for T-cuts.

86. Conservativity, interpretability and speed-up. The following instance of
Theorem 1.2 is particularly revealing.

COROLLARY 6.1. Let Ind; be the formula expressing that x is the code of the
universal closure of an instance of L-induction. Then CT[PA] + Vx(Indzx — Tx)
conservatively extends PA.

Corollary 6.1 effectively shows the limit of what principles can be conservatively
added to CT[PA]. It is well known that extending CT[PA] by induction for formula
involving the truth predicate (even only for bounded formule [12]) allows the
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deduction of the global reflection principle, Vx(Bewpax — Tx), and hence also the
local reflection schema {Bewpa"™ ™ — ¢ | ¢ € L}, the latter of which is a statement
not provable in PA.

An analogous result holds also for other first-order systems such as set theo-
ries. For example, if PA is replaced by Zermelo—Fraenkel set theory and Ind is
replaced by a formula recognising all instances of the separation and replacement
axioms. Expanding the axiom schemata of CT[ZF] to apply also to formula involv-
ing the truth predicate, however, yields a nonconservative extension in the same
way.

We conclude this section with some corollaries that are specific to the proof-
theoretic treatment of CT[S].

COROLLARY 6.2. Let D be an S-schema. CT[S] + Vx(Dx — Tx). and hence also
CTI[S]. attains no better than hyper-exponential speed-up over S.

To restate Corollary 6.2, every L-theorem of CT[S] is derivable in S with at
most hyper-exponential increase in the length of the derivation. The upper-bound
results from the fact the conservativeness of CT[S] over S can be established within
Ao + exp;.

Regarding lower bounds to the speed-up phenomenon, we observe that within
CT[PA] + Vx(Indz-x — Tx) it is simple to prove the consistency of S on a cut. Thus
we may conclude

COROLLARY 6.3. CT[PA] + Vx(Indcx — Tx) provides between exponential and
hyper-exponential speed-up over PA.

It remains open, however, whether this is also the case for the truth axioms alone.
Fischer, in [5], discusses a further consequence of a formalised conservativeness
proof for CT.

LemmA 6.4 (Fischer). If PA - Vx(Sentzx A Bewcrs,)x — Bews,x) for every
IS C So C PA then CT[PA] is relatively interpretable in PA.*

Combining this with Theorem 1.1 therefore yields
COROLLARY 6.5. CT[PA] is relatively interpretable in PA.

87. Future work. There remain two natural open problems. The first is whether
the conservativity results extend also to base theories weaker than 1Ag + exp, for
instance sequential theories, theories of bounded arithmetic or syntax theories. The
main hurdle in this direction is likely the formalisation of the approximation func-
tions Fy,, and their properties within a weaker background theory. Lemmas 4.7
and 4.11 yield at best exponential bounds on the function F, ,. However, as the
function returns codes of approximations to its arguments it should be formalisable
within weaker systems too. The second open problem concerns a characterisation
of the speed-up afforded by the compositional axioms. A refinement of the cut elim-
ination argument that is formalisable in A + exp say, would yield optimal bounds
on the speed-up of CT[PA] + Vx(Indzx — Tx) and be a significant improvement
on the results of this paper.

3 Assuming ZF is consistent.
4We refer the reader to. e.g.. [5] for a definition of relatively interpretable.
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A potential application of the work is in the ordinal analysis of theories of truth,
in particular self-referential systems. Currently, the only type-free truth theories
for which cut elimination arguments exist are for a selection of the systems intro-
duced by Friedman and Sheard [6] (see [15]). In particular there is no (infinitary)
cut-elimination argument for the Friedman-Sheard theory FS, Kripke-Feferman
theory KF> or the intuitionistic truth theories studied in [16] and [14]. In all of
these cases, a cut elimination argument may become possible by generalising the
theory of approximations to formule contianing an untyped truth predicate and
applying the techniques of this paper to obtain explicit ranks on T-cuts in infinitary
calculi.
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