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ABSTRACT INDUCTIVE AND CO-INDUCTIVE DEFINITIONS

GIOVANNI CURI

Abstract. In [G. Curi, On Tarski’s fixed point theorem. Proc. Amer. Math. Soc., 143 (2015), pp.
4439–4455], a notion of abstract inductive definition is formulated to extend Aczel’s theory of inductive
definitions to the setting of complete lattices. In this article, after discussing a further extension of the
theory to structures of much larger size than complete lattices, as the class of all sets or the class of ordinals,
a similar generalization is carried out for the theory of co-inductive definitions on a set. As a corollary, a
constructive version of the general form of Tarski’s fixed point theorem is derived.

Introduction. In its best known and most used form, Tarski’s fixed point theorem
states that every monotone function f : L→ L on a complete lattice L has a least
fixed point p. Albeit intuitionistically valid, Tarski’s proof of this result is circular or
impredicative: the fixed point is indeed defined as p =

∧{x ∈ L | f(x) ≤ x}, and
since f(p) ≤ p, p occurs in its own definition. The circularity in the definition of p
may be taken to account for the fact that, despite its intuitionistic validity, Tarski’s
proof has often been perceived as nonconstructive, even outside the constructivists’
community (e.g., [7]).
An alternative standard construction is sometimes considered more satisfactory.
It consists in finding p via transfinite iterations of f, starting from the bottom
element in the lattice. This alternative approach involves however the application
of highly nonconstructive principles, and so, although in a way more explicit than
Tarski’s approach, it does not provide an effective method for finding the fixed point.
In [1], in the context of classical set theory, P. Aczel described the natural relation-
ship betweenmonotone set-operators onpower-set lattices and inductive definitions.
In particular, he showed that a monotone function f on Pow(X ), X a set, can be
generated by an inductive definition Φ, and that the set I (Φ) inductively defined
by Φ is the least fixed point of f. In [1] it is also shown that if Φ is bounded by a
regular cardinal k, k iterations of f will suffice to reach the fixed point (see Section
2 below). This result refines the above mentioned construction of p via transfinite
iterations of f, albeit still in a classical (noneffective) setting.
The constructive analysis of set-theoretic inductive definitions came in [2]. It
had to be developed in a system for set theory in which neither impredicative
nor nonintuitionistic principles were available. This system, described later on, is
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the so-called Constructive Zermelo–Fraenkel set theory, CZF [5]. CZF is a weak
intuitionistic subsystem of classical ZF, so its theorems are also theorems of ZF.
In this context, Aczel formulated a constructive analog of the operation of taking
the transfinite iteration of the monotone operator generated by an inductive defini-
tion Φ. Introducing a concept of regular set as a substitute of the notion of regular
cardinal, Aczel then showed that when Φ has a regular bound, CZF proves that
I (Φ) exists and is a set, and thus the least fixed point of the associatedmonotone set-
operator. In a standard extension of CZF, the system CZF+REA, every bounded
inductive definition is also regular bounded. So a consequence of this development
is a fully constructive proof of the existence of least fixed points of monotone maps
f : Pow(X )→ Pow(X ) generated by bounded inductive definitions.
In [9] I formulate a notion of abstract inductive definition to extend the theory of
inductive definitions from lattices of the form Pow(X ) to general complete lattices.
As a direct consequence of this extension, a constructive version of Tarski’s theorem
on the existence of the least fixed point of amonotonemapping on a complete lattice
is there obtained.
In this article, a further extension is considered, to include structures of a much
larger ‘size’ than complete lattices, as the class of all sets. To this purpose, I formulate
notions of locally set-generated large

∨
-semilattices and of

∨
-semilattices with a

bounded presentation. Abstract inductive definitions on locally set-generated large∨
-semilattices are shown to determine generalized elements of such lattices. In case
the lattice under analysis has also a boundedpresentation, and the abstract inductive
definition is bounded, this generalized element is proven to be a standard element
of the lattice, and a fixed point of the associated monotone operator.
Evenwhen considered in ZFC, the notions of locally set-generated and boundedly
presented large

∨
-semilattice do not collapse to standard known concepts, so that

the results derived about them might be of interest also in the realm of classical set
theory; in particular one has a result asserting the existence of a least fixed point for
certain monotonemappings on the class of all ordinals, as such a class is an example
of a large

∨
-semilattice with bounded presentation. These notions seem also to be

of potential interest in connection with the constructive semantics of constructive
set theories [10].
The general version of Tarski’s fixed point theorem states that a monotone map-
ping f on a complete lattice has a complete lattice of fixed points, so that in
particular every such f has a greatest fixed point. In CZF, this result is not directly
derived from the existence of the least fixed point. A constructive proof of the exis-
tence of the greatest fixed point of a monotone mapping on a complete lattice again
of the form L = Pow(X ) for X a set, follows by work of Aczel on co-inductive
definitions. In a suitable extension of CZF, an inductive definition Φ indeed also
determines a co-inductively defined class C (Φ), and whenever Φ is a set, also C (Φ)
is a set, and the greatest fixed point of the associated monotone set-operator ([4],
[6, Chapter 13], and Section 6). In the last and main section of this article, I develop
abstract lattice-theoretic versions ofAczel’s results on the existence of co-inductively
defined classes and sets. Specifically, I show that every abstract inductive definition
Φ on a locally set-generated large

∨
-semilattice L, in addition to an inductively

defined generalized element of L, also gives rise to a co-inductively defined gener-
alized element. When a set-generated L has a bounded presentation, and Φ is a set,
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such a generalized element is an ordinary element of L, and the greatest fixed-point
of the associatedmonotone operator. As a corollary of the proofs of the existence of
greatest and least fixed point, a constructive version of the general form of Tarski’s
fixed point theorem is finally derived.
We begin by recapitulating the main facts concerning the set-theoretical frame-
work to be adopted, inductive definitions, and their extension to (constructively
presented) complete lattices.

§1. Constructive set theories. The constructive analysis of the theory of induc-
tive definitions is carried out in certain subsystems of classical Zermelo–Fraenkel
set theory, collectively called constructive set theories [5, 11]. These theories are
based on intuitionistic logic, and lack the set-theoretic principles of Powerset and
(unrestricted) Separation. The results in the following sections are derived in some
of these systems.
More specifically, we shall be working in constructive Zermelo–Fraenkel set
theory (CZF, [2, 5]) and in some of its variants. CZF is a formal system in the
same language of classical set theory, with ∈ as the only nonlogical symbol. It uses
intuitionistic first-order predicate logic with equality [13], and is axiomatized by the
following axioms and axioms schemes:
1. Extensionality: ∀a∀b(∀y(y ∈ a ↔ y ∈ b)→ a = b).
2. Pair: ∀a∀b∃x∀y(y ∈ x ↔ y = a ∨ y = b).
3. Union: ∀a∃x∀y(y ∈ x ↔ (∃z ∈ a)(y ∈ z)).
4. Restricted Separation scheme:

∀a∃x∀y(y ∈ x ↔ y ∈ a ∧ φ(y)),
for φ a restricted formula. A formula φ is restricted if the quantifiers that occur
in it are of the form ∀x ∈ b, ∃x ∈ c.

5. Subset Collection scheme: for all formulae φ,

∀a∀b∃c∀u((∀x ∈ a)(∃y ∈ b)φ(x, y, u) →
(∃d ∈ c)((∀x ∈ a)(∃y ∈ d )φ(x, y, u) ∧ (∀y ∈ d )(∃x ∈ a)φ(x, y, u))).

6. Strong Collection scheme: for all formulae φ,

∀a((∀x ∈ a)∃yφ(x, y) →
∃b((∀x ∈ a)(∃y ∈ b)φ(x, y) ∧ (∀y ∈ b)(∃x ∈ a)φ(x, y))).

7. Infinity: ∃a(∃x ∈ a ∧ (∀x ∈ a)(∃y ∈ a)x ∈ y).
8. Set Induction scheme: for all formulae φ,

∀a((∀x ∈ a)φ(x)→ φ(a))→ ∀aφ(a).
WeuseCZF− for the systemobtained fromCZFby leaving out the SubsetCollection
scheme. Subset Collection is perhaps the most unusual of the CZF axioms and
schemes; it can be seen as a strengthening ofMyhill’s axiomExponentiationAxiom,
asserting that the class ba of functions from a set a to a set b is a set.
Certain consequences of the fully impredicative Powerset Axiom follow in CZF
by the Subset Collection scheme; this is often presented in the equivalent form (over
the remaining axioms of CZF) of the Fullness Axiom. For sets a, b, let mv(ba) be
the class of subsets r of a × b such that (∀x ∈ a)(∃y ∈ b) (x, y) ∈ r.
Fullness: Given sets a, b there is a subset c of mv(ba) such that for every r ∈
mv(ba) there is r0 ∈ c with r0 ⊆ r.
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An intuitionistic, but fully impredicative, version of classical ZF is H. Friedman’s
Intuitionistic Zermelo–Fraenkel set theory based on collection, IZF. It has the same
theorems as CZF extended by the unrestricted Separation Scheme and the Powerset
Axiom. Moreover, the theory obtained from CZF, or from IZF, by adding the Law
of Excluded Middle has the same theorems as ZF.
We shall make use of class notation and terminology familiar from classical set
theory [5]. For example, given any set or class X , one has the class Pow(X ) = {x |
x ⊆ X} of subsets of X . The class of all sets is defined as V = {x | x = x}.
If not indicated otherwise, in the following we shall be working in the system
CZF−.

§2. Inductive definitions. An inductive definition in the sense of Aczel is any class
Φ of pairs of sets. One may regard a pair (x,X ) ∈ Φ as an instance of a rule of
inference of a formal system, with X as the set of premisses of an inference step,
and x as the conclusion [1]. A class A is Φ-closed if it is closed for deduction in this
system, i.e., if

(x,X ) ∈ Φ, and X ⊆ A, then x ∈ A.
The least Φ-closed class is denoted by I (Φ), when it exists. I (Φ) is the class
inductively defined by Φ.
Given an inductive definition Φ, one has a monotone class-operator ΓΦ defined,
for every class Y , by ΓΦ(Y ) = {x | (∃X ) (x,X ) ∈ Φ&X ⊆ Y}. We shall say that
Φ generates ΓΦ. Note that a class A is Φ-closed iff ΓΦ(A) ⊆ A.
If the class {x | (∃X ) (x,X ) ∈ Φ & X ⊆ Y} is a set for every set Y , Φ is said to
be local. If Φ ⊆ S × Pow(S) for S a set, we say that Φ is an inductive definition on
S. For Φ a local inductive definition on S, ΓΦ : Pow(S) → Pow(S) is a monotone
set-operator on Pow(S). Conversely, with a monotone set-operator Γ : Pow(S) →
Pow(S) one can associate the local inductive definition ΦΓ = {(x,X ) | x ∈ Γ(X )}.
Observe that ΦΓ is the largest inductive definition among those that generate Γ.
For instance, forS a set, the identity Id : Pow(S)→ Pow(S) can be generated by the
set Φ = {(x, {x}) | x ∈ S}, while ΦId is the class {(x,X ) | x ∈ X, X ∈ Pow(S)}.
For Γ : Pow(S) → Pow(S), if Γ = ΓΦ, with Φ an inductive definition on S, and if
I (Φ) exists and is a set, then I (Φ) is the least fixed-point of Γ.
In ZFC, the least fixed-point of a monotone operator Γ : Pow(S)→ Pow(S), for
S a set, can be obtained via transfinite iterations of Γ along all ordinals, starting
from the empty set [1]. Again in the context of classical set theory ZFC, Aczel [1]
shows that if Γ = ΓΦ for an inductive definition Φ ⊆ S ×Pow(S) with the property
that card (X ) < κ for all (x,X ) ∈ Φ, with κ a regular cardinal, then κ iterations
suffice to get the least fixed point of Γ.
The constructive analysis of inductive definitions is carried out in Aczel [2],
assuming the axioms of CZF−. The following theorem is called the class inductive
definition theorem [5].

Theorem 2.1 (CZF−). Given any class Φ of ordered pairs, there exists a least
Φ-closed class I (Φ), the class inductively defined by Φ.

Despite asserting just the existence of an inductively defined class, rather than of a
set, this result can already be profitably exploited in the development of constructive
mathematics, e.g., [8].
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In constructive systems for set theory no completely satisfactorynotion of ordinal
and cardinal number is available (see however [6, Section 9.4]). Theorem 2.1 is thus
proved by formulating a constructive version of the iteration of the monotone
operator associated with the given inductive definition. The class of all sets plays
the role of the class of ordinals, and set-induction is used in place of transfinite
induction on ordinals.
Regular cardinals are replaced in this context by regular sets. A set κ is regular
if it is transitive, inhabited, and for any u ∈ κ and any set R ⊆ u × κ, if (∀x ∈ u)
(∃y)〈x, y〉 ∈ R, then there is a set v ∈ κ such that

(∀x ∈ u)(∃y ∈ v)((x, y) ∈ R) ∧ (∀y ∈ v)(∃x ∈ u)((x, y) ∈ R). (1)

κ is said to be weakly regular if in the above definition of regularity the second
conjunct in (1) is omitted.
A class K is a bound for Φ if, for every (x,X ) ∈ Φ, there is a set � ∈ K and an
ontomappingf : �→ X . The inductive definition Φ is defined to be bounded (resp.
weakly regular bounded) if:
1. {x | (x,X ) ∈ Φ} is a set for every set X ;
2. Φ is bounded by a set (resp. by a weakly regular set).

Theorem 2.2 (CZF). If Φ is weakly regular bounded, then I (Φ) is a set.

The proof shows that, if κ is a weakly regular bound for Φ, then ‘κ iterations’ of
the monotone operator associated with Φ suffice to get the least fixed point. As one
can also prove that set-iterations of the operator yields sets, the conclusion follows.
The Regular Extension Axiom, REA, states:

REA: every set is a subset of a regular set.
The weak regular extension axiom, wREA, is the statement that every set is the
subset of a weakly regular set. In the context of CZF+wREA, if Φ is bounded by a
set, then it is bounded by a weakly regular set. The following result therefore holds
in CZF + wREA.

Corollary 2.3 (CZF + wREA). If Φ is bounded, then I (Φ) is a set.

The prime example of an inductive definition is the one yielding the class N of the
nonnegative integers: ΦN = {(∅, ∅)}∪{(x+, {x}) : x ∈ V}, where V = {x | x = x}
is the class of all sets, and x+ = x ∪ {x}. Note that ΦN is not a set, but has the set
{∅, {∅}} as bound.

§3. Abstract inductive definitions. An inductive definition on a set is an inductive
definition Φ that is a subclass of the cartesian product S × Pow(S), for S a set.
An inductive definition Φ is local if ΓΦ(Y ) is a set for every set Y . As recalled
in the previous section, inductive definitions on a set S that are local generate all
the monotone operators of type Γ : Pow(S) → Pow(S), and the smallest Φ-closed
classes that are sets are least fixed points of these operators (see also Proposition 3.2
below).
The class Pow(S) can be seen as a complete lattice under the inclusion ordering.
A natural question is then if the theory of inductive definitions on a set can be
extended to compute least fixed points of monotone operators on general complete
lattices. In [9] I showed that this is indeed the case, thereby obtaining a constructive
version of Tarski’s fixed point theorem on the existence of the least fixed point of
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a monotone mapping on a complete lattice. In this section I recapitulate the main
definitions and results involved in that extension.
In constructive set theories, no nontrivial complete lattice can be assumed to be
carried by a set [9, Theorem 2.5]. In such systems, the adopted notion is that of
set-generated

∨
-semilattice [5]: a partially ordered class, or poclass, (X,≤) is a class

X together with a class-relation ≤ that is reflexive, transitive, and antisymmetric.
A partially ordered class (X,≤) is a large ∨-semilattice if every subset of X has a
supremum. A large

∨
-semilattice L is said to be set-generated if it has a generating

set B, i.e., a subset B of L such that, for all x ∈ L,

i. ↓Bx ≡ {b ∈ B | b ≤ x} is a set,
ii. x =

∨ ↓Bx.

Considered in classical ZF, a large
∨
-semilattice is set-generated if and only if it is

a (small)
∨
-semilattice in the usual sense.

Note that a set-generated
∨
-semilattice is also a complete lattice. The same does

not hold for a general large
∨
-semilattice (not even in classical systems as ZFC:

consider the universal class V ordered by inclusion).
The powerclass Pow(S) of a set S, ordered by inclusion, is the prime example of a
set-generated

∨
-semilattice, with generating setBS = {{x} : x ∈ S}.We can regard

an inductive definition on a set Φ ⊆ S × Pow(S) as a subclass of BS × Pow(S), by
identifying the elements of S with the corresponding singletons in BS .
Abstracting from this example, we define the notion of abstract inductive
definition [9]. Let L be a set-generated

∨
-semilattice L with generating set B.

An abstract inductive definition on L is any class of ordered pairs
Φ ⊆ B × L.

A subclass Y ⊆ B will be called cL-closed, or a generalized element of L, if, for
every subset U of Y , the set ↓B ∨U is contained in Y ; that is, Y is cL-closed if⋃

U∈Pow(Y ) ↓B
∨
U = Y .

If Y is a set, Y is cL-closed iff Y = ↓B ∨Y .
Note that, if L = Pow(S), every subclass Y of BS is cL-closed. A cL-closed class
Y can be thought of as denoting a generalized element of L for, if Y were a set,
we could consider its join that is an actual element of L; on the other hand, every
element a of L is the join of a unique cL-closed subset of B, the set ↓B a.
A class Y ⊆ B will be said Φ-closed if it is cL-closed and if, whenever (b, a) ∈ Φ,

↓Ba ⊆ Y =⇒ b ∈ Y .
We shall denote by I(Φ) the least Φ-closed class, if it exists.
Given an abstract inductive definition Φ on L, and an element a in L, the class

{b ∈ B | (∃a′) (b, a′) ∈ Φ & a′ ≤ a}
may not be a set in general. If for every a ∈ L, this class is a set we say that Φ is
local. A local abstract inductive definition Φ determines a mapping ΓΦ : L → L,
given by, for a ∈ L,

ΓΦ(a) ≡
∨{b ∈ B | (∃a′) (b, a′) ∈ Φ & a′ ≤ a}.

If a1 ≤ a2, then ΓΦ(a1) ≤ ΓΦ(a2), i.e., ΓΦ is monotone.
The following two propositions are proved in [9]. We reproduce their proofs here
as they will be needed in the following.
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Proposition 3.1. Let Γ : L → L be a monotone operator on a set-generated∨
-semilattice L. Then, the abstract inductive definitionΦΓ = {(b, a) ∈ B ×L | b ≤
Γ(a)} is local, and for every a ∈ L, Γ(a) = ΓΦΓ(a).
Proof. Define ΦΓ ⊆ B × L by

(b, a) ∈ ΦΓ ⇐⇒ b ≤ Γ(a).
ΦΓ is local as, for a ∈ L, {b ∈ B | (∃a′) (b, a′) ∈ ΦΓ & a′ ≤ a} = {b ∈ B |
(∃a′) b ≤ Γ(a′) & a′ ≤ a}. By monotonicity of Γ, this class is the same as the class
{b ∈ B | b ≤ Γ(a)}, that is a set by the assumption that L is set-generated. The
join of this set therefore exists, and again as L is set-generated, is equal to Γ(a). �
Proposition 3.2. Given a local abstract inductive definition Φ on a

∨
-semilattice

L with generating set B, a one-to-one correspondence exists between the Φ-closed
subclasses Y of B that are sets, and the elements a of L such that ΓΦ(a) ≤ a. The
correspondence associates with Y its supremum, and with a the cL-closed set ↓Ba.
Moreover, whenever the class I(Φ) exists and is a set, ΓΦ has

∨ I(Φ) as least fixed
point.

Proof. Assume Y ⊆ B is Φ-closed and that it is a set. Then,∨Y exists in L and
we have

ΓΦ(
∨
Y ) =

∨{b ∈ B | (∃a) (b, a) ∈ Φ & a ≤ ∨
Y}.

To conclude that ΓΦ(
∨
Y ) ≤ ∨

Y , let b ∈ B be such that there is a ∈ L with
(b, a) ∈ Φ and a ≤ ∨

Y . To show that b ≤ ∨
Y it suffices to prove that ↓Ba ⊆ Y ,

since Y is Φ-closed. But this follows, by a ≤ ∨
Y , from the assumption that Y is a

set and that it is cL-closed (take U = Y in the definition of cL-closed). Conversely,
to a ∈ L such that ΓΦ(a) ≤ a, we associate the cL-closed class ↓Ba. As L is set-
generated, ↓Ba is a set; using the assumption that ΓΦ(a) ≤ a, one immediately sees
that ↓Ba is also Φ-closed. Finally, one has Y = ↓B ∨Y , as Y is cL-closed, and
a =

∨ ↓Ba, since L is set-generated.
Now assume I(Φ) exists and is a set. As I(Φ) is Φ-closed, by what has just been
shown, ΓΦ(

∨ I(Φ)) ≤ ∨ I(Φ). To prove the converse, note that by monotonicity
of ΓΦ, ΓΦ(ΓΦ(

∨ I(Φ))) ≤ ΓΦ(
∨ I(Φ)). Then, ↓BΓΦ(

∨ I(Φ)) is Φ-closed, again by
the correspondence just proved. Then, as I(Φ) is the least Φ-closed class, I(Φ) ⊆
↓BΓΦ(

∨ I(Φ)), so that ∨ I(Φ) ≤ ΓΦ(
∨ I(Φ)). Thus ∨ I(Φ) is a fixed point for

ΓΦ. If a ∈ L is another fixed point, then in particular ΓΦ(a) ≤ a. Therefore ↓Ba is
Φ-closed, and I(Φ) ⊆ ↓Ba, which gives∨ I(Φ) ≤ a. �
Theorem 3.3. Let Φ be an abstract inductive definition on a

∨
-semilattice L

set-generated by a set B. Then, the smallest Φ-closed class I(Φ) exists.
This result is proved in [9] generalizing the argument given in [2] for Theorem
2.1, in particular showing how to define constructively the transfinite iterations of
a monotone operator on a general set-generated

∨
-semilattice. It will also be a

corollary of Theorem 5.3.
By this theorem, then, if Γ : L → L is a monotone operator on L, the smallest
Φ-closed class I(ΦΓ) exists. By Propositions 3.1 and 3.2, if I(ΦΓ) is a set,

∨ I(ΦΓ) is
the least fixed point of Γ. Observe that in the presence of the unbounded Separation
scheme, e.g., in the system ZF or IZF, I(ΦΓ) is always a set, as it is a subclass of
the set B. In such impredicative systems then Theorem 3.3 yields Tarski fixed point
theorem.
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In the weaker setting of constructive set theory, more demanding conditions have
to be imposed. A

∨
-semilattice L set-generated by a set B is said to be set-presented

[5] if a mapping D : B → Pow(Pow(B)) is given with the property that
b ≤ ∨

U ⇐⇒ (∃W ∈ D(b))W ⊆ U ,
for every b ∈ B,U ∈ Pow(B). For instance, the set-generated

∨
-semilattice

(Pow(S), BS ) is set-presented by the mapping D({x}) = {{{x}}}. Note that in
a set-presented

∨
-semilattice one in particular has, for all b ∈ B andW ∈ D(b),

b ≤ ∨
W .

A bound for an abstract inductive definition Φ is a set α such that, whenever
(b, a) ∈ Φ there is x ∈ α such that the set ↓Ba is an image of x under a function f.
An abstract inductive definition Φ is bounded if

1. {b ∈ B | (b, a) ∈ Φ} is a set for every a ∈ L.
2. Φ has a bound.

The following result is also proved in [9], by showing that, when Φ is bounded by a
set, a set of iterations of the associated monotone operator suffices to yield the least
fixed point. It will also arise as a corollary of Theorem 5.4.

Theorem 3.4 (CZF + wREA). Let Φ be a bounded abstract inductive definition
on a set-presented

∨
-semilattice L. Then, the smallest Φ-closed class I(Φ) is a set.

As a corollary one directly gets the constructive Tarski’s fixed point theorem.

Corollary 3.5 (CZF + wREA). Let Γ : L → L be a monotone operator on a
set-presented

∨
-semilatticeL. IfΓ = ΓΦ forΦ a bounded abstract inductive definition

on L, then Γ has the least fixed point p =
∨ I(Φ).

§4. Inductive definitions on a set as abstract inductive definitions and conversely.
As hinted before, a standard inductive definition on a set S can be regarded as
an abstract inductive definition. With Φ ⊆ S × Pow(S) one associates the class
Φa ⊆ BS × Pow(S), where BS = {{x} : x ∈ X} is the base of singletons for the
lattice Pow(S), and Φa is given by {({x}, X ) | (x,X ) ∈ Φ}. One then has that
I (Φ) exists if and only if I(Φa) exists, and I (Φ) = {x | {x} ∈ I(Φa)}.
On the other hand, with an abstract inductive definition Φ on a

∨
-semilattice

L with generating set B, one can associate the standard inductive definition Φst =
Φst,1 ∪ {(b, ↓Ba) | (b, a) ∈ Φ}, where Φst,1 = {(b,U ) ∈ B × Pow(B) | b ≤ ∨

U}.
Observe first that a class Y ⊆ B is cL-closed if and only if it is Φst,1-closed in
the standard sense. Then a class Y ⊆ B is Φ-closed in the abstract sense iff it is
Φst-closed in the standard sense, I(Φ) exists if and only if I (Φst) exists, and in that
case they coincide. Theorem 3.3 can thus be derived via this identification, applying
Theorem 2.1.1 Asmentioned before, the direct proof of Theorem 3.3 shows however
how to define, in the setting of constructive set theory, the infinitary iterations of a
monotone operator on a complete lattice.
Note that, evenwhenΦ is a set or is bounded,Φst is generally a proper unbounded
inductive definition. So this association cannot be used to derive Theorem 3.4 by

1As observed by the anonymous referee of [9]. This corresponds to the fact that one can (impredica-
tively) derive Tarski fixed point theorem on the existence of the least fixed point of a monotonemapping
f : L→ L by its particular case (known as Knaster–Tarski fixed point theorem) for L = Pow(X ), X a
set.
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its special case for standard inductive definitions (Theorem 2.3). However, when L
is set-presented, one can associate with Φ the standard inductive definition Φ′

st =
Φ′
st,1 ∪ {(b, ↓Ba) | (b, a) ∈ Φ}, with Φ′

st,1 = {(b,W ) ∈ B × Pow(B) | W ∈
D(b)}. Again, I (Φ′

st) exists if and only if I(Φ) does, and they coincide in that case.
Moreover, Φ′

st is bounded in the standard sense if and only if Φ is bounded in the
abstract sense. Theorem 3.4 can then be obtained by applying Theorem 2.3 to Φ′

st .
The reduction of abstract inductive definitions to standard inductive definitions is
however not entirely satisfactory.Given a set-generated

∨
-semilatticeL, no uniform

way is available for replacing an abstract inductive definition Φ with a standard
inductive definition Φst , inductively defining the same class and such that the latter
is bounded whenever the former is. Moreover, while the same abstract inductive
definition shall determine both a least inductively defined element and a greatest co-
inductively defined element, as for the standard case, the replacement of an abstract
inductive definition with the standard ones considered above does not define the co-
inductively defined element generated by the original abstract inductive definition
(see Section 6).

§5. Locally set-generated and boundedly presented ∨
-semilattices. Abstract

inductive definitions on set-generated
∨
-semilattices generalize inductive defini-

tions on a set, i.e., of the form Φ ⊆ S × Pow(S), for S a set. A natural question is if
one has also an abstract analog of arbitrary inductive definitions. In this section we
show that this generalization is indeed possible, introducing the notions of locally
set-generated

∨
-semilattice and of

∨
-semilattice with a bounded presentation.

Ageneral inductive definitionΦcan also be seen as an abstract inductive definition
on a

∨
-semilattice. However, the

∨
-semilattice has to be of a much larger ‘size’ than

that of a set-generated
∨
-semilattice.

We shall say that a large
∨
-semilattice L is locally set-generated if it is generated

via subsets of a possibly proper subclass of L, i.e., if a subclass B of L is given such
that, for all x ∈ L,
i. ↓Bx ≡ {b ∈ B | b ≤ x} is a set,
ii. x =

∨ ↓Bx.
So a locally set-generated

∨
-semilattice is defined as a set-generated

∨
-semilattice,

but the requirement that the base B is a set is dropped.
Note that, even in classical ZF set theory, a locally set-generated

∨
-semilattice

is in general carried by a proper class. Also, by contrast with set-generated
∨
-

semilattices, a locally set-generated
∨
-semilattice need not be a complete lattice.

Indeed, the prime example of such a structure is the class of all sets V = {x | x = x},
ordered by inclusion, with BV = {{x} | x ∈ V}. Observe that, in the present
constructive context, V itself wouldn’t work as a base for V. Another example is
given by the powerclass Pow(X ) of any class X , locally set-generated by the class
BPow(X ) = {{x} | x ∈ X}. Thus for instance the double powerclass PowPow(S)
of a set S is locally set-generated, while it cannot be proved to be set-generated in
CZF if S is nonempty. For an example in classical set theory, consider the class of
all ordinals Ord, locally set-generated by BOrd = {α ∈ Ord | (∃� ∈ Ord)α = �+}
(this example in fact also works in CZF, assuming the class of ordinals is defined
as the class of the transitive sets all of whose members are transitive sets [6]; to
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verify this, note that these ordinals are closed by successor and set-indexed union
[6, Lemma 9.4.2], and for ordinals α, � it holds α+ ≤ � if and only if α ∈ �).
Reading through the proofs of Propositions 3.1 and 3.2, one sees that the
assumption that the class B of generators is a set is not used, the features of
set-generated

∨
-semilattice exploited being instead conditions i, ii . We can there-

fore read those two propositions as valid more generally for monotone operators
on locally set-generated

∨
-semilattices.

Proposition 5.1. LetΓ : L→ L be amonotoneoperator on a locally set-generated∨
-semilattice L. Then, the abstract inductive definitionΦΓ = {(b, a) ∈ B ×L | b ≤
Γ(a)} is local, and for every a ∈ L, Γ(a) = ΓΦΓ(a).
Proposition 5.2. Given a local abstract inductive definition Φ on a locally set-
generated

∨
-semilatticeL with generating classB, a one-to-one correspondence exists

between the Φ-closed subclasses Y of B that are sets, and the elements a of L such
that ΓΦ(a) ≤ a. The correspondence associates with Y its supremum, and with a the
cL-closed set ↓Ba.
Moreover, whenever the class I(Φ) exists and is a set, ΓΦ has

∨ I(Φ) as least fixed
point.

We have the following generalization of Theorem 3.3.
Theorem 5.3. LetΦ be an abstract inductive definition on a

∨
-semilatticeL locally

set-generated by a class B. Then, the smallest Φ-closed class I(Φ) exists.
Proof. The result can be proved either directly, observing that the proof of
Theorem 3.3 in [9] does not require the condition that the class B of generators ofL
is a set, thus showing that the constructive formulation of the transfinite iterations of
the monotone operator associated with Φ extends to this more general situation, or
using Theorem 2.1, as follows. Recall by Section 4 that one may regard an abstract
inductive definition Φ on a

∨
-semilattice L with generating set B as the standard

inductive definition Φst = {(b,U ) ∈ B ×Pow(B) | b ≤ ∨
U}∪{(b, ↓Ba) | (b, a) ∈

Φ}. Again no role is played in this identification by the assumption that B is a set.
We can therefore apply Theorem 2.1 to get the existence of the smallest Φ-closed
class I (Φst). One then immediately checks that I(Φ) = I (Φst). �
An arbitrary standard inductive definition Φ can then be seen as an abstract induc-
tive definition on L = (V, BV), associating with Φ the class Φa ≡ {({x}, X ) |
(x,X ) ∈ Φ}.
A locally set-generated

∨
-semilattice (L, B) will be said boundedly presented, or

to have a bounded presentation, if a set k exists such that, for all b ∈ B and all
U ∈ Pow(B),

b ≤
∨
U ⇒ (∃� ∈ k)(∃f : �→ U )b ≤

∨
Range(f).

The universal class (V, BV) is boundedly presented by k = {{0}}. Other examples
are given by set-presented

∨
-semilattices: a set-presented L is boundedly presented

by k = {W | (∃b ∈ B)W ∈ D(b)} = ⋃
Range(D).

As already observed, a class I ⊆ B is cL-closed if and only if it is closed in
the standard sense for the standard inductive definition Φst,1 = {(b,U ) ∈ B ×
Pow(B) | b ≤ ∨

U}; if the ∨-semilattice is boundedly presented, a class I is
cL-closed if and only if it is Φ′′

st,1-closed, where Φ
′′
st,1 is the standard inductive
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definition

{(b, U ) ∈ B×Pow(B) | (∃� ∈ k)(∃f : �→ V)Range(f) = U &b ≤
∨
Range(f)}.

Indeed, if U ⊆ I , for U a subset of B, and b ≤ ∨
U , then there is � ∈ k and

f : �→ U such that b ≤ ∨
Range(f).

Theorem 5.4 (CZF + wREA). Let Φ be a bounded abstract inductive definition
on a boundedly presented

∨
-semilattice L. Then, the smallest Φ-closed class I(Φ) is

a set.

Proof. Again, one can prove this result either directly or indirectly. Indirectly,
one associates with Φ the standard Φ′′

st = Φ
′′
st,1 ∪ {(b, ↓Ba) | (b, a) ∈ Φ}, with Φ′′

st,1
defined as above. This inductive definition is bounded in the standard sense, as k
is a bound for Φ′′

st,1 by the definition of Φ
′′
st,1, and since Φ is bounded; remarkably,

condition i on locally set-generated
∨
-semilattices is precisely what is needed to

have that {x | (x,X ) ∈ Φ′′
st,1} is a set for every set X , so that {x | (x,X ) ∈ Φ′′

st}
is too a set for every set X , as Φ is bounded. In CZF + wREA, then, the smallest
Φ-closed class I (Φ′′

st) exists and is a set, by Corollary 2.3. It is not difficult then to
check that I(Φ) = I (Φ′′

st).
This proof however does not provide us with an iteration stage at which the
monotone operator ΓΦ associated with Φ stabilizes. To directly construct the small-
est Φ-closed class I(Φ) as a set via iterations, one can proceed along the lines of
the proof of [9, Theorem 4.9], by first replacing the set S = α ∪ {V : (∃b ∈ B)V ∈
D(b)} = α ∪⋃

Range(D) with S = α ∪ k, where α is a bound for Φ. We leave the
details of this alternative proof to the reader. �
Even when B is a set, the concept of boundedly presented

∨
-semilattice (L, B)

is a generalization of the notion of a set-presented
∨
-semilattice. This notion could

thus be useful in connection with the semantics of constructive set theories, where
particular types of set-presented

∨
-semilattices (set-presented cHa’s) are used as

spaces of truth values [10].
As hinted previously, the notions of locally set-generated and boundedly pre-
sented

∨
-semilattice may be of interest also in the context of classical set theory;

considered in such a context they do not collapse to known standard notions,
as is instead the case for the notions of set-generated and set-presented

∨
-

semilattices. For example, the locally set-generated
∨
-semilattice (Ord, BOrd) is

easily seen to be boundedly presented (by k = {{0}}; to prove this note that
� ∈ BOrd ⇐⇒ (∃� ∈ Ord)� = � ∪ {�}, so that, for U ⊆ BOrd, � ∪ {�} ⊆ ⋃

U
gives � ∈ U such that � ∈ �, whence � = � ∪ {�} ⊆ �). So by Theorem 5.4,
every monotone operator on the ordinals that is generated by a bounded abstract
inductive definition has a least fixed point. Note that as the successor function + is
monotone but with no least fixed point, we deduce that + cannot be generated by a
bounded abstract inductive definition (in CZF as well as) in ZFC.

§6. Abstract co-inductive definitions. In [12], Tarski proves that amonotoneoper-
ator f on a complete lattice also has a greatest fixed point. Using the existence of a
least and a greatest fixed point of f, he then proves that f has, more generally, a
complete lattice of fixed points. In this section I prove a constructive version of this
result. As before, unless otherwise explicitly indicated, we shall be working in CZF−.
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Tarski first exhibited the existence of a greatest fixed point of f, then applied this
result to the lattice obtained from the given one taking the dual order, to show that
f also has a least fixed point. Unfortunately, we cannot use an analogous approach,
since the dual of a set-generated

∨
-semilattice need not a priori be set-generated.

As for the case of the least fixed point, the existence of the greatest fixed point in
the special case of monotone functions on

∨
-semilattices of the form (Pow(S),⊆),

for S a set, has been proved by Aczel (cf. [4, 6]).
Specifically, given an inductive definition Φ on a class S, Φ ⊆ S×Pow(S), a class
C ⊆ S is said to be Φ-inclusive if C ⊆ ΓΦ(C ), with ΓΦ the operator on subclasses
associated with Φ: ΓΦ(C ) = {x | (∃X ) (x,X ) ∈ Φ & X ⊆ C}. Aczel showed that
the class J =

⋃{Y ∈ Pow(S) | Y ⊆ ΓΦ(Y )} is the largest Φ-inclusive subclass
of S, the class co-inductively defined by Φ, denoted by C (Φ). This result is proven
in the system CZF− + RRS, where the Relation Reflection Scheme RRS is the
following axiom scheme.
Relation Reflection Scheme, RRS:

For classes S,R with R ⊆ S × S, if a ∈ S and ∀x ∈ S ∃y ∈ S R(x, y) then
there is a set S0 ⊆ S such that a ∈ S0 and ∀x ∈ S0 ∃y ∈ S0 R(x, y).

This scheme can be regarded as a weakening of the Relativized Dependent Choices
Axiom, RDC. By contrast with RDC, RRS is valid in all topological models (all
cHa-valued models). Note also that RRS is a theorem of ZF (see [4] for a proof of
these facts).
The following strengthening of RRS and REA is used to show that J is a set when
S,Φ are sets. A regular set A is strongly regular if it is closed under the union
operation, i.e., if ∀x ∈ A ∪ x ∈ A. Let A be a strongly regular set. A is defined to
be RRS-strongly regular if also, for all sets A′ ⊆ A and R ⊆ A′ × A′, if a0 ∈ A′

and ∀x ∈ A′ ∃y ∈ A′ xRy then there is A0 ∈ A such that a0 ∈ A0 ⊆ A′ and
∀x ∈ A0 ∃y ∈ A0 xRy.
RRS-

⋃
REA: Every set is the subset of a RRS-strongly regular set.

In the system CZF+ RRS-
⋃
REA, the class J =

⋃{Y ∈ Pow(S) | Y ⊆ ΓΦ(Y )}
can be proved to be a set when S and Φ are sets [6].
If the largest Φ-inclusive subclass C (Φ) = J of S exists, then it is easily seen
to be the greatest fixed point of ΓΦ. As recalled before, every monotone operator
Γ : Pow(S) → Pow(S) can be obtained as ΓΦ for a suitable Φ. Then, when Γ is
obtained from Φ a set and when S is a set, Γ has C (Φ) as greatest fixed point (note
indeed that for X to be a fixed point of Γ : Pow(S) → Pow(S), X must be an
element of Pow(S), and so it has to be a set).
I now extend these results to the abstract setting. To this purpose, given a locally
set-generated

∨
-semilattice (L, B) and an abstract inductive definition Φ ⊆ B ×L,

we define an operator Γ̄Φ on the generalized elements of L (i.e., the cL-closed
subclasses of B) as follows: for Y ⊆ B a cL-closed class, let

Γ̄Φ(Y ) ≡ cL{b ∈ B | (∃a) (b, a) ∈ Φ & ↓Ba ⊆ Y},
where, for Z a subclass of B,

cLZ ≡ {b ∈ B | (∃U ∈ Pow(Z))b ∈ ↓B ∨U} = ⋃
U∈Pow(Z) ↓B

∨
U .

Note that Z ⊆ cL Z, and if Z is a set, cL Z = ↓B ∨
Z is a set, too. Note also that

Γ̄Φ is a monotone operator on classes, and, that by contrast with ΓΦ (Section 3), it
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is defined even when Φ is not local. Also, for every class Y , Γ̄Φ(Y ) is easily seen to
be a cL-closed class (cf. also [9]).
We shall say that a subclass Y of B is Φ-inclusive if Y is cL-closed and

Y ⊆ Γ̄Φ(Y ). (	)

Condition 	 will be referred to as the characteristic condition of Φ-inclusivity.When
it exists, the largest Φ-inclusive subclass of B will be denoted by C(Φ).
Observe that for Y a cL-closed class, the equivalence
Γ̄Φ(Y ) ⊆ Y if and only if, for all (b, a) ∈ Φ, ↓Ba ⊆ Y =⇒ b ∈ Y ,

justifies the abstract definition of Φ-closed class. By contrast, at the abstract level,
it does not hold in general that Y ⊆ Γ̄Φ(Y ) if and only if (∀b ∈ Y )(∃a)(b, a) ∈
Φ & ↓Ba ⊆ Y .
If Φ is local, so that ΓΦ(a) ≡

∨{b ∈ B | (∃a′) (b, a′) ∈ Φ & a′ ≤ a} is defined
for every a ∈ L, one has an obvious one-one correspondence between Φ-inclusive
classesY that are sets, and elements a ofL such that a ≤ ΓΦ(a); the correspondence
associates

∨
Y to Y and ↓Ba to a.

Proposition 6.1. Let Φ be a local abstract inductive definition on a
∨
-semilattice

L locally set-generated by a class B. If the class C(Φ) exists and is a set, ΓΦ : L→ L
has

∨ C(Φ) as greatest fixed point.
Proof. Since C(Φ) is Φ-inclusive,

∨
C(Φ) ≤ ΓΦ(

∨
C(Φ)).

By monotonicity,
ΓΦ(

∨
C(Φ)) ≤ ΓΦ(ΓΦ(

∨
C(Φ))),

therefore ↓BΓΦ(
∨ C(Φ)) is Φ-inclusive.

So, ↓BΓΦ(
∨ C(Φ)) ⊆ C(Φ), which gives ΓΦ(

∨ C(Φ)) ≤ ∨ C(Φ). Thus ∨ C(Φ) is
a fixed point. To see that it is the greatest, assume a is a fixed point. Then ↓Ba is
Φ-inclusive, so that ↓Ba ⊆ C(Φ), which gives a ≤ ∨ C(Φ). �
Now let (L, B) be a locally set-generated

∨
-semilattice andΦ ⊆ B×L an abstract

inductive definition on L. Let

J =
⋃

{Y ∈ Pow(B) | YcL-closed & Y ⊆ Γ̄Φ(Y )}
the union of all Φ-inclusive sets. In general, the union of cL-closed sets is not cL-
closed. The following lemma shows, using the Strong Collection scheme, that this
is instead the case for J .

Lemma 6.2. The class J is cL-closed.
Proof. Let b ≤ ∨

U, U ∈ Pow(B) & U ⊆ J . Then, for all c ∈ U there is a Φ-
inclusive Y such that c ∈ Y . By Strong Collection, there is a set K such that (∀c ∈
U )(∃Y ∈ K)(Y Φ-inclusive & c ∈ Y ) & (∀Y ∈ K)(∃c ∈ U )(Y Φ-inclusive &
c ∈ Y ).
Let Ȳ =

⋃
K . By monotonicity of Γ̄Φ, the union of any set of sets satis-

fying the characteristic property of Φ-inclusivity also satisfies the characteristic
property, therefore U ⊆ Ȳ ⊆ Γ̄Φ(Ȳ ). Furthermore, again by monotonicity,
Ȳ ⊆ Γ̄Φ(↓B

∨
Ȳ ). Since Γ̄Φ(↓B

∨
Ȳ ) is cL-closed, it also holds b ∈ ↓B ∨U ⊆

↓B ∨ Ȳ ⊆ Γ̄Φ(↓B
∨
Ȳ ). Thus, ↓B ∨ Ȳ is Φ-inclusive, so that b ∈ J , as wished. �
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The following theorem is an extension of [4, Theorem 3.1] (or [6, Theorem 13.1.3])
to the abstract setting. As for the case of inductive definitions, the main difficulty in
carrying out this extension is due to the nonpoint set nature of

∨
-semilattices. The

same will hold for Theorem 6.5 below.

Theorem 6.3 (CZF− + RRS). Let Φ be an abstract inductive definition on a∨
-semilattice L locally set-generated by the classB. The class J =

⋃{Y ∈ Pow(B) |
YcL-closed& Y ⊆ Γ̄Φ(Y )} is the greatestΦ-inclusive sub-class of B. I.e., J = C(Φ).
Proof. By the previous lemma, J is cL-closed. To prove that J satisfies the
characteristic property of Φ-inclusivity, i.e., that J ⊆ Γ̄Φ(J ), let b ∈ J . Then, b ∈ Y
for Y such that Y ⊆ Γ̄Φ(Y ). By monotonicity, b ∈ Γ̄Φ(J ). So J is Φ-inclusive. It
remains to show that it is the greatest Φ-inclusive class. Assume Z is a Φ-inclusive
class, and b0 ∈ Z. We want to prove b0 ∈ J . To this purpose, it suffices to construct
a Φ-inclusive set W such that b0 ∈ W . Let A = Pow(Z), and let X ∈ A. Thus
X ⊆ Z, and
(∀x ∈ X )(∃U )[U ∈ Pow({b ∈ B | (∃a) (b, a) ∈ Φ & ↓Ba ⊆ Z}) & x ≤

∨
U ].

In particular, then,

for all b ∈ U there is a ∈ L such that (b, a) ∈ Φ and ↓Ba ⊆ Z.
By Strong Collection, a subset T1 of L exists such that

(∀b ∈ U )(∃a ∈ T1)((b, a) ∈ Φ & ↓Ba ⊆ Z)
and

(∀a ∈ T1)(∃b ∈ U )((b, a) ∈ Φ & ↓Ba ⊆ Z).
Let K =

⋃
a∈T1 ↓Ba. So K ∈ A = Pow(Z). It follows that

(∀x ∈ X )(∃K ∈ A)x ∈ Γ̄Φ(K) & K ⊆ Z.
Applying again the Strong Collection scheme, we obtain a set T2 such that

(∀x ∈ X )(∃K ∈ T2)[x ∈ Γ̄Φ(K) & K ⊆ Z]
and

(∀K ∈ T2)(∃x ∈ X )[x ∈ Γ̄Φ(K) & K ⊆ Z].
Defining Z′ =

⋃
T2, we have then shown that

(∀X ∈ A)(∃Z′ ∈ A)[X ⊆ Γ̄Φ(Z′)].

By the Relation Reflection Scheme, we get a set A0 ⊆ A such that {b0} ∈ A0 and
(∀X ∈ A0)(∃Z′ ∈ A0)[X ⊆ Γ̄Φ(Z′)].

LettingW ′ =
⋃
A0, we haveW ′ ⊆ Γ̄Φ(W ′), so thatW ′ satisfies the characteristic

property of Φ-inclusivity. By monotonicity, W ′ ⊆ Γ̄Φ(↓B
∨
W ′), and ↓B ∨W ′ ⊆

Γ̄Φ(↓B
∨
W ′), as Γ̄Φ(Y ) is cL-closed for allY .W = ↓B ∨W ′ is then theΦ-inclusive

set we were looking for. �
IfΦ is bounded, thenΦcanbeproved to be local inCZF, using the SubsetCollection
scheme (or the weaker Exponentiation axiom).WhenΦ is a set (and so in particular
it is bounded) this can be proved already assuming CZF−.

Lemma 6.4. Let Φ be an abstract inductive definition on a locally set-generated∨
-semilattice L. If Φ is a set, then it is local.
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Proof. We have to show that the class {b ∈ B | (∃a′) (b, a′) ∈ Φ & a′ ≤ a}
is a set for every a ∈ L. Note that we have {b ∈ B | (∃a′) (b, a′) ∈ Φ & a′ ≤
a} = {b ∈ Φ1 | (∃a′ ∈ Φ2) (b, a′) ∈ Φ & ↓Ba′ ⊆ ↓Ba}, where Φi = Range(
i),

i for i = 1, 2 the first and second projections on Φ. As, by (Replacement that is
a consequence of) Strong Collection, Range(
i) are sets, by Restricted Separation,
the latter class is a set for every a ∈ L. �
The following result extends [6, Theorem 13.2.3] to the abstract context of set-
generated

∨
-semilattices with a bounded presentation, thus in particular to set-

presented
∨
-semilattices.

Theorem 6.5 (CZF+RRS-
⋃
REA). Let Φ be an abstract inductive definition on

a set-generated
∨
-semilattice (L,B) boundedly presented by a set k. If Φ is a set, the

largest Φ-inclusive class C(Φ) is a set.
Proof. Since Φ is local, we have
J =

⋃{Y ∈ Pow(B) | YcL-closed & Y ⊆ Γ̄Φ(Y )} =
⋃{↓Ba | a ∈ L, a ≤

ΓΦ(a)}.
By Theorem 6.3, J is the largest Φ-inclusive class, we now prove that it is a set. By
RRS-

⋃
REA there is a RRS-strongly regular set A such that

{{b} | b ∈ B} ∪ {↓Ba | (∃b ∈ B)(b, a) ∈ Φ} ∪ k ⊆ A.
Let

JA =
⋃

{X ∈ A ∩ Pow(B) |
∨
X ≤ ΓΦ(

∨
X )}.

Since {X ∈ A ∩ Pow(B) | ∨
X ≤ ΓΦ(

∨
X )} = {X ∈ A | (∀b ∈ X )b ∈ B & b ∈

↓BΓΦ(
∨
X )}, and since ↓BΓΦ(

∨
X ) is a set because L is set-generated, JA is a set

by Restricted Separation and Union.
We can therefore conclude if we prove that J = JA. Clearly, JA ⊆ J : if b ∈ JA,
then b ∈ X , with∨X ≤ ΓΦ(

∨
X ). Thus, b ∈ ↓B ∨

X and b ∈ J . For the converse,
let b0 ∈ J , i.e., b0 ∈ ↓Ba0 with a0 ≤ ΓΦ(a0). We have to find X ∈ A such that∨
X ≤ ΓΦ(

∨
X ), and b0 ∈ X .

Let A′ = Pow(↓Ba0) ∩ A. For Z ∈ A′, one then has

(∀b ∈ Z)b ≤ ΓΦ(a0).
Since L is boundedly presented, this gives

(∀b ∈ Z)(∃� ∈ k)(∃f : �→ {b′ ∈ B | (∃a) (b′, a) ∈ Φ&a ≤ a0})b ≤
∨
Range(f).

Given b ∈ Z there is thus � ∈ k andf : �→ {b′ ∈ B | (∃a) (b′, a) ∈ Φ& a ≤ a0}
such that for all c ∈ � there is a such that (f(c), a) ∈ Φ and a ≤ a0. Letting, for
c ∈ �, Φc = {a ∈ Φ2 | (f(c), a) ∈ Φ}, with Φ2 the range of the second projection
on Φ, it follows that

(∀c ∈ �)(∃X ∈ A)[(∃a ∈ Φc)X = ↓Ba & a ≤ a0],
as A contains ↓Ba for each a ∈ Φ2. Then, since A is regular, and � ∈ A, we have a
set Z0 ∈ A such that

(∀c ∈ �)(∃X ∈ Z0)[(∃a ∈ Φc)X = ↓Ba & a ≤ a0]
and

(∀X ∈ Z0)(∃c ∈ �)[(∃a ∈ Φc)X = ↓Ba & a ≤ a0].

https://doi.org/10.1017/jsl.2018.13 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2018.13


ABSTRACT INDUCTIVE AND CO-INDUCTIVE DEFINITIONS 613

Thus Z0 ⊆ Pow(↓Ba0), so that Z1 ≡ ⋃
Z0 ∈ Pow(↓Ba0). As A is union-closed,

Z1 ∈ A, so that Z1 ∈ A′. Also, we have (∀c ∈ �)(∃a)(f(c), a) ∈ Φ and ↓Ba ⊆ Z1,
by which

∨
Range(f) ≤ ΓΦ(

∨
Z1), yielding b ≤ ΓΦ(

∨
Z1).

We have therefore proved

(∀b ∈ Z)(∃Z1)[Z1 ∈ A′ & b ≤ ΓΦ(
∨
Z1)].

Again as A is regular, and since Z ∈ A, we get a set Z2 ∈ A such that
(∀b ∈ Z)(∃Z1 ∈ Z2)[Z1 ∈ A′ & b ≤ ΓΦ(

∨
Z1)]

and

(∀Z1 ∈ Z2)(∃b ∈ Z)[Z1 ∈ A′ & b ≤ ΓΦ(
∨
Z1)].

Letting Z′ =
⋃
Z2, since A is union-closed, we haveZ′ ∈ A′ = Pow(↓Ba0)∩A and

(∀b ∈ Z)b ≤ ΓΦ(
∨
Z′), so that

∨
Z ≤ ΓΦ(

∨
Z′).

In conclusion, given Z ∈ A′ we have found Z′ ∈ A′ such that
∨
Z ≤ ΓΦ(

∨
Z′).

As A is RRS-strongly regular, and {b0} ∈ A′ ⊆ A, there is A0 ∈ A such that
{b0} ∈ A0 ⊆ A′ and

(∀Z ∈ A0)(∃Z′ ∈ A0)
∨
Z ≤ ΓΦ(

∨
Z′). (2)

Let Y ′ =
⋃
A0 ∈ A. We have b0 ∈ Y ′ and

∨
Y ′ ≤ ΓΦ(

∨
Y ′)

indeed, if b ∈ Y ′, then b ∈ Z for some Z ∈ A0. So b ≤ ΓΦ(
∨
Z′) for a setZ′ ∈ A0.

As Z′ ⊆ Y ′, ΓΦ(
∨
Z′) ≤ ΓΦ(

∨
Y ′), which gives b ≤ ΓΦ(

∨
Y ′).

We have shown Y ′ ∈ A, b0 ∈ Y ′, and
∨
Y ′ ≤ ΓΦ(

∨
Y ′), so that b0 ∈ JA as

wished. �
The following corollary is our constructive analog of Tarski’s theorem on the
existence of greatest fixed points of monotone operators on complete lattices.

Corollary 6.6 (CZF+RRS-
⋃
REA). Let Γ : L→ L be a monotone operator on

a set-generated
∨
-semilattice L with a bounded presentation, and let Φ be an abstract

inductive definition on L. If Φ is a set, and generates Γ, i.e., Γ = ΓΦ, then Γ has the
greatest fixed point p =

∨ C(Φ).
Proof. Recall Proposition 6.1 and Lemma 6.4. �
Remark 6.7. By contrast with the case of least fixed points, this result cannot
be extended to monotone operators generated by bounded inductive definitions
on boundedly presented

∨
-semilattices, not even classically: for a counterexample,

consider the identity on the universal class V.

So, over the system CZF+RRS-
⋃
REA, a monotone operator on a boundedly pre-

sented set-generated
∨
-semilattice L generated by an abstract inductive definition

that is a set, has both a greatest and a least fixed point. This holds therefore in
particular for such monotone operators on set-presented

∨
-semilattices.

A natural question is whether it is possible to deduce Theorems 6.3 and 6.5 from
the corresponding results for (the particular case of) standard inductive definitions.
Note first that the standard inductive definition Φst = {(b,U ) ∈ B ×Pow(B) | b ≤∨
U} ∪ {(b, ↓Ba) | (b, a) ∈ Φ} we associated to an abstract Φ (or its version Φ′

st
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for set-presented
∨
-semilattices) in Section 4 will not do: any subclass of B, and in

particular B, is Φ-inclusive in the standard sense for such inductive definitions, so
we have to look elsewhere.
An (unsatisfactory) option is to associatewith the givenΦ, the standard inductive
definition corresponding to the maximal abstract inductive definition inducing Γ̄Φ,
i.e., we let

Φ∗
st = {(b, ↓Ba) | b ∈ Γ̄Φ(↓Ba)}.

It is an easy exercise to prove that, if Y is a cL-closed class, Y is Φ-inclusive in the
abstract sense if and only if it is Φ∗

st-inclusive in the standard sense. Moreover, if
Z is Φ∗

st-inclusive, also cLZ is Φ
∗
st-inclusive, so C (Φ

∗
st) is cL-closed, C(Φ) exists if

and only if C (Φ∗
st) does, and in this case they coincide. However, the association of

Φ∗
st to Φ is not adequate to derive Theorem 6.5, since, even when Φ is a set and the
underlying

∨
-semilattice L is set-presented, Φ∗

st is in general only a class.
After proving that every monotone mapping f : L → L on a complete lattice
has both a least and greatest fixed point, in [12] Tarski showed that f has, more
generally, a complete lattice of fixed points. To prove this, Tarski argued as follows.
Let P be the class of fixed points of f : L→ L, and letW ⊆ P be a set. The class
[w,�] = {x ∈ L | w ≤ x ≤ �}, with w = ∨

LW the join in L ofW , is a complete
lattice with the partial order inherited byL. Moreover, the restriction off to [w,�]
is a monotone mapping. Then, f has a least fixed point p, and one has p =

∨
P W .

Dually, one proves that the infimum
∨
P W exists.

For a set-presented
∨
-semilattice L, we can argue similarly in the present con-

text, using Corollaries 3.5 and 6.6, provided it holds that intervals [a,�] and [0, a],
for a ∈ L, have a bounded presentation, and so in particular if they are
set-presented. For [a,�], this follows directly from the following lemma, for which
we exploit, for the first time in this article, the Subset Collection scheme (in the
form of Fullness, cf. Section 1). Note first that, if BL is a set of generators for
L, then, given a ∈ L, BaL = BL ∪ {a ∨ b | b ∈ BL} is also a set of generators
for L.

Lemma 6.8 (CZF). Let (L,BL) be set-presented by D : BL → Pow(Pow(BL)),
and let a ∈ L. Then, (L,BaL), withBaL = BL∪{a∨b | b ∈ BL}, is also set-presented.
Proof. Let D̄ = {(b,U ) | U ∈ D(b)}. For c ∈ BaL, we shall write ↓Bc for

↓BL c. For each c ∈ BaL, ↓Bc is a set, so by Fullness, there is a set C with C full in
mv(↓

B cD̄). We then have, by Strong Collection, that a set K exists such that

(∀c ∈ BaL)(∃C ∈ K)[C full in mv(↓BcD̄)]
and

(∀C ∈ K)(∃c ∈ BaL)[C full in mv(↓
BcD̄)].

Let C̄ =
⋃
K . For F ∈ C̄ , let

F̄ = {b′ ∈ BL | (∃b ∈ ↓ BL)(∃(b′′, U ) ∈ D̄)(b, (b′′, U )) ∈ F & b′ ∈ U}.
Since F̄ and BaL are sets, again by Fullness, there is a set C

′ full in mv(F̄ BaL). So,
applying again Strong Collection, we get a set K ′ such that

(∀F ∈ C̄ )(∃C ′ ∈ K ′)[C ′ full in mv(F̄ BaL)]
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and
(∀C ′ ∈ K ′)(∃F ∈ C̄ )[C ′ full in mv(F̄ BaL)].

Define C̄ ′ =
⋃
K ′. Then, (L,BaL) is set-presented by D

′ : BaL → Pow(Pow(BaL)),
where for c ∈ BaL,

D′(c) = {Range(G) | G ∈ C̄ ′ & c ≤
∨
Range(G)}

with Range(G) = {c ∈ BaL | (∃b ∈ BL)(b, c) ∈ G}. Indeed, assume c ∈ BaL and
W ∈ Pow(BaL) are such that c ≤

∨
W . Then, for all b ∈ ↓Bc, b ≤ ∨⋃

d∈W ↓Bd .
Thus, for all b ∈ ↓Bc there is (b′, U ) ∈ D̄ such that b′ = b and U ⊆ ⋃

d∈W ↓Bd .
Therefore, R(b, (b′, U )) = [b′ = b & U ⊆ ⋃

d∈W ↓Bd ] is a total relation from ↓Bc
to D̄, so that there is F ∈ C̄ , F ⊆ R. For every b′ ∈ F̄ one has d ∈ BaL such that
b′ ∈ ↓Bd and d ∈ W . So we have a total relation G ∈ C̄ ′ with G ⊆ R′, where
R′(b′, d ) ≡ [b′ ∈ ↓Bd & d ∈W ]. As for every b ∈ ↓B c, b ≤ ∨

F̄ , we may conclude
observing that c ≤ ∨

F̄ ≤ ∨
Range(G) and Range(G) ⊆W .

The converse, i.e., that from Range(G) ⊆ W , where Range(G) ∈ D′(c), one
derives c ≤ ∨

W , is obvious. �
We then have the following constructive version of Tarski’s general result.

Theorem 6.9 (CZF+RRS-
⋃
REA). Let Γ : L→ L be a monotone operator on a∨

-semilattice L set-presented by D : BL → Pow(Pow(BL)), and let Φ be an abstract
inductive definition on L that is a set, and that generates Γ, i.e., Γ = ΓΦ. Then, Γ has
a complete lattice P of fixed points.

Proof. Let P ⊆ L be the class of fixed points of Γ, partially ordered by the
restriction of the order relation ofL. LetY be any subset ofP.Wewant to show that
Y has a join and a meet in P. To prove this, we may reproduce the argument in [12],
applying Corollaries 3.5 and 6.6 to the restrictions of Γ to the intervals [

∨
L Y,�L]

and [0L,
∧
L Y ], respectively, if they are themselves set-presented (0L,�L denote

the bottom and top elements in L). Clearly, B[∨L Y,�L] = {∨L Y ∨ b | b ∈ BL}
is a set of generators for [

∨
L Y,�L]. By Lemma 6.8, it immediately follows that

([
∨
L Y,�L], B[∨L Y,�L]) is a set-presented

∨
-semilattice (restrictD′ from Lemma 6.8

to elements and subsets of B[∨L Y,�L]: for c ∈ B[∨L Y,�L], D′′(c) = {U ∈ D′(c) |
U ⊆ B[∨L Y,�L]}). On the other hand, the interval [0L,

∧
L Y ] has B[0L,

∧
L Y ]
= {b ∈

BL | b ≤ ∧
L Y} as set of generators, and is set-presented by the restriction D∗ of

D: for b ∈ B[0L,∧L Y ], D∗(b) = {U ∈ D(b) | U ⊆ B[0L,∧L Y ]}.
To prove then that Y has a meet in P, one observes that for every y ∈ Y ,∧
L Y ≤ y, so that Γ(∧L Y ) ≤ Γ(y) = y. Therefore, Γ(

∧
L Y ) ≤

∧
L Y , which

gives Γ(z) ≤ Γ(∧L Y ) ≤ ∧
L Y when z ≤ ∧

L Y . Hence, Γ : [0L,
∧
L Y ] →

[0L,
∧
L Y ] is a monotone mapping on a set-presented

∨
-semilattice. By Corol-

lary 6.6 it thus has a greatest fixed point p in [0L,
∧
L Y ]. We have p ∈ P, p ≤ y

for every y ∈ Y , and if z is any other element with these properties, z ≤ p, since p
is the greatest fixed point of Γ restricted to [0L,

∧
L Y ]. Therefore, p =

∧
P Y . We

leave to the reader the proof that Y has a join in P. �
An interesting problem is to determine under which conditions on the

∨
-

semilattice L and/or the monotone mapping Γ, the associated complete lattice
of fixed points is itself (set-generated and) set-presented.
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