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In this article the time of the first occurrence of a rare event in a regenerating
process is investigatetiVe obtain the bound of deviation from the distribution of
the time of the first occurrence of a rare event in a regenerating process to an ex-
ponential distribution

1. INTRODUCTION

Probability analysis for rare events of regenerating processes has been widely used
in reliability theory queuing theoryand risk theory and has drawn considerable
attention in the past few yearsee for example Asmusser{2], Brown [3], and
Resnick{11]. Some important quantities in reliability systengsieuing networks

and risk modelge.g., the first failure rate of the systerthe first loss of a customer

of the queues with limited waiting roarthe bankrupt timgetc) can be described by

the time of the first occurrence of a rare event in a regenerating presEskeilson

[10]. However it is very difficult to give an exact probability evaluation of the first
occurrence time of the rare events in a general regenerating prébesstimulates
interest in asymptotic methods in assessing the first occurrence time’s probabilities
Moreoverin many regenerating random processes of great practical intesest|
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parameters” are usually presdpig., the rare event of the regenerating processes
occurs with a smaller probabilityThis feature makes it more possible to use pow-
erful approximation methods for the estimates of the occurrence probaibHigy
goal of this article is to establish the error bound for the asymptotic probability
estimate of the first occurrence time of arare eventin a general regenerating random
process

First we give a mathematical description of a rare event in a general regener-
ating random processet {(K,(t):t = 0):n = 1} be a sequence of regenerating
processed-or thenth regenerating procesk,(t):t = 0), let

0=t <t < oo <t < ...
be the successive regeneration instafiet
EM ="t k=12,....

In generalwe assume that in each regeneration period ofitheegenerating pro-
cessan eveni,” can occur at some instaif; + 1", where 0= " < £&". Here
we assume thdg,m, andn." are measurable relative to thefield generated by
{Ka(): 6"y = t < ™} and that{l;xm, : k = 1} and{n" : k = 1} are sequences
of independent and identically distributed random varigblgisere I, 5, is the
indicator function of the seA\”. Let A™ = U2, A" and@™ be the time of the
first occurrence of the eveAt" in thenth regenerating proceds reliability theory
6™ is called the time of the first system failutdoreover we introduce the follow-
ing notation first used by Solovyd3]:

(n) _ g(n) (n)
ko= &k lgame T e Lamy,

P = Pyams =1 and o™ =E4".

Solovyev[13] obtained that i (£1")9 < oo for someq > 1, then
1—p™M)gm
lim P(% > x> —eX (1)
pM—1 o

FurthermoreSolovyev[13] established that iE({;" )% < oo for some 2< q = 3,
then there is a consta@tsuch that for alh =1,

1—pMm)gm
P<—( ™) >x)—eX

sup =C(1-p™). 2

0=x<oo

o™

Afterward Brown [3] considerably weakened Solovyev’s assumption on the mo-
ment of/i"™. Brown proved that2) is still true if only the second moment ¢f” is
finite. Naturally, we would expect to know whether the bound lik@tdholds true
under the case &i")% < oo for somel < g < 2. This is very interesting for both
theoretical research and application reseasele for example Gertsbakt 6] and
Cao and Chei]. Solovyev's proof for(2) makes essential use of the assumption
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thatE(£i"™)9 < oo for some 2< q = 3 in having the aid of Esseen’s inequalifor
E(ﬁ”))2 < o0, Brown[3] established?) with the help of renewal theory and NWU
(new worse than usedheory In this article we establish an effective estimation of
the rate of convergence of the distribution(@f- p™)6™/a™ to an exponential
distribution under the condition &(£\")9 < oo for some 1< q < 2 by using the
basic probability methad

Note that ap™ is close to 1the evenA™ is a rare evenfThus (2) deals just
with the approximation for a rare evetisler[8] used the point process to study
the rare events of nonstationary sequenaed Shwartz and Wei$&2] investigated
the rare events of queuing networks via large deviation and time revéigah and
Iglehart[ 7] established the importance of sampling approach to give the rare event
simulation Asmussen1, 2] considered rare events in the presence of heavy tails in
stochastic networks and in risk moddlsreliability theory many systems have low
element failure rates aridr the element failure rates are much smaller than repair
rates In these casesve are interested in the time of the first system failltrés just
described by Solovye{/13] (see also Kalashnikopd]) that the operation of the
so-called “fast repaired” model until the appearance of the first system failure can be
equivalent to the occurrence of the evéit’ in the regenerating proce§K(t):
t = 0):n = 1}. Therefore (2), in fact, gives the deviation from the distribution of
the time of the first system failure to an exponential distribution

2. THE MAIN RESULT
Our main result is presented in this section

TreoreM 1: If info—;a™ > 0 and sup,-,(£{")% < oo for somel < q =< 2, then
there exists a constant() depending on g such that for all;a 1 and eachs > 0
(0<é6<(a—1/(q+1)),

1—pm 1Q)
F«Lﬂ) -

sup a = D(Q)(l - p(n))ﬁ'

(1-pM)P=x<co

Proor: The proof of the theorem is divided into several steps

Step 1. Set
XM = oM 4 a(n)|{(A‘1”))°} + CV(n)'{(A‘l”))Cm(A‘Z”))C} + ...,
Then we have

P( ™ >x)=P{1+ Zl L iam)e; > 1—p®

=( p(n) )[X/(lfp("))], (3)
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where[x/(1 — p™)] is the greatest integer equal to or less thafl — p™).

Furthermore

(p™)/@-p™) = glx/1-p™)logp®™

© (1 — (n)\k
ool (ET) e

On the other handve have

x ]{& @-pm
o (25

o) 1_ (n)\k—1

= exp{—z %} (5)
k=1
and
5 (@-p™)-
exp{ { pWKE K )}
o 1_ (n)\k oo 1_ (n)\k—1

sexp{z—( E ) —E—X( i ) } (6)

k=1 k=1

Moreover it is easy to prove that there exists a consansuch that fom =1,

X 1 (n)\k—1
sup exp{ ZL}_W
0=x<oo k=1
and
o2} 1_ (n)\k o2} X 1_ (n)\k—1
sup exp{z( p)_z( p™)
O=x<oo =1 k =1 k

=D;(1-p™).

Hence by (3)—(6), we have

1—pM)xm
P(—( ) >x)—e‘X

su
P D)

0=x<oo

Step 2. Let & " pe the trivialo field, and

(n) _ (n) (n, () (n),
-/Tk _o-(fl IREEE) gk M1 e Mk ’I{A(ln)},-u’
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k=1,2,.... We know that

)
{(glin - 01(”))|mik;g<A§“’>°} k=1}

is a martingale difference sequence with respect to the filtrddph : k= 1}, where
(A)e = 0. Now, defineS"” = 0 and
(n) 2 (é«(n) _ a(n))|{ml LAMer, k=1.

i=1

Then {S", 7™ :k = 1} is a martingale Using the Burkholder inequality for
martingale(see Chow and Teichgb, Cor. 1, p. 397]) and theC, inequality we

obtain forx > 0,

1=k=m

_ (1— p(n)>qE< max|3(”)|>q

™ a(n)x
Pl max|S”| = 1=p®

aMx 1=k=m

1I-p" V(S e .
=Aq| g | B 28" - @™ok any
k=1
= a2 S (S - @) )
- aVx ) & e

whereA, is a constant only depending gnConsequentlythere exists a constaB,

only depending o such thatfor x > 0,

o @™ ) _ B (mya-1
P maX|S< |—1_ —( (n)X)q( —p ) (8)

1=k<oo p™

Step 3. First, we have
6" = g(n)+ 2 fk |{nk damMey

_ (n)
= E (8" = a™)laicaam)e + E a ™l g amey.

Set

oo
_ (n)
vy = szl(gk —a™)lnkcaamey.
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Then
P(T o

(n)

1— p(n)
(n M1 —pm)s

_ P(x(n) N Y(n) - o ) |Y(n)| = %)

1—p™’ 1=p”

a(n)X C((n)(l_ p(n))s
+ P(X(“) +Y™ > 1-p™’ Y®l< C1-pv ©
On the other hand
(n a™(1-pm)?
P(X“" + Y™ > 1-p™’ Y] < C1-p™
a(n)
=p(x7 = TSy (10)
and
a“‘)x a(n)(l_ p(n))a
o™
> P<X(n) = oo XA p(n))§)>
(n) 1_ (n)\é
~p(jym 2 aAZP? (12)
1-p

Using(7), there exists a constabt, such thatfor alln =1,

a™

P<x<n> 1o p™ (x—(1- P(”))5)> —e
a™

= <o§i‘£n P<x(") > Toom (- 1= p<“>>5)> e )
am

. <12§<J<poo P<X<“> . p™ (x—(1- p("))5)> —ex )

= (Dl(l— p™)+ sup |e* —exp{—x+ (1- p(“>)5}|> Ot,
th=t<<oco
< D,t,,

sup

0=x<o0

(12)
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wheret, = (1— p™)%. An estimationsimilar to that of(12), now gives that there is
a constanD; such thatforn =1,

) a® ()8
Oi)l(-j<poo P(X >1—p(”) (x+@-p"™) ))—ex
= Dy(1—p™)2. (13)

On combining(8)—(13), we know that there is a constadtq) only depending onj

such thatforalln=1,
1— (n) g(n)
P <—( ) > x) —e

sup a™ = D(Q)(l - p(n))s-

(1—pM)P=x<oo

This completes the proof of the theorem n

From Theorem lwe immediately obtain the following result proved by So-
lovyev[13].

CorOLLARY: If E(£i")9 < oo for some g> 1, then
1—pMm)gm
lim P<% >x|=e
pM—1 a

Finally, we consider an example that satisfies the condition in Theorem 1 but
does not satisfy the condition required by Solovy&8].

Example: As in the notation given in Section e let
o=t"<t"<...<t"<...

be the successive regeneration instants ofriieregenerating proces¥,(t):
t=0),n=12,.... Set

&7 =t" -t k=12...

()4
k 2 )

and&," has the following density function

We assume that

an
2 + t1+e+1/n ’

* dt
agl = 1+e+1/n"
o 2+t

t=0,

where 0< e =1 and
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{lamy k=15 {47 k= 1}, ™, p™, and ™ are the same as in SectionThen
after some calculationsve know that for anyn, the (1 + €/2)th moment
of £V (= & Lamye, + i 1amy) is finite and uniformly bounded im, but the
(1 + e)th moment ofgﬁ") is infinite. Therefore this model satisfies the condition
in Theorem 1 but does not satisfy the condition required by Soloy/48l Theo-
rem 1 implies that there exists a constaxtl + ¢/2) such that for aln = 1 and
S (0<6<e/(d+¢€)),

1—pMm)gm
P<—( P >x>—eX

= =D(1+€/2)(1—p™)2.
o

sup
(1—pM)P=x<co

Acknowledgments

This research is supported in part by a Distinguished Young Investigator Grant from the National Natural
Sciences Foundation of China and a grant from the Hundred Talents Program of the Chinese Academy of

Sciences

References

1. AsmussenS. (1995. Ruin probability via local adjustment coefficientlournal of Applied Proba-
bility 33: 736—755
2. AsmussenS. (1996. Rare events in the presence of heavy tails in stochastic netwarRsGlass-
man K. Sigman & D. Yao(eds), Rare events and stabilitilew York: Springer-Verlagpp. 197-214
3. Brown, M. (1990. Error bounds for exponential approximations of geometric convolutisnsals
of Probability 18: 1388—-1402
4. Caqg J & Chen K. (1988. Reliability: Theory and application®8eijing: Academic Press
5. Chow Y.S. & Teicher, H. (1988. Probability theory 2nd ed New York: Springer-Verlag
6. Gertshakhl.B. (1984). Asymptotic methods in reliability theonA review. Advances in Applied
Probability 16: 147-175
7. Glynn, P. & Iglehart, D. (1989. Importance sampling in stochastic simulatiohi&nagement Sci-
ences35: 1367-1392
8. Husler J (1993. A note on exceedance and rare events of non-stationary sequédnoesal of
Applied Probability30: 877-888
9. KalashnikoyV. (1994). Topics on regenerative process8aca RatonFL: CRC Press
10. Keilson J (1979. Markov chain models—Rarity and exponentialliew York: Springer-Verlag
11 ResnickS.l.(1987). Extreme values, regular variation point and process&sy York: Springer-Verlag
12. ShwartzA. & Weiss A. (1993. Induced rare eventénalysis via large deviations and time reversal
Advances in Applied Probabilit§5: 667—689
13 Solovyey A.D. (1971). Asymptotic behavior of the time of the first occurrence of a rare event
Engineering Cybemetick 1038-1048

https://doi.org/10.1017/50269964802161080 Published online by Cambridge University Press


https://doi.org/10.1017/S0269964802161080

