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Subharmonic capillary–gravity waves in large
containers subject to horizontal vibrations
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This paper deals with nearly inviscid, capillary–gravity, modulated waves
parametrically excited by monochromatic horizontal vibrations in liquid containers
whose width and depth are both large compared with the wavelength of the excited
waves. A general linear amplitude equation is derived with appropriate boundary
conditions that provides the threshold acceleration and associated spatiotemporal
patterns, which compare very well with experimental measurements and visualizations.
The primary instability is associated with a pair of complex Floquet multipliers that
are close to (but strictly different from) −1, meaning that the instability is not strictly
(2:1) subharmonic. The resulting (quasi-periodic) waves are generally oblique, not
perpendicular to the vibrating endwalls. The extension of the theory to other confined
systems such as vibrating containers of arbitrary shape and vibrating drops is also
considered.
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1. Introduction
The effect of external vibrations on fluid systems is of interest in many scientific

and engineering applications such as liquid storage, mixing, pattern formation and the
study of fluid instabilities. The case of vertical vibrations, first considered by Faraday
(1831), has become a paradigm of parametric excitation (Fauve 1995). This is because,
in addition to experimental accessibility, it admits a fairly clean theoretical analysis
under the assumption of a perfectly flat horizontal free surface undergoing perfectly
vertical oscillations (Benjamin & Ursell 1954).

Horizontally vibrating systems are more resistant to analysis. Direct excitation
produces harmonic waves with the forcing frequency at arbitrary small forcing
amplitude. Parametric excitation is triggered by the harmonic field and requires that
the forcing acceleration exceeds a threshold value; the resulting waves can be periodic,
with a frequency equal to, e.g., one-half of the forcing frequency (as in the Faraday
system), or quasi-periodic, exhibiting two frequencies whose sum coincides with the
forcing frequency. The latter will also be called subharmonic below, even though the
wave frequencies need not be an exact fraction of the forcing frequency. Experimental
and theoretical analyses have concentrated on two distinguished limits.
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(a) (b)

(c) (d )

FIGURE 1. (a) Cross-waves, (b) sloshing modes, (c) oblique subharmonic waves and (d)
harmonic wavetrains.

Cross-waves (see figure 1) are strictly (2:1) subharmonic waves produced by a
wavemaker consisting in a partially submerged horizontally vibrating plate (Barnard
& Pritchard 1972; Miles & Henderson 1990). They were already described by
Faraday (1831) and theoretically analysed by Garrett (1970). Subsequent studies,
initiated by Jones (1984), focused on gravitational waves, assuming wave crests
perpendicular to the wavemaker. Cross-waves in a semi-infinite rectangular tank can
be analysed using the Havelock (1929) solution for the wavemaker problem, which
leads to approximations based on the nonlinear Schrödinger equation with the forcing
mechanism in the boundary conditions (see Bernoff, Kwok & Lichter (1989), Shemer
& Lichter (1990) and references therein). Oblique waves were also considered in this
context by Shemer & Chamesse (1999), who retained capillary effects and attributed
obliqueness to side band instabilities.

Interaction between both endwalls produces sloshing modes (see figure 1) that
exhibit new dynamics promoted by wave reflection at the endwalls. Both harmonic
and subharmonic sloshing modes have been considered, among others, by Miles
(1984), Funakoshi & Inoue (1988), Feng (1997) and Hill (2003). Faltinsen, Timokha,
and collaborators (in a series of papers, see Faltinsen, Rognebakke & Timokha
2006; Hermann & Timokha 2008 and references therein) have considered fully
nonlinear gravity waves under general excitation (not necessarily horizontal) using
modal expansions; Frandsen (1997) and Wu & Chen (2009), instead, addressed this
problem using finite differences. For parametric excitation resulting from horizontal
vibration of large containers in the gravity limit, the wave crests can be expected
to be perpendicular to the endwalls, which is consistent with the above-mentioned
property of cross-waves. On the other hand, obliquely oriented subharmonic waves
(see figure 1), whose crests are not perpendicular to the endwalls, have been
experimentally observed by Porter et al. (2012) in horizontally vibrated containers
using driving frequencies for which capillary effects cannot be neglected. Similar
capillary–gravity oblique waves have been observed in related configurations (Taneda
1994; Moisy et al. 2012). These suggest that obliqueness could be unavoidable when
capillary effects are present, a conjecture that which will be checked in the analysis
below. In fact, the main purpose of this paper is to construct a consistent linear
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theory able to predict both the subharmonic instability threshold and the resulting
patterns in horizontally vibrated containers. The general capillary–gravity limit will be
considered and no particular orientations will be assumed; purely gravitational waves
and cross-waves will appear as particular limits. The main difficulty associated with
capillary effects is due to uncertainties in modelling contact line motion, which could
contaminate quantitative comparison with experiments. Empirical models depending on
tunable parameters are not satisfactory in a theory derived from first principles. Here,
instead, the contact line will be pinned to the edge of the sidewalls and endwalls,
which can be experimentally achieved by either filling up the container in a brimful
way or using hydrophobic coatings.

Parametric excitation is triggered by the harmonic wave field produced by the
vibrating endwalls, which exhibits two distinguished components. On the one hand,
two counterpropagating harmonic wavetrains (see figure 1) aligned along the vibrating
endwalls are present that propagate (and decay by viscous dissipation) inwards from
the endwalls. On the other hand, an oscillatory bulk flow (OBF) is also present that is
essentially different from the wavetrains because:

(i) it is slowly varying in space, while the wavetrains show an O(1) wavelength;
(ii) it is purely inviscid and penetrates from the endwalls a distance comparable to

the container depth, while penetration of the wavetrains is determined by viscous
dissipation;

(iii) it exhibits a spatially constant pressure at the free surface, thus being independent
of both gravity and capillary forces, while the wavetrains do depend on these.

Property (ii) means that the OBF is the dominant forcing mechanism if the container
depth is at least somewhat large compared with the viscous decay length of the
subharmonic wavetrains. This requires that viscosity not be too small, consistent with
the experimentally accessible conditions with ordinary liquids when the container
width and depth are comparable and of the order of tens of centimetres and the forcing
frequency is larger than 10 Hz. This will be the limit considered in this paper.

The OBF was called the local oscillation by Havelock (1929) in his analysis of
harmonic gravity waves produced by wavemakers and it was therefore present in
subsequent works on cross-waves that used the Havelock solution; for example, Jones
(1984) called it the local disturbance. This flow has been formulated in terms of a
linear equation with well-defined boundary conditions by two of us (Varas & Vega
2007) in the case of two-dimensional, horizontally vibrated containers. The OBF
produces a pressure field that is the counterpart of the spatially uniform, temporally
periodic vertical-pressure-gradient field produced by inertial forces in the Faraday
experiment. The essential difference is that the vertical pressure gradient produced by
the OBF is not spatially uniform.

Selection of the subharmonic wave patterns at threshold is determined by the
OBF and the boundary conditions. The usual approach in rectangular containers is
to decompose the patterns into plane waves. Here, instead, a new approach will
be undertaken in which no particular pattern is assumed. Specifically, a purely two-
dimensional, linear evolution equation for the free surface elevation will be derived
that has substantial interest in itself. It will be referred to below as a general
amplitude equation since it is independent of the container geometry and allows for
any possible spatially modulated pattern composed by waves in arbitrary orientations.
The boundary conditions account for wave reflection at the sidewalls and endwalls
and, to the best of the authors’ knowledge, are not available in the literature for fixed
contact line. Thus, they will be derived in appendix B, using the Fourier transform
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FIGURE 2. Sketch of the vibrating container.

of the local solution in a region near the container walls. This general amplitude
equation and boundary conditions provide both the subharmonic threshold amplitude
and the critical eigenfunctions. It turns out that the primary subharmonic instability
is associated with a pair of complex conjugate Floquet multipliers that are close to
(but not equal to) −1, with eigenfunctions exhibiting a generally oblique eigenvector.
Thus, the threshold patterns are oblique, slowly modulated (quasi-periodic) waves that
are nearly standing in the short time scale and show activity that slowly drifts back
and forth between the two endwalls (type I patterns in figure 6, § 4.2). Interaction
with nearby modes (which are nearly marginal because the container is large) leads
to secondary bifurcations very soon after threshold. The resulting patterns are either
analogous to those at threshold or exhibit similar activity near both endwalls (type
II patterns in figure 6, § 4.2). The quasi-periodicity of the primary patterns and the
subsequent mode interaction giving qualitatively different patterns are remarkable
differences with Faraday waves. The calculated threshold amplitude compares very
well with the experimental measurements by Porter et al. (2012) and also with some
new experiments presented here to further check the theory. The resulting patterns also
agree well with the experiments qualitatively.

With these ideas in mind, the remainder of the paper is organized as follows.
The problem is formulated and the OBF is calculated in § 2, where the governing
equations are simplified using a quasi-potential approximation. Section 3 is devoted
to the derivation of the general amplitude equation, which is used in § 4 to obtain
effective threshold conditions for the subharmonic instability. Specific results in
§ 5 include comparison with experiments and insights into the dependence of the
threshold amplitude and patterns on the various non-dimensional parameters. A general
formulation (for more general confined vibrating fluid systems) of both the OBF and
the general amplitude equation is addressed in § 6, where some concluding remarks are
also provided.

2. Mathematical formulation and preliminary analysis
We consider (figure 2) a rectangular container of depth d∗ and horizontal cross-

section 2L∗1×2L∗2, which is vibrated horizontally in the 2L∗1 direction with amplitude a∗
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and frequency 2ω∗; the superscript ∗ hereafter denotes dimensional quantities. In order
to account for both the gravity and capillary limits, non-dimensionalization is done
with the characteristic time ω∗−1 and length k∗−1, specifically

t = ω∗t∗, d = k∗d∗, L1 = k∗L∗1, L2 = k∗L∗2, a= k∗a∗, (2.1)

where the wavenumber k∗ is defined by the capillary–gravity dispersion relation

ω∗2 = gk∗ + σk∗3/ρ. (2.2)

Here, g is the gravitational acceleration, σ is the surface tension and ρ is the density,
all assumed constant. Viscous and capillary–gravity effects are then accounted for in
terms of the modified Ohnesorge number and the gravity–capillary balance parameter,

Cg = µk∗2/(ρω∗) and S= σk∗2/(σk∗2 + ρg), (2.3)

respectively, where µ is the viscosity. Note that 0 6 S 6 1, with the extreme values
S= 0 and 1 corresponding to the pure gravity and capillary limits, respectively.

In a static Cartesian coordinate system with the xy plane containing the unperturbed
free surface, the x- and y-axes along the sidewalls and endwalls, respectively, and the
z-axis pointing upwards, the non-dimensional continuity and momentum equations are

∇ ·u+ ∂zw= 0, (2.4)
∂tu− w(∇w− ∂zu)+ (∇ ·u⊥)u⊥ =−∇p+ Cg(1u+ ∂zzu), (2.5)

∂tw+ u · (∇w− ∂zu)=−∂zp+ Cg(1w+ ∂zzw). (2.6)

Here, u and w are the horizontal and vertical velocity components, respectively,
p = pressure + (1 − S)z + (|u|2 + w2)/2 is the hydrostatic stagnation pressure, ∂t,
∂z, ∂zz, etc., denote partial derivatives, and

1= ∂xx + ∂yy and ∇ = ex∂x + ey∂y (2.7)

are the horizontal Laplacian and gradient operators, with ex and ey unit vectors in the x
and y directions. The superscript ⊥ indicates 90◦ counterclockwise rotation, namely

u⊥ =−vex + uey if u= uex + vey. (2.8)

The convective terms in (2.5)–(2.6) are the horizontal and vertical components of the
non-potential part of the three-dimensional convective term, −v × ∇̃ × v (∇̃ and v
denote the three-dimensional gradient operator and velocity vector, respectively).

Equations (2.4)–(2.6) apply in the domain occupied by the liquid, which is

− L1 + a cos 2t < x< L1 + a cos 2t, −L2 < y< L2, −d < z< f , (2.9)

where a > 0 is the non-dimensional vibrating amplitude and f is the free surface
elevation. The boundary conditions

u=−2aex sin 2t, w= 0 at x=±L1 + a cos 2t, at y=±L2 and at z=−d, (2.10)
f = 0 at x=±L1 + a cos 2t and at y=±L2, (2.11)

w= ∂tf + u ·∇f , (2.12)

p− (|u|2 + w2)/2− (1− S)f + S∇ · [∇f /(1+ |∇f |2)1/2]
= Cg{2∂zw− 2(∂zu+∇w) ·∇f +∇f · (∇u+∇u>) ·∇f }/(1+ |∇f |2), (2.13)

∂zu+∇w= (∇u+∇u>) ·∇f − [2∂zw− (∂zu+∇w) ·∇f ]∇f at z= f , (2.14)

enforce no slip at the solid boundaries, kinematic compatibility and the balance of
normal and tangential stresses at the free surface. The superscript > denotes the
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transpose. Note that in the boundary condition (2.11), as anticipated, the free surface
is pinned to the upper edge of the container walls. The right-hand side of (2.13) is
the viscous normal stress, Cg[(∇̃v+ ∇̃v>) · n] · n, where n is the upwards unit normal
to the free surface. Similarly, the boundary condition (2.14) imposes zero tangential
stress, namely [(∇̃v + ∇̃v>) · n] × n = 0. The problem (2.4)–(2.6), (2.10)–(2.14) is
invariant under reflection about the symmetry planes of the container, namely under
the actions

x→−x,u · ex→−u · ex, t→ t + π/2 and y→−y,u · ey→−u · ey, (2.15)

referred to as the spatiotemporal reflection symmetry and the purely spatial reflection
symmetry, respectively.

The main assumptions in this paper are

L1,L2, d� 1, a,Cg� 1, Cgd� 1 and (
√

Cg + S)(L1 + L2)� 1. (2.16)

The first assumption affirms that the size of the container is much larger than the
capillary–gravity wavelength (which is 2π after the non-dimensionalization above).
This is equivalent to the assumption that the forcing frequency is large compared
with the frequency of the first capillary–gravity sloshing mode of the container. The
assumption a� 1 is consistent with assuming that the steepness of the waves is small,
i.e.

|u| � 1, |w| � 1, |p| � 1, |f | � 1. (2.17)

The last two assumptions in (2.16) (further discussed in § 3 and appendix B) justify
neglecting nonlinear interaction with the counterpropagating, harmonic wavetrains and
viscous dissipation in the Stokes layers attached to the sidewalls and endwalls.

2.1. Quasi-potential approximation
Because Cg � 1, the oscillatory motion is nearly inviscid and a quasi-potential
approximation can be applied. Here, we follow the formulation of Zhang & Viñals
(1997); see also Joseph, Funada & Wang (2007) for related approximations. It should
be noted that viscous mean flows produced by the oscillatory boundary layers require
the usual assumption that the flow is potential in the bulk to be corrected (Vega,
Rüdiger & Viñals 2004), but mean flows can be ignored in the present linear
approximation. Thus, the motion is inviscid in the bulk (outside the oscillatory
boundary layers), where the vorticity and the Laplacian of the velocity are both zero.
Thus, ∂zu−∇w= ∂zzu+1u= 0, ∇ ·u⊥ = ∂zzw+1w= 0, and (2.4)–(2.6) simplify to

∇ ·u+ ∂zw= 0, ∂tu=−∇p, ∂tw=−∂zp if z< 0. (2.18)

Eliminating the velocity in these equations yields

1p+ ∂zzp= 0 if z< 0, (2.19)

and invoking (2.18), the boundary conditions (2.10)–(2.11) are linearized around
x=±L1 and rewritten as

∂xp+ a∂xxp cos 2t = 4a cos 2t, f + a∂xf cos 2t = 0 at x=±L1, (2.20)
∂yp= 0, f = 0 at y=±L2, ∂zp= 0 at z=−d. (2.21)

On the other hand, using (2.16)–(2.17) and retaining only terms up to quadratic order
in the small quantities u, w, p, f , a and Cg, the boundary conditions (2.12)–(2.13)
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lead to

∂tf − w=−∇ · (fu), (2.22)
p− (1− S)f + S1f = 2Cg∂zw+ (|u|2 + w2)/2− f ∂zp at z= 0. (2.23)

For consistency, two additional equations must be added for the velocity components
at the unperturbed free surface, u and w. These two equations are

∂tu=−∇p, ∂tw=−∂zp+ 2Cg1w at z= 0, (2.24)

which coincide with the corresponding equations considered by Zhang & Viñals
(1997), except that the quasi-potential approximation is written here in terms of the
pressure instead of the velocity potential. The derivation of the evolution equation
(2.24) (in particular, ensuring that no additional quadratic terms result from convective
terms) is subtle and, for completeness, is provided in appendix A.

The quasi-potential approximation (2.19)–(2.24) is the relevant one in the remainder
of the paper. Even though the analysis below concentrates in the linear approximation,
quadratic terms have been retained in (2.23) because they are needed to obtain the
parametric forcing terms (resulting from products of terms associated with the OBF
and the subharmonic waves) in the general amplitude equation.

2.2. The oscillatory bulk flow
The OBF is a linear harmonic flow produced by the vibrating endwalls. As anticipated
in the Introduction, a crucial property of this flow is that the flow variables (denoted
hereafter with the superscript obf ) vary slowly in space. In particular,

|∇pobf | ∼ |∂zp
obf | � |pobf |. (2.25)

At leading order (as a→ 0), the associated pressure field is written as

pobf = aPobf (x, y, z) cos 2t, (2.26)

while the remaining flow variables are such that

|f obf | ∼ |wobf | ∼ |uobf | � |pobf |, (2.27)

as is readily obtained, invoking (2.25), from the first boundary condition (2.23) and
(2.24). Using these and substituting (2.26) into (2.19)–(2.21) and into the second
boundary condition (2.23), then retaining only the leading O(a) terms, yield

1Pobf + ∂zzP
obf = 0 in |x|< L1, |y|< L2,−d < z< 0, (2.28)

∂xP
obf = 4 at x=±L1, ∂yP

obf = 0 at y=±L2, (2.29)

∂zP
obf = 0 at z=−d, Pobf = 0 at z= 0. (2.30)

Note the zero-pressure boundary condition at the unperturbed free surface, z = 0,
which results from (2.27) and is a specific property of the OBF.

Owing to the Neumann boundary conditions at the sidewalls, y = ±L2, the unique
solution to (2.28)–(2.30) is independent of y and is readily obtained in closed form,

Pobf = 32d

π2

∑
m>0,odd

sinh[mπx/(2d)] cos[mπ(z+ d)/(2d)]
m2 cosh[mπL1/(2d)] sin(mπ/2)

, (2.31)

where it has been taken into account that∑
m>0,odd

4
mπ

cos[mπ(z+ d)/(2d)]
sin(mπ/2)

= 1 if −d < z< 0. (2.32)
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FIGURE 3. The forcing function g versus (a) x/L1 and (b) (x− L1)/d for
L1/d = 0.1, 1, 2, 5, 10, 20 and 50; arrows indicate increasing values of L1/d.

The associated velocity components at z = 0 and the free surface elevation are
readily calculated from (2.22) and (2.24) (not used above), as

(∂zp
obf , f obf ,wobf )= ag(x)(−4 cos 2t,− cos 2t, 2 sin 2t), uobf = 0 at z= 0, (2.33)

where the forcing function g is given by

g(x)=−∂zP
obf /4≡ 4

π

∑
m>0,odd

sinh[mπx/(2d)]
m cosh[mπL1/(2d)] . (2.34)

Note that g(x) (and thus also ∂zpobf , wobf and f obf ) diverge logarithmically as x→±L1,
but this weak singularity is consistent with the behaviour of the harmonic flow in
an O(1) region near the upper edge of the endwalls (namely, |x ± L1| ∼ |z| ∼ 1), as
checked by Varas & Vega (2007). The function g is antisymmetric,

g(−x)≡−g(x), (2.35)

due to the spatiotemporal reflection symmetry in (2.15). Also, if d � L1, then g(x)
vanishes exponentially except in two O(d) regions near the endwalls. In particular,
near x= L1 (the approximation near x=−L1 is obtained using (2.35)), g behaves as

g(x)= G(ζ )≡ 4
π

∑
m>0,odd

1
m

exp(−mπζ/2) with ζ = (x− L1)/d. (2.36)

The function g is illustrated in figure 3 for several representative values of L1/d.
Note that when g is plotted versus (x − L1)/d (right plot), only three curves are
distinguished; the remaining curves coalesce to the approximation (2.36) as L1/d > 2.
This is because the error of the approximation scales as e−πL1/d.

3. General amplitude equation for subharmonic waves
In this section, we derive a linear amplitude equation for the free surface elevation

that provides the slow temporal evolution of subharmonic waves. This equation
is obtained from the simplified equations (2.19)–(2.24), after expanding the flow
variables as

(p, f )= (pobf , f obf )+ [eit(Ps,Fs)+ c.c.] + · · ·, (3.1)
(u,w)= (uobf ,wobf )+ [eit(U s,Ws)+ c.c.] + · · ·, (3.2)
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where c.c. stands for the complex conjugate. The harmonic OBF is as calculated in the
last section and the subharmonic flow, denoted with the superscript s, is such that

|∂tP
s| � |Ps| � 1, |∂tF

s| � |Fs| � 1, (3.3a)
|∂tU s| � |U s| � 1, |∂tW

s| � |Ws| � 1. (3.3b)

These conditions imply a separation of temporal scales. Substituting (3.1)–(3.2) into
(2.24) and setting the coefficient of eit to zero lead to

∂tU s + iU s =−∇Ps, ∂tW
s + iWs =−∂zP

s + 2Cg1Ws, (3.4)

which, to the approximation relevant here (recall that ∂t is small), leads to

U s ' i∇Ps − ∂t∇Ps, Ws ' i∂zP
s − ∂tzP

s + 2Cg∂z1Ps. (3.5)

Substituting these and the expressions in (2.33) for the OBF into (3.2), then the
resulting equation and (3.1) into (2.19)–(2.23), setting to zero the coefficient of eit in
the resulting equations and retaining only up to quadratic order in the small quantities
Ps, Fs, Cg and a, lead to the following formulation

1Ps + ∂zzP
s = 0 in −∞< z< 0, (3.6)

∂zP
s − Fs =−i∂tF

s − i∂ztP
s + 2iCg∂z1Ps + ag(x)1P̄s/2,

Ps − (1− S)Fs + S1Fs = 2iCg∂zzP
s + 3ag(x)∂zP̄

s/2 at z= 0,

}
(3.7)

∂zP
s→ 0 as z→−∞. (3.8)

Here, the function g(x) is as given by (2.34) and the overbar indicates complex
conjugation. The boundary condition (3.8) is obtained by noting that the subharmonic
surface waves only affect a horizontal layer of O(1) thickness attached to the free
surface (the subharmonic flow is at rest below this layer).

Equations (3.6)–(3.8) provide the linear dynamics of subharmonic surface waves,
including the leading-order effects of viscous damping and parametric forcing,
accounted for in those terms proportional to Cg � 1 and a� 1, respectively. This
three-dimensional formulation can be reduced to a two-dimensional description by
taking advantage of the fact that this problem is nearly singular. At leading order,
setting a= Cg = 0 and neglecting time derivatives, equations (3.6)–(3.8) reduce to

1Ps + ∂zzP
s = 0 in −∞< z< 0, (3.9)

∂zP
s − Fs = Ps − (1− S)Fs + S1Fs = 0 at z= 0, (3.10)

∂zP
s→ 0 as z→−∞. (3.11)

This unforced problem is singular since it admits non-zero solutions of the form

(Ps,Fs)=
∑

j

Aj(x, y, t)(ez, 1)ei(νjx+κjy) with
√
ν2

j + κ2
j = 1, (3.12)

which, invoking (3.1), represent combinations of plane travelling wavetrains. In fact,
when the whole container (whose horizontal dimension is large) is considered, the
complex amplitudes Aj and the unit wavevectors kj = νjex + κjey must be allowed to
vary slowly both in space (horizontal directions) and in time. This is the usual (quite
involved) approach to treating nearly inviscid surface waves in three space dimensions
in the literature. It generally requires considering a number of amplitude equations
for the evolution of the amplitudes of the wavetrains. These equations are typically
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coupled, even in the linear approximation, because of reflection at the endwalls and
sidewalls. Wave reflection also implies that this approach depends in a critical way
on geometry, meaning that the whole analysis must be customized for particular
geometries. For instance, circular waves (instead of plane waves) should be considered
in circular containers.

As an alternative, a broader yet more subtle approach is followed here that provides
a general amplitude equation, which is two-dimensional and independent of the
geometry. As a first step in deriving this equation, we note that if the complex
amplitudes Aj and the wavenumbers |kj| ≡ 1 are both constant, the wave fields (3.12)
are such that

∂tF
s = 0, 1Ps + Ps = 0, 1Fs + Fs = 0. (3.13)

Viscous damping and parametric forcing promote slow spatial variations of both Aj and
the kj, which means that the exact equalities (3.13) must be replaced by

|∂tF
s| � 1, |1Ps + Ps| � |Ps|, |1Fs + Fs| � |Fs|. (3.14)

These resonance conditions define slowly modulated patterns and implicitly imply a
separation of scales in both space and time. Non-resonant patterns, not satisfying
(3.14), decay to zero on the fast time scale t ∼ 1 and can be ignored.

As a second step, equation (3.12) is written as

(Ps,Fs)= (ez, 1)Fs(x, y, t), (3.15)

where Fs =∑Ajei(νjx+κjy) satisfies (3.14). The general amplitude equation for Fs is
obtained by rewriting (3.15) as

(Ps,Fs)= (ez, 1)Fs(x, y, t)+ (Ps
1,Fs

1)+ NRT, (3.16)

where the new terms account for viscous damping, parametric forcing, and
spatiotemporal modulations, which were neglected in (3.9)–(3.11). NRT denotes non-
resonant terms, not satisfying (3.14). Instead, Ps

1 and Fs
1 are resonant and must satisfy

|∂tP
s
1|, |1Ps

1 + Ps
1| � |Ps

1| � |Ps|, |∂tF
s
1|, |1Fs

1 + Fs
1| � |Fs|, (3.17)

Substituting (3.16) into (3.6)–(3.8) and invoking (3.14) and (3.17) yield

∂zzP
s
1 − Ps

1 =−(1Fs + Fs)ez in −∞< z< 0, (3.18)

∂zP
s
1 − Fs

1 =−2i∂tF
s + 2iCg1Fs + ag(x)1F̄s/2,

Ps
1 − Fs

1 =−S(1Fs + Fs)+ 2iCgFs + 3ag(x)F̄s/2 at z= 0

}
(3.19)

∂zP
s
1 = 0 at z=−∞. (3.20)

This problem is singular (and thus not generally solvable) because its homogeneous
part (setting to zero a, Cg and Fs) coincides exactly with (3.9)–(3.11), which admits
the non-trivial solutions (3.12). Thus, a solvability condition must be imposed and
this provides the evolution equation for Fs. The solvability condition results from
multiplying (3.18) by ez, integrating in −∞ < z < 0, integrating by parts, and
imposing the boundary condition (3.20), which yield

∂zP
s
1 − Ps

1 =−(1Fs + Fs)/2 at z= 0. (3.21)

Substituting into this the boundary conditions (3.19) leads to

∂tF
s + i(1+ 2S)(1Fs + Fs)/4= Cg(1Fs − Fs)+ iag(x)(3F̄s −1F̄s)/4. (3.22)
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Note that since Cg, a and ∂t are all small, this equation contains terms that are not
of the same order. In fact, at leading order 1Fs + Fs = 0, which selects the allowed
spatial patterns and permits (3.22) to be rewritten as

∂tF
s + i(1+ 2S)(1Fs + Fs)/4=−2CgFs + iag(x)F̄s. (3.23)

This is the general amplitude equation, whose derivation was the main object of
this subsection. Equation (3.23) applies outside four O(1) layers, near the endwalls
and the sidewalls, where the waves are reflected. The approximation above involves
a separation of spatial scales, an assumption that does not hold in these layers. The
analysis of wave reflection in appendix B (see (B 21)) provides the following boundary
conditions

∂xF
s ±
∫ 1

−1
γ (κ2, S)φ±L1(κ)e

iκy dκ = 0 at x=±L1, (3.24)

∂yF
s ±
∫ 1

−1
γ (ν2, S)φ±L2(ν)e

iνx dν = 0 at y=±L2, (3.25)

where the real scalar γ is as given in (B 20) (and plotted for various values of S in
figure 15) and the Fourier transforms φ±L1 and φ±L2 are

Fs(x,±L2)=
∫ 1

−1
φ±L2(ν)e

iνx dν, Fs(±L1, y)=
∫ 1

−1
φ±L1(κ)e

iκy dκ. (3.26)

Note that (3.23)–(3.25) are invariant under the reflection symmetries

(x,Fs)→ (−x, iFs) and y→−y, (3.27)

which follow from the symmetries (2.15) and the expansion (3.1).
Equations (3.23)–(3.25) will be used in the remainder of the paper. They are much

simpler than current approximations since (3.23) is a scalar equation depending on
the two horizontal coordinates only. Compared with the quasi-potential approximation,
note that pressure, velocity and dependence on both the vertical coordinate z and
the fast time scale t ∼ 1 are filtered out. Equation (3.23) is linear and thus excludes
wave–wave interactions, which could be enhanced by triad resonances (McGoldrick
1965), particularly at very small values of Cg (see below). Interactions with the
harmonic counterpropagating wavetrains can be ignored because of the last assumption
in (2.16), noting that the OBF and the wavetrains penetrate a distance from the
endwalls that scales with d and 1/Cg, respectively.

4. Subharmonic instability and associated patterns
4.1. Subharmonic instability

Since the coefficients of (3.23) do not depend on y, subharmonic instability can be
analysed by decomposing the solution into normal modes in the y direction, namely
setting

Fs =
∞∑

m=0

Fm(x, t) cos(κmy+ δm), (4.1)

where the transverse wavenumbers κm and the phase shifts δm must be such that

0 6 κm 6 1, −π< δm < π, (4.2)
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and are determined by the equations

−κm sin(κmL2 + δm)+ γ (1− κ2
m, S) cos(κmL2 + δm)= 0, (4.3)

−κm sin(−κmL2 + δm)− γ (1− κ2
m, S) cos(−κmL2 + δm)= 0, (4.4)

which result from substituting (4.1) into the boundary conditions at y = ±L2 in (3.25).
After some algebra, equations (4.3)–(4.4) yield

δm = mπ/2 (mod 2π), tan(κmL2 + δm)= γ (1− κ2
m, S)/κm with 0< κm 6 1. (4.5)

These equations define the discrete values of the transverse wavenumber κm that are
compatible with the boundary conditions at the sidewalls and provide many values
of κm (of the order of L2/π) because L2 is large. These are sorted such that
0 < κ1 < κ2 < · · ·. Note from (4.1) that even and odd values of m provide modes
whose dependence on y is even and odd, respectively, which is consistent with the
y-reflection symmetry in (3.27).

Substitution of (4.1) into (3.23)–(3.24) leads to

∂tFm + i(1+ 2S)[∂xxFm + ν2
mFm]/4=−2CgFm + iag(x)F̄m, (4.6)

∂xFm ± γ (1− ν2
m, S)Fm = 0 at x=±L1, (4.7)

where

νm =
√

1− κ2
m > 0 (4.8)

is the longitudinal wavenumber because, since ∂t, a,Cg � 1, at leading-order (4.6)
yields Fm ∼ e±iνmx. The angle of the wavevector with the endwalls is thus given by

ϕ = sin−1νm. (4.9)

Marginal instability is determined by demanding purely oscillatory solutions to the
linear problem (4.6)–(4.7), setting

Fm(x, t)= AmF+m (x)e
iΩt + ĀmF̄−m (x)e

−iΩt, (4.10)

where the complex amplitude Am is arbitrary in the present linear approximation, and
the eigenfunctions F±m satisfy

iΩF+m + i(1+ 2S)[∂xxF
+
m + ν2

mF+m ]/4=−2CgF+m + iag(x)F−m , (4.11)

iΩF−m − i(1+ 2S)[∂xxF
−
m + ν2

mF−m ]/4=−2CgF−m − iag(x)F+m , (4.12)

∂xF
+
m ± γ (1− ν2

m, S)F+m = ∂xF
−
m ± γ (1− ν2

m, S)F−m = 0 at x=±L1, (4.13)

as obtained by substituting (4.10) into (4.6)–(4.7). It is anticipated that

|Ω| � 1, (4.14)

which is consistent with the separation of scales assumption (3.14).
Equations (4.11)–(4.13) are invariant under the actions

(x,F+m ,F−m )→ (−x,F+m ,−F−m ), (Ω,F+m ,F−m )→ (−Ω, F̄−m , F̄+m ), (4.15)

which imply, in particular, that eigenvalues appear in complex conjugate pairs.
Assuming simple eigenvalues (the generic case), the first symmetry in (4.15)
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FIGURE 4. (a) Rescaled marginal instability threshold amplitude a and (b) rescaled
frequency Ω versus the longitudinal wavenumber νm for L1 = 41.5, d = 46.1, Cg = 0.027
and S= 0.63. The discrete values of νm for L2 = 41.5 are plotted with circles.

implies that

F+m (−x)≡ F+m (x), F−m (−x)≡−F−m (x), (4.16)

which permits restricting to the interval 0 6 x 6 L1. Numerical integration is performed
using two methods and the results are used for mutual validation, as explained in
appendix C. In particular, for fixed values of S, Cg, L1 and d (implicit in the function
g, see (2.34)), a marginal instability curve is obtained,

a= a(νm), Ω =Ω(νm). (4.17)

In fact, infinitely many such curves are obtained (with generally increasing values of
a), but only that branch providing the smallest value of a (which will be referred to
below as the first branch) needs to be considered here; see §§ 5.2 and 5.3 below for
further discussion of the remaining branches. The minimum value of a on this first
branch, ac, corresponds to the instability threshold in the continuous case, as L2→∞.
The associated minimum when only discrete values of νm satisfying (4.5) and (4.8) are
considered, will be denoted by ad

c .
Figure 4 shows a representative plot (corresponding to one of the experimental

runs considered in § 5) of the functions (4.17) along the first branch where, for
convenience, a and Ω are both rescaled with (1 + 2S)/4, and the allowed discrete
values of νm are indicated with circles. In this case ad

c = 0.04, which corresponds to
m = 25 and νm = 0.26, meaning that the pattern is antisymmetric in y because m is
odd. Furthermore, the wave field is oblique because, according to (4.9), the wavevector
forms an angle ϕ = sin−10.26 = 75◦ with the endwalls. Note that (consistent with the
large value of L2) the discrete threshold ad

c is very close to continuous threshold,
ac = 0.0399, which corresponds to νm = 0.30. As anticipated, Ω is quite small (in fact,
Ω ∼ 10−6 at threshold), which is consistent with the large value of L1; see below.

Since Ω is small, the second symmetry (4.15) implies that eigenfunctions can
always be selected (requiring that F+m (L1)=−F̄−m (L1)) such that

FL
m = F+m + F̄−m ' 0 if x> 0, FR

m = i(F+m − F̄−m )' 0 if x< 0, (4.18)

which means that these two functions are concentrated near the left and right endwalls,
respectively. Also, equation (4.16) implies that these two functions are such that

FL
m(−x)= iFR

m(x). (4.19)
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FIGURE 5. (a) Real and (b) imaginary parts of the eigenmodes F+m (solid lines) and F−m
(dashed lines) versus x/L1, at the instability threshold for the case considered in figure 4. (c)
Real and (d) imaginary parts of FL

m (solid lines) and FR
m (dashed lines).

To illustrate (4.18)–(4.19), the functions F±m , FL
m and FR

m at threshold are plotted in
figure 5 for the case considered in figure 4. Note that

Re(FL
m)'−Im(FL

m) and Re(FR
m)' Im(FR

m); (4.20)

this specific to this case and does not hold so clearly for other parameter values.
The reconstructed spatiotemporal patterns are obtained by substituting (4.10) into

(4.1) (retaining only one mode), substituting this latter expression into (3.1) and
considering only subharmonic waves. The free surface elevation is given by

f = fm(x, t) cos(κmy+ δm), (4.21)

where the longitudinal part of the pattern fm is written as

fm = eit|A|[eiψ(t)F+m + e−iψ(t)F̄−m ] + c.c. (4.22)

≡ eit|A|[FL
m cosψ(t)+ FR

m sinψ(t)] + c.c., (4.23)

with FL,R
m as defined in (4.18) and the slowly varying phase ψ defined as

ψ =Ωt + phase of A (mod 2π). (4.24)

This represents a quasi-periodic pattern that exhibits the frequencies 1 and Ω � 1.
Since FL

m and FR
m are concentrated near the left and right endwalls (see figure 5),

four distinguished fast time behaviours in the interval 0 6 t 6 π occur depending on
ψ . These behaviours are identified noting that activity is concentrated near the left and
right endwalls for: (i) ψ(t) = 0; and (iii) ψ = π/2, respectively, and present near both
endwalls for: (ii) ψ(t) = π/4; and (iv) ψ(t) = 3π/4. Thus, as ψ(t) increases on the
slow time scale, the system cycles through the fast time behaviours (i), (ii), (iii), (iv),
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FIGURE 6. Space–time plots of the transverse root mean square of the free surface elevation,
〈f 〉y, defined in (4.25) of type I (a) and type II (b) patterns with Ω = 0.1 (much larger than
typical experimental values to reduce the time interval) and L2 = 50.

(i), (ii), . . . , and so on. This can be seen in figure 6(a), where a space–time plot of the
transverse root mean square of the free surface elevation,

〈f 〉y =
√

1
2L2

∫ L2

−L2

f 2 dy, (4.25)

is given. Note that 〈f 〉y ∼ fm for the threshold patterns.

4.2. Primary and secondary spatiotemporal patterns
In the formulation above, the subharmonic instability is associated with a Hopf
bifurcation of the flat solution Fs = 0. In terms of the original formulation (2.4)–(2.6),
(2.10)–(2.14), a system with periodic coefficients, the bifurcation is associated with
a pair of complex Floquet exponents, i(π ± Ω) (whose Floquet multipliers are both
close to −1). Both approaches are equivalent. Here we consider the Hopf bifurcation,
which is analysed by adding cubic nonlinear terms in the general amplitude equation
(3.23) and performing a weakly nonlinear analysis (Guckenheimer & Holmes 1983;
Kuznetsov 1998). The complex amplitude A of the marginal mode satisfies a Landau
equation,

A′(t)= β1(a− ac)A− β2|A|2A, (4.26)

where the real part of β1 is positive (because the instability sets in for a> ac) and the
real part of β2 is also positive if the bifurcation is supercritical, as we assume hereafter.
As time increases, A(t) converges to a periodic solution of the form A= A0eiΩ1t, where
|A0|2 ∼ |Ω1| � |a − ac| as a→ ac. Substituting this into (4.10) just provides a small
correction of the frequency Ω in the temporally modulated patterns described in the
last subsection, which are the expected patterns when |a− ac| is sufficiently small and
the bifurcation is supercritical.
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On the other hand, since the transverse length L2 is large, interaction with nearby
modes is expected near threshold. Because the instability thresholds of the interacting
modes are near the minimum of the curve a = a(κm) defined in (4.17), (4.3)–(4.4),
(4.8), (4.11)–(4.13) show that

|κm − κm−1| ∼ |νm − νm−1| ∼ |F±m − F±m−1|
∼ |Ωm −Ωm−1| ∼

√|ac,m − ac,m−1| ∼ 1/L2
2� 1. (4.27)

This is clear in figure 4(a), where the mode m= 25 bifurcates first, but the m− 1= 24
mode is nearly marginal. Interaction between the (m−1)th and mth modes is accounted
for by considering the free surface pattern

f = eit[Am−1F+m−1eiΩt + Ām−1F̄−m−1e−iΩt] sin(κm−1y+ mπ/2)

+ eit[AmF+m eiΩt + ĀmF̄−m e−iΩt] cos(κmy+ mπ/2)+ c.c.+ · · ·, (4.28)

where the coupled evolution of Am−1 and Am is given by the amplitude equations

A′m−1 ' [β1(ε − δ1)− iδ2]Am−1 − (β2|Am−1|2 + β3|Am|2)Am−1 + β4Ām−1A2
m, (4.29)

A′m ' [β1(ε + δ1)+ iδ2]Am − (β2|Am|2 + β3|Am−1|2)Am + β4ĀmA2
m−1. (4.30)

These equations correspond to a double Hopf bifurcation with strong 1:1 resonance
(Guckenheimer & Holmes 1983; Kuznetsov 1998), with the additional requirement
that they are invariant under the actions Am−1 → −Am−1 and Am−1 ↔ Am, which
are associated with the transformations y→ −(y + mπ/κm) and y→ π/(2κm) − y,
respectively. The slow frequency Ω appearing in (4.28), the bifurcation parameter, the
threshold splitting δ1 and the detuning δ2 in (4.29)–(4.30) are defined in terms of the
threshold amplitudes and eigenfrequencies of the two interacting modes as

Ω = (Ωm−1 +Ωm)/2, ε = a− (ac,m−1 + acm)/2,

δ1 = (ac,m−1 − ac,m)/2, δ2 = (Ωm−1 −Ωm)/2.

}
(4.31)

Equations (4.29)–(4.30) exhibit pure mode solutions, (Am−1, 0) and (0,Am). For
these, equations (4.29)–(4.30) decouple and reduce to the Landau equation (4.26)
considered above; pure modes arise in the primary bifurcations at a = ac,m−1 and
a = ac,m. There are also mixed mode solutions, with Am−1 6= 0 and Am 6= 0, that
generally provide more complex temporally modulated patterns. In particular, if

|δ1|, |δ2| � ε, (4.32)

then there are two types of simple mixed modes,

type I: (Am−1,Am)' (±A,A), type II: (Am−1,Am)' (±iA,A), (4.33)

where the + and − signs correspond to reflection in y and provide similar patterns.
Type I modes produce patterns that are approximated by substituting (Am−1,Am) =

(A,A) into (4.28) then setting κm−1 = κm and F±m−1 = F±m (see (4.27)) to obtain

f =√2eit|A|[FL
m cosψ(t)+ FR

m sinψ(t)] sin(κmy+ mπ/2+ π/4)+ c.c., (4.34)

where FL,R
m are as defined in (4.18) and the slowly varying phase ψ is given by

(4.24). Comparison with (4.21)–(4.24) shows that this pattern is quite similar to the
primary pattern (except for the factor

√
2 and the π/4 phase shift in the y direction).

Figure 6(a) shows that wave activity alternates between the endwalls on the slow time
scale.
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FIGURE 7. Greyscale contours of the free surface elevation (as given by (4.35) with
ψ(t)= π/4) at (a) t = π/4, (b) t = π/2, (c) t = 3π/4 and (d) t = π, for the case in figures 4–5,
considering the interaction of the m− 1= 24th and m= 25th modes.

The patterns associated with mixed modes of type II, instead, are different from the
primary patterns. Substituting (Am−1,Am) = (iA,A) into (4.28) and setting κm−1 = κm

and F±m−1 = F±m , as above, lead to

f = eit|A| [FL
m cos[κmy+ mπ/2+ ψ(t)] + FR

m sin[κmy+ mπ/2+ ψ(t)]]+ c.c. (4.35)

Thus, these patterns show similar activity near both endwalls, as seen in figure 6(b).
The effect of the slow frequency does not lead here to any left–right modulation of the
pattern; instead, it just induces a slow drift in the transverse direction. Invoking (4.19),
this pattern is invariant on the fast time scale under the spatiotemporal symmetry

t→ t + π/2, x→−x, y→ (2ψ − mπ+ π/2)/κm − y, (4.36)

consistent with the basic symmetry (3.27). This symmetry and the obliqueness of the
pattern are evident in figure 7, where four representative snapshots of one period on
the fast scale are considered. The first and third snapshots also show that the wave
intensity is fairly small near the right and left endwalls, respectively, but this is due to
the property (4.20), which is specific to the particular case that is being considered; for
other parameter values, the fast left–right shift in wave intensity is less pronounced.

The small difference between (F±m−1, κm−1) and (F±m , κm), not accounted for above,
produces small differences in longitudinal wavelength near both endwalls and, more
importantly, a transverse modulation. This could be accounted for by using the full
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expression (4.28) to calculate the patterns (4.34) and (4.35), which would show
that the amplitude of the pattern varies by an O(1) quantity in the transverse
direction. This transverse modulation is due to the interaction of just two modes,
which locally cancel or reinforce each other. This effect is very sensitive to
the wavelengths, amplitudes and phases of the interacting modes. In other words,
transverse modulations are very much affected by the neglected differences between
the coefficients in the amplitude equations (4.29)–(4.30) and the symmetry-breaking
parameters δ1 and δ2. Analysis of these is well beyond the scope of this paper.

We can summarize the above as follows.

(i) The patterns are generally oblique.
(ii) The primary patterns at threshold are quasi-periodic, exhibit two well-separated

time scales and show activity that cycles slowly between both endwalls; see
figure 6(a).

(iii) Since L2� 1, interaction with modes exhibiting nearby wavenumbers is expected
very soon after threshold and produces two types of mixed-mode patterns. Type I
patterns are qualitatively similar to the primary patterns. Type II patterns, instead,
show similar activity near both the two endwalls (see figure 6b). Both types of
mixed-mode patterns may also show a significant transverse modulation, but this
is affected by several small effects that have been neglected above.

(iv) Since the second frequency Ω is small, experimental observation of the slow time
scale may require very long experimental runs. In shorter runs, the portion of the
slow oscillation of type I patterns that is visualized depends on initial conditions,
and thus may change (in an apparently random fashion) from one run to another.

(v) More complex modulated patterns resulting from, e.g., time-dependent solutions
of (4.29)–(4.30), interaction between three or more modes and cases in which
the two bifurcations mentioned above are subcritical are to be expected as a − ac

increases further, but all of these are again beyond the scope of this paper.

5. Results
The theory developed in the last section is used here to both: (i) calculate specific

results that are compared with their experimental counterparts (in § 5.1); and (ii)
elucidate the dependence of both the instability threshold and the resulting primary
patterns on the various non-dimensional parameters (in §§ 5.2–5.4). The validity of
the theory relies on the assumptions (2.16), which in practice require that 2L1 & 12π,
2L2 & 12π (for at least six wavelengths to be present in the container), e−d � 1 and
Cg� 1. These can be generally considered to hold provided that

L1,L2 & 15, d & 5 and Cg . 0.1. (5.1)

5.1. Comparison with experiments
The non-dimensionalization used in this paper is very convenient for theoretical
purposes. To compare with experiments, dimensions are restored by solving the cubic
equation (2.2) at each ω∗ (=one half of the forcing frequency), which is varied in
experimental runs. Then, the dimensional threshold amplitude a∗ = k∗ac, the angle ϕ
defined in (4.9) that provides the obliqueness of the patterns, and the dimensional
frequency associated with the slow modulations Ω∗ =Ω/ω∗ are readily calculated.

Comparison is made in figure 8 with the experiments by Porter et al. (2012),
performed in a rectangular container of depth d∗ = 5 cm and cross-section 2L∗1 × 2L∗2 =
9 cm × 9 cm, using two silicone oils, with viscosities µ = 5 and 10 cSt over
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10 cSt 15 cm
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20 90
0

1.5

(g
)

FIGURE 8. The dimensional threshold acceleration 4a∗ω∗2 versus the forcing frequency 2ω∗
resulting from several experimental runs (symbols) and from the theory developed in the last
section for µ = 5 cSt (lower curves) and 10 cSt (upper curves); arrows indicate increasing
cross-section.
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1.0
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0
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FIGURE 9. Comparison of the threshold acceleration calculated above (solid line) with
that obtained using Dirichlet (thin dashed line) and Neumann (thick dashed line) boundary
conditions for the case of 5 cSt silicone oil in a 9 cm× 9 cm container, in figure 8.

the frequency range 25–80 Hz. For the less-viscous fluid σ ∼ 19.7 dyn cm−1 and
ρ = 0.913 g cm−3, while for the other σ = 20.1 dyn cm−1 and ρ = 0.933 g cm−3. The
non-dimensional parameters defined in this paper vary over the ranges 25 6 L1 6
100, 25 6 L2 6 100, 30 6 d 6 70, 0.01 6 Cg 6 0.08 and 0.2 6 S 6 0.8, which can be
considered to satisfy the assumptions (2.16). Care was taken to maintain the contact
line fixed, as assumed above, but slight motions were sometimes unavoidable. In order
to further check the theoretical results above, an additional set of experiments have
been performed using the same experimental procedure and the same silicone oils, but
in containers with cross-sections of 2L∗1 × 2L∗2 = 10 cm × 10 cm and 15 cm × 15 cm.
Note in figure 8 that the theory agrees with the experiments very well; in fact, the
theory predicts the threshold acceleration within the experimental uncertainty, which is
∼5 %.

We remark that using the appropriate boundary conditions at the sidewalls and
endwalls (namely, (4.13)) is essential quantitatively, as illustrated in figure 9, where
one of the instability curves in figure 8 is compared with its counterparts using
Dirichlet and Neumann boundary conditions,

F±m = 0 and (∂xF
±
m , ∂yF

±
m )= (0, 0) at (x, y)= (±L1,±L2), (5.2)
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FIGURE 10. Counterpart of figure 7 for the experimental run corresponding to the
non-dimensional parameter values considered in that figure.

respectively. Using Neumann boundary conditions leads to a 30 % error. The difference
with the Dirichlet case is smaller because the constant γ appearing in (4.13) is
somewhat large (γ ' 2, see figure 15). Clearly, the instability threshold is very much
affected by the way in which the contact line is treated, either fixed (as done in
this paper) or allowed to move, and this is a source of experimental uncertainty, as
indicated above.

The theoretically computed values of the pattern angle ϕ and the modulation
frequency are in the ranges 71◦ 6 ϕ 6 76◦ and 10−10 6 Ω 6 10−2, respectively,
which is consistent with the measurements by Porter et al. (2012). A more precise
comparison with these experiments is difficult because the patterns only exhibit a
few wavelengths in the longitudinal direction and experimental uncertainties together
with practical time constraints prevent measuring very small values of Ω . Also, the
precision with which the instability threshold can be approached is limited, meaning
that the slowly modulated patterns illustrated in figure 6 cannot easily be identified.
The patterns resulting from type I and II mixed modes, illustrated in figure 7,
instead, occur for not so small |a − ac| and are consistent with some of the observed
experimental patterns.

As an example, figure 10 shows an experimental pattern that is seen for µ = 5 cSt,
d∗ = 5 cm and 2ω∗ = 50 Hz. These parameters give L1 = L2 = 41.5, d = 46.1,
Cg = 0.027 and S = 0.63, which is precisely the case considered for illustration in
figures 4–7. As can be seen, the experimental pattern compares fairly well qualitatively
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with its theoretical counterpart in figure 7, except for the transverse modulation, which
was not accounted for in figure 7 for the reasons given. The data used to produce
this image reveals that the transverse modulation in figure 10 is poorly resolved
near the sidewalls and the endwalls. This is partly due to the finite precision of
the synthetic Schlieren technique (Moisy, Rabaud & Slasac 2009) and the associated
particle image velocimetry (PIV) processing, and partly due to reflections off the walls
of the container. As mentioned, there are also some unavoidable (slight) motions of the
contact line that can have a significant effect on the boundary conditions and thus on
the pattern itself. Many other experimental patterns are similar to this one (and also
show a good qualitative comparison with theory), while others exhibit a more complex
structure that could result, for example, either from subcritical bifurcations or from
interaction of more than two nearby modes. All of them are oblique, with an angle
similar to that in figure 7, consistent with the theoretically calculated angles.

Summarizing, the theoretical instability threshold compares quite well quantitatively
with the experimental measurements, while the predicted patterns compare well
qualitatively with the experimental visualizations (to the extent that comparison is
possible).

5.2. Marginal instability curves a= a(νm)

The dependence of the marginal instability curves on the various non-dimensional
parameters is now examined. The marginal curves associated with the first branch
(4.17) are considered first because they generally provide the smallest value of a.
Dependence of the first branch on L1, S and Cg for d = 5 is summarized in figure 11;
for other values of d, the marginal curves are qualitatively similar. Note that the
stability threshold increases monotonically with Cg (as viscosity is increased), which
is as expected. The marginal curves are fairly smooth for the larger values of Cg,
but oscillate visibly, suggesting resonance tongues for small values of Cg. These
tongues peak at critical values of νm that are fairly constant as Cg → 0. Also, the
oscillations are steeper as L1 increases. This behaviour for very small Cg is analysed
in the next subsection. Typically, 0 < νc

m < 1, which corresponds to strictly oblique
patterns. The modulation frequency for the cases considered in figure 11 is provided
in figure 12, which shows that |Ω| reaches a (relatively broad) maximum at the cusps
of the tongues and that |Ω| decreases as either Cg or L1 increases. In fact, Ω → 0
exponentially as L1Cg→∞.

Although the primary instability is associated with the first branch of eigenvalues
of (4.11)–(4.13), the second branch is close by, especially for very small Cg. Thus,
the second branch must be taken into account during numerical continuation to avoid
jumps between branches. For illustration, figure 13 shows the first three branches. Note
that the second and third branches break into isolas in some regions, which makes
numerical continuation fairly demanding. In order to avoid the tongues being so close
together and the isolas being so narrow that they cannot be seen in the plot, L1 = 10
has been selected for figure 13 despite being slightly outside the parameter range
considered above (cf. (5.1)).

5.3. Spatial resonances at very small viscosity
Even though the limit of very small Cg is beyond the scope of this paper for the
reasons given, it is useful to understand the resonance tongues appearing in figures 11
and 13, and to explain the essential differences with Faraday waves in analytical terms.

As Cg→ 0, the eigenvalue problem (4.11)–(4.13) exhibits spatial resonances when
the unforced, strictly inviscid problem obtained setting a= Cg = 0 in (4.11)–(4.13) has
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FIGURE 11. Marginal instability curves, ac versus νm, for d = 5 for (a,c,e) L1 = 15 and
(b,d,f ) L1 = 50, with (a,b) S = 0, (c,d) S = 0.5 and (e,f ) S = 1. Each plot contains curves for
Cg = 0.001, 0.005, 0.01, 0.05 and 0.1, with arrows indicating decreasing values of Cg. Circles
indicate the approximate values of the minima of the curves calculated in § 5.3.

non-trivial solutions. The resulting (4.11)–(4.12) are readily solved to obtain

F±m = A± cos(ν̃±m x+ δ±m ) with ν̃±m =
√
ν2

m ± 4Ω/(1+ 2S). (5.3)

Here, A± are arbitrary constants, which will be related among each other below.
Imposing the boundary conditions (4.13) on F+m and F−m yields (cf. (4.5))

δ±m = 0 or π/2, tan(ν̃±m L1 + δ±m )= γ (1− ν2
m, S)/ν̃±m . (5.4)

These two equations (for ±) must hold simultaneously and determine a set of discrete
values of (νm,Ω); in principle, there are four combinations of the set of equations, for
(δ−m , δ

+
m ) = (0, 0), (0,π/2), (π/2, 0) and (π/2,π/2). As L1→∞, Ω→ 0 and ν̃−m and

ν̃+m must be close to each other. Note that F±m is an even function of x for δ±m = 0 and
odd for π/2.

Now, the effect of both parametric forcing and viscous damping is accounted for by
adding higher-order terms in (5.3) and writing

F±m = A± cos(ν̃±m x+ δ±m )+ F̂±1 + · · ·, (5.5)
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FIGURE 12. Modulation frequency Ω for the cases considered in figure 11. Circles indicate
the approximate values of Ω at the minima of the curves in figure 11, as calculated in § 5.3.

0.25 0.50 0.75

100

10–1

10–2

10–3
0 1.00

FIGURE 13. Counterpart of figure 11 for the case d = L1 = 10, S = 1 and Cg = 0.001,
considering the first three branches (solid lines) and the approximations of the minima of
these curves calculated as explained in § 5.3 for the first (circles), second (squares) and third
(triangles) branches.
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where F̂±1 accounts for the leading-order corrections in the limit Cg, a → 0.
Substituting these into (4.11)–(4.13) yields

±i(1+ 2S)[∂xxF̂
±
1 + (ν̃±m )2F+m ]/4=−(iΩ1 ± δ̂ + 2Cg)F

±
m + iag(x)F∓m , (5.6)

∂xF̂
+
1 ± γ F̂+1 = ∂xF̂

−
1 ± γ F̂−1 = 0 at x=±L1, (5.7)

where additional terms proportional to γ ′F±(±L1) have been omitted in (5.7) because
|γ ′| and |F±(±L1)| are both small. Here Ω1 is a correction to the frequency Ω and δ̂
is a rescaled spatial detuning measuring the distance from the vertices of the tongues.
Applying solvability conditions to the (singular) linear problem (5.6)–(5.7), a set of
two linear equations in the complex amplitudes results,

β̃±0 (iΩ1 ± iδ̂ + 2Cg)A
± =±iaβ0A∓, (5.8)

where

β̃±0 =
∫ L1

−L1

cos2(ν̃±m x+ δ±m ) dx, β0 =
∫ L1

−L1

g(x) cos(ν̃+m x+ δ+m ) cos(ν̃−m x+ δ−m ) dx. (5.9)

Since the forcing function g is odd, β0 is non-zero only if the two cosines appearing
in (5.9) have different parities, namely if either (δ+, δ−) = (0,π/2) or (π/2, 0); both
possibilities lead to the same solutions because (5.3) is invariant under the action
(Ω,F±m )→ (−Ω,F∓m ). For consistency with the analysis in § 4.1, we select

δ+m = 0, δ−m = π/2. (5.10)

The associated solutions of the system (5.4) provide the values of νm at the vertices
of the tongues in figure 11 and the corresponding values of Ω . These are plotted with
circles in figure 12, where it can be seen that the approximation is quite good. The
threshold amplitude is calculated by requiring that the homogenous linear system (5.8)

exhibits non-zero solutions, which yields a =
√
(4C2

g + δ̂2)/β̃+0 β̃
−
0 and Ω1 = 0. This

curve provides the marginal instability curves near each of the minima of the tongues
in figure 11. The latter are attained at δ̂ = 0, which yields

ac = 2Cg/

√
β̃+0 β̃

−
0 . (5.11)

These values are plotted with circles in figure 11, where it can be seen that the
approximation is quite good, except for small νm, where the asymptotic theory fails.
Note that Ω1 = 0, meaning that the forcing frequency behaves as Ω =Ω0 +O(δ̂4) near
the minima of the tongues, which is clearly observed in the flat behaviour near the
minima in figure 12.

The above is concerned with interaction between natural modes exhibiting
neighbouring values of ν+m and ν−m . Interaction between natural modes associated with
ν±m and ν±m−1 and with ν±m and ν±m−2 provide the minima of the marginal instability
curves in the second and third branches, and are plotted in figure 13 with squares and
triangles, respectively. Note that the approximation is again quite good.

The analysis above also shows that Ω 6= 0 generically, because if Ω = 0, then
F+m = F−m and the forcing coefficient β0 = 0. For vertically forced Faraday waves, on
the other hand, g is constant in (5.9) and β0 6= 0 with Ω = 0. This is a significant
difference between horizontal and vertical oscillations.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

60
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.606


220 J. M. Perez-Gracia, J. Porter, F. Varas and J. M. Vega

0.08

0.16

0.24

0.32

10–2
0

0.2

0.4

0.6

0.8

1.0

0.2

0.4

0.6

0.8

0

0.06

0.12

0.18

0.24

0.30

0.05

0.10

0.15

0.20

30 45 60 75
0

0.08

0.16

0.24

0.32

0.40

10 20 30 40 50

0.4 0.6 1.0

0

0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

1.0

0

0.40

0

0.25

10–3 10–1

Cg

0.2 0.8

S

d
15 90

L1

(a) (b)

(c) (d )

FIGURE 14. Instability threshold ac (thick lines) and the longitudinal wavenumber νm (thin
lines) versus (a) Cg, (b) S, (c) L1 and (d) d, moving one parameter at a time for Cg = 0.005
(solid lines) and 0.05 (dashed lines), S= 0.5, L1 = 25 and d = 10. Arrows indicate the vertical
scale for each curve.

5.4. Dependence of the instability threshold ac on the non-dimensional parameters
Since L2 is large, the discrete threshold longitudinal wavenumber, νm, is roughly that
corresponding to the minimum value of a along the marginal curve. Dependence of
the instability threshold on the various parameters is now considered by applying the
continuation process described in appendix C in a large region of the parameter space,
defined as (cf. (5.1)) 5 6 d 6 50, 15 6 L1 6 90, 0 6 S 6 1 and 0.001 6 Cg 6 0.1. In all
cases, continuation is initiated at the point

Cg = 0.005 and 0.05, S= 0.5, L1 = 25, d = 10, (5.12)

and only one parameter is varied at a time. The instability threshold ac and the
associated longitudinal wavenumber νm are provided in figure 14, where we can see
the following.

(a) As expected, ac increases as either Cg is increased (which enhances viscous effects)
or as d is decreased (which decreases the amplitude of the OBF). The variation
with L1 and d occurs mainly in the ranges 15 6 L1 6 25 and 5 6 d 6 40, where L1

and d are somewhat comparable; for larger values of L1 and d the curves saturate.
Dependence of ac on S is not monotonic and peaks at some intermediate value of
S, which depends on the remaining parameters.

(b) The orientation is generally oblique (namely, 0 < νc
m < 1) except in two limits,

both for quite small Cg. (i) For S = 0, the orientation is perpendicular to the
endwalls, which is consistent with the fact that standard gravitational cross-
waves are perpendicular to the wavemakers, and confirms the conjecture in the
Introduction that capillarity promotes obliqueness. (ii) For S > 0.5, the patterns
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are almost parallel to the vibrating endwalls, which was the limit implicit in the
two-dimensional analysis by Varas & Vega (2007).

(c) At some particular values of the parameters Cg, S and L1, νm shows abrupt
transitions, which are due to phase slips in the x direction; predicted and measured
orientations may show large discrepancies in these regions.

The frequency Ω of the slow modulation, not plotted in figure 14, is always very
small, in the range 10−10–10−2. Calculations clearly show that Ω→ 0 as L1Cg→∞
and L1/d→∞, i.e. when the longitudinal length L1 is large compared with both the
viscous decay length of the waves and the horizontal extension of the OBF. In other
words, Ω vanishes as interaction between the endwalls is weak. In the opposite limit,
Ω increases as L1 decreases, which suggests that strict 2:1 subharmonic oscillations
(Ω = 0) of individual sloshing modes (L1 ∼ 1) are not possible in rectangular
containers under horizontal oscillation.

6. Concluding remarks
A general theory has been derived for the development of nearly inviscid,

subharmonic waves in horizontally vibrated containers whose dimensions are large
compared with the wavelength of the basic capillary–gravity waves. In this limit,
a quasi-potential approximation derived in § 2.1 applies that greatly simplifies the
formulation. The parametric instability that triggers the waves has been seen to be
promoted by an oscillatory bulk flow that is uniquely determined by an inviscid linear
problem formulated in § 2.2, whose solution is two-dimensional and can be used to
calculate the parametric forcing term in closed form. Using these, a three-dimensional
quasi-potential approximation was derived in § 3 that provides the linear evolution
of the subharmonic field. Taking advantage of the fact that this problem is singular,
an appropriate solvability condition was applied that led a simpler two-dimensional
equation for the free surface elevation of general subharmonic waves (consisting of
arbitrary linear combinations of plane waves), with boundary conditions (derived in
appendix B) that account for wave reflection at the sidewalls and endwalls. Using
this simpler two-dimensional formulation and decomposing into normal modes in the
transverse direction, an eigenvalue problem was obtained in § 4.1. This problem shows
that the instability is not strictly 2:1 subharmonic, but exhibits a second (small but
non-zero) frequency that makes the resulting patterns generally quasi-periodic. The
eigenvalue problem provides the instability threshold, the additional frequency, and the
wave orientation at threshold. The resulting, generally oblique, quasi-periodic patterns
were described, together with some secondary patterns resulting from mode interaction
with nearby transverse modes (which is facilitated because the transverse size of the
container is large) in § 4.2.

Comparison with measurements and visualizations in several experimental runs was
made in § 5.1. Theoretical calculations showed very good quantitative agreement in
connection with the instability threshold and reasonably good qualitative agreement
in connection with the visualized patterns when such comparison was meaningful
(reasonably close to threshold).

In addition, the theory developed in the paper was used in § 5.2 to elucidate the
dependence of the instability threshold and the pattern orientation on the various
non-dimensional parameters. In particular, it was seen that, except for gravity waves,
the patterns are not perpendicular to the endwalls, but generally oblique and, moreover,
align with the endwalls in some limits. This discussion can be used to make specific
predictions.
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Let us now outline the unifying, general character of the theory developed above.
This theory is the natural extension of the simplest case of vertical vibrations, in
which the OBF equation is still (2.28) but the first boundary conditions in (2.29) and
(2.30) must be replaced by ∂xPobf = 0 at x = ±L1 and ∂zPobf = 4 at z = −d (note
that the zero-pressure boundary condition in (2.30), which is specific for the OBF,
is maintained). The resulting problem is solved with Pobf = 4z and the function g
appearing in (2.33) is set to g(x) = 1. Substituting this into (4.11)–(4.12) gives a
problem that can be solved in closed form to obtain the well-known Faraday instability
threshold.

The theory can be naturally extended (in a relatively straightforward manner)
for general vibrating systems with interfaces, provided that the counterparts of the
assumptions (2.16) hold. This occurs if the forcing frequency is large compared with
the first sloshing mode frequency and the vibrating acceleration and viscous effects
are appropriately small. For instance, for oblique vibrations (neither horizontal, nor
vertical), but still in the symmetry plane of the container parallel to the x direction, the
OBF remains independent of y and the forcing function g is readily calculated as

g(x)= sin θ + 4 cos θ
π

∑
m>0,odd

sinh[mπx/(2d)]
m cosh θ [mπL1/(2d)] , (6.1)

where θ is the angle of the vibrating direction and the x-axis. Substituting this into
(4.11)–(4.13) and solving (numerically) the resulting problem provides the instability
threshold. As a second example, for more general vibrating liquid systems with
interfaces (such as vibrating drops), the OBF is still given by (2.28). The counterparts
of the boundary conditions (2.29)–(2.30) consist in imposing that: (i) Pobf = 0 at
the unperturbed free surface; and (ii) the wall-normal derivative of Pobf at the solid
boundaries be equal to twice the normal velocities of the boundaries themselves.
The resulting linear problem is always well-posed and provides the forcing pressure
gradient at the free surface that must be used to obtain (using the counterpart of the
quasi-potential approximation in § 2.1) the parametric forcing terms in the counterpart
of (3.6)–(3.8). This latter problem applies in a O(1)-region near the unperturbed free
surface and can be always reduced to a general, two-dimensional amplitude equation
using curvilinear coordinates along the unperturbed free surface when this is non-flat,
as with, e.g., vibrating drops.

We expect that the theory developed above will be a step further toward a correct
description of the excitation of subharmonic waves in general vibrating systems
with interfaces, identifying the parametric forcing mechanism and providing specific
predictions for both the threshold acceleration and the resulting subharmonic patterns.
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Appendix A. Derivation of the evolution equations (2.24)
For convenience, the evolution equation (2.24) are rewritten as

∂tuufs =−∇pble, ∂tw
ufs =−∂zp

ble + 2Cg1wufs, (A 1)
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where the superscripts ‘ufs’ and ‘ble’ denote hereafter the unperturbed free surface
(where the velocity components will be calculated) and boundary-layer edge (just
below the oscillatory boundary layer that is attached to the free surface) where the
boundary conditions (2.23) apply. The first equation (A 1) readily follows from the
horizontal momentum equation (2.5), anticipating that the pressure jump across the
oscillatory boundary layer can be neglected in the approximation relevant here because

pufs − pble = O(
√

Cg |uufs
·∇wufs|), (A 2)

which is obtained from (A 7) below, recalling that the thickness of the oscillatory
boundary layer is O(

√
Cg).

The second equation in (A 1), instead, does not coincide with the leading-order
approximation of the vertical momentum equation (2.6) due to a jump of 1w across
the boundary layer, as is explained now. To the approximation relevant here, the
continuity equation in (2.4) and the boundary condition (2.14) are written as

∇ ·u+ ∂zw= 0 if z 6 0, ∂zu+∇w= 0 at z= 0, (A 3)

which imply that ∂z(∇ ·u)+ ∂zzw= 0 and ∇ ·(∂zu)+∇ ·(∇w)= 0 at z= 0. Eliminating
∂z(∇ ·u)≡∇ · (∂zu) in these two equations yields

∂zzw=1w at z= 0. (A 4)

This equation means that ∂zzw + 1w = 21w 6= 0 at the free surface, while it vanishes
in the bulk; thus, the above-mentioned jump. Substituting (A 3)–(A 4) into the vertical
momentum equation in (2.6) leads to

∂tw
ufs + 2uufs

·∇wufs =−∂zp
ufs + 2Cg1wufs at z= 0. (A 5)

On the other hand, applying the operators ∇· and ∂z to the momentum equations (2.5)
and (2.6), respectively, and substituting (2.4) into the resulting equation lead to a
standard Poisson equation for the pressure. Taking into account that |∂z| � |∇| in the
oscillatory boundary layer, the Poisson equation is written in first approximation as

∂zzp=−∂z[u · (∇w− ∂zu)]. (A 6)

Integrating this equation across the oscillatory boundary layer and invoking (A 3) yield

∂zp
ufs − ∂zp

ble =−2uufs
·∇wufs, (A 7)

where it has been taken into account that ∇w − ∂zu = 0 at the lower edge of the
boundary layer (because vorticity vanishes there). Substituting (A 7) into (A 5) leads to
the second equation (A 1), which completes the derivation.

Appendix B. Wave reflection near the endwalls and sidewalls
The analysis below is in the spirit of Hocking (1987) and Nicolas, Rivas & Vega

(1998); reflection of waves aligned with the endwalls (such as the harmonic waves,
ignored here) was analysed in the context of horizontal vibrations by Varas & Vega
(2007).

Near the endwall x = L1 (the endwall x = −L1 and the sidewalls are treated
similarly), the spatial variable x is shifted and the y Fourier transforms of the pressure
and the free surface deflection are considered, as

x̂= x− L1, (Ps,Fs)=
∫ 1

−1
(q, φ)eiκy dκ. (B 1)
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Substituting these into (3.9)–(3.11) (which are the relevant equations at leading
order), the following equations and boundary conditions are obtained for the Fourier
transforms q and φ

∂x̂x̂q+ ∂zzq− κ2q= 0 in 0< x̂<∞, −∞< z< 0, (B 2)
φ − ∂zq= q− [(1− S)+ Sκ2]φ + S∂x̂x̂φ = 0 at z= 0, (B 3)
∂x̂q= φ = 0 at x̂= 0, ∂zq→ 0 as z→−∞. (B 4)

If the boundary condition for φ at x̂ = 0 is ignored, then a simple solution exists,
namely

(q1, φ1)= (ez, 1) cos νx, (B 5)

where the longitudinal wavenumber ν is defined as

ν =
√

1− κ2. (B 6)

In order to obtain a solution satisfying also the boundary condition for φ, a second
solution is calculated that does not satisfy this boundary condition either; the solution
satisfying the boundary condition will be obtained as a linear combination of both.

Ignoring again the boundary condition for φ at x̂ = 0, the equations and the
remaining boundary conditions in (B 2)–(B 4) are solved via the Fourier cosine
transform as

q2 =
∫ ∞

0
B(κ̂)e

√
κ2+κ̂2 z cos(κ̂ x̂) dκ̂, φ2 =

∫ ∞
0

B(κ̂)
√
κ2 + κ̂2 cos(κ̂ x̂) dκ̂, (B 7)

were B(κ̂) is calculated as follows. First, this expression for q2 is introduced into the
second boundary condition (B 3). Integrating the resulting equation for φ yields

φ2 = Ce−
√
(1−Sν2)/S x̂ +

∫ ∞
0

B(κ̂) cos(κ̂ x̂) dκ̂
1+ S(κ̂ − ν2)

, (B 8)

where C is an arbitrary constant and exponentially diverging behaviours of φ have
been discarded. Identifying the two expressions for φ2 in (B 7) and (B 8) and taking
into account that

e−
√
(1−Sν2)/S x̂ = 2

π

∫ ∞
0

√
(1− Sν2)/S cos(κ̂ x̂) dκ̂
κ̂2 + (1− Sν2)/S

, (B 9)

yield

B(k̂)= 2
π

C
√

S(1− Sν2)√
1+ κ̂2 − ν2 [1+ S(κ̂ − ν2)] − 1

, (B 10)

where all integrals must be understood hereafter in the sense of the principal value.
Substituting this into (B 7) and (B 8) (this expression for φ2 exhibits better convergence
properties than its counterpart in (B 7)) and setting C = 1 lead to

q2 = 2
π

∫ ∞
0

√
S(1− Sν2)e

√
κ2+κ̂2 z cos(κ̂ x̂) dκ̂√

1+ κ̂2 − ν2 [1+ S(κ̂2 − ν2)] − 1
, (B 11)

φ2 = e−
√
(1−Sν2)/S x̂ + 2

π

∫ ∞
0

√
S(1− Sν2) cos(κ̂ x̂) dκ̂√

1+ κ̂2 − ν2 [1+ S(κ̂ − ν2)]2 − [1+ S(κ̂ − ν2)] . (B 12)
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Now, once this second solution has been calculated, the general solution of
(B 2)–(B 4), ignoring the boundary condition for φ at x̂= 0, is written as

(q, φ)= C1(q1, φ1)+ C2(q2, φ2). (B 13)

Invoking (B 5) and (B 12) and imposing the boundary condition that has been ignored
so far (namely, φ = 0 at x̂= 0), it is seen that C1 and C2 must satisfy

C1 =−C2H1(ν
2, S), (B 14)

where the scalar H1 is given by

H1 = 1+ 2
π

∫ ∞
0

√
S(1− Sν2) dκ̂√

1+ κ̂2 − ν2 [1+ S(κ̂2 − ν2)]2 − [1+ S(κ̂2 − ν2)] . (B 15)

Substituting (B 14) into (B 13) and setting, e.g., C2 = −1, a solution of (B 2)–(B 4) is
obtained that shows the asymptotic behaviour (up to exponentially small terms)

φ = H1(ν
2, S) cos νx̂+ 2

√
S(1− Sν2) sin νx̂

(1+ 2S)ν
as x̂→∞. (B 16)

This behaviour follows by noting in (B 12) that
∫∞

0 (ν2 − κ̂2)
−1 cos(κ̂ x̂) dκ̂ =

π sin(νx̂)/(2ν) and that if κ̂2g(κ̂) is bounded, then
∫∞

0 g(κ̂) cos(κ̂x) dκ̂ → 0
exponentially as x̂→∞. The limit (B 16) can also be written as

φ = sin[νx̂− α(ν2, S)] as x̂→∞, (B 17)

where the phase shift α is given by

α(ν2, S)= tan−1 (1+ 2S)νH1(S, ν2)

2
√

S(1− Sν2)
. (B 18)

Still, the behaviour (B 17) can also be written as

∂x̂φ − γφ = 0 as x̂→∞, (B 19)

where (also using (B 6))

γ (κ2, S)= ν

tanα
= 2

√
S(1− S+ Sκ2)

(1+ 2S)H1(1− κ2, S)
. (B 20)

For illustration, the scalar γ is plotted in figure 15 versus |κ| for various representative
values of S, as indicated.

Matching with the outer solution, outside the layer analysed in this appendix, and
invoking (B 1) provides the following boundary condition for the solution in the bulk
of the container

∂xF −
∫ 1

−1
γ (S, κ)φ(κ)eiκy dκ = 0 at x=−L1, (B 21)

where φ is the Fourier transform of F(L1, y), defined such that

F(L1, y)=
∫ 1

−1
φ(κ)eiκy dκ. (B 22)

The strictly inviscid, unforced approximation above ignores both a Stokes boundary
layer attached to the endwall and higher-order terms resulting from products of a� 1
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FIGURE 15. The scalar γ appearing in (B 20).

and the flow variables. If all of these were taken into account, a fairly involved
analysis (omitted here) would include higher-order terms in the boundary condition
(B 21), which would read

∂x̂F −
∫ 1

−1
[(γ +√iCgγ1)φ + aγ1φ̄ ] dκ = 0 at x̂= 0, (B 23)

for some real coefficients γ1 and γ2 that are O(1). Nevertheless, the O(
√

Cg)-
coefficient γ1 is expected to be somewhat small due to the fact that the contact
line is pinned; this has been theoretically shown by Higuera, Nicolas & Vega (1994)
and Martel, Nicolás & Vega (1998) for the first sloshing modes in various fluid
configurations and experimentally checked by Howell et al. (2000). Of course, this
cannot be true in the strict gravity wave limit, S = 0, but the additional term can still
be neglected under the last assumption imposed in (2.16). Similarly, since the OBF
extends a distance d� 1 in the bulk, the parametric forcing term in (B 23) can be
neglected compared with the parametric forcing effect of the OBF. It is interesting
to note that this term provides the parametric forcing effect of the vibrating endwalls
acting as wave makers, which would be the only source for parametric forcing if the
OBF were not present.

Appendix C. Numerical methods
Reflection symmetric solutions of (4.11)–(4.13) satisfying (4.16) are calculated using

two different methods.

(i) A spectral method resulting from a truncated expansion of F±m into harmonic
functions satisfying the boundary conditions (4.13). This yields a homogeneous,
linear system of algebraic equations for the complex mode amplitudes. Requiring
that this system exhibits non-trivial solutions, a complex solvability condition is
obtained that provides the real unknowns Ω and a in terms of νm (namely, the
functions (4.17)).

(ii) A multiple shooting method considering solutions in the half subdomain 0 6 x 6
L1 that satisfy the boundary condition (4.13) and (cf. (4.16))

∂xF
+
m = F−m = 0 at x= 0. (C 1)

The resulting initial value problem is integrated from x = L1 to x = 0 (to
avoid ill conditioning), with two linearly independent initial conditions at x = L1

satisfying the boundary conditions (4.13); the weak (logarithmic) singularity of the
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function g mentioned after (2.34) is handled by appropriate x-stepping. Imposing
(C 1) on a linear combination of the two solutions leads to a 2 × 2 homogenous
linear system on the complex coefficients of the linear combination. Requiring that
this system exhibits non-trivial solutions leads to complex equation that determines
the real unknowns Ω and a.

In both cases, a numerical pseudo-arclength continuation method (Allgower & Georg
2003) is applied to follow the neutral stability curves considered in § 5.
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