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A class of common and successful continuum models for steady, dense granular
flows is based on the µ(I) model for viscoplastic grain-inertial rheology. Recent
work has shown that under certain conditions, µ(I)-based models display a linear
instability in which short-wavelength perturbations grow at an unbounded rate – i.e.
a Hadamard instability. This observation indicates that µ(I) models will predict strain
localization arising due to material instability in dense granular materials; however,
it also raises concerns regarding the robustness of numerical solutions obtained using
these models. Several approaches to regularizing this instability have been suggested
in the literature. Among these, it has been shown that the inclusion of higher-order
velocity gradients into the constitutive equations can suppress the Hadamard instability,
while not precluding the modelling of strain localization into diffuse shear bands. In
our recent work (Henann & Kamrin, Proc. Natl Acad. Sci. USA, vol. 110, 2013, pp.
6730–6735), we have proposed a non-local model – called the non-local granular
fluidity (NGF) model – which also involves higher-order flow gradients and has been
shown to quantitatively describe a wide variety of steady, dense flows. In this work,
we show that the NGF model also successfully regularizes the Hadamard instability
of the µ(I) model. We further apply the NGF model to the problem of strain
localization in quasi-static plane-strain compression using nonlinear finite-element
simulations in order to demonstrate that the model is capable of describing diffuse
strain localization in a mesh-independent manner. Finally, we consider the linear
stability of an alternative gradient–viscoplastic model (Bouzid et al., Phys. Rev. Lett.,
vol. 111, 2013, 238301) and show that the inclusion of higher-order gradients does
not guarantee the suppression of the Hadamard instability.

Key words: granular media, rheology

1. Introduction

Dense granular flows are ubiquitous in geophysical phenomena and industrial
applications. As a result, significant effort has gone into developing robust continuum-
level constitutive equations for their steady-state rheological behaviour. A widely
used class of viscoplastic models for steady, dense granular flow is based on the
so-called µ(I) rheology (MiDi 2004; da Cruz et al. 2005; Jop, Forterre & Pouliquen

† Email address for correspondence: david_henann@brown.edu
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2005), which may be deduced from dimensional considerations. Consider a dense,
quasi-monodisperse system of dry, stiff grains with mean grain diameter, d, and
grain material density, ρs. When subjected to homogeneous shearing, the shear strain
rate, γ̇ , the pressure, P, and the shear stress, τ , are related through the following
dimensionless relationship:

µ=µloc(I), I = γ̇
√

d2ρs/P, µ= τ/P, (1.1)

where I is the inertial number, representing the ratio of the microscopic time scale
associated with particle motion,

√
d2ρs/P, to the macroscopic time scale of applied

deformation, 1/γ̇ , and µ is the dimensionless ratio of the shear stress to the pressure.
The stress ratio, µ, is then related to the inertial number, I, through the constitutive
function µloc(I), which is empirically fitted and possesses a static yield value µs
such that µloc(I→ 0)= µs. In (1.1) and henceforth throughout this paper, we denote
this constitutive function as µloc(I) to distinguish it from the stress ratio, µ, and
to emphasize that it is a local constitutive relation, and we refer to the class of
local, viscoplastic models based on µloc(I) as the local inertial (LI) rheology. Under
conditions in which µ does not increase substantially above µs, a simple Bingham-like
functional form may be used (da Cruz et al. 2005):

µloc(I)=µs + bI, (1.2)

where b is a dimensionless material parameter. As µ increases further above µs, data
often deviate from the Bingham-like functional form (1.2) with an asymptote at an
upper limiting value of µ, denoted as µ2, and are commonly fitted using the functional
form proposed by Jop et al. (2005):

µloc(I)=µs +
µ2 −µs

I0/I + 1
, (1.3)

where I0 = (µ2 − µs)/b. Then, the most prevalent generalization of the LI rheology
to a tensorial form appropriate for three-dimensional settings – first proposed by Jop,
Forterre & Pouliquen (2006) – is based on the dual assumptions of constant-volume
steady flow and co-directionality of the strain-rate tensor and the stress deviator
tensor. When combined with the equations of motion, the resulting set of governing
equations may be used to obtain predictions of steady, dense granular flow in general,
three-dimensional flow configurations and has been successfully applied to a variety
of problems, such as heap flows (Jop et al. 2006; Jop, Forterre & Pouliquen 2007;
Kamrin 2010), silo drainage (Kamrin 2010; Staron, Lagrée & Popinet 2012, 2014;
Dunatunga & Kamrin 2015), granular column collapse (Lagrée, Staron & Popinet
2011; Dunatunga & Kamrin 2015) and projectile impact into dense granular media
(Dunatunga & Kamrin 2017).

Despite the success of the LI rheology in capturing a diverse set of steady, dense
granular flows, two broad concerns have been raised in the literature. First, decaying
flow fields observed in quasi-static, inhomogeneous flows – e.g. annular shear flow
(Koval et al. 2009; Tang et al. 2018), split-bottom flow (Fenistein & van Hecke
2003) or gravity-driven heap flow (Komatsu et al. 2001) – cannot be captured by the
LI rheology. Instead, the LI rheology predicts a sharp flow cutoff where µ=µs and
frozen, non-flowing regions where µ < µs and, therefore, is incapable of capturing
experimentally observed creeping flow in regions where µ < µs. The failure of the
LI rheology to capture creeping flow stems from the fact that it does not account
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for cooperative effects, which become dominant in this regime, and as a remedy
to this shortcoming, a number of size-dependent continuum constitutive theories
that incorporate various cooperative effects have been proposed (e.g. Savage 1998;
Aranson & Tsimring 2002; Mohan, Rao & Nott 2002; Jenkins 2006; Pouliquen
& Forterre 2009; Kamrin & Koval 2012; Bouzid et al. 2013, 2015a,b; Kharel &
Rognon 2017). Among these, the non-local granular fluidity (NGF) model of Kamrin
& Koval (2012) – a phenomenological model which extends a similar non-local
model for emulsions (Goyon et al. 2008; Bocquet, Colin & Ajdari 2009) – has
been applied to the widest set of dense-flow phenomenology, including a variety of
boundary-driven and gravity-driven flows (Kamrin & Koval 2012; Henann & Kamrin
2013; Liu & Henann 2017), the secondary rheology of intruders (Henann & Kamrin
2014a) and the size dependence of the flow threshold (Kamrin & Henann 2015; Liu
& Henann 2018). In short, the NGF model provides a robust, predictive approach for
describing inhomogeneous, steady, dense granular flows that span the quasi-static and
dense inertial flow regimes (I . 10−1).

Regarding the second and more recent concern, Barker et al. (2015) showed that
in homogeneous pure shear flow, the LI rheology displays a mathematical instability
against linear perturbations under certain conditions – which, as pointed out by
Goddard & Lee (2017), may be attributed to the loss of ellipticity (Browder 1961)
of the field equations governing quasi-static flow. The instability arises when the
inertial number, I, is too low or too high or when the function µloc(I) does not
possess a sufficiently strong dependence on I. Moreover, Barker et al. (2015) showed
that the growth rate of unstable perturbations diverges as the perturbation wavelength
decreases to zero, leading them to conclude that the LI rheology is ill-posed in the
sense of Hadamard and to raise concerns regarding grid-resolution dependence of
numerical solutions obtained using the LI rheology. The observation of Hadamard
instability in the LI rheology has prompted a great deal of recent work aimed at
regularizing this instability, such as through the modification of the functional form
of µloc(I) (Barker & Gray 2017), the inclusion of compressibility (Barker et al. 2017;
Heyman et al. 2017) or the addition of higher-order velocity gradients (Goddard &
Lee 2017).

For perspective, we note that the type of analysis employed by Barker et al.
(2015) has a long history in the mechanics literature (e.g. Thomas 1961; Hill 1962;
Rudnicki & Rice 1975; Needleman & Tvergaard 1992; Bigoni 2012), in which the
loss of ellipticity of the quasi-static governing equations is identified as the condition
at which localization of deformation into bands becomes possible. In this context, the
onset of localization is viewed as a material instability – since deformation localization
stems from the material response rather than boundary constraints – and the material
instability framework has been applied to localization problems in rate-independent
solids (Thomas 1961; Hill 1962; Rudnicki & Rice 1975), viscoplastic solids (Anand,
Kim & Shawki 1987; Needleman 1988) and complex fluids (Goddard & Alam
1999; Goddard 2003). On the one hand, the material instability exhibited by the LI
rheology may be considered desirable, since this condition indicates that the model
has the potential to address localization phenomena, which are widely observed in
experiments involving quasi-static deformation of dense granular materials (e.g. Han
& Drescher 1993; Desrues & Viggiani 2004; Rechenmacher 2006; Le Bouil et al.
2014; Houdoux et al. 2018). On the other hand, since the LI rheology does not
possess an intrinsic length scale, the widths of shear bands that arise due to material
instability are unphysically sharp, which is a symptom of Hadamard ill-posedness and
can lead to grid-resolution-dependent numerical solutions. Modifying the LI rheology
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in order to suppress the Hadamard instability while preserving its local character – as
in the works of Barker & Gray (2017), Barker et al. (2017) and Heyman et al. (2017)
– will necessarily ensure the ellipticity of the governing equations under perturbations
of all wavelengths, thereby precluding the modelling of localization. (Moreover, as
recently shown by Goddard & Lee (2018), all of these approaches involve eliminating
the static yield value.) Alternatively, the work of Goddard & Lee (2017) showed
that a weakly non-local regularization of the LI rheology based on higher-order
gradients of the velocity field is capable of eliminating the Hadamard instability,
while preserving the ability to model diffuse strain localization. Indeed, gradient
regularization is a common technique for imparting a width to shear bands predicted
by continuum theories while ensuring well-posedness and grid-resolution-independent
numerical solutions (e.g. Vardoulakis & Aifantis 1991; de Borst & Mühlhaus 1992;
Al Hattamleh, Muhunthan & Zbib 2004).

The work of Goddard & Lee (2017) raises the following question. Can other
size-dependent models for dense granular flow that involve gradients of different
field quantities also regularize the Hadamard instability while retaining the ability
to model strain localization into diffuse shear bands? The purpose of this paper is
to address this question. Following our recent work, we primarily focus attention
on the NGF model. Specifically, we present a linear stability analysis of the NGF
model and demonstrate that the non-local terms introduced in the NGF model
indeed suppress the Hadamard instability under all conditions. Further, under certain
conditions, the NGF model does display a linear instability of finite wavelength and
bounded growth rate, indicating that diffuse localization is within the purview of
the NGF model. To illustrate this point in a fully nonlinear setting, we consider
plane-strain (biaxial) compression of a dense granular material – a choice motivated
by the prevalence of this configuration in both experiments (e.g. Han & Drescher
1993; Desrues & Viggiani 2004; Rechenmacher 2006; Le Bouil et al. 2014; Houdoux
et al. 2018) and continuum simulations (e.g. Anand & Gu 2000; Al Hattamleh et al.
2004; Gao & Zhao 2013) in the literature. The process of shear-band formation is
quite complex, involving transient volumetric dilatation or compaction and attendant
strain softening or hardening. Therefore, our intent is not to quantitatively capture
experimental data but rather to demonstrate that the NGF model is capable of
describing the bifurcation of homogeneous deformation to diffuse localization. Using
nonlinear finite-element simulations of plane-strain compression, we show that the
NGF model does predict diffuse localization in the quasi-static regime with shear-band
widths that are independent of the mesh resolution, while corresponding simulations
using the LI rheology exhibit unphysically sharp shear bands. Moreover, as the
inertial number is increased into the regime in which the quasi-static governing
equations are elliptic, homogeneous deformation and not localization is observed
in corresponding finite-element simulations. As a final point, we ask whether an
alternative gradient–viscoplastic model can yield similar results. Specifically, we
consider a straightforward generalization of the one-dimensional, weakly non-local,
inertial number gradient (IG) model of Bouzid et al. (2013) to tensorial settings.
Through an analogous linear stability analysis, we show that the IG model does not
suppress the Hadamard instability, demonstrating that the inclusion of higher-order
gradients in a constitutive model does not guarantee well-posedness.

The remainder of this paper is organized as follows. In § 2, we present the
governing equations of the NGF model, and the linear stability analysis is carried
out in § 3. Specifically, in § 3.1, the governing equations are linearized; in § 3.2, we
consider the ellipticity of the linearized quasi-static governing equations, showing that
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the Hadamard instability is suppressed so that the governing equations are well-posed;
and in § 3.3, we illustrate this result in two-dimensional, pure shearing. Returning
to the nonlinear governing equations, in § 4, we present finite-element simulations
of plane-strain compression, illustrating that diffuse strain localization may arise in
situations coinciding with the loss of ellipticity and that simulation results using the
NGF model are independent of mesh resolution. In § 5, we present a linear stability
analysis of a tensorial generalization of the IG model of Bouzid et al. (2013). We
close with some concluding remarks in § 6.

2. Governing equations
In this section, we summarize the governing equations of the NGF model for dense,

steady granular flow (Kamrin & Koval 2012; Henann & Kamrin 2013, 2014b; Liu
& Henann 2017). Like the LI rheology, the NGF model is a continuum approach
for modelling steady, dense flows of quasi-monodisperse systems of dry, stiff grains.
Throughout this paper, we use standard component notation, which supposes an
underlying set of Cartesian basis vectors {ei|i= 1, 2, 3}, and in which the components
of vectors, v, and tensors, σ , are denoted by vi and σij, respectively. The Einstein
summation convention is employed, and the Kronecker delta, δij, is utilized to denote
the components of the identity tensor.

The kinematics of flow are described by the velocity field vi(x, t), where xi denotes
the spatial coordinate and t time. The velocity gradient, stretching and spin tensors
are then

Lij =
∂vi

∂xj
, Dij =

1
2

(
∂vi

∂xj
+
∂vj

∂xi

)
, W ij =

1
2

(
∂vi

∂xj
−
∂vj

∂xi

)
, (2.1a−c)

respectively. We make the common approximation that steady, well-developed flow
proceeds at constant volume (Jop et al. 2006; Rycroft, Kamrin & Bazant 2009;
Kamrin 2010), so that the velocity field is divergence-free, ∂vj/∂xj = 0, and the
velocity gradient and stretching tensors are deviatoric, i.e. Ljj = Djj = 0. Finally, we
define the equivalent shear strain rate as γ̇ = (2DijDij)

1/2 and the symmetric and
deviatoric direction of flow as N ij =

√
2Dij/γ̇ . Note that the flow direction tensor is

defined to be a unit tensor – i.e. N ijN ij= 1 – and differs by a factor of
√

2 from that
used by Barker et al. (2015).

The symmetric Cauchy stress tensor and stress deviator are denoted as σij = σji
and σ ′ij = σij − (1/3)(σkk)δij. Then, we define the equivalent shear stress, the pressure
and the Drucker–Prager stress ratio as τ = (σ ′ijσ

′

ij/2)
1/2, P = −σkk/3 and µ = τ/P,

respectively, and emphasize that these quantities represent stress-tensor invariants. The
Cauchy stress must satisfy the standard equations of motion

φρs

(
∂vi

∂t
+ vj

∂vi

∂xj

)
=
∂σij

∂xj
+ bi, (2.2)

where φ is the solid volume fraction and bi is the non-inertial body force per unit
volume (typically gravitational). For the purposes of the present work, we consider
situations in which body forces are absent, so that bi = 0i in what follows.

In a local constitutive approach, the governing equations are closed through a
constitutive equation relating the stress tensor σij to the stretching tensor Dij in
a manner consistent with (1.1) (e.g. Jop et al. 2006). Instead, in our non-local
constitutive approach, an additional positive, scalar state variable, called the granular
fluidity, is introduced and denoted as g. (Due to its reliance on an additional field
quantity, the NGF model bears a resemblance to so-called ‘implicit’ gradient theories
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in the plasticity literature (e.g. Engelen, Geers & Baaijens 2003).) The granular
fluidity, g, is a kinematic state variable that characterizes microscopic fluctuations in
a flowing granular medium. More precisely, Zhang & Kamrin (2017) and Bhateja &
Khakhar (2018) have established that the granular fluidity has a kinematic definition
that holds across a variety of inhomogeneous flow configurations for both two-
and three-dimensional dense granular systems and is given through the relation
g= (δv/d)F(φ), where δv is the velocity fluctuation, φ is the solid volume fraction,
d is the grain size and F(φ) is a function of only φ. Then, in the NGF model,
the stress tensor, stretching tensor and granular fluidity are related through two
phenomenological constitutive relations: (1) the flow rule and (2) the non-local
rheology.

First, regarding the flow rule, assuming that the strain-rate tensor and stress
deviator are co-directional – i.e. N ij =

√
2Dij/γ̇ = σ

′

ij/
√

2τ (Jop et al. 2006; Rycroft
et al. 2009; Kamrin 2010) – the stress tensor, σij, the stretching tensor, Dij, and the
granular fluidity, g, are taken to be related through

σij =−Pδij + 2
P
g

Dij. (2.3)

We note that co-directionality is an approximation, and slight deviations from
co-directionality – such as normal stress differences – have been observed in
discrete-element simulations (e.g. Weinhart et al. 2013). However, co-directionality
remains a useful simplifying assumption and enables a reasonably good description of
experimental data. Taking the inner product of the tensorial constitutive relation (2.3)
with N ij and rearranging gives the following scalar form of the flow rule, relating the
equivalent shear strain rate, the granular fluidity and the Drucker–Prager stress ratio:

γ̇ = gµ, (2.4)

which makes clear the constitutive role of g as a fluidity-like quantity that relates the
stress ratio µ to the shear strain rate γ̇ .

Second, regarding the non-local rheology, with the introduction of the granular
fluidity field, g, an additional governing equation is required to relate the fluidity
field to the stress field and close the system of equations. In the NGF model, the
granular fluidity, g, is governed by the following partial differential equation (PDE):

g= gloc(µ, P)+ ξ 2(µ)
∂2g
∂xj∂xj

, (2.5)

where

gloc(µ, P)=

√
P

d2ρs

Iloc(µ)

µ
(2.6)

is the local fluidity function, given through the stress invariants µ and P;

Iloc(µ)=

{
µ−1

loc(µ) if µ>µs
0 if µ6µs

(2.7)

is the inverted form of the µloc(I) function, given through the stress ratio, µ; and ξ(µ)
is a stress-dependent length scale called the cooperativity length – to be discussed
further momentarily. Note that in the absence of stress or flow gradients (∂2g/∂xj∂xj=

0), the PDE (2.5) simply reduces to the algebraic expression g = gloc(µ, P), which
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when combined with (2.3) yields the tensorial form of the LI rheology of Jop et al.
(2006). However, for inhomogeneous flow, the presence of the Laplacian term gives
rise to non-local effects – with predictions of the NGF model being size-dependent
through the cooperativity length, ξ – and enables the NGF model to capture the loss
of local constitutive uniqueness between µ and I observed in experiments and discrete-
element method simulations of dense granular flow (e.g. Koval et al. 2009).

We note that the non-local rheology (2.5) represents a simplified form of the
NGF model, specialized for quasi-steady flow situations. The primitive form of the
NGF model utilizes a Ginzberg–Landau-type dynamical PDE in place of (2.5), in
which g operates as a non-local order parameter. The steady-state form (2.5) then
arises as the approximate solution of the stable, quasi-steady behaviour of g in the
dynamical PDE – valid as long as g remains sufficiently close to the local fluidity
(2.6). In the present work, we focus attention on the mathematical properties of the
system of equations involving the steady-state form (2.5) and do not discuss the
dynamical form of the NGF model in detail here, instead referring interested readers
to several of our previous works for further discussion (Henann & Kamrin 2014b;
Kamrin & Henann 2015; Liu & Henann 2017). However, it is important to point out
that the precise functional form of the stress-dependent cooperativity length, ξ(µ),
emerges from the process of reducing the dynamical form of the NGF model to the
steady-state form (2.5) and is connected to the choice of the µloc(I) function. For
the Bingham-like functional form (1.2) and the functional form of Jop et al. (2005)
(1.3), the corresponding functional forms for the cooperativity length are

ξ(µ)=
Ad

√
|µ−µs|

and ξ(µ)= Ad

√
(µ2 −µ)

(µ2 −µs)|µ−µs|
, (2.8a,b)

respectively. In both cases, the cooperativity length is directly proportional to the
grain size, d, and the parameter A is a dimensionless material constant, referred to as
the non-local amplitude, which quantifies the spatial extent of cooperative effects. We
note that the non-local amplitude, A, is the only new material parameter introduced
in the NGF model beyond the parameters appearing in the LI rheology – i.e. {µs, b}
for the Bingham-like form (1.2) and {µs, µ2, b} the form of Jop et al. (2005) (1.3).
For µ in the neighbourhood of µs, both expressions for the cooperativity length
behave similarly, diverging as µ approaches µs. The major difference between the
two expressions is that for the case in which µloc(I) possesses an upper limiting value
µ2 (1.3), the cooperativity length goes to zero as µ approaches µ2.

Finally, we summarize the field equations governing the velocity field, the
pressure field and the granular fluidity field in a form appropriate for the linear
stability analysis of § 3. First, incompressibility requires that the velocity field be
divergence-free:

∂vj

∂xj
= 0. (2.9)

Second, substituting the tensorial form of the flow rule (2.3) into (2.2) allows the
equations of motion to be written explicitly in terms of the velocity, pressure and
fluidity fields as

φρs

(
∂vi

∂t
+ vj

∂vi

∂xj

)
=

(
−δij +

2
g

Dij

)
∂P
∂xj
+

P
g
∂2vi

∂xj∂xj
− 2

P
g2

Dij
∂g
∂xj
, (2.10)
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where body forces such as gravity have been omitted. Finally, the scalar form of the
flow rule (2.4) may be used to express the non-local rheology (2.5) as

g= gloc(γ̇ /g, P)+ ξ 2(γ̇ /g)
∂2g
∂xj∂xj

, (2.11)

with the local fluidity and cooperativity length functions, gloc(γ̇ /g, P) and ξ(γ̇ /g),
given through (2.6), (2.7) and (2.8). Hence, the governing equations consist of
incompressibility (2.9), the equations of motion (2.10) and the non-local rheology
(2.11) and constitute a closed system of equations for the velocity field, vi, the
pressure field, P, and the fluidity field, g.

3. Linear stability of the NGF model
In this section, we present our linear stability analysis of the NGF model. We

consider a base state that corresponds to steady, homogeneous, constant-volume flow
in an infinite domain and denote the base-state fields, v0

i , P0 and g0, with a superscript
0. Accordingly, we take v0

i (x) to vary linearly in space as v0
i (x)= L0

ijxj, where L0
ij is the

spatially constant and deviatoric base-state velocity gradient. Therefore, the base-state
flow satisfies incompressibility, i.e. ∂v0

j /∂xj = L0
jj = 0, and D0

ij = (1/2)(L
0
ij + L0

ji) is the
spatially constant and deviatoric base-state stretching tensor. The base-state pressure
is also taken to be spatially constant, and we define the base-state equivalent shear
strain rate, direction of flow and inertial number as γ̇ 0

= (2D0
ijD

0
ij)

1/2, N0
ij =
√

2D0
ij/γ̇

0

and I0
= γ̇ 0

√
d2ρs/P0, respectively. Regarding the base-state fluidity, for homogeneous

flow, we take g0 to be spatially constant, and in order to be consistent with (2.11),
g0 is given implicitly through g0

= gloc(γ̇
0/g0, P0), which due to (2.6) and (2.7)

implies that the base-state fluidity is given explicitly through the µloc(I) function as
g0
= γ̇ 0/µloc(I0).

3.1. Linearized governing equations
We then consider perturbed velocity, pressure and fluidity fields of the form

vi = v
0
i (x)+ v̂i(x, t), P= P0

+ P̂(x, t) and g= g0
+ ĝ(x, t), (3.1a−c)

where v̂i, P̂ and ĝ represent small perturbations of the base-state fields. First, the
incompressibility constraint requires that

∂v̂j

∂xj
= 0. (3.2)

Second, linearizing the equations of motion (2.10), we obtain

φρs

(
∂v̂i

∂t
+ v0

j
∂v̂i

∂xj
+ L0

ijv̂j

)
=

(
−δij +

2
g0

D0
ij

)
∂P̂
∂xj
+

P0

g0

∂2v̂i

∂xj∂xj
− 2

P0

g02 D0
ij
∂ ĝ
∂xj
, (3.3)

where we have used the fact that the base state is homogeneous – i.e. ∂P0/∂xj,
∂2v0

i /∂xj∂xj and ∂g0/∂xj vanish. The second and third terms on the left-hand side
of (3.3) arise due to convection, and as pointed out by Goddard & Lee (2017),
these terms can play a role in the linear stability analysis and lead to asymptotic
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stabilization of non-convective instabilities. However, our primary interest is in
examining the ellipticity of the quasi-static field equations of the NGF model, so
we neglect these terms and focus on the non-convective case. For completeness,
we discuss the issue of convection and its effect on linear stability in appendix A.
Dropping the convective terms and substituting the base-state fluidity, g0

= γ̇ 0/µloc(I0),
into (3.3) yields the following linearized equations of motion:

φρs
∂v̂i

∂t
= (−δij +

√
2µloc(I0)N0

ij)
∂P̂
∂xj
+
µloc(I0)P0

γ̇ 0

∂2v̂i

∂xj∂xj
−
√

2
µ2

loc(I
0)P0

γ̇ 0
N0

ij
∂ ĝ
∂xj
. (3.4)

Finally, the linearization of the non-local rheology (2.11) is described in appendix B
and results in the following expression relating the perturbed pressure, velocity and
fluidity fields:

1
2η0

P̂+

√
2

µloc(I0)

(
1− ν0

ν0

)
N0

kl
∂v̂k

∂xl
−

1
ν0

ĝ+ ξ 02 ∂2ĝ
∂xj∂xj

= 0, (3.5)

where ξ 0
= Ad/

√
bI0 is the base-state cooperativity length and, as in Barker et al.

(2015), the scalar quantities ν0 and η0 are defined as

ν0
=

I0µ′loc(I
0)

µloc(I0)
and η0

=
µloc(I0)P0

γ̇ 0
. (3.6a,b)

We note that the scalar quantity ν0 is confined to the range 0 6 ν0 < 1 provided that
the µloc(I) function (1) possesses a static yield value, µloc(0)=µs > 0, (2) is strictly
increasing, µ′loc(I) > 0 for all I > 0, and (3) is non-convex, µ′′loc(I) 6 0 for all I > 0,
and henceforth assume that µloc(I) satisfies these conditions.

3.2. Ellipticity of the quasi-static governing equations
Since the convective terms have been neglected, the linearized system, (3.2), (3.4) and
(3.5), possesses constant coefficients, and accordingly, we consider solutions of the
form

v̂i(x, t)= ṽi exp(ikjxj + λt),

P̂(x, t)= P̃ exp(ikjxj + λt),
ĝ(x, t)= g̃ exp(ikjxj + λt),

 (3.7)

where ṽi, P̃ and g̃ are constants; kj is a real-valued wave vector; and λ is the growth
rate of the perturbation. The goal of the following analysis is to determine the
growth rate, λ, in terms of base-state quantities and the wave vector, kj. If λ < 0,
the perturbation decays, indicating stability, but if λ > 0, the perturbation grows,
indicating instability and loss of ellipticity of the quasi-static governing equations. To
proceed, we substitute (3.7) into the linearized governing equations, (3.2), (3.4) and
(3.5), obtaining

kjṽj = 0, (3.8)

φρsλṽi = i(−δij +
√

2µloc(I0)N0
ij)kjP̃− η0

|k|2ṽi − i
√

2η0µloc(I0)N0
ijkjg̃, (3.9)

1
2η0

P̃+ i

√
2

µloc(I0)

(
1− ν0

ν0

)
N0

klklṽk −
1
ν0

g̃− ξ 02
|k|2g̃= 0. (3.10)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

31
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.311


808 S. Li and D. L. Henann

Solving (3.10) for g̃, we have

g̃=

ν0

2η0
P̃+ i

√
2

µloc(I0)
(1− ν0)N0

klklṽk

1+ ν0ξ 02
|k|2

, (3.11)

and substituting (3.11) into (3.9) yields

φρsλṽi = i(−δij +
√

2q0(k)N0
ij)kjP̃− η0

|k|2ṽi + 2η0r0(k)N0
ijkjN

0
klklṽk, (3.12)

where

r0(k)=
1− ν0

1+ ν0ξ 02
|k|2

and q0(k)=µloc(I0)

(
1−

ν0

2(1+ ν0ξ 02
|k|2)

)
(3.13a,b)

are two scalar quantities that depend on the base-state inertial number, I0, and the
wave vector, ki. We note that when the non-local contributions involving ξ 0 in (3.13)
are neglected, the expressions for r0 and q0 reduce to those appearing in Barker et al.
(2015) – i.e. r0

= 1− ν0 and q0
=µloc(I0)(1− ν0/2). Further, since 0 6 ν0 < 1, (3.13)

implies that these quantities are confined to the ranges 0 < r0 6 1 and µloc(I0)/2 <
q0 6µloc(I0) for all wave vectors and base states.

The remainder of the analysis proceeds as in Barker et al. (2015). Taking the inner
product of (3.12) with ki and applying the incompressibility constraint (3.8), we obtain
the following expression for P̃ in terms of ṽi:

P̃=−2iη0r0(k)
(kiN0

ijkj)N0
klklṽk

|k|2 −
√

2q0(k)kmN0
mnkn

. (3.14)

Finally, substituting (3.14) into (3.12) and rearranging, we obtain the following
eigenvalue problem:

Aik(k)ṽk =
φρs

η0
λṽi, (3.15)

where the tensor Aik is

Aik(k)= 2r0(k)

[
N0

ijkj − (kpN0
pqkq)

(
ki −
√

2q0(k)N0
ijkj

|k|2 −
√

2q0(k)kmN0
mnkn

)]
N0

klkl − |k|2δik. (3.16)

Therefore, for a given base state and wave vector, the growth rate, λ, and hence the
stability of the perturbation and the ellipticity of the governing equations may be
determined through the eigenvalues of the tensor Aik.

Before illustrating the stability of the NGF model in the case of pure shearing,
we point out several properties of the eigenvalue problem, (3.15) and (3.16). In
the absence of non-local effects, the scalars r0 and q0 reduce to their wave-vector-
independent forms, and the eigenvalue problem reduces to that derived by Barker
et al. (2015) for the LI rheology, which for certain base states and wave vector
directions exhibits a Hadamard instability in which an eigenvalue of Aik diverges
to positive infinity as |k| → ∞. However, in the presence of non-local effects, it is
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straightforward to see that the Hadamard instability is suppressed. As the magnitude
of the wave vector grows, the scalar quantities r0 and q0 behave asymptotically as

r0(k)∼
1− ν0

ν0ξ 02
|k|2

and q0(k)∼µloc(I0), (3.17a,b)

so that in this limit the term multiplied by r0 in (3.16) does not grow with |k|.
Therefore, the second term in (3.16) dominates, so that

Aik(k)∼−|k|2δik, (3.18)

which is a negative-definite tensor. Hence, the growth rate is negative in the limit
|k| →∞ for all wave vector directions and base states. One caveat to this argument
is that the denominator in (3.16) – i.e. the quantity (|k|2 −

√
2q0(k)kmN0

mnkn) – must
not equal zero. As pointed out by Barker et al. (2015) for the case of the LI rheology
using the function (1.3), this quantity is positive for all wave vectors and base states
when considering typical material parameter values from the literature. Similarly, we
require that (|k|2 −

√
2q0(k)kmN0

mnkn) > 0 for all wave vectors and base states. Since
q0 is positive, this requirement is satisfied whenever kmN0

mnkn 6 0 but places an upper
bound on q0 when kmN0

mnkn > 0 – specifically that q0(k) < |k|2/
√

2kmN0
mnkn. Since

the maximum value of q0 is µloc(I0), this requirement imposes an upper limit on the
µloc(I) function, i.e.

µloc(I0) <
|k|2

√
2kmN0

mnkn

(3.19)

for all combinations of wave vectors and base states in which kmN0
mnkn > 0. As we

will show in the subsequent section, this requirement is not restrictive, and given that
it is satisfied, Hadamard instability is guaranteed to not arise.

3.3. Application to pure shearing
To illustrate the ellipticity of the NGF governing equations, we consider a base state
of steady, homogeneous, constant-volume pure shearing in the e1–e2 plane, in which
the principal directions of the stretching tensor are aligned with the basis vectors, e1
and e2, and there is no spin, so that

[L0
] = [D0

] =
γ̇ 0

2

[
1 0
0 −1

]
and [N0

] =
1
√

2

[
1 0
0 −1

]
. (3.20a,b)

Further, we restrict attention to in-plane wave vectors of the form [k] = [k1 k2]
>. As

pointed out by Barker et al. (2015), eigenvectors of Aik are proportional to [k⊥] =
[k2 −k1]

>, since kiAikk⊥k = 0. Therefore, using k⊥i in place of ṽi in (3.15) and taking
the inner product with k⊥i , the growth rate may be calculated through

φρs

η0
λ(k)=

k⊥i Aik(k)k⊥k
|k|2

. (3.21)

Then, introducing the dimensionless growth rate λ̃= A2d2φρsλ/η
0 and dimensionless

wave vector k̃i = Adki and using (3.16) and (3.20) in (3.21), the growth rate in pure
shearing is given explicitly by

λ̃(k̃)=−

(
k̃4
− q0(k̃)k̃2(k̃2

1 − k̃2
2)− 4r0(k̃)k̃2

1k̃2
2

k̃2 − q0(k̃)(k̃2
1 − k̃2

2)

)
, (3.22)
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FIGURE 1. Contour plots of the dimensionless growth rate λ̃=A2d2φρsλ/η
0 as a function

of the dimensionless wave vector k̃i = Adki for pure shearing and I0
= 0.001, calculated

using (3.22) for (a) the NGF model and (b) the LI rheology. In both cases, the µloc(I)
function (1.3) is used with the parameters µs = 0.3819, µ2 = 0.6435 and b= 0.9377 (so
that I0 = (µ2 − µs)/b = 0.279). The white regions represent positive growth rates and
linear instability, and solid lines represent the stability threshold. In (a), the dashed circle
represents the cutoff wave vector magnitude, k̃cut, beyond which perturbations are stable
for all wave vector directions.

where k̃2
= k̃2

1 + k̃2
2 and

r0(k̃)=
1− ν0

1+ ν0k̃2/bI0
and q0(k̃)=µloc(I0)

(
1−

ν0

2(1+ ν0k̃2/bI0)

)
. (3.23a,b)

In this non-dimensionalization, the non-local amplitude, A, is incorporated into λ̃ and
k̃i and no longer appears in (3.22) or the corresponding expressions for r0 and q0 in
(3.23) – allowing us to straightforwardly understand the effect of this parameter on
the stability of the NGF model. We again note that the expression for the growth
rate given in (3.22) is identical to that calculated by Barker et al. (2015) for the LI
rheology with the exception that the scalars r0 and q0 depend on the wave vector
magnitude, and therefore the growth rate does not simply scale as k̃2. Finally, the
requirement (3.19) is equivalent to the requirement that the denominator of (3.22) be
positive and, for the case of pure shearing, reduces to µloc(I0)< 1, which is physically
reasonable and consistent with typical data from the literature (Jop et al. 2005).

To this point, the specific form of the µloc(I) function – which enters the NGF
model through (2.6) and (2.7) and the growth rate (3.22) through ν0 – has been left
unspecified. We begin by considering the Jop et al. (2005) form (1.3) and utilize their
well-established parameters for glass beads: µs= 0.3819, µ2= 0.6435 and b= 0.9377,
so that I0 = (µ2 −µs)/b= 0.279. A contour plot of the growth rate, λ̃, as a function
of the wave vector k̃i = Adki, calculated using (3.22), is shown in figure 1(a) for
a quasi-static base-state inertial number of I0

= 0.001. The value of I0
= 0.001 is

chosen since it is illustrative of unstable behaviour when it occurs. The white regions
represent positive growth rates – and hence linear instability and the loss of ellipticity
– and solid lines denote the stability threshold. Figure 1(a) shows that the unstable
region is confined to a set of finite wave vector magnitudes near the origin in wave
vector space. Therefore, in the limit |k| → ∞, perturbations are stable for all wave
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vector directions, and Hadamard instability does not arise, consistent with (3.18).
A corresponding contour plot of the growth rate for the LI rheology, calculated
by neglecting the terms involving k̃ in (3.23), is shown in figure 1(b) – which
matches the result of Barker et al. (2015). In this case, the unstable regions extend to
infinitely large wave vector magnitudes with corresponding growth rates that diverge
to positive infinity, consistent with Hadamard instability. In comparing figures 1(a)
and (b), we note that they are similar near the origin, since the addition of non-local
terms has little effect on long-wavelength perturbations. In both cases, instability
only occurs for wave vector directions within the ranges of approximately ±34–45◦
with respect to the e1-direction with the maximum positive growth rate occurring at
angles of approximately ±39◦. However, as the wave vector magnitude increases, the
presence of the non-local terms in the NGF model leads to a wave vector cutoff,
kcut, beyond which perturbations are stable for all wave vector directions. Importantly,
since the quantity 2π/kcut represents the smallest possible wavelength of an unstable
perturbation, the wave vector cutoff, kcut, quantifies the regularization imparted by the
NGF model. We define the dimensionless wave vector cutoff as k̃cut = Adkcut – which
is illustrated by the dashed circle in figure 1(a) – and note that k̃cut can depend on
the material parameters {µs, µ2, b} and the base-state inertial number, I0, but not
the non-local amplitude, A. Then, since kcut = k̃cut/Ad, the dimensional cutoff wave
vector is inversely proportional to A and the grain size, d, so that kcut may be made
arbitrarily small by taking Ad to be arbitrarily large.

Next, we illustrate the effect of the material parameters {µs,µ2,b} and the base-state
inertial number, I0, on k̃cut. Figure 2(a) shows a contour plot of k̃cut as a function of
(µ2 − µs) and I0/I0 (where I0 = (µ2 − µs)/b) with µs = 0.3819 fixed. We note that
for µs = 0.3819 and the range of (µ2 − µs) considered in figure 2(a), µloc(I0) < 1,
so that the requirement (3.19) is always satisfied. The white region bounded by the
solid black line represents combinations of material parameters and base states in
which perturbations are stable for all wave vectors – and hence k̃cut = 0 – and is
identical to the region of well-posed behaviour for the LI rheology (see figure 2 of
Barker et al. (2015)). Outside this region, unstable behaviour of the type illustrated
in figure 1(a) is observed, and k̃cut is non-zero. First, we discuss the quasi-static limit
of I0/I0 → 0. Using (3.6), ν0

→ bI0/µs, and using (3.23), r0
→ 1/(1 + k̃2/µs) and

q0
→µs, so that the growth rate as a function of wave vector (3.22) – and hence k̃cut

– only depends on the static yield value, µs. For µs= 0.3819, k̃cut(I0/I0→ 0)= 0.123,
which may be observed in the lower portion of figure 2(a). The quasi-static wave
vector cutoff value is important because it is indicative of k̃cut over a wide range
of base-state inertial numbers I0/I0 . 0.1 – i.e. 0 6 k̃cut . 0.2 for I0/I0 . 0.1 in
figure 2(a). The quasi-static limit of the wave vector cutoff, k̃cut(I0/I0→ 0), is plotted
as a function of the static yield value, µs, in figure 2(b), showing that this quantity
increases monotonically with µs and that as µs → 0, the wave vector cutoff goes
to zero, and unstable behaviour disappears (consistent with Barker & Gray (2017)).
Then, returning to figure 2(a), as the base-state inertial number is increased beyond
I0/I0 ≈ 1, k̃cut rapidly increases – exceeding the upper limit of the contour plot.
Mathematically, this is because the cooperativity length of the NGF model decays as
the base-state inertial number increases, and non-local effects play a decreasing role
in this limit. While k̃cut remains finite and the Hadamard instability does not occur
in this range, unstable perturbations of very short wavelength (but finite growth rate)
arise, indicating that the NGF model will predict narrow flow localization features,
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FIGURE 2. (a) Contour plot of the cutoff wave vector magnitude, k̃cut, for pure shearing
as a function of (µ2−µs) and I0/I0 using the µloc(I) function (1.3) with µs=0.3819 fixed.
The white region bounded by the solid black line denotes states in which perturbations
are stable for all wave vectors, and hence k̃cut= 0 in this region. (b) The quasi-static limit
of the wave vector cutoff, k̃cut(I0/I0→ 0), as a function of the static yield value, µs. (c)
Cutoff wave vector magnitude, k̃cut, as a function of bI0 using the Bingham-like µloc(I)
function (1.2) with µs= 0.3819 fixed. Again, the range of bI0 in which k̃cut= 0 represents
states in which perturbations are stable for all wave vectors.

which to our knowledge are not observed experimentally in rapid flows. For context,
the NGF model was proposed to address the shortcomings of the LI rheology in the
quasi-static and dense inertial flow regimes (I . 10−1). Therefore, in order to provide
a more physical regularization of the LI rheology in the rapid flow regime, it will be
necessary to include additional physics not currently present in the NGF model.

Finally, to demonstrate that the observations discussed in this section are not limited
to the specific choice of the µloc(I) function (1.3), we consider the stability of the
NGF model using the Bingham-like form of the µloc(I) function (1.2). Figure 2(c)
shows a plot of k̃cut as a function of bI0 with µs= 0.3819 fixed. Since (1.2) does not
possess an upper limiting value, we only consider a range of bI0 in which µloc(I0)< 1,
so that bI0< 1−µs= 0.6181 and (3.19) is satisfied. Again, we observe the quasi-static
limit of the wave vector cutoff, i.e. k̃cut(I0/I0→ 0)= 0.123 for µs = 0.3819. Then, as
bI0 is increased, k̃cut remains near the quasi-static limit until it quickly decreases to
zero around bI0

= 0.0158. For 0.0158 6 bI0 < 0.6181, perturbations are stable for all
wave vectors. Therefore, the stability of the NGF model in the quasi-static and dense
inertial flow regimes (I .10−1) is similar for both choices of the µloc(I) function, (1.2)
and (1.3).
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4. Nonlinear numerical simulations of strain localization in plane-strain
compression
In this section, we illustrate that a consequence of the finite-wavelength linear

instability detected in § 3 is the potential for diffuse localization to arise in fully
nonlinear, quasi-static solutions. To this end, we apply the NGF model to the case
of plane-strain (biaxial) compression of a dense granular material – a common
configuration for studying strain localization in both experiments (e.g. Han & Drescher
1993; Desrues & Viggiani 2004; Rechenmacher 2006; Le Bouil et al. 2014; Houdoux
et al. 2018) and continuum simulations (e.g. Anand & Gu 2000; Al Hattamleh et al.
2004; Gao & Zhao 2013), since the geometry allows plastic deformation to localize
into a shear band with minimal interference from the boundary conditions. From
the outset, we recognize that the process of strain localization into shear bands is
quite complex; in particular, the initial state has an important impact on shear-band
formation. If the granular material is over-consolidated, it will dilate during the
beginning stages of quasi-static shear deformation, leading to shear softening, which
contributes to strain localization. Conversely, an initially under-consolidated granular
material undergoes compaction and attendant shear hardening, which counteracts
localization. It is well appreciated that dilatancy and shear softening/hardening have a
quantitative impact on the formation and orientation of shear bands in the quasi-static
regime (Rudnicki & Rice 1975). Moreover, the initial contact fabric and its evolution
play a role in quasi-static deformation of dense granular materials (Sun & Sundaresan
2011), which can have a further effect on the process of strain localization (Gao &
Zhao 2013). Continuum models that account for dilatancy and associated shear
softening/hardening (e.g. Schofield & Wroth 1968; Anand & Gu 2000) as well as
fabric evolution (e.g. Nemat-Nasser 2004; Sun & Sundaresan 2011; Gao & Zhao
2013) have been developed in the literature, but at present, non-local rheological
models for dense granular flow do not incorporate these effects. Therefore, the intent
of this section is not to quantitatively capture experimental observations of localization
but instead to demonstrate a link between linear instability and the bifurcation of
homogeneous deformation to diffuse localization in fully nonlinear settings.

We consider the configuration shown in figure 3(a), consisting of a rectangular box
of dense granular material with dimensions L and H= 3L in the x1- and x2-directions,
respectively, subjected to plane-strain compression along the x2-direction. Regarding
the mechanical boundary conditions, the bottom face AB is fixed in the x2-direction,
v2 = 0, and the corner A is pinned to prevent lateral free-body motion, v1 = v2 = 0.
The lateral faces AD and BC are subjected to a compressive normal stress σ 0

1 < 0,
which continues to act normal to the faces as the surface orientation evolves with
deformation, and the top face CD is moved downward at a velocity v0

2(t) < 0. For
a given lateral normal stress, σ 0

1 , the downward velocity, v0
2(t), is chosen to obtain

a target inertial number, I0, supposing homogeneous deformation, as follows. In
homogeneous, constant-volume, plane-strain compression, denote the normal stresses
as σ 0

1 < 0, σ 0
2 <σ

0
1 and σ 0

3 = (σ
0
1 +σ

0
2 )/2, so that τ 0

= (σ 0
1 −σ

0
2 )/2, P0

=−(σ 0
1 +σ

0
2 )/2

and µ0
= τ 0/P0. Next, using this information, for a given σ 0

1 and I0, P0 may be
determined by way of the µloc(I) function as P0

= −σ 0
1 /(1 − µloc(I0)). Similarly,

denote the normal strain rates as D0
1 > 0, D0

2 =−D0
1 and D0

3 = 0, so that γ̇ 0
=−2D0

2.
Then, using the definition of the inertial number, we have that the strain rate along
the direction of compression should be D0

2 = −(I
0/2)

√
P0/d2ρs. To achieve this

constant, target value of D0
2 – i.e. a constant true strain rate – we set the top surface

velocity to be v0
2(t)=D0

2H exp(D0
2t), where v0

2(t) is time dependent since the specimen
height evolves with deformation and downward since D0

2< 0. For the granular fluidity
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FIGURE 3. (a) Schematic of the computational domain used in finite-element simulations
of plane-strain compression of a dense granular material. (b–d) Contours of the inertial
number field for a specimen size of L= 40d, a quasi-static target inertial number of I0

=

0.001 and a mesh resolution of d/2. The deformed distance between faces AB and CD
is (b) 0.95H, (c) 0.90H and (d) 0.86H.

boundary conditions, based on the experience built up in our past work (Henann
& Kamrin 2013, 2014a; Liu & Henann 2017), we invoke homogeneous Neumann
boundary conditions on all boundaries. Finally, we introduce a centrally located weak
point by modifying the static yield value of a single element – indicated in figure 3(a)
– to be 0.99µs. This point serves as a potential nucleation point for localization. In
summary, we specify boundary conditions consistent with homogeneous flow at a
target inertial number, I0. Our expectation is that if the governing equations are
linearly stable, the imperfection will have no effect, and homogeneous flow will
proceed. However, for values of I0 corresponding to linear instability, we expect that
the imperfection will trigger a bifurcation of homogeneous flow to flow localization
in a shear band.

Consistent with our interest in quasi-static solutions, we use the Bingham-like
form of the µloc(I) function (1.2) throughout this section along with dimensionless
material parameters for glass beads. Namely, the local parameters are taken to be
µs = 0.3819 and b = 0.9377, and the non-local amplitude was calibrated in our
previous work to be A = 0.48 (Henann & Kamrin 2013). To obtain numerical
solutions, we utilize the nonlinear, quasi-static finite-element formulation of the NGF
model developed and described in detail in our previous work (Henann & Kamrin
2016) and implemented in the commercial finite-element program Abaqus (2017). We
note that our implementation includes a stiff elastic response, which we have verified
does not affect any of the subsequently reported calculation results. The finite-element
degrees of freedom are the in-plane displacement components – rather than velocity
components – and the granular fluidity. (See Henann & Kamrin (2016) for further
discussion of this point.) We begin by considering a specimen size of L = 40d, a
quasi-static target inertial number of I0

= 0.001 and a mesh resolution of d/2 (19 200
elements). Figures 3(b), 3(c) and 3(d) show contour plots of the inertial number
field on the deformed shape after the specimen has been compressed to the point
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FIGURE 4. Contours of the inertial number field for a target inertial number of I0
= 0.001,

a mesh resolution of d/2 and specimen sizes of (a) L= 20d, (b) L= 40d and (c) L= 60d.
The deformed distance between faces AB and CD is 0.90H for each case.

that the deformed distance between faces AB and CD is 0.95H, 0.90H and 0.86H,
respectively. (Under homogeneous deformation, these boundary displacements would
correspond to true strains of −0.05, −0.10 and −0.15.) Consistent with expectation,
homogeneous deformation does not occur. After a small amount of compressive
strain, flow localizes into a single shear band, which persists as further deformation
is applied. The inertial number field is greater than I0 inside the shear band, while I
is less than I0 in regions outside the shear band but never exactly zero. The important
features of the shear band are its orientation and its width, which evolve minimally
over the range of deformation shown in figure 3(b–d). Making a connection with the
linear stability analysis of § 3.3, the perturbations with the maximum positive growth
rate in the quasi-static regime correspond to wave vector directions of approximately
±39◦ with respect to the e1-direction. Since the wave vector direction represents the
direction normal to localization bands, shear bands are expected to form at angles of
either 51◦ or −51◦. The dashed lines sketched in figure 3(b–d) are at an angle of 51◦
with respect to the horizontal, illustrating that the simulated shear-band orientation
is indeed consistent with the orientation suggested by the linear stability analysis.
Regarding the shear-band width, we recall that the quantity 2π/kcut represents the
smallest possible wavelength of an unstable perturbation. Since the quasi-static limit
of the wave vector cutoff is k̃cut = 0.123 for µs = 0.3819, the corresponding cutoff
wavelength is 2π/kcut = 2πAd/k̃cut = 24.5d for A= 0.48. The pairs of parallel dashed
lines sketched in figure 3(b–d) are spaced 24.5d apart, illustrating that the simulated
width of the shear band is indeed of the same order as the unstable wavelength cutoff.
Therefore, the regularization provided by the NGF model sets the diffuse width of
shear bands that follow from the linear instability.

To demonstrate that the results of figure 3(b–d) are primarily due to the material
response – i.e. material instability – and not to the geometry of the specimen, we
consider several specimen sizes while keeping the aspect ratio fixed. Figures 4(a), 4(b)
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FIGURE 5. Contours of the inertial number field for a specimen size of L= 40d, a mesh
resolution of d/2 and target inertial numbers of (a) I0

= 0.001, (b) I0
= 0.007 and (c)

I0
= 0.03. The deformed distance between faces AB and CD is 0.90H.

and 4(c) show contour plots of the inertial number field on the deformed shape for
L= 20d, 40d and 60d, respectively. In all three cases, the deformed distance between
faces AB and CD is 0.90H, where H represents the respective specimen height, H=
3L, for each case. For reference, the contour plots of figure 3(c) and figure 4(b) are
identical. For the smaller specimen size of L = 20d shown in figure 4(a), the shear
band is clearly influenced by the boundaries of the specimen, since the shear-band
width is comparable to the specimen size. Comparing the cases of L= 40d and L=
60d shown in figure 4(b,c), some boundary effects are apparent, but the shear-band
widths and angles are quite similar. This is illustrated by the parallel dashed lines
in figure 4(b,c), which are oriented at an angle of 51◦ with respect to the horizontal
and spaced 24.5d apart. This observation indicates that so long as the specimen is
sufficiently large, boundary effects are secondary in plane-strain compression, and the
observed shear-band features may be attributed to the intrinsic material response.

Next, we consider the effect of the target inertial number, I0, focusing on the
specific cases of I0

= 0.001, 0.007 and 0.03. With reference to the cutoff wave vector
magnitude, k̃cut, determined in the linear stability analysis of § 3.3 and shown in
figure 2(c), these choices correspond to target base states in the quasi-static plateau
regime, the transition regime and the stable, dense inertial regime, respectively.
Figure 5(a–c) shows contour plots of the inertial number field on the deformed shape
for I0

=0.001, 0.007 and 0.03, a fixed specimen size of L=40d and a mesh resolution
of d/2. As before, the deformed distance between faces AB and CD is 0.90H. The
contour plots of figures 3(c) and 5(a) are identical, showing a clear shear band in the
quasi-static regime. For the higher target inertial number of I0

= 0.007, a distinct shear
band does not form, but flow remains slightly inhomogeneous. Making a connection
with the linear stability analysis, we associate this change with the lower value of k̃cut
for I0

= 0.007 – or equivalently, the larger value of the unstable wavelength cutoff,
2π/kcut. We note that since only long wavelengths are linearly unstable for this case,
the specimen size does have an influence on the inertial number field. When I0 is
increased further to 0.03, flow is homogeneous at the target inertial number. This
is due to the unconditionally stable behaviour for this base state, which precludes
the imperfection from triggering a bifurcation into inhomogeneous flow – consistent
with expectation. Therefore, inhomogeneous flow and localization do not arise when
the target inertial number, I0, is in the regime in which the quasi-static governing
equations are elliptic, exhibiting no linear instability of any wavelength.
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FIGURE 6. Contours of the inertial number field for a specimen size of L= 40d, a target
inertial number of I0

= 0.001 and mesh resolutions of (a) 2d, (b) d, (c) d/2 and (d) d/4.
The deformed distance between faces AB and CD is 0.90H. The NGF model predicts
diffuse and mesh-size-independent shear-band widths.
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FIGURE 7. Contours of the inertial number field for a specimen size of L= 40d, a target
inertial number of I0

= 0.001 and mesh resolutions of (a) 2d, (b) d, (c) d/2 and (d)
d/4, calculated using the LI rheology rather than the NGF model. The deformed distance
between faces AB and CD is approximately 0.99H.

Finally, we verify that the simulation results for the NGF model presented in this
section are independent of mesh resolution. Returning to the case of L = 40d and
I0
= 0.001, contour plots of the inertial number field on the deformed shape are shown

in figure 6 for mesh resolutions of 2d, d, d/2 and d/4 (1200, 4800, 19 200 and 76 800
elements, respectively). As before, the deformed distance between faces AB and CD
is 0.90H. As the mesh resolution is refined, the inertial number field converges
to a resolution-independent solution of a diffuse shear band. For comparison, we
have also calculated corresponding solutions using the LI rheology. We continue to
consider L = 40d, I0

= 0.001 and mesh resolutions of 2d, d, d/2 and d/4 but only
a small amount of boundary displacement in which the deformed distance between
faces AB and CD is about 0.99H. Contour plots of the inertial number field on
the deformed shape are shown in figure 7 for each mesh resolution. Using the LI
rheology, localization into shear bands is observed. The dashed lines sketched in
figure 7(d) are at angles of ±51◦ with respect to the horizontal, illustrating that –
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like the NGF model – the simulated shear-band orientation is consistent with the
orientation suggested by the linear stability analysis. However, in contrast to results
obtained using the NGF model, shear bands are sharp with intense shearing present
inside the bands and the inertial number equal to zero outside the bands. As the mesh
is refined, the widths of shear bands do not approach exactly zero, instead sharpening
to a point at which the inertial number inside the bands is of the order of 10−2

(which is approximately the lower bound of the linearly stable, dense inertial regime
for the LI rheology using the current set of material parameters). That said, shear
bands are quite sharp and require a very high mesh resolution to resolve. Moreover,
in spite of the centrally located imperfection, multiple shear bands are observed with
the number of bands increasing as the mesh is refined, and the shear bands tend to
move spatially as deformation progresses, never coalescing into a single, persistent
shear band. These observations may be interpreted as symptoms of the Hadamard-type
linear instability exhibited by the LI rheology.

5. Linear stability of the IG model
The success of the NGF model as well as the velocity-gradient model of Goddard

& Lee (2017) in suppressing the Hadamard instability and providing a regularization
of the LI rheology poses the question of whether other gradient extensions of the LI
rheology lead to similar results. In this section, we apply a linear stability analysis
analogous to that described in § 3 to the IG model proposed by Bouzid et al. (2013).
The model as described by Bouzid et al. (2013) is one-dimensional in form and
modifies the LI rheology (1.1) through a gradient expansion involving the Laplacian
of the inertial number in the following manner:

µ=µloc(I)
(

1−
νId2

I
∂2I
∂xk∂xk

)
, (5.1)

where νI is a dimensionless material constant, which plays a similar role to the
non-local amplitude, A, in the NGF model. The IG model (5.1) has been successfully
applied to capturing flow fields in the quasi-static regime in several statically
determinate, inhomogeneous, one-dimensional flow configurations (Bouzid et al.
2013, 2015b; Tang et al. 2018). To proceed, it is necessary to generalize (5.1) to a
tensorial form. We follow the precedent of Jop et al. (2006) for the LI rheology and
Henann & Kamrin (2013) for the NGF model and assume (1) constant-volume steady
flow and (2) co-directionality of the strain-rate tensor and the stress deviator, so that
the Cauchy stress tensor is given by

σij =−Pδij +
√

2µloc(I)P
(

1−
νId2

I
∂2I
∂xk∂xk

)
N ij, (5.2)

where, as in § 2, Dij= (1/2)(∂vi/∂xj+ ∂vj/∂xi) is the symmetric and deviatoric strain-
rate tensor, γ̇ = (2DijDij)

1/2 is the equivalent shear strain rate, N ij =
√

2Dij/γ̇ is the
direction of flow, P is the pressure and I = γ̇

√
d2ρs/P is the inertial number. Then,

continuing to use the definitions τ = (σ ′ijσ
′

ij/2)
1/2 and µ= τ/P, the three-dimensional

constitutive equation (5.2) implies the constitutive equation (5.1) in terms of invariant
quantities. We note that (5.2) bears some relation to the velocity-gradient model of
Goddard & Lee (2017) in that it explicitly includes higher-order gradients of kinematic
quantities – i.e. it is a weakly non-local, gradient–viscoplastic model – but differs in
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that the gradient term depends on the velocity field in a nonlinear manner and also
involves the pressure field. Moreover, unlike the model of Goddard & Lee (2017),
the IG model has not been formulated in a thermodynamically consistent manner,
and hence positive dissipation is not ensured. Finally, we acknowledge that there are
certainly other possible paths to generalize (5.1) to a tensorial setting that eschew
co-directionality; however, co-directionality represents a straightforward first approach
to generalizing a scalar rheology to tensorial form. The equations of incompressibility,
∂vj/∂xj = 0, the stress constitutive equation (5.2) and the equations of motion (2.2)
then represent a closed system of equations.

In appendix C, the governing equations of the IG model are linearized about a
base state of steady, homogeneous, constant-volume flow, and the ellipticity of the
linearized equations is considered. The resulting eigenvalue problem for the IG model
has the same form as that obtained for the NGF model, (3.15) and (3.16), with one
key difference: the expressions for r0 and q0 are different and given by

r0(k)= 1− ν0
− νId2

|k|2 and q0(k)=µloc(I0)
(
1− 1

2ν
0
−

1
2νId2
|k|2
)
. (5.3a,b)

In the long-wavelength limit (|k| → 0), both (3.13) and (5.3) reduce to the
wave-vector-independent forms derived by Barker et al. (2015) for the LI rheology.
However, in the short-wavelength limit (|k| → ∞), for the IG model, r0 and q0

are dominated by the |k|2 terms in (5.3) and diverge to negative infinity, rather
than remaining bounded as their NGF model counterparts (3.17). This behaviour is
especially problematic for q0, since we can no longer ensure that the denominator in
(3.16) remains positive. Therefore, situations in which (|k|2 −

√
2q0(k)kmN0

mnkn) = 0
are unavoidable, and growth rates that diverge to infinity for finite wave vector
magnitudes are to be expected. Moreover, the presence of the gradient terms in the
IG model does not guarantee that Hadamard instability is suppressed. In the limit
|k|→∞, the tensor Aik behaves asymptotically as

Aik(k)∼
2
√

2
µloc(I0)

[
ki −

(
|k|2

kmN0
mnkn

)
N0

ijkj

]
N0

klkl − |k|2δik. (5.4)

In contrast to (3.18), (5.4) is not negative definite for all wave vector directions, and
as we shall show momentarily for the case of pure shearing, eigenvalues of (5.4)
can diverge to positive infinity for certain directions. Finally, the non-local material
parameter, νI , does not appear in (5.4), indicating that increasing the value of νI will
not alleviate Hadamard-type instability when it arises.

To illustrate this behaviour, we consider a base state of steady, homogeneous,
constant-volume pure shearing as described at the beginning of § 3.3. Introducing the
dimensionless growth rate λ̃= νId2φρsλ/η

0 and dimensionless wave vector k̃i=
√
νIdki,

the growth rate in pure shearing is given by (3.22) with r0(k̃) = 1 − ν0
− k̃2 and

q0(k̃) = µloc(I0)(1 − ν0/2 − k̃2/2). For the µloc(I) function, we again consider the
form (1.3) and utilize the parameters µs = 0.3819, µ2 = 0.6435 and b = 0.9377. A
contour plot of the growth rate, λ̃, as a function of the wave vector, k̃i, is shown in
figure 8(a) for a quasi-static base-state inertial number of I0

= 0.001 with positive
growth rates denoted by white regions. The small unstable region near the origin in
wave vector space shown in the close-up in figure 8(a) is actually quite similar to
that shown in figure 1(a) – only appearing much smaller in the main figure because
the domain of wave vectors in figure 8(a) is significantly larger than in figure 1(a).
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FIGURE 8. Contour plots of the dimensionless growth rate λ̃= νId2φρsλ/η
0 as a function

of the dimensionless wave vector k̃i =
√
νIdki for pure shearing and (a) I0

= 0.001 and
(b) I0

= 0.1, calculated using (3.22) for the IG model. In both cases, the µloc(I) function
(1.3) is used with the parameters µs = 0.3819, µ2 = 0.6435 and b= 0.9377 (so that I0 =

(µ2−µs)/b= 0.279). The close-up in (a) shows the small unstable region near the origin
in wave vector space. The white regions with dashed hatching represent positive growth
rates that grow without bound as k̃→∞ – i.e. wave vectors along these directions exhibit
Hadamard instability. Solid black lines represent the stability threshold λ̃= 0, while solid
grey lines denote contours over which λ̃ is discontinuous.

The difference in the contour plots of figures 8(a) and 1(a) arises as the wave vector
magnitude increases. The white regions with dashed hatching far from the origin in
figure 8(a) represent positive growth rates that grow without bound as k̃→∞ – i.e.
wave vectors along these directions exhibit Hadamard instability. Moreover, while
the solid black lines denote contours of k̃ = 0, the solid grey lines denote contours
along which k̃2

− q0(k̃)(k̃2
1 − k̃2

2) = 0. The growth rate is discontinuous across these
contours, diverging to positive and negative infinity as the contour is approached
from either side. Therefore, diverging growth rates are encountered for finite wave
vector magnitudes. Figure 8(b) shows growth-rate contours for a higher base-state
inertial number of I0

= 0.1, showing that while the unstable region near the origin
disappears, the unstable behaviour for high wave vector magnitudes and the contours
of growth-rate discontinuity remain. This is in contrast to both the LI rheology and
the NGF model, which possess unconditionally stable behaviour for this case.

The results of this section’s linear stability analysis suggest that obtaining
robust numerical solutions using the IG model in general flow geometries will be
difficult. Indeed, previous applications of this model have been restricted to statically
determinate, one-dimensional problems (Bouzid et al. 2013, 2015b; Tang et al. 2018),
in which the stress field was known from the outset, and only the constitutive equation
(5.1) was used to obtain solutions for the flow field – masking potential unstable
behaviour. To understand the source of this mathematical behaviour, we note that
unbounded growth rates stem from the manner in which q0 depends on the wave
vector magnitude. This dependence may be traced back to the term in the linearized
equations of motion (C 6) involving higher-order pressure gradients, implying that
this term has a deeply destabilizing effect. In fact, if this term in (C 6) and the
consequent dependence of q0 on the wave vector in (5.3) are neglected, unbounded
growth rates do not arise, and Hadamard-type instability is successfully suppressed.
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Therefore, due to the involvement of pressure in the inertial number, developing a
non-local rheology based on higher-order gradients of the inertial number that leads
to well-posed governing equations will be challenging, and it seems unlikely that
alternatives to co-directionality will significantly alter this conclusion.

6. Concluding remarks

In this work, we established that the NGF model regularizes the Hadamard-type
instability of the LI rheology. In particular, by performing a linear stability analysis
in which a base state of steady, homogeneous, constant-volume flow is subjected
to perturbation, we showed that the NGF model provides a wave-vector-magnitude
cutoff, beyond which all perturbations are stable and unbounded growth rates do not
occur. Further, for certain wave vectors within the cutoff, linear instability of finite
wavelength and bounded growth rate remains, which is a necessary condition for
diffuse strain localization. We considered two specific forms of the µloc(I) function
and a wide range of material parameters, showing that these observations are quite
broad.

Second, to demonstrate the consequences of finite-wave-vector instability and the
loss of ellipticity of the quasi-static governing equations, we carried out fully nonlinear
finite-element simulations of plane-strain compression. Specifically, we showed that
when boundary conditions consistent with a base state of homogeneous deformation
in the unstable regime are applied, the NGF model predicts a bifurcation from
homogeneous deformation to diffuse strain localization, but for a base state in the
stable regime with higher inertial number, no bifurcation occurs. When localization
occurs, the thicknesses of shear bands predicted by the NGF model were observed
to be independent of the mesh resolution.

Lastly, we performed an analogous linear stability analysis on a tensorial
generalization of the IG model of Bouzid et al. (2013) and showed that due to the
presence of higher-order pressure gradients in the constitutive equations, unbounded
growth rates arise in pure shearing over a wide range of base-state inertial numbers
– in contrast to both the LI rheology and the NGF model – illustrating that the
inclusion of higher-order gradients of the inertial number in a constitutive model does
not provide a straightforward path to well-posed governing equations.

In closing, we highlight two avenues along which the NGF model may be extended.
First, as discussed at the beginning of § 4, the effect of the initial state, dilatancy
and associated shear softening/hardening, as well as fabric and its evolution all have
important impacts on the mechanics of dense granular materials in the quasi-static flow
regime – particularly during the transition from static to flowing states. Moreover,
dilatancy has been observed during steady, quasi-static flows (Krishnaraj & Nott
2016). At present, the NGF model and other non-local rheological models cannot
capture these effects. One approach to incorporating transient dilatancy and shear
softening/hardening during developing flow into the NGF model is to introduce an
evolution law for the solid packing fraction (e.g. Schofield & Wroth 1968; Anand &
Gu 2000) and couple the local response function gloc to its evolution. Along this line,
we note that the recent works of Barker et al. (2017) and Heyman et al. (2017) have
proposed compressible, dilatant extensions of the LI rheology as a route to well-posed
governing equations. However, the conditions for well-posedness may be too restrictive
to describe experiments in the quasi-static regime. Indeed, the recent work of
Goddard & Lee (2018) has shown that these compressibility-based regularization
strategies involve eliminating the static yield value – contrary to experimental
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observation. Therefore, since the NGF model guarantees well-posedness, additional
constitutive equations capable of quantitatively capturing dilatant phenomenology may
be appended to the NGF model without these restrictions.

Second, in the rapid flow regime (I & 10−1), the physics of flow is dominated by
collisions rather than enduring contacts and compressibility plays an essential – and
potentially stabilizing – role. Continuum theories for flow based on granular kinetic
theory that include compressibility are mature and effective in describing flows in this
regime (e.g. Lun et al. 1984). While the NGF model in its current form transitions
seamlessly between the quasi-static and dense inertial regimes (I . 10−1), it does
not transition into a compressible granular-kinetic-theory-based description of the
collisional regime, and future extension of the NGF model will be required to enable
such a transition.
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Appendix A. Linear stability including the effects of convection
As pointed out by Goddard & Lee (2017), a complete linear stability analysis does

not neglect the two convective terms appearing on the left-hand side of (3.3). In this
appendix, we briefly consider the effect that retaining these terms has on the analysis
of § 3. Due to the presence of the base-state velocity field in the second term on the
left-hand side of (3.3) and the fact that it varies linearly in space as v0

i (x)= L0
ijxj, the

linearized equations of motion do not possess constant coefficients, and we must be
more careful in obtaining the Fourier-space representation of the linearized governing
equations. Denoting the Fourier transforms of the linearized velocity, v̂i(x, t), pressure,
P̂(x, t), and fluidity, ĝ(x, t), fields as ṽi(k, t), P̃(k, t) and g̃(k, t), respectively, and
using the Fourier transform of the gradient and its dual – e.g. ∂v̂i(x)/∂xj↔ ikjṽi(k)
and xjv̂i(x)↔ i∂ṽi(k)/∂kj for the velocity field – the Fourier-space representation of
the linearized equations of motion (3.3) is

φρs

(
∂ṽi

∂t
− kjL

0
jk
∂ṽi

∂kk
+ L0

ijṽj

)
= i(−δij +

√
2µloc(I0)N0

ij)kjP̃− η0
|k|2ṽi − i

√
2η0µloc(I0)N0

ijkjg̃, (A 1)

where g0
= γ̇ 0/µloc(I0) has been utilized. The Fourier-space representations of the

incompressibility constraint and the non-local rheology are as given in (3.8) and (3.10)
except with ṽi, P̃ and g̃ depending on the wave vector, ki, rather than being constants.
As before, solving (3.10) for g̃ gives (3.11), which may be substituted into (A 1) to
yield

φρs

(
∂ṽi

∂t
− kjL

0
jk
∂ṽi

∂kk
+ L0

ijṽj

)
= i(−δij +

√
2q0(k)N0

ij)kjP̃− η0
|k|2ṽi + 2η0r0(k)N0

ijkjN
0
klklṽk, (A 2)

where r0 and q0 are as given in (3.13). Then, taking the inner product of (A 2)
with ki and applying the incompressibility constraint, kiṽi = 0, and its consequence,
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∂(kiṽi)/∂kk = ṽk + ki ∂ṽi/∂kk = 0, we obtain the following expression for P̃ in terms
of ṽi:

P̃=−2i
η0r0(k)(kiN0

ijkj)N0
klklṽk − φρsklL0

lkṽk

|k|2 −
√

2q0(k)kmN0
mnkn

. (A 3)

Finally, substituting (A 3) into (A 2), we obtain

φρs

η0

(
∂ṽi

∂t
− kjL

0
jk
∂ṽi

∂kk

)
= Aik(k)ṽk, (A 4)

where the tensor Aik is

Aik(k) = 2r0(k)

[
N0

ijkj − (kpN0
pqkq)

(
ki −
√

2q0(k)N0
ijkj

|k|2 −
√

2q0(k)kmN0
mnkn

)]
N0

klkl − |k|2δik

−
φρs

η0

[
L0

ik − 2

(
ki −
√

2q0(k)N0
ijkj

|k|2 −
√

2q0(k)kmN0
mnkn

)
klL

0
lk

]
. (A 5)

Comparing (A 4) and (A 5) to (3.15) and (3.16), the second term on the left-hand side
of (A 4) and the second line of (A 5) arise due to convection. As discussed by Goddard
& Lee (2017), when ki is transformed to the material (undeformed) wave vector, the
result is an ordinary differential equation for ṽi that fully describes the linearized
dynamics of perturbations about a base state of homogeneous flow. Analogous to the
discussion of § 3.3, it is instructive to non-dimensionalize (A 4) and (A 5) by defining
the dimensionless time t̃ = η0t/A2d2φρs = µloc(I0)γ̇ 0t/A2φI02 and dimensionless wave
vector k̃i = Adki, which after multiplying (A 4) by A2d2 yields

∂ṽi

∂ t̃
−

(
A2φI02

µloc(I0)γ̇ 0

)
k̃jL

0
jk
∂ṽi

∂ k̃k

= Aik(k̃)ṽk, (A 6)

with

Aik(k̃) = 2r0(k̃)

[
N0

ijk̃j − (k̃pN0
pqk̃q)

(
k̃i −
√

2q0(k̃)N0
ijk̃j

|k̃|2 −
√

2q0(k̃)k̃mN0
mnk̃n

)]
N0

klk̃l − |k̃|2δik

−
A2φI02

µloc(I0)γ̇ 0

[
L0

ik − 2

(
k̃i −
√

2q0(k̃)N0
ijk̃j

|k̃|2 −
√

2q0(k̃)k̃mN0
mnk̃n

)
k̃lL

0
lk

]
. (A 7)

Since γ̇ 0 does not depend on the spin, the magnitude of L0
ij/γ̇

0 is not necessarily
of order one, but assuming that the base-state vorticity is of the same order as γ̇ 0,
we may identify A2φI02

/µloc(I0) as a dimensionless quantity representing the relative
importance of convective inertia in (A 6) and (A 7). Since this quantity scales with the
square of the base-state inertial number, and A, φ and µloc(I0) are all of order one,
the convective terms are expected to play a minimal role in the linearized dynamics
for base states in the quasi-static regime.

To illustrate this point, we consider a base state of steady, homogeneous simple
shearing in the e1–e2 plane with

[L0
] = γ̇ 0

[
0 1
0 0

]
, [D0

] =
γ̇ 0

2

[
0 1
1 0

]
and [N0

] =
1
√

2

[
0 1
1 0

]
. (A 8a−c)
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FIGURE 9. Stability thresholds separating stable and unstable dimensionless wave vectors
k̃i = Adki for simple shearing and (a) I0

= 0.001 and (b) I0
= 1, calculated for the NGF

model using (A 7). In both cases, the µloc(I) function (1.3) is used with the parameters
µs = 0.3819, µ2 = 0.6435 and b = 0.9377 (so that I0 = (µ2 − µs)/b = 0.279), and
the non-local amplitude and solid volume fraction are taken to be A = 0.48 and φ =
0.6, respectively. Solid lines represent the stability threshold neglecting convection, while
dashed lines denote the stability threshold when accounting for convection.

We consider (A 8) rather than the base state of pure shearing (3.20) so that L0
ikL

0
kj= 0ij,

and the base state exactly satisfies the equations of motion when the convective terms
are retained. We then assess the initial stability at t̃= 0 – termed transient instability
by Goddard & Lee (2017) – by calculating the eigenvalues of Aik(k̃) when (A 8) is
used in (A 7) for a given wave vector and base-state inertial number. If the real parts
of all eigenvalues are negative, the perturbation will begin to decay, while if the real
part of any eigenvalue is positive, the perturbation will begin to grow. Figure 9(a)
shows initial stability thresholds – separating stable and unstable wave vectors –
both with and without convection for a quasi-static base state of I0

= 0.001. In both
cases, the µloc(I) function (1.3) is used with the parameters µs= 0.3819, µ2= 0.6435
and b = 0.9377, and the non-local amplitude and solid volume fraction are taken to
be A = 0.48 (Henann & Kamrin 2013) and φ = 0.6, respectively. The solid curve
denotes the initial stability threshold when convection is neglected and is identical
to the solid curve in figure 1(a), and the dashed curve is the stability threshold
when the role of convection is included. The stability thresholds with and without
convection are indistinguishable, demonstrating that convection plays a negligible
role in transient instability in the quasi-static flow regime. Of course, the asymptotic
arguments of Goddard & Lee (2017) remain valid, and convection will eventually
stabilize the transient instability of the linearized problem at long times. However,
since A2φI02

/µloc(I0)� 1, this stabilization process will play out over a much longer
time scale than the initial growth process, and it is expected that nonlinear effects
(including the nonlinear effects of convection) will intervene leading to localization as
described in § 4. The situation is different for a base state of rapid flow, illustrated by
the initial stability thresholds shown in figure 9(b) both with and without convection
for I0

= 1. In this case, the two transient stability thresholds are quite different.
Moreover, since A2φI02

/µloc(I0) is of order one, convection is expected to have an
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important subsequent stabilizing effect. Therefore, while it is reasonable to neglect
the effect of convection on the linearized dynamics in the quasi-static flow regime,
this simplifying assumption is not appropriate in the rapid flow regime.

Appendix B. Linearization of the non-local rheology (2.11)
Linearizing the non-local rheology (2.11), we obtain

ĝ= ĝloc + ξ
02 ∂2ĝ
∂xj∂xj

, (B 1)

where ĝloc is the perturbation of the local fluidity function – i.e. gloc = g0
+ ĝloc(x, t)

– and ξ 0
= ξ(µloc(I0)) denotes the cooperativity length evaluated at the base state.

We note that for both forms of the inertial rheology considered in the present work,
(1.2) and (1.3), upon substituting µloc(I0) into the appropriate form of the cooperativity
length (2.8), the base-state cooperativity length simplifies to ξ 0

= Ad/
√

bI0. Since the
base state is homogeneous, ∂2g0/∂xj∂xj=0, the perturbation of the cooperativity length
does not appear in (B 1). Linearizing gloc(γ̇ /g, P) about a given base state, we have

ĝloc =

(
∂gloc(γ̇ /g, P)

∂P

)0

P̂+
(
∂gloc(γ̇ /g, P)

∂γ̇

∂γ̇

∂Dkl

)0

D̂kl +

(
∂gloc(γ̇ /g, P)

∂g

)0

ĝ, (B 2)

where the superscript 0 denotes a quantity evaluated at the base state and D̂kl is the
symmetric part of ∂v̂k/∂xl. The definition γ̇ = (2DijDij)

1/2 implies that

∂γ̇

∂Dkl
=
√

2Nkl, (B 3)

so that (B 2) may be rewritten as

ĝloc =

(
∂gloc(γ̇ /g, P)

∂P

)0

P̂+
√

2
(
∂gloc(γ̇ /g, P)

∂γ̇

)0

N0
kl
∂v̂k

∂xl
+

(
∂gloc(γ̇ /g, P)

∂g

)0

ĝ,

(B 4)

where we have utilized the symmetry of N0
kl. Then, taking the appropriate derivatives

of (2.6), we have

∂gloc(γ̇ /g, P)
∂P

=
1

2P

√
P

d2ρs

Iloc(γ̇ /g)
γ̇ /g

, (B 5)

∂gloc(γ̇ /g, P)
∂γ̇

=

√
P

d2ρs

(
I′loc(γ̇ /g)

γ̇
−

Iloc(γ̇ /g)
γ̇ 2/g

)
, (B 6)

∂gloc(γ̇ /g, P)
∂g

=

√
P

d2ρs

(
Iloc(γ̇ /g)

γ̇
−

I′loc(γ̇ /g)
g

)
. (B 7)

To evaluate the above expressions at the base state, we first note that using (2.7),
Iloc(γ̇ /g) and I′loc(γ̇ /g) evaluated at the base state are Iloc(γ̇

0/g0)= I0 and I′loc(γ̇
0/g0)=

1/µ′loc(I
0), respectively. Therefore, we have(

∂gloc(γ̇ /g, P)
∂P

)0

=
γ̇ 0

2µloc(I0)P0
, (B 8)
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∂gloc(γ̇ /g, P)

∂γ̇

)0

=

(
1

I0µ′loc(I0)
−

1
µloc(I0)

)
, (B 9)(

∂gloc(γ̇ /g, P)
∂g

)0

=

(
1−

µloc(I0)

I0µ′loc(I0)

)
. (B 10)

Substituting (B 8), (B 9) and (B 10) into (B 4), we obtain ĝloc in terms of the perturbed
pressure, velocity and fluidity fields and the base state as follows:

ĝloc =
γ̇ 0

2µloc(I0)P0
P̂+
√

2
(

1
I0µ′loc(I0)

−
1

µloc(I0)

)
N0

kl
∂v̂k

∂xl
+

(
1−

µloc(I0)

I0µ′loc(I0)

)
ĝ, (B 11)

which when defining ν0
= I0µ′loc(I

0)/µloc(I0) and η0
=µloc(I0)P0/γ̇ 0 as in Barker et al.

(2015) may be expressed more concisely as

ĝloc =
1

2η0
P̂+

√
2

µloc(I0)

(
1− ν0

ν0

)
N0

kl
∂v̂k

∂xl
−

(
1− ν0

ν0

)
ĝ. (B 12)

Combining (B 12) with (B 1) yields the expression for the linearized non-local
rheology in terms of the perturbed pressure, velocity and fluidity fields given in
(3.5).

Appendix C. Linearization and ellipticity of the IG model
We consider a base state of steady, homogeneous, constant-volume flow in an

infinite domain, as described in the first paragraph of § 3 and characterized by a
linear velocity field, v0

i (x)= L0
ijxj, and a constant stretching tensor, D0

ij= (1/2)(L
0
ij+ L0

ji),
pressure, P0, equivalent shear strain-rate, γ̇ 0

= (2D0
ijD

0
ij)

1/2, direction of flow,
N0

ij =
√

2D0
ij/γ̇

0, and inertial number, I0
= γ̇ 0

√
d2ρs/P0. Next, the perturbed velocity

and pressure fields are

vi = v
0
i (x)+ v̂i(x, t) and P= P0

+ P̂(x, t), (C 1a,b)

where, as before, v̂i and P̂ are perturbations of the base-state fields. We note that since
the IG model does not introduce new field quantities or governing equations, it is only
necessary to introduce perturbations of the velocity and pressure fields – in contrast
to the NGF model, which also involves perturbations of the fluidity field.

Then, following the procedure of § 3, one would substitute (5.2) into the equations
of motion (2.2) and expand to express the equations of motion explicitly in terms
of the velocity and pressure fields. However, due to the dependence of the inertial
number on both strain rate and pressure and due to the Laplacian of I in (5.2),
the resulting expression is exceedingly long; however, the expression simplifies
considerably upon linearizing about a base state of homogeneous flow. Therefore,
to streamline the analysis, we first linearize the Cauchy stress (5.2) to obtain
σij = σ

0
ij + σ̂ij(x, t), where σ 0

ij = −P0δij +
√

2µloc(I0)P0N0
ij is the spatially constant

base-state stress and σ̂ij is the perturbation of the stress. Note that since we consider
a homogeneous base state, the gradient term does not appear in σ 0

ij . To obtain the
linearized Cauchy stress, σ̂ij, we linearize the inertial number about its base-state
value – i.e. I = I0

+ Î(x, t) – where the perturbation of the inertial number, Î, is

Î =
(
∂I
∂P

)0

P̂+
(
∂I
∂γ̇

∂γ̇

∂Dkl

)0

D̂kl =−
I0

2P0
P̂+
√

2
I0

γ̇ 0
N0

klD̂kl. (C 2)
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Similarly, using the definition of the flow direction tensor, N ij=
√

2Dij/γ̇ , we linearize
the flow direction about its base-state value – i.e. N ij = N0

ij + N̂ ij(x, t) – and calculate
the perturbation of the flow direction, N̂ ij, to be

N̂ ij =

√
2
γ̇ 0
(D̂ij − N0

ijN
0
klD̂kl). (C 3)

Finally, the perturbation of the Cauchy stress, σ̂ij, may be expressed through P̂, Î and
N̂ ij as

σ̂ij = [−δij +
√

2µloc(I0)N0
ij]P̂+

√
2µloc(I0)P0N̂ ij +

√
2µ′loc(I

0)P0N0
ijÎ

+
√

2µloc(I0)P0

(
−
νId2

I0

∂2Î
∂xk∂xk

)
N0

ij, (C 4)

where we have used the fact that the base state is homogeneous – i.e. ∂2I0/∂xk∂xk= 0.
Substituting (C 2) and (C 3) into (C 4) and using the definitions (3.6), we obtain an
expression for σ̂ij in terms of the perturbed pressure and velocity fields and the base
state

σ̂ij =

[
−δij +

√
2µloc(I0)

(
1−

1
2
ν0

)
N0

ij

]
P̂+ 2η0

[D̂ij − (1− ν0)N0
ijN

0
klD̂kl]

+
1
√

2
νId2µloc(I0)N0

ij
∂2P̂
∂xk∂xk

− 2η0νId2N0
ijN

0
kl

∂3v̂k

∂xp∂xp∂xl
, (C 5)

where D̂kl = (1/2)(∂v̂k/∂xl + ∂v̂l/∂xk), and ν0 and η0 are defined as in (3.6). Then,
using (C 1) and (C 5) in (2.2) and rearranging, the linearized equations of motion
become

φρs
∂v̂i

∂t
=

[
−δij +

√
2µloc(I0)

(
1−

1
2
ν0

)
N0

ij

]
∂P̂
∂xj
+

1
√

2
νId2µloc(I0)N0

ij
∂3P̂

∂xk∂xk∂xj

+ η0 ∂
2v̂i

∂xj∂xj
− 2η0(1− ν0)N0

ijN
0
kl
∂2v̂k

∂xj∂xl
− 2η0νId2N0

ijN
0
kl

∂4v̂k

∂xp∂xp∂xj∂xl
, (C 6)

where we have utilized the incompressibility constraint, ∂v̂j/∂xj= 0, and the fact that
the base state is homogeneous. Furthermore, consistent with our interest in examining
the ellipticity of the quasi-static field equations, the convective terms have been
neglected in (C 6).

Then, as in § 3.2, we consider solutions of the form

v̂i(x, t)= ṽi exp(ikjxj + λt),
P̂(x, t)= P̃ exp(ikjxj + λt),

}
(C 7)

where ṽi and P̃ are constants; kj is a real-valued wave vector; and λ is the growth
rate of the perturbation. Substituting (C 7) into the linearized governing equations, the
incompressibility constraint yields kjṽj = 0, and (C 6) gives

φρsλṽi = i(−δij +
√

2q0(k)N0
ij)kjP̃− η0

|k|2ṽi + 2η0r0(k)N0
ijkjN

0
klklṽk, (C 8)
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where r0(k) = 1 − ν0
− νId2

|k|2 and q0(k) = µloc(I0)[1 − (1/2)ν0
− (1/2)νId2

|k|2]
are modified versions of the scalar quantities introduced in (3.13). We note that the
expression (C 8) is identical to (3.12), and therefore the remainder of the analysis
proceeds as in § 3.2 – except for using the modified expressions for r0 and q0 in place
of (3.13). Taking the inner product of (C 8) with ki and applying the incompressibility
constraint yields the expression (3.14) for P̃, which may be substituted back into (C 8)
to give the eigenvalue problem, (3.15) and (3.16).
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