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A sunflower is a collection of distinct sets such that the intersection of any two of them is the
same as the common intersection C of all of them, and |C| is smaller than each of the sets. A
longstanding conjecture due to Erdős and Szemerédi (solved recently in [7, 9]; see also [22]) was
that the maximum size of a family of subsets of [n] that contains no sunflower of fixed size k > 2 is
exponentially smaller than 2n as n → ∞. We consider the problems of determining the maximum
sum and product of k families of subsets of [n] that contain no sunflower of size k with one set
from each family. For the sum, we prove that the maximum is

(k−1)2n +1+
k−2

∑
s=0

(
n
s

)

for all n � k � 3, and for the k = 3 case of the product, we prove that the maximum is(
1
8

+o(1)
)

23n.

We conjecture that for all fixed k � 3, the maximum product is (1/8+o(1))2kn.

2010 Mathematics subject classification: Primary 05D05
Secondary 05D40

1. Introduction

Throughout the paper, we write [n] = {1, . . . ,n}, 2[n] = {S : S ⊆ [n]} and(
[n]
s

)
= {S : S ⊆ [n], |S| = s}.

A family A ⊆ 2[n] is s-uniform if further A ⊆
([n]

s

)
. A sunflower (or strong Δ-system) with k

petals is a collection of k sets S = {S1, . . . ,Sk} such that Si ∩S j = C for all i �= j, and Si \C �= /0
for all i ∈ [k]. The common intersection C is called the core of the sunflower and the sets Si \C
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are called the petals. In 1960, Erdős and Rado [11] proved a fundamental result regarding the
existence of sunflowers in a large family of sets of uniform size, which is now referred to as the
sunflower lemma. It states that if A is a family of sets of size s with |A| > s!(k− 1)s, then A
contains a sunflower with k petals. Later, in 1978, Erdős and Szemerédi [12] gave the following
upper bound when the underlying set has n elements.

Theorem 1.1 (Erdős and Szemerédi [12]). There exists a constant c such that if A⊆ 2[n] with
|A| > 2n−c

√
n, then A contains a sunflower with three petals.

In the same paper, they conjectured that for n sufficiently large, the maximum number of sets
in a family A ⊆ 2[n] with no sunflowers with three petals is at most (2− ε)n for some absolute
constant ε > 0. This conjecture, often referred to as the weak sunflower lemma, is closely related
to the algorithmic problem of matrix multiplication [1] and remained open for nearly forty years.
Recently, this was settled via the polynomial method by Ellenberg and Gijswijt [9] and Croot,
Lev and Pach [7] (see also Naslund and Sawin [22]).

A natural way to generalize problems in extremal set theory is to consider versions for multiple
families or so-called multicolour or cross-intersecting problems. Beginning with the famous
Erdős–Ko–Rado theorem [10], which states that an intersecting family of k-element subsets of
[n] has size at most

(n−1
k−1

)
, provided n � 2k, several generalizations were proved for multiple

families that are cross-intersecting. In particular, Hilton [16] showed in 1977 that if t families
A1, . . . ,At ⊆

([n]
k

)
are cross-intersecting (meaning that Ai ∩Aj �= /0 for all (Ai,Aj) ∈Ai ×A j) and

if n/k � t, then

t

∑
i=1

|Ai| � t

(
n−1
k−1

)
.

On the other hand, results of Pyber [23] in 1986, that were later slightly refined by Matsumoto and
Tokushige [20] and Bey [2], showed that if two families A⊆

([n]
k

)
, B⊆

([n]
l

)
are cross-intersecting

and n � max{2k,2l}, then

|A| |B| �
(

n−1
k−1

)(
n−1
l −1

)
.

These are the first results about bounds on sums and products of the size of cross-intersecting
families. More general problems were considered recently, for example for cross-t-intersecting
families (i.e. a pair of sets from distinct families have intersection of size at least t) and r-cross-
intersecting families (any r sets have a non-empty intersection where each set is picked from a
distinct family) and labelled crossing intersecting families (see [4, 14, 15]). A more systematic
study of multicoloured extremal problems (with respect to the sum of the sizes of the families)
was initiated by Keevash, Saks, Sudakov and Verstraëte [17], and continued in [3, 18]. Cross-
intersecting versions of Erdős’ problem on weak Δ-systems (for the product of the size of two
families) were proved by Frankl and Rödl [13] and by the first author and Rödl [21].

In this note, we consider multicolour versions of sunflower theorems. Quite surprisingly, these
basic questions appear not to have been studied in the literature.
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Definition. Let Ai ∈ Ai ⊆ 2[n] for i = 1, . . . ,k. Then (Ai)
k
i=1 is a sunflower with k petals if there

exists C ⊆ [n] such that

• Ai ∩Aj = C for all i �= j, and
• Ai \C �= /0, for all i ∈ [k].

Say that (Ai)
k
i=1 is sunflower-free if it contains no sunflower with k petals.

For any k families that are sunflower-free, the problem of bounding the size of any single
family is uninteresting, since there is no restriction on a particular family. So we are interested in
the sum and product of the sizes of these families.

Given integers n and k, let

F(n,k) = {(Ai)
k
i=1 : Ai ⊆ 2[n] for i ∈ [k] and (Ai)

k
i=1 is sunflower-free},

S(n,k) = max
(Ai)k

i=1∈F(n,k)

k

∑
i=1

|Ai| and P(n,k) = max
(Ai)k

i=1∈F(n,k)

k

∏
i=1

|Ai|.

Our two main results are sharp or nearly sharp estimates on S(n,k) and P(n,3). By Theorem 1.1
(or [7, 9, 22]) we obtain that

S(n,3) � 2 ·2n +2n−c
√

n.

Indeed, if |A|+ |B|+ |C| is larger than the right-hand side above then |A∩B∩C| > 2n−c
√

n by
the pigeonhole principle and we find a sunflower in the intersection which contains a sunflower.
Our first result removes the last term to obtain an exact result.

Theorem 1.2. For n � k � 3

S(n,k) = (k−1)2n +1+
k−2

∑
s=0

(
n
s

)
.

The problem of determining P(n,k) seems more difficult than that of determining S(n,k). Our
bounds for general k are quite far apart, but in the case k = 3 we can refine our argument to obtain
an asymptotically tight bound.

Theorem 1.3.

P(n,3) =
(

1
8

+o(1)
)

23n.

We conjecture that a similar result holds for all k � 3.

Conjecture 1.4. For each fixed k � 3,

P(n,k) =
(

1
8

+o(1)
)

2kn.

In the next two sections we give the proofs of Theorems 1.2 and 1.3.
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2. Sums

In order to prove Theorem 1.2, we first deal with s-uniform families and prove a stronger result.
Given a sunflower H = (Ai)

k
i=1, define its core size to be c(H) = |C|, where C = Ai ∩Aj, i �= j.

Lemma 2.1. Given integers s � 1 and c with 0 � c � s− 1, let n be an integer such that n �
c+ k(s− c). For i = 1, . . . ,k, let Ai ⊆

([n]
s

)
such that (Ai)

k
i=1 contains no sunflower with k petals

and core size c. Then

k

∑
i=1

|Ai| � (k−1)
(

n
s

)
.

Furthermore, this bound is tight.

Proof. Randomly take an ordered partition of [n] into k + 2 parts X1,X2, . . . ,Xk+2 such that
|X1| = n− (c + k(s− c)), |X2| = c, and |Xi| = s− c for i = 3, . . . ,k + 2, with uniform probability
for each partition. For each partition, construct the bipartite graph

G = ({Ai : i = 1, . . . ,k}∪{X2 ∪Xj : j ∈ [3,k +2]},E)

where a pair {Ai,X2 ∪Xj} ∈ E if and only if X2 ∪Xj ∈ Ai. If there exists a perfect matching in
G, then we will get a sunflower with k petals and core size c, since X2 will be the core. This
shows that G has matching number at most k−1. Then König’s theorem implies that the random
variable |E(G)| satisfies

|E(G)| � (k−1)k. (2.1)

Another way to count the edges of G is through the following expression:

|E(G)| =
k

∑
i=1

k+2

∑
j=3

χ{X2∪Xj∈Ai}
,

where χS is the characteristic function of the event S. Taking expectations and using (2.1) we
obtain

E

( k

∑
i=1

k+2

∑
j=3

χ{X2∪Xj∈Ai}

)
� (k−1)k. (2.2)

By linearity of expectation,

E

( k

∑
i=1

k+2

∑
j=3

χ{X2∪Xj∈Ai}

)
=

k

∑
i=1

k+2

∑
j=3

P(X2 ∪Xj ∈ Ai) =
k

∑
i=1

k+2

∑
j=3

∑
A∈Ai

P(A = X2 ∪Xj).

Since the partition of [n] is taken uniformly, for any j with 3 � j � k + 2, the set X2 ∪Xj covers
all possible s-subsets of [n] with equal probability. Hence for any A ∈ Ai we have

P(A = X2 ∪Xj) =
1(n
s

) .

So we have

E

( k

∑
i=1

k+2

∑
j=3

χ{X2∪Xj∈Ai}

)
=

k

∑
i=1

k+2

∑
j=3

∑
A∈Ai

1(n
s

) =
k

∑
i=1

|Ai|
k(n
s

) .
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Hence by (2.2),

k

∑
i=1

|Ai| � (k−1)
(

n
s

)
.

The bound shown above is tight, since we can take A1 = A2 = · · · = Ak−1 =
([n]

s

)
, and

Ak = /0.

Now we use this lemma to prove Theorem 1.2.

Proof of Theorem 1.2. Recall that n � k � 3 and we are to show that

S(n,k) = (k−1)2n +1+
n

∑
s=n−k+2

(
n
s

)
.

We first show the lower bound by the following example. Let Ai = 2[n] for i = 1, . . . ,k−1 and

Ak = { /0}∪{S ⊆ [n] : |S| � n− k +2}.

To see that (Ai)
k
i=1 is sunflower-free, notice that any sunflower uses a set from Ak. The empty set

does not lie in any sunflower. So if a set of size at least n−k+2 appears in a sunflower H with k
petals, it requires at least k−1 other points, but then the union of the sets in the sunflower would
have size at least n+1, a contradiction.

To see the upper bound, given families (Ai)
k
i=1 ∈ F(n,k), we define Ai,s = Ai ∩

([n]
s

)
for each

i ∈ [k] and integer s ∈ [0,n]. This gives a partition of each family Ai into n+1 subfamilies. Since
(Ai)

k
i=1 is sunflower-free, so is (Ai,s)

k
i=1 for all s ∈ [0,n]. Now, for each s = 1,2, . . . ,n− k + 1,

let c = s− 1. Then 0 � c � s− 1, and c + k(s− c) = s− 1 + k � n. Therefore, by Lemma 2.1,
∑k

i=1 |Ai,s| � (k−1)
(n

s

)
for all s ∈ [n− k +1]. For s > n− k +1, the trivial bound for this sum is

k
(n

s

)
. So we get

k

∑
i=1

|Ai| =
k

∑
i=1

n

∑
s=0

|Ai,s| =
n

∑
s=0

k

∑
i=1

|Ai,s|

=
k

∑
i=1

|Ai,0|+
n−k+1

∑
s=1

k

∑
i=1

|Ai,s|+
n

∑
s=n−k+2

k

∑
i=1

|Ai,s|

� k

(
n
0

)
+

n−k+1

∑
s=1

(k−1)
(

n
s

)
+

n

∑
s=n−k+2

k

(
n
s

)

�
n

∑
s=0

(k−1)
(

n
s

)
+

(
n
0

)
+

n

∑
s=n−k+2

(
n
s

)

= (k−1)2n +1+
n

∑
s=n−k+2

(
n
s

)

= (k−1)2n +1+
k−2

∑
s=0

(
n
s

)
.

This completes the proof.
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3. Products

From the bound on the sum of the families that do not contain a sunflower, we deduce the
following bound on the product by using the AM-GM inequality.

Corollary 3.1. Fix k � 3. As n → ∞,(
1
8

+o(1)
)

2kn � P(n,k) �
((

k−1
k

)k

+o(1)
)

2kn.

Proof. The upper bound follows from Theorem 1.2 and the AM-GM inequality,

k

∏
i=1

|Ai| �
(

∑k
i=1 |Ai|

k

)k

�
(

(1+o(1))
(k−1)2n

k

)k

= (1+o(1))
(

k−1
k

)k

2kn.

For the lower bound, we take

A1 = A2 = {S ⊆ [n] : 1 ∈ S}∪{[2,n]},
A3 = {S ⊆ [n] : 1 /∈ S}∪{S ⊆ [n] : |S| � n−1},

and A4 = A5 = · · · = Ak = 2[n]. A sunflower with k petals must use three sets from A1, A2 and
A3: call them A1,A2,A3 respectively. These three sets form a sunflower with three petals. If any
of these sets is of size at least n− 1, then it will be impossible to form a three-petal sunflower
with the other two sets. So by their definitions, we have 1 ∈ A1 ∩A2, but 1 /∈ A3, which implies
A1 ∩A2 �= A1 ∩A3, a contradiction. So (Ai)

k
i=1 is sunflower-free. The sizes of these families are

|A1| = |A2| = 2n−1 +1, |A3| = 2n−1 +n and |Ai| = 2n for i � 4. Thus

k

∏
i=1

|Ai| = (2n−1 +1)2(2n−1 +n)2(k−3)n = 2kn−3 +O(n2(k−1)n) =
(

1
8

+O

(
n
2n

))
2kn,

as required.

For any positive integer k we have ((k−1)/k)k < 1/e, so Corollary 3.1 implies the upper
bound (1/e + o(1))2kn for all k � 3. For k = 3, we will improve the factor in the upper bound
from (2/3)3 = 0.29629 · · · to our conjectured value of 0.125.

The main part of our proof is Lemma 3.2 below, which proves a much better bound than
S(n,3) = (2+o(1))2n for the sum of three sunflower-free families under the assumption that all
of them contain a positive proportion of sets.

Lemma 3.2. For all ε > 0 there exists n0 = n0(ε) > 0 such that the following holds for n > n0.
Let Ai ⊆ 2[n] with |Ai| � ε2n for i ∈ [3], and suppose that (Ai)

3
i=1 is sunflower-free. Then

|A1|+ |A2|+ |A3| �
(

3
2

+ ε
)

2n.

Lemma 3.2 immediately implies Theorem 1.3 by the AM-GM inequality as shown below.
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Proof of Theorem 1.3. Let ε ∈ (0,1/8), n0 be obtained from Lemma 3.2 and n > n0. Suppose
there is an i, such that |Ai| < ε2n. Then

3

∏
i=1

|Ai| < ε2n ·2n ·2n <
1
8
·23n.

So we may assume that |Ai| � ε2n for all i. Thus, by the AM-GM inequality and Lemma 3.2,

3

∏
i=1

|Ai| �
( |A1|+ |A2|+ |A3|

3

)3

�
(

1
2

+
ε
3

)3

23n <

(
1
8

+ ε
)

23n,

which is the bound sought.

In the rest of this section we prove Lemma 3.2.

3.1. Proof of Lemma 3.2
We begin with the following lemma, which uses ideas similar to those used in the proof of
Lemma 2.1 of [17].

Lemma 3.3. Let k � 3, A1, . . . ,Ak be families of subsets of [n] that are sunflower-free. For any
real number ε > 0, if |Ai|� ε2n for all i, then there exists δ = δ (ε) > 0 and k families B1, . . . ,Bk

such that the following holds:

• |Bi| � δ2n for i = 1, . . . ,k,
• ∑k

i=1 |Ai| � ∑k
i=1 |Bi|+(ε/2)2n,

• (Bi)
k
i=1 is sunflower-free,

• B1, . . . ,Bk form a laminar system, that is, either Bi∩B j = /0, Bi ⊆B j , or B j ⊆Bi for all i �= j.

Proof. The families Ai, i = 1, . . . ,k (as a collection of subsets of 2[n]) generate a σ -algebra on
2[n] whose atoms can be indexed by I ⊆ [k] as follows:

XI = {S : S ∈ Ai ⇔ i ∈ I}.

Each set in this σ -algebra including all the Ais can be written as the disjoint union of some of
the XIs. In particular, for each i ∈ [k], Ai is the union of 2k−1 atoms:

Ai =
⊔

I⊆[k],i∈I

XI .

Take δ = ε/(k2k). For each I ⊆ [k], if |XI | < δ2n, update the Ais by deleting XI from all Ais
that contain it, that is, all Ais with i ∈ I. Call the resulting families A′

i, that is,

A′
i = Ai \

⊔
I⊆[k],i∈I
|XI |<δ2n

XI .

Notice that none of the A′
is is empty since we have

|A′
i| = |Ai|− ∑

I⊆[k],i∈I
|XI |<δ2n

|XI | � ε2n −2k−1δ2n = ε2n −2k−1 ε
k2k

2n =
(

1− 1
2k

)
ε2n.
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Moreover, each A′
i is now a disjoint union of atoms XI of size at least δ2n. Consequently,

k

∑
i=1

|A′
i| =

k

∑
i=1

(
|Ai|− ∑

I⊆[k],i∈I
|XI |<δ2n

|XI |
)

=
k

∑
i=1

|Ai|−
k

∑
i=1

∑
I⊆[k],i∈I
|XI |<δ2n

|XI |

=
k

∑
i=1

|Ai|− ∑
I⊆[k]

|XI |<δ2n

∑
i∈I

|XI | �
k

∑
i=1

|Ai|− ∑
I⊆[k]

|I|δ2n

=
k

∑
i=1

|Ai|−δ2n
k

∑
s=0

(
k
s

)
s =

k

∑
i=1

|Ai|−δ2nk2k−1

=
k

∑
i=1

|Ai|−
(

ε
2

)
2n.

Next, we will introduce a transformation that gradually changes our families into a laminar
system with certain desired properties. Two families F and G are said to be crossing if all three
of F ∩G, F \ G and F \ G are non-empty. The following observation is immediate from the
definition of laminar systems.

Observation 3.4. If (Fi)
k
i=1 contains no pair of crossing families, then it is a laminar system.

Now if A′
i and A′

j are crossing with 1 � i < j � k, then let A′′
i = A′

i ∩A′
j and A′′

j = A′
i ∪A′

j,
while A′′

h =A′
h for all h ∈ [k]\{i, j}. This maps the families A = (A′

i)
k
i=1 to φ(A) = (A′′

i )
k
i=1. We

emphasize that the map φ is applied only when i, j as above exist.

Observation 3.5.
k

∑
i=1

|A′
i| =

k

∑
i=1

|A′′
i |.

This follows quickly from |A′′
i |+ |A′′

j | = |A′
i ∩A′

j|+ |A′
i ∪A′

j| = |A′
i|+ |A′

i| and all A′
h with

h ∈ [k]\{i, j} remain unchanged.
For a collection of families (Fi)

k
i=1, define the number of inclusions

q((Fi)
k
i=1) =

∣∣∣∣
{
{i, j} ∈

(
[k]
2

)
: Fi ⊆F j

}∣∣∣∣.
Observation 3.6.

q(φ(A)) > q(A).

This follows from the fact that A′′
i ⊆A′′

j if A′
i and A′

j are crossing: whereas for h ∈ [k]\{i, j},
if A′′

h = A′
h contained exactly one of A′

i and A′
j, it now contains A′′

i = A′
i ∩A′

i; if A′′
h contained

both A′
i and A′

j, it now contains both A′′
i = A′

i ∩A′
i and A′′

j = A′
i ∪A′

i; if A′′
h was contained in

exactly one of A′
i and A′

j, it is now contained in A′′
j ; and finally, if A′′

h was contained in both A′
i

and A′
j, it is now contained in both A′′

i and A′′
j .
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Since there are at most
(k

2

)
pairs related by inclusion, Observation 3.6 shows that repeating

the transformation A −→ φ(A) at most
(k

2

)
times, we obtain a collection of families (Bi)

k
i=1 such

that no pair (Bi,B j) is crossing for i �= j ∈ [k]. By Observation 3.4, (Bi)
k
i=1 is a laminar system.

By Observation 3.5, the sum of the size of these families satisfies

k

∑
i=1

|Ai| �
k

∑
i=1

|A′
i|+

(
ε
2

)
2n =

k

∑
i=1

|Bi|+
(

ε
2

)
2n.

Observation 3.7. |Bi| � δ2n for all i ∈ [k].

This follows from the fact that the transformation φ does not break any of the atoms that form
A′

i, i = 1, . . . ,k, so each Bi is still a disjoint union of atoms of size at least δ2n.
Finally, we claim that (Bi)

k
i=1 is sunflower-free. The families (A′

i)
k
i=1 are certainly sunflower-

free because A′
i ⊆ Ai for all i and (Ai)

k
i=1 is sunflower-free. So we are left to show that the

transformation φ does not introduce sunflowers.
Suppose we have families (Fi)

k
i=1, and without loss of generality, the crossing families F1,F2

are replaced by F1 ∩F2 and F1 ∪F2 under the transformation φ . Suppose that (Fi)
k
i=1 with

F1 ∈ F1 ∩F2, F2 ∈ F1 ∪F2 and Fi ∈ Fi, i � 3 is a sunflower in φ((Fi)
k
i=1). Then, without loss of

generality, F2 is in F2. Thus we find that (Fi)
k
i=1 also forms a sunflower in (Fi)

k
i=1, contradiction.

This completes the proof of the lemma.

We will use the following lemma, which follows from well-known properties of binomial
coefficients (we omit the standard proofs).

Lemma 3.8. For each δ > 0, there exists a real number α = α(δ ) and integer n0 such that
for n > n0, every family A of subsets of [n] with size |A| � δ2n contains a set S with |S| ∈
[n/2−α

√
n,n/2+α

√
n]. Further, for each γ ∈ (0,δ ), there exists a β = β (γ), such that all but

at most γ2n elements in A have size in [n/2−β
√

n,n/2+β
√

n].

Now we have all the necessary ingredients to prove Lemma 3.2.

Proof of Lemma 3.2. Let δ = ε/(3 ·23) = ε/24 as in the proof of Lemma 3.3. By Theorem 1.1,
we have |A1∩A2∩A3|� 2n−c

√
n < δ2n for large enough n. Apply Lemma 3.3 to obtain families

Bi, i = 1,2,3 such that

• |Bi| � δ2n for i = 1,2,3,
• ∑3

i=1 |Ai| � ∑3
i=1 |Bi|+(ε/2)2n,

• (B1,B2,B3) is sunflower-free,
• B1,B2,B3 form a laminar system.

Moreover, since |A1 ∩A2 ∩A3| < δ2n, the intersection of all three families is deleted from all
three of them in the process of forming Bis which yields B1 ∩B2 ∩B3 = /0. The rest of the proof
is devoted to showing the claim below.
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Claim.

|B1|+ |B2|+ |B3| �
(

3
2

+
ε
2

)
2n.

Proof. The laminar system formed by the three families with an empty common intersection
falls into the following three types. Let {A,B,C} = {B1,B2,B3} and a := |A|,b := |B|, and
c := |C|.

Case I. A,B,C are mutually disjoint.

In this case, trivially we have a+b+ c � 2n which is even better than what we need.

Case II. A⊃ B and A∩C = /0.

Since |C| � δ2n, we may pick an S ∈ C with |S| ∈ [n/2−α
√

n,n/2 + α
√

n] by Lemma 3.8.
Now for each subset T ⊆ S, consider the subfamily of B defined by

BT = {B ∈ B : B∩S = T}.

Clearly, these subfamilies form a partition of B, i.e. B =
⊔

T⊆SBT . Now we define a new family
derived from B′

T

B′
T = {B\T : B ∈ BT}.

There is a naturally defined bijection between BT and B′
T , so |BT | = |B′

T |.

Claim. b � (1+ ε/2)2n−1.

Proof. We first show that B′
T \ { /0} is an intersecting family if T � S. Indeed, suppose there

are disjoint non-empty sets B1,B2 ∈ B′
T , then we find a sunflower consisting of B1 ∪ T ∈ B ⊆

A,B2 ∪T ∈ B and S ∈ C. So |B′
T |� 2n−|S|−1 +1, which yields the following upper bound for |B|:

b = ∑
T⊆S

|BT | = ∑
T⊆S

|B′
T | = ∑

T�S

|B′
T |+ |B′

S|

� (2|S| −1)(2n−|S|−1 +1)+2n−|S| = 2n−1 +2|S| −2n−|S|−1 −1+2n−|S|

� 2n−1 +2n/2+α
√

n −2n−(n/2+α
√

n)−1 +2n−(n/2−α
√

n)

= 2n−1 +2n/2+α
√

n −2n/2−α
√

n−1 +2n/2+α
√

n

�
(

1+
ε
2

)
2n−1,

where the last inequality holds for large enough n.

Since A∩C = /0, the claim implies that

a+b+ c � 2n +
(

1+
ε
2

)
2n−1<

(
3
2

+
ε
2

)
2n.
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Case III. A⊃ (B∪C) and B∩C = /0.

We first fix γ = min{δ ,ε/12}, find β = β (γ) as in Lemma 3.8. Then all but at most γ2n �
(ε/12)2n sets in each family are of size in [n/2−β

√
n,n/2+β

√
n]. Hence we have

a+b+ c � |Aβ |+ |Bβ |+ |Cβ |+
ε
4
·2n,

where Fβ = {F ∈ F : n/2−β
√

n � |F | � n/2+β
√

n}. It remains to show that

|Aβ |+ |Bβ |+ |Cβ | �
(

3
2

+
ε
4

)
2n.

We may assume A = Aβ ,B = Bβ and C = Cβ ; our task is to prove a+b+ c � (3/2+ ε/4)2n.

Consider a pair of sets (B,C) ∈ B×C which satisfies the following two conditions:

• B∪C �= [n],
• B\C �= /0 and C \B �= /0.

Let A = B
C = (B∩C)∪B∪C. Then A /∈A, otherwise A,B,C together form a sunflower. Hence
the number of such As is at most 2n −a.

We claim that for each such A, there are at most (1 + ε/4)2n−1 pairs (B,C) ∈ B×C with
the two properties above such that A = B
C. Indeed, for a given A, we first partition it into
two ordered parts X1,X2 with X2 �= /0 (here X2 corresponds to B∪C). There are 2|A| − 1 ways
to do so. Next we count the number of such pairs (B,C) such that B∩C = X1 and B∪C = X2.
This number is at most 1/2 of the number of ordered partitions of [n] \A into two non-empty
parts. The ratio 1/2 comes from the fact that for each ordered bipartition [n] \A = X3 �X4, if
(X3 ∪X1,X4 ∪X1) ∈ (B×C), then we cannot also have (X4 ∪X1,X3 ∪X1) ∈ (B×C), because B
and C are disjoint. So only half of the ordered bipartitions could actually become desired pairs.
Consequently, the number of such pairs (B,C) is (2n−|A| −2)/2 = 2n−|A|−1 −1. The total number
(B,C) that give the same A is therefore at most

(2|A| −1)(2n−|A|−1 −1) = 2n−1 −2|A| −2n−|A|−1 +1

� 2n−1 −2n/2−β
√

n −2n−(n/2+β
√

n)−1 +1

�
(

1+
ε
4

)
2n−1.

Here we use the assumption that A = Aβ , which implies |A| ∈ [n/2−β
√

n,n/2 + β
√

n], and n
is large enough. This yields

bc � (2n −a)
(

1+
ε
4

)
2n−1 +3n+1,

where the error term 3n+1 arises from the number of pairs (B,C)∈ B×C such that either B∪C =
[n], B ⊆C or C ⊆ B.

If (2n −a)(ε/4)2n−1 < 3n+1, then bc < (4/ε + 2)3n+1 and this contradicts b,c � δ2n when n
is large. Therefore

bc � (2n −a)
(

1+
ε
4

)
2n−1 +3n+1 � (2n −a)

(
1+

ε
2

)
2n−1.
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Consequently, we have

a � 2n − bc
(1+ ε/2)2n−1

.

By the same argument used for the proof of the claim in Case II, we can show that b � (1 +
ε/2)2n−1 and c � (1+ ε/2)2n−1. Now we obtain

a+b+ c � 2n − bc
(1+ ε/2)2n−1

+b+ c = f (b,c) �
(

3
2

+
ε
4

)
2n,

where the last inequality follows by maximizing the function f (b,c) subject to the constraints
b,c ∈ I = [δ2n,(1 + ε/2)2n−1]. Indeed, setting ∂b f = ∂c f = 0, we conclude that the extreme
points occur at the boundary of I× I. In fact, the maximum is achieved at b = c = (1+ε/2)2n−1,
and f ((1+ ε/2)2n−1,(1+ ε/2)2n−1) = (3/2+ ε/4)2n, as claimed above.

4. Concluding remarks

The definition of sunflower can be generalized as follows. Let 0 � t � k and Ai ∈ Ai ⊆ 2[n] for
i ∈ [k]. Then (Ai)

k
i=1 is a t-sunflower if

• Ai ∩Aj = C for all i �= j, and
• Ai \C �= /0 holds for at least t indices i ∈ [k].

Note that a (t +1)-sunflower is a t-sunflower but the converse need not hold. Let

F(n,k, t) = {(Ai)
k
i=1 : Ai ⊆ 2[n] for i ∈ [k] and (Ai)

k
i=1 is t-sunflower-free},

S(n,k, t) = max
(Ai)k

i=1∈F(n,k,t)

k

∑
i=1

|Ai| and P(n,k, t) = max
(Ai)k

i=1∈F(n,k,t)

k

∏
i=1

|Ai|.

Using the ideas in this paper, one can show that for each 0 � t < k,

S(n,k, t) = (k−1)2k +
t−2

∑
s=0

(
n
s

)
.

By the monotonicity of the function P(n,k, t) in t, Theorem 1.3 implies that for each fixed
0 � t � 3

P(n,3, t) =
(

1
8

+o(1)
)

23n.

The case t = 0 is particularly interesting. Let P(n,k) = P(n,k,k), P∗(n,k) = P(n,k,0), p(n,k) =
P(n,k)/2kn and p∗(n,k)= P∗(n,k)/2kn. As pointed out by a referee, it is easy to show that p∗(n,k)
is monotone increasing as a function of n for each fixed k � 3, while p(n,k) is not. Indeed, given
a collection of optimal families (Ai)

k
i=1 for P∗(n,k), we can construct k families of subsets of

[n+1] that are 0-sunflower-free with the product of their sizes at least 2kP∗(n,k) as follows. We
‘double’ each Ai in the following way to get new families:

Bi = Ai ∪{A∪{n+1} : A ∈ Ai}, i ∈ [k].

Clearly, ∏k
i=1 |Bi| = ∏k

i=1 2|Ai| = 2kP∗(n,k) and it is an easy exercise to show that (Bi)
k
i=1 con-

tains no 0-sunflower. Since p∗(n,k)� 1, we conclude that p∗(k) := limn→∞ p∗(n,k) exists. Clearly
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p∗(3) = 1/8, and in general 1/8 � p∗(k) � (1− 1/k)k < 1/e. Further, for a fixed k � 4, if one
can show that there exists a single value n0 such that p∗(n0,k) > 1/8, then by the monotonicity
of p∗(n,k) and P∗(n,k) � P(n,k), Conjecture 1.4 would be disproved.

Our approach for S(n,k) is simply to average over a suitable family of partitions. It can be
applied to a variety of other extremal problems; for example, it yields some results about cross-
intersecting families proved by Borg [5]. It also applies to the situation when the number of
colours is more than the size of the forbidden configuration. In particular, the proof of Lemma 2.1
yields the following more general statement.

Lemma 4.1. Given integers s � 1, 1 � t � k and 0 � c � s− 1, let n be an integer such that
n � c + t(s− c). For i = 1, . . . ,k, let Ai ⊆

([n]
s

)
such that (Ai)

k
i=1 contains no sunflower with t

petals and core size c. Then,

k

∑
i=1

|Ai| �

⎧⎪⎨
⎪⎩

(t −1)k
m

(
n
s

)
if c+ t(s− c) � n � c+ k(s− c),

(t −1)
(n

s

)
if n � c+ k(s− c),

where m = �(n− c)/(s− c)�.

Note that both upper bounds can be sharp. For the first bound, when c = 0, m = t < k and
n = ms, let each Ai consist of all s-sets omitting the element 1. A sunflower with t = m petals
and core size c = 0 is a perfect matching of [n]. Since every perfect matching has a set containing
1, there is no sunflower. Clearly

∑
i

|Ai| = k

(
n−1

s

)
= ((t −1)k/m)

(
n
s

)
.

For the second bound, we can just take t −1 copies of
([n]

s

)
to achieve equality.

We remark that it is difficult to directly generalize Theorem 1.3 to the case with k � 4. Firstly,
although one can prove a version of Lemma 3.2 for k � 4, there are many possible intersection
patterns of the laminar system (Bi)

k
i=1. In fact, the number of cases we need to deal with is one

less than the number of unlabelled rooted trees on k+1 vertices which grows exponentially in k,
and it is already equal to 8 for k = 4.

Secondly, even in the case k = 4, in order to use the same AM-GM inequality argument to
prove ∏4

i=1 |Ai|� (1/8+o(1))24n, one would need to prove a restricted sum result with an upper
bound (321/4 + ε)2n = (2.378+ · · ·+ ε)2n. However, the lower bound construction that we gave
in the proof of Theorem 3.1 yields 2.5 ·2n, which is larger. This phenomenon makes it impossible
to get a good upper bound via our method for general k.

Another general approach that applies to the sum of the sizes of families is due to Keevash,
Saks, Sudakov and Verstraëte [17]. We used the idea behind this approach in Lemma 3.2. Both
methods can be used to solve certain problems. For example, as pointed out to us by Benny
Sudakov, the approach in [17] can be used to prove the k = 3 case of Theorem 1.2 (and perhaps
other cases too).
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