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2Laboratoire GREYC, Université de Caen/ENSICAEN/CNRS, F-14032 Caen, France

(e-mail: brigitte.vallee@unicaen.fr)

Received 21 February 2011; revised 23 September 2014

The depth of a trie has been deeply studied when the source which produces the words

is a simple source (a memoryless source or a Markov chain). When a source is simple

but not an unbiased memoryless source, the expectation and the variance are both of

logarithmic order and their dominant terms involve characteristic objects of the source,

for instance the entropy. Moreover, there is an asymptotic Gaussian law, even though the

speed of convergence towards the Gaussian law has not yet been precisely estimated. The

present paper describes a ‘natural’ class of general sources, which does not contain any

simple source, where the depth of a random trie, built on a set of words independently

drawn from the source, has the same type of probabilistic behaviour as for simple sources:

the expectation and the variance are both of logarithmic order and there is an asymptotic

Gaussian law. There are precise asymptotic expansions for the expectation and the variance,

and the speed of convergence toward the Gaussian law is optimal. The paper first provides

analytical conditions on the Dirichlet series of probabilities of a general source under which

this Gaussian law can be derived: a pole-free region where the series is of polynomial growth.

In a second step, the paper focuses on sources associated with dynamical systems, called

dynamical sources, where the Dirichlet series of probabilities is expressed with the transfer

operator of the dynamical system. Then, the paper extends results due to Dolgopyat,

already generalized by Baladi and Vallée, and shows that the previous analytical conditions

are fulfilled for ‘most’ dynamical sources, provided that they ‘strongly differ’ from simple

sources. Finally, the present paper describes a class of sources not containing any simple

source, where the trie depth has the same type of probabilistic behaviour as for simple

sources, even with more precise estimates.
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1. Introduction

1.1. Tries

A trie is a tree structure which is used as a dictionary in various applications, such as

partial match queries, text processing tasks or compression. As Flajolet wrote in [13], this

justifies considering the trie structure as one of the central general-purpose data structures

of computer science.

The trie structure is based on a splitting according to symbols encountered in strings.

If X is a set of strings over the alphabet Σ = {m1, m2, . . .} (finite or countably infinite),

then the trie associated with X is defined recursively by the following rules: if X is empty,

then Trie(X ) is empty; if X has only one element X, then Trie(X ) is a leaf labelled with

X. For |X | � 2, the trie Trie(X ) is an internal node to which the sequence

(Trie(X[m1]),Trie(X[m2]), . . . ,Trie(X[mr]), . . .)

is attached. Here, the set X[m] gathers the words of X that start with the symbol m and

are stripped of their initial symbol m.

As was recognized largely by Jacquet, Louchard and Szpankowski (see, e.g., [24, 29, 30]),

digital tree analyses can serve as the basis of a remarkably precise understanding of the

Lempel and Ziv schemes for data compression. The complexity of many algorithms

that use the trie as their main underlying data structure can be expressed with various

parameters of tries, for instance the path length, the size, the height, or the depth. The size

is the total number of internal nodes; the length of a branch is the number of internal

nodes it contains; the path length is the sum of the lengths of all the branches; the depth

is the length of a (uniformly randomly selected) branch; the height is the maximum of

the lengths of all the branches.

1.2. Tries built on simple sources

The probabilistic behaviour of these trie parameters strongly depends on the process

which emits the words contained on the trie. In the context of information theory, a

source is a probabilistic process, with discrete time, that emits symbols from the alphabet

Σ one by one. If Yi is the symbol emitted at time t = i, the source, described by the

sequence (Y1, Y2, . . . , Yi, . . .) of random variables, emits infinite words of ΣN and defines

a probability distribution on the set ΣN. The sources for which the correlations between

successive symbols are weak are called simple sources: there are memoryless sources, where

the symbols Yi are drawn independently with the same distribution, or Markov chains

(of order 1), where the random variable Yi+1 depends only on the previously emitted

symbol Yi.

When the trie is built on a simple source, the probabilistic behaviour of all the trie

parameters is now well understood, and the book by Szpankowski [37] provides a complete

review of the main results. The first work in the average-case analysis of tries is due to

Knuth [27], followed by the seminal paper by Flajolet and Sedgewick [15]. Over time, in

work by Jacquet, Louchard, Régnier, Szpankowski [23, 24, 22, 29, 30] and many others,

all the main trie parameters have been analysed, in the case of simple sources. For

instance, the trie depth has a mean value of order log n, and its distribution is known
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to be asymptotically Gaussian, except in the case when the simple source is an unbiased

memoryless source (all the symbols are independently emitted with the same probability).

However, even for these simple sources, the existing results are not as precise as they could

be: neither the speed of convergence towards the limit law nor the complete asymptotic

expansions of the mean (and the variance) are precisely described in the literature. The

recent work of Flajolet, Roux and Vallée [14] is a first step towards making the asymptotic

behaviour of tries for simple sources more precise.

1.3. General sources, Dirichlet generating functions and dynamical sources

We are interested in the case when the words contained in the trie are emitted by a general

source. A general source for the alphabet Σ is completely defined by the set (pw) of its

fundamental probabilities: for w ∈ Σ�, the fundamental probability pw is the probability

that a word emitted by the source begins with the (finite) prefix w. As noted early on for

simple sources [12, 27], and further extended to the case of a general source [39, 8, 40],

a central object of the analysis involves the Dirichlet generating functions of probabilities

– the plain generating function Λ(s), or the bivariate generating function Λ(s, v) – which

are defined in terms of the series

Λk(s) :=
∑
w∈Σk

psw, (1.1)

as

Λ(s, v) :=
∑
k�0

vkΛk(s) =
∑
k�0

vk
∑
w∈Σk

psw, Λ(s) := Λ(s, 1) =
∑
w∈Σ�

psw. (1.2)

In the past decade, Vallée [39] has introduced and studied the class of dynamical sources.

This model of sources, built from dynamical systems, first encompasses all the simple

sources (memoryless sources and Markov chains), and unifies their treatment. It also

provides a natural and general framework where the dependency between symbols may

depend on the whole history. Moreover, the Dirichlet generating function defined in (1.2)

may be expressed via generalized transfer operators, namely secant transfer operators,

which are introduced in [39]. This explains why this model can be studied precisely and

analysed with mixed tools, originating in both dynamical systems theory and analytic

combinatorics.

1.4. Tameness of a source

Observe that, for any k � 0, the series Λk(s) satisfy Λk(1) = 1, so that the equality

Λ(1, v) = 1/(1 − v) holds and proves that (s, v) �→ Λ(s, v) is always singular at (1, 1). The

behaviour of Λ(s, v), when �s is close to 1 and v close to 1, summarizes the main

probabilistic properties of the source, and is central to Rice’s methodology, which is one

of the main tools for analysing trie parameters. We first consider the case when v equals

1, and we are interested in tameness properties of the source. The word tame was proposed

by Philippe Flajolet and used for the first time in [40]. Subsequently, most papers that

deal with probabilistic sources have used similar notions, and the word ‘tame’ is now

widely used, for instance in the paper [9], in this issue of Combinatorics, Probability

and Computing. A tameness region for the source is a region which strictly contains the
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Figure 1. (Colour online) Three situations for the pole-free region R: the periodic case (a), and the aperiodic

case, which gives rise to two main subcases: H-tameness (b) and S-tameness (c).

half-plane �s � 1, where Λ(s) is analytic and of polynomial growth for |s| → ∞. Figure 1

describes three possible shapes for tameness regions, which will be made precise later on

in the paper, and are now summarized briefly.

Periodic sources. If Λ(s) admits a pole on the punctured line {�s = 1, s �= 1}, it admits an

infinite set of poles sk regularly spaced on this line, of the form sk = 1 + 2iπkτ (for some

real τ > 0, and k varying in Z), and the source is thus called periodic. In this case, there

is a vertical strip {1 − α < �s < 1} (for some α > 0) which is pole-free, and the tameness

region is a punctured half-plane {�s > 1 − α, s �= sk}: the source is said to be P -tame (see

Figure 1(a)).

Aperiodic sources. On the other hand, if the only pole located on the line {�s = 1} is

s = 1, the source is said to be aperiodic. In this case, the poles of Λ may come close to

the left of the vertical line �s = 1 when |	s| becomes large, and an aperiodic source is

tame if the poles of Λ(s) come close to the vertical line �s = 1 but not too fast, namely

with polynomial speed: this means that the points s = σ + it of the frontier of R satisfy

1 − σ = Ω(|t|−β) for some β � 0. The smallest possible exponent β is the hyperbolic

exponent.

(i) When β > 0, the tameness region has a hyperbolic shape (see Figure 1(b)), and the

source is hyperbolic tame (H-tame for short).

(ii) The case β = 0 gives rise to the largest possible tameness region, which is now a

vertical strip (see Figure 1(c)), and the source is said to be strip tame (S-tame for

short).

Strongly tame sources. Very often, in this last situation, where there exists a vertical strip

as a tameness region, the tameness region is large enough to be ‘perturbed’. This gives rise

to the notion of strong tameness, which describes ‘nice’ behaviour for the Dirichlet series

Λ(s, v): there exists a complex neighbourhood of v = 1 and a vertical strip R in which the

https://doi.org/10.1017/S0963548314000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000741


58 E. Cesaratto and B. Vallée

Dirichlet generating function Λ(s, v) admits a unique pole and is of polynomial growth,

when |	s| → ∞ (uniformly with respect to v).1

1.5. Role of source tameness in the analysis of tries

This paper has three main aims.

(a) We study the probabilistic behaviour of trie parameters, when the trie is built on a

general source. With the use of Rice’s methodology, we make the role of tameness in

the analysis of trie parameters more precise, first in the general case in Section 2, and

then, in Section 3, in the particular case of simple sources.

(b) We focus on the case when the source is strongly tame (the best situation from the

tameness perspective). In this case the analysis of trie parameters can be performed

in a transparent way, with the joint use of Rice’s methodology and the Quasi-Powers

Theorem. This leads to asymptotic Gaussian laws with optimal speed (see Section 2).

(c) We exhibit general sources which arise in a natural way and are strongly tame. Most

simple sources are P -tame or H-tame, but a simple source is never strongly tame.

Thus, strongly tame sources have to be found amongst sources that are not simple.

We shall prove that a source is strongly tame as soon as it strongly differs from a

simple source. We deal with the class of good dynamical sources that satisfy the UNI

Condition (uniform non-integrability). This class was introduced by Dolgopyat [10].

In Sections 5 and 6 we extend results due to Dolgopyat and generalized by Baladi

and Vallée [2].

1.6. Comparison with previous results

In the case of simple sources, in Section 3 we study precisely the possible types of tameness

and obtain precise remainder terms in the asymptotic estimates of the expectation and the

variance of trie depth, correcting ‘classical’ results of the literature. The type of remainder

term is closely related to the type of tameness (P ,H) of Λ(s). Section 3 is a summary of

results that are partially described in [14] but not yet well known.

In the case of a general dynamical source, the probabilistic analysis of three main

parameters of a trie built on a dynamical source was achieved by Clément, Flajolet and

Vallée [8]: the authors studied the path length, the size, and the height, mainly in the

average case, except for the height which was analysed in distribution. Subsequently,

Bourdon [3] extended this study to Patricia tries. The study of the size and path length in

papers [8, 3] is not completely exact since it cannot be applied to any dynamical source.

The proof needs the source to be tame, and the results of [14, 33, 34] are needed to

complete the proof of [8]. Our parameter of interest, the depth, was precisely analysed

by Flajolet and Vallée [17], for the particular source related to the continued fraction

dynamical system. The authors exhibited the mean value of the depth and related it to

some classical constants, together with the Riemann hypothesis.

1 In Section 7 we shall return to the possible perturbation of the notion of H-tameness.
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1.7. Main results of the paper

The present paper is devoted to the distributional analysis of the depth of a trie built on

a general source. It can be viewed as an extension of the three papers [8, 17, 2]. We use

the general methodology for analysis of tries described in [8]. We also apply some ideas

that come from [17], well adapted to the study of this particular parameter (the depth),

and extend them to a general dynamical source. And finally, since we wish to obtain

distributional results, we extend results of Dolgopyat [10], already generalized by Baladi

and Vallée [2], to the ‘secant’ transfer operator associated with a dynamical source. The

main results of the paper can be described as follows.

(i) Consider a general source which is strongly tame. The depth of a random trie built

on n words independently emitted by this source is asymptotically Gaussian, with

an expectation and a variance of order log n and a speed of convergence of order

(log n)−1/2.

(ii) Any dynamical source of the Good Class which satisfies the UNI Condition is strongly

tame. Moreover, the constants which appear in the main terms of the mean and the

variance of the trie depth are expressed in terms of the spectral objects of transfer

operators, and they are computable.

1.8. Plan of the paper

Section 2 describes the general framework of sources and tries, and states an initial result

which explains how to deal with the asymptotic behaviour of the trie depth when the

source is strongly tame. Section 3 introduces tameness of sources more generally, and

studies the behaviour of the trie depth in the case of simple sources. In Section 4 we

introduce dynamical sources, and describe the subclass of interest, the Good-UNI Class,

which gathers dynamical sources that can be proved to be strongly tame. We explain

the central role that is played by the secant transfer operator, as it transfers geometric

properties of the source into analytic properties for the generating function of the trie

depth. Finally, Sections 5 and 6 focus on the case when the source belongs to the Good-

UNI Class. We describe the main spectral properties of the secant transfer operator, when

the parameter s is close to the real axis (Section 5) or far from the real axis (Section 6).

The results of this paper have been stated in [5].

2. General framework: sources, tries, the Gaussian law for the depth of a trie

Here, the main objects of interest are introduced: sources, with their fundamental

probabilities and their generating functions Λ(s),Λ(s, v), in Section 2.1, and then tries

in Section 2.2. In Section 2.3 we relate the probabilistic behaviour of the trie depth to the

generating function of the source. This expression involves a binomial sum, leading us to

Rice’s methodology, which is recalled in Section 2.4. It is possible to use this method if we

have good knowledge about the Dirichlet series Λ(s, v) when both �s and v are close to 1.

This leads us to introduce the notion of strong tameness. Then, Section 2.6 focuses on the

case when the source is strongly tame, and provides a simple estimate for the probability

generating function of the depth. Finally, Sections 2.7 and 2.8 explain how an asymptotic
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Gaussian law can be derived for the trie depth when the words are emitted by a strongly

tame source.

2.1. General model for a source

Throughout this paper, an alphabet Σ (finite or denumerable) of symbols is fixed.

Definition 1. A probabilistic source over the alphabet Σ is defined by a sequence of

random variables (Y1, . . . , Yi, . . .). Each Yi represents the symbol which is emitted by the

source at time t = i and the source produces infinite words of ΣN. A probabilistic source

defines a probability P on the space ΣN which is specified by the set {pw, w ∈ Σ�} of

fundamental probabilities pw , where pw is the probability that an infinite word begins with

the finite prefix w. Namely, for w ∈ Σk , we have pw := P[(Y1, Y2, . . . , Yk) = w].

Our analyses mainly deal with the Λ series of Dirichlet type, which involve fundamental

probabilities, already defined in (1.2). For instance, the entropy h(S) of a probabilistic

source S is defined in terms of fundamental probabilities, i.e.,

h(S) := lim
k→∞

−1

k

∑
w∈Σk

pw log pw = lim
k→∞

−1

k

d

ds
Λk(s)|s=1, (2.1)

and thus involves the Λ series.

2.2. Description of a trie

We now describe the second main object of this work, the trie, which is a tree structure,

used as a dictionary, that compares words via their prefixes.

Definition 2. Given a finite set X = {X1, X2, . . . , Xn} formed with n (infinite) words

emitted by the source, the tree Trie(X ) built on the set X is defined recursively by

the following rules.

(i) If |X | = 0, Trie(X ) = ∅.

(ii) If |X | = 1, X = {X}, Trie(X ) is a leaf labelled by X.

(iii) If |X | � 2, then Trie(X ) is formed with an internal node and n subtries respectively

equal to

Trie(X[m1]), . . . ,Trie(X[mr]),

where X[m] denotes the subset which gathers the words of X that begin with the

symbol m, stripped of their initial symbol m. If the set X[m] is non-empty, the edge

which links the subtrie Trie(X[m]) to the internal node is labelled with the symbol m.

For a sequence X := {X1, X2, . . . , Xn} with n � 2, the trie Trie(X ) has exactly n branches,

and the length of a branch is the number of (internal) nodes it contains. For i ∈ [1..n],

the length of the ith branch of the trie (corresponding to the word Xi) is denoted by D(i)
n .

In this paper, the parameter of interest is the depth Dn of a random branch. If P is the
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X1 = aaabc . . .

X2 = abcab . . .

X3 = abcbc . . .

X4 = abccb . . .

X5 = bcaab . . .

X6 = bcabb . . .

X7 = cacba . . .

X8 = cbbbc . . .

X9 = cccab . . .

Figure 2. The trie T (X ) associated with a set X of nine (infinite) words on the alphabet Σ := {a, b, c}.

probability associated with the source by Definition 1, the depth Dn satisfies

P[Dn � k + 1] =
1

n

n∑
i=1

P[D(i)
n � k + 1]. (2.2)

In the following, the parameter Dn will simply be called the depth of the trie. This is a

random variable that depends on the set X of words, and we study its distribution when

the source is fixed, when the set X is formed with words that are independently drawn

from the source, and the cardinality n of X tends to ∞.

2.3. Probability generating function of the trie depth

Let D be a random variable over a probability space (Ω,P), with positive integer values.

Its probability generating function is defined by

G(v) := E[vD] =
∑
k�0

vk P[D = k],

and its moment generating function M(u) := E[exp(uD)] is exactly equal to G(eu).

This paper deals with the sequence of random variables Dn defined in (2.2). We first

provide an expression for the probability generating function Gn of the variable Dn.

Proposition 2.1. Consider a probabilistic source, and let P denote the probability associated

with the source. Consider a set of n infinite words independently emitted by the source. Then

the depth Dn of the trie built on this set satisfies the following.

(i) The distribution of Dn involves the fundamental probabilities of the source, in the form

P[Dn � k + 1] =
∑
|w|=k

pw[1 − (1 − pw)n−1], for k � 0.
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(ii) The probability generating function Gn(v) of Dn is expressed via the function Λ(s, v)

defined in (1.2), i.e.,

n

[
Gn(v) − 1

v − 1

]
=

n∑
�=2

(−1)�
(
n

�

)
�Λ(�, v). (2.3)

(iii) The mean value of Dn is expressed via the function Λ(s) defined in (1.2), i.e.,

E[Dn] =
1

n

n∑
�=2

(−1)�
(
n

�

)
�Λ(�). (2.4)

Proof. (i) Let D(i)
n be the length of the branch whose leaf contains the designated word

Xi. The event [D(i)
n � k + 1] means that the word Xi shares its prefix of length k with

at least another word Xj . Thus, the independence of the words of a set X implies the

equality

P[D(i)
n � k + 1] =

∑
w∈Σk

pw[1 − (1 − pw)n−1],

and now the definition of the typical depth, with relation (2.2), implies assertion (i):

P[Dn � k + 1] =
1

n

n∑
i=1

P[D(i)
n � k + 1] =

∑
w∈Σk

pw[1 − (1 − pw)n−1].

(ii) Next, a straight binomial expansion provides an expression for P[Dn � k + 1] that

reduces to a linear combination of the series Λk(�) defined in (1.2) in the form

P[Dn � k + 1] =

n−1∑
�=1

(−1)�+1

(
n − 1

�

) ∑
|w|=k

p�+1
w =

1

n

n∑
�=2

(−1)�
(
n

�

)
�Λk(�).

The probability generating function is given by

Gn(v) :=

∞∑
k=0

P[Dn = k] vk = 1 + (v − 1)

∞∑
k=0

P[Dn � k + 1] vk,

and, with the definition of function Λ(s, v) in (1.2), the following equality holds:

n

[
Gn(v) − 1

v − 1

]
=

∞∑
k=0

n∑
�=2

(−1)�
(
n

�

)
�Λk(�)v

k =

n∑
�=2

(−1)�
(
n

�

)
�Λ(�, v).

(iii) This is clear, since E[Dn] equals the derivative of v �→ Gn(v) at v = 1.

2.4. Rice’s method

An important tool that deals with binomial sums of the form (2.3) is Rice’s formula

[31, 32]. As recalled in the following proposition, it transforms a binomial sum into an

integral in the complex plane, and has been widely used in analytic combinatorics since

the seminal paper of Flajolet and Sedgewick [15].
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Proposition 2.2 (Rice’s integral). Consider a sequence S(n) defined as a binomial sum of

the sequence T (�), namely

S(n) =

n∑
�=2

(−1)�
(
n

�

)
T (�).

(i) Assume that there is a lifting 	(s) of the sequence k �→ T (k) which is analytic in the

half-plane �(s) > C , with 1 < C < 2, and is of polynomial growth there (i.e., 	(s) is

O(|s|r) when s → ∞). Then, for any real d with C < d < 2, the sequence S(n) admits an

integral representation:

S(n) = − 1

2iπ

∫ d+i∞

d−i∞
	(s)Ln(s) ds with Ln(s) =

(−1)n n!

s(s − 1)(s − 2) · · · (s − n)
. (2.5)

(ii) Assume now that the lifting 	(s) of the sequence T (k) is meromorphic in a region R
that contains the half-plane �s � 1 and is of polynomial growth there (for |	s| → ∞).

Then

S(n) = −
[∑

k

Res[	(s)Ln(s); sk] +
1

2iπ

∫
C
	(s)Ln(s) ds

]
, (2.6)

where C is a curve (oriented from the south to the north) of class C1 included in R and

the sum is extended to all poles sk of Ln(s) inside the domain D delimited by the vertical

line �s = d and the curve C.

The dominant singularities of 	(s)Ln(s) provide the asymptotic behaviour of S(n),

and the remainder integral is estimated using the polynomial growth of 	(s)Ln(s) when

|	(s)| → ∞.

We wish to apply Rice’s method to the present case described by (2.3) and its particular

case (2.4). This introduces the function 	v(s) related to the Dirichlet generating function

Λ, via the equality 	v(s) = sΛ(s, v), and we thus need ‘good behaviour’ of the function

s �→ Λ(s, v), first in the half-plane �s > 1, then near the point (s, v) = (1, 1), and finally on

the left of the vertical line �s = 1.

2.5. Strongly tame sources

Here we describe a situation where the bivariate Dirichlet series Λ(s, v) has nice behaviour

(in fact the best possible behaviour, as we will see later on). The following definition is

not well justified here, and we explain later on, in Section 3.7, why this notion of strong

tameness appears in a natural way.

Definition 3 (strongly tame source). A source is strongly tame if there exist a complex

neighbourhood V of v = 1, two functions (called the entropic functions) v �→ σ(v) and

v �→ r(v) defined on V , and a half-plane R := {s; �s > 1 − γ} determined by its width

γ > 0, such that the following hold.

(a) For any v ∈ V , the unique singularity of s �→ Λ(s, v) in R is the (simple) pole located

at 1 + σ(v), with residue r(v).
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(b) The functions σ and r satisfy

σ(1) = 0, r(1) = σ′(1) = 1/h(S), and σ′′(1) + σ′(1) �= 0.

(c) The function (s, v) �→ Λ(s, v) is of polynomial growth in R × V: there exist ν > 0 and

C,D > 0 such that, for any s = σ + it ∈ R with |t| � C , and any v ∈ V , we have

|Λ(s, v)| � D|t|ν .

A source that satisfies σ′′(1) + σ′(1) �= 0 is said to be log-convex.

2.6. The probability generating function Gn(v) for a strongly tame source

We will now focus on strongly tame sources, and the following result provides in this case

a simple expression for the moment generating function of the trie depth.

Proposition 2.3. If the source S is strongly tame, with neighbourhood V , entropic functions

σ(v), r(v), and width γ, then, for any δ ∈]0, γ[, there exists a complex neighbourhood W ⊂ V
such that, for any v ∈ W , we have

Gn(v) = (1 − v) r(v) Γ(−σ(v)) nσ(v) [1 + O(n−δ)], (2.7)

where the constant hidden in the O-term is uniform in W .

Proof. If the source is strongly tame, then s �→ Λ(s, v) is of polynomial growth in the

half-plane �s > 1 − γ. Then the line of integration �(s) = d can be moved to the left in

(2.5), until we reach a vertical line ρ of equation �s = α, with α > 1 − γ, with residues

s = 1 + σ(v) and s = 1 taken into account. Then

n[Gn(v) − 1] = − Res[(v − 1)sΛ(s, v)Ln(s); s = 1 + σ(v)]

− Res[(v − 1)sΛ(s, v)Ln(s); s = 1] (2.8)

− 1

2iπ

∫
ρ

(v − 1)sΛ(s, v)Ln(s) ds.

The second residue in (2.8) at s = 1 is equal to −n, and we obtain

Gn(v) = Res

[
(1 − v)Λ(s, v)

sLn(s)

n
; s = 1 + σ(v)

]
+

1

n

1

2iπ

∫
ρ

(1 − v)sΛ(s, v) Ln(s) ds. (2.9)

The remainder of the proof provides estimates for each term in (2.9). It is based on the

following proposition, whose proof (given in the Appendix) is mainly due to Flajolet and

Sedgewick [16]. In the present proof we only use the first two assertions (i) and (ii), but

assertion (iii) will be used in the case of H-tameness (see Section 3.6).

Proposition 2.4.

(i) For any fixed s with s �∈ Z�0, we have

Ln(s) :=
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

[
1 + O

(
1

n

)]
.
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The O-term is uniform for s in a bounded set.

(ii) Consider a vertical line �(s) = α with α �∈ Z�0, and assume that 	(s) is continuous on

�(s) = α and of at most polynomial growth there, i.e., 	(s) = O(|s|r) as |s| → ∞ on

�(s) = α. Then, the integral admits the following estimate, as n → ∞:∫
�s=α

	(s)Ln(s) ds = O(nα).

(iii) Consider a curve ρ of hyperbolic type, namely of the form

ρ :=

{
s = σ + it, |t| � B, σ = σ0 − A

|t|β0

}
∪

{
s = σ + it, σ = σ0 − A

Bβ0
, |t| � B}

}
,

for some strictly positive constants (A,B, β0) and some real σ0. Assume further, and

assume that 	(s) is continuous on ρ and of at most polynomial growth there, i.e., 	(s) =

O(|s|r) as |s| → ∞. Then the integral of 	(s)Ln(s) on the curve ρ admits the following

estimate, as n → ∞:∫
ρ

	(s)Ln(s)ds = nσ0 · O(exp[−(log n)β]), with β <
1

1 + β0
.

We now apply Proposition 2.4 to the present situation, where it provides estimates

for each term in (2.9). For the first term in (2.9), we apply assertion (i) at s = 1 + σ(v),

together with the equality (1/n) sLn(s) = −Ln−1(s − 1),

1 + σ(v)

n
Ln(1 + σ(v)) = nσ(v)Γ(−σ(v))

[
1 + O

(
1

n

)]
,

and the residue in (2.9) relative to the simple pole at 1 + σ(v) is

Res

[
(1 − v)Λ(s, v)

sLn(s)

n
; 1 + σ(v)

]
= (1 − v)r(v)nσ(v)Γ(−σ(v))

[
1 + O

(
1

n

)]
,

where r(v) is the residue of Λ(s, v) at 1 + σ(v). At v = 1, the function σ satisfies σ(1) = 0,

with σ′(1) �= 0. Since the Γ function has a simple pole at s = 0 with residue equal to 1,

this implies that (1 − v)Γ(−σ(v)) equals 1/σ′(1) at v = 1 and is also analytic there. With

properties of entropic functions σ(v), r(v), the expression (1 − v)r(v)Γ(−σ(v)) tends to 1

for v → 1, and the first term in (2.9) is Θ(nσ(v)).

For the second term in (2.9), assertion (ii) applied to 	v(s) := sΛ(s, v) implies that the

integral in (2.9) along the vertical line �s = α is of order nα; with the division by n, the

second term in (2.9) is of order nα−1 = O(n�σ(v)−δ), when v is close enough to 1, and δ < γ

small enough. This completes the proof of Proposition 2.3.

2.7. Towards asymptotic Gaussian laws

Our main tool for proving an asymptotic Gaussian law for the trie depth Dn is the sequence

of moment generating functions u �→ Mn(u) := En[exp(uDn)], related to the probabilistic

generating functions Gn(v) via the equality Mn(u) = Gn(e
u). The following result, known

as the Quasi-Powers Theorem, and due to Hwang [21], provides sufficient conditions on

Mn(u) under which the asymptotic law of Dn is proved to be Gaussian.
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Theorem 1 (Hwang). Consider a sequence of variables Dn, defined on probability spaces

(Ωn,Pn), and their moment generating functions Mn(u) := En[exp(uDn)]. Suppose the func-

tions Mn(u) are analytic in a complex neighbourhood U of zero, and satisfy

Mn(u) = exp[βnU(u) + V (u)]
(
1 + O(κ−1

n )
)
, (2.10)

where the O-term is uniform on U . Moreover, βn → ∞, κn → ∞ as n → ∞, and U(u), V (u)

are analytic on U .

Then the mean and the variance satisfy

En[Dn] = βnU
′(0) + V ′(0) + O(κ−1

n ), Vn[Dn] = βnU
′′(0) + V ′′(0) + O(κ−1

n ).

Furthermore, if U ′′(0) �= 0, then the distribution of Dn on Ωn is asymptotically Gaussian,

with speed of convergence O(κ−1
n + β

−1/2
n ).

2.8. Statement of the main result

The Quasi-Powers Theorem is now applied to the present object of our study, and provides

the first main result of the paper.

Theorem 2.5. Consider a strongly tame source, defined in Definition 3 with entropic func-

tions (σ(v), r(v)) and width γ, and a random trie with n keys built on the source. Then, the

mean and the variance of the trie depth Dn admit the following estimates, for any δ ∈]0, γ[:

E[Dn] = σ′(1) log n + c + O(n−δ),

V[Dn] = [σ′′(1) + σ′(1)] log n + d + O(n−δ).

The constants c and d are expressed with derivatives of functions σ and r at v = 1. Moreover,

the constant σ′′(1) + σ′(1) is not zero, and the depth Dn asymptotically follows a Gaussian

law with speed of convergence O((log n)−1/2).

Proof. The moment generating functions Mn(u) are expressed as in the Quasi-Powers

Theorem, with βn := log n, κn := nβ , and

Mn(u) := En[exp(uDn)] = Gn(e
u) = exp(U(u) log n + V (u))

(
1 + O(κ−1

n )
)

with U(u) := σ(eu), V (u) := log[r(eu)(1 − eu)Γ(−σ(eu))],

Since, in a neighbourhood of v = 1, the function v �→ σ(v) is analytic and v �→ r(v)

is analytic and bounded away from zero, the functions U and V are analytic in a

neighbourhood of u = 0. In particular, notice that (1 − eu)Γ(−σ(eu)) is analytic, even at

u = 0. Moreover, the first two derivatives of U at u = 0 satisfy

U ′(0) = σ′(1), U ′′(0) = σ′′(1) + σ′(1),

and U ′′(0) is strictly positive.

The rest of the paper is devoted to exhibiting a natural class of strongly tame sources

to which Theorem 2.5 can be applied. This will be done in Sections 4, 5 and 6. But we

first return to simple sources, for which we may also apply Rice’s methodology to the trie
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depth study, provided that they fulfil tameness properties. The tameness of simple sources

has not been deeply studied, and this explains why the remainder terms in the asymptotic

estimates of the mean and variance of trie depth are not precisely given2 in the literature.

3. Tameness of simple sources

This section has two aims. It studies the simple sources (memoryless sources and Markov

chains), and it also introduces and explains the notion of tameness for a general source. We

first recall the definition of simple sources (Section 3.1). Then, in Section 3.2, we provide an

expression of their Dirichlet generating functions, and describe their analytic properties,

first on the half-plane �s > 1 in Lemma 3.2. In Section 3.3 we consider the situation on

the vertical line �s = 1 and exhibit the periodicity phenomenon in Lemma 3.3, related

to arithmetic properties of probabilities. Then, to deal with Rice’s methodology, we need

precise knowledge of Λ(s) on the half-plane �s < 1, as explained in Section 2.4,

This justifies the general notion of tameness, which describes the behaviour of Λ(s)

for a general source. In Section 3.4 we introduce three shapes of tameness (S,H, P ) that

seem a priori plausible. We then return to simple sources in Section 3.5, and describe

their tameness properties. We observe in Lemma 3.4 that there are only two shapes of

tameness (P ,H) that are possible for a simple source, and in Section 3.6 we derive a

precise expression for the mean and variance of the trie depth in the case when the simple

source is P -tame or H-tame.

Finally, in Section 3.7, we focus on sources that are S-tame, and we explain why

a natural perturbation of S-tameness may give rise to strong tameness, introduced in

Section 2.5.

3.1. Simple sources

The memoryless source (where the random variables Yi are independent with the same

distribution) and the Markov chain (of order 1) (where the emitted symbol can only

be correlated with the previous symbol) are the simplest models of sources, where the

correlations between symbols may exist but are ‘the weakest possible’.

Definition 4 (simple sources).

(a) Memoryless source. A source S is memoryless if the variables Yk are independent with

the same distribution. Such a source is defined by the set pi of probabilities, where pi
is the probability of emitting the symbol i ∈ Σ at any time k, namely pi := P[Yk = i].

In the case when all the probabilities pi are equal, the source is called unbiased.

(b) Markov chain. A source on the finite alphabet Σ is a Markov chain of order 1 if, at

each time k, and for each pair (i, j) of symbols, the conditional probability of emitting

i, knowing that the previously emitted symbol is j, does not depend on k, that is,

for all k ∈ N, P[Yk+1 = i|Yk = j] =: pi|j .

2 and sometimes not even correct . . .
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A Markov chain is defined by its transition matrix P := (pi|j) and its initial distribution

V = (vi).

(c) Good Markov chain. A Markov chain is good3 if its matrix P is irreducible and

aperiodic. The matrix P is irreducible if, for all (i, j), there exists an integer n for

which the coefficient (i, j) of the matrix Pn is strictly positive. The matrix P is

aperiodic if

d := gcd(di) = 1 with di := gcd{n; Pn
i,i > 0}.

(d) Simple source. A source is simple if it is a memoryless source on a finite alphabet or

a good Markov chain.

3.2. Dirichlet series of simple sources

For simple sources, the fundamental probabilities pw satisfy a multiplicative property. For

w = i1i2 · · · ik ∈ Σk , two equalities hold:

pw = pi1pi2 · · · pik (memoryless) or pw = vi1pi2|i1 · · · pik |ik−1
(Markov).

This leads to exact expressions of the Dirichlet series as quasi-inverses.

Lemma 3.1 (expression of the Λ series). The Λ Dirichlet series of simple sources admit

quasi-inverse expressions of the following types.

(a) For a memoryless source, these are in terms of

λ(s) :=
∑
i∈Σ

psi as Λ(s) =
1

1 − λ(s)
, Λ(s, v) =

1

1 − vλ(s)
. (3.1)

(b) For a Markov chain, they are given in terms of the matrix Ps whose general coefficient

is psi|j , via

Λ(s) = 1 + t1 · (I − Ps)
−1 · Vs, Λ(s, v) = 1 + t1 · (I − vPs)

−1 · Vs. (3.2)

Here the vector Vs has components vsi , where vi is the initial distribution of the symbol i.

We now focus on the study of the plain generating function Λ(s) and we return to the

bivariate generating function Λ(s, v) below in Section 3.7.

Lemma 3.2 (properties of the Dirichlet series on �s > 1 and at s = 1).

(a) The Dirichlet series Λ(s) of a simple source is meromorphic on the complex plane and

analytic on the half-plane �s > 1, and has a simple pole at s = 1. Moreover, the set Z
of poles is defined by

Z = {s; λ(s) = 1} (memoryless) or Z = {s; det(I − Ps) = 0} (Markov). (3.3)

3 We use this terminology because the usual notion of aperiodicity might be confused with non-periodicity,

which appears in Section 3.3.
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(b) Consider λ(s) defined as in (3.1) for a memoryless source, or defined (for real s) as the

dominant eigenvalue of Ps for a good Markov chain. Then two equalities hold,

Res[Λ(s); s = 1] = − 1

λ′(1)
, h(S) = −λ′(1), (3.4)

and the entropy admits the following expressions:

h(S) = −
∑
i∈Σ

pi log pi (memoryless) or h(S) = −
∑

(i,j)∈Σ2

π(j) pi|j log pi|j (Markov),

(3.5)

where π(j) are the components of the vector Π fixed by P, whose sum equals 1.

Proof. (a) For a memoryless source, the function s �→ λ(s) defined in (3.1) is analytic on

the complex plane, and thus the function s �→ Λ(s) is meromorphic with a set of poles

Z defined in (3.3). Let σ := �s, and assume σ > 1. Then, the inequality |λ(s)| � λ(σ) <

λ(1) = 1 entails that the set Z is contained in the half-plane �s � 1.

For a good Markov chain, we use the Perron–Frobenius theorem, which states the

following: A good matrix T with positive coefficients has a unique dominant eigenvalue

λ, and a unique dominant eigenvector Π with positive components πi whose sum equals 1.

We apply this theorem to the matrix Ps for any real s. Then the matrix Ps has a unique

dominant eigenvalue λ(s) and a unique dominant eigenvector Πs with positive components

π(j)
s whose sum equals 1. Since the matrix P is stochastic, the dominant value λ(s) satisfies

λ(1) = 1, and the matrix P = P1 has a unique (normalized) fixed vector Π := Π1 with

positive components π(j), whose sum equals 1.

Moreover, the matrix Ps decomposes as a sum Ps = λ(s)Qs + Ns, where Qs is the

projection on the dominant eigenspace, and Ns is the remainder matrix, whose spectral

radius ρ(s) satisfies ρ(s) := max{|λ|; λ ∈ SpPs} < |λ(s)|. These matrices satisfy Qs · Ns =

Ns · Qs = 0, so that the previous decomposition extends to any k � 1, namely

Pk
s = λk(s)Qs + Nk

s , and thus (I − vPs)
−1 =

vλ(s)

1 − vλ(s)
Qs + (I − vNs)

−1. (3.6)

This first proves that Λ(s) has a simple pole at s = 1, and also the asymptotic estimate

Λk(s) = λk−1(s)[t1 · Qs · Vs] +t1 · Nk
s · Vs = λk(s)ws[1 + o(ρk)] (3.7)

for some non-zero constant ws that satisfies w1 = 1, and some ρ < 1.

The function s �→ Ps is analytic on the complex plane, and thus the function s �→ Λ(s)

is meromorphic with a set of poles Z defined in (3.3). Let σ := �s. Then, the inequality

‖Pk
s (s)‖ � ‖Pk

σ‖ holds and implies the inequality on the spectral radii r(s) � r(σ). In the

case of a good Markov chain, the spectral radius r(σ) equals the dominant eigenvalue

λ(σ). We now assume the strict inequality σ > 1, and wish to prove the strict inequality

λ(σ) < λ(1) = 1. As the inequality λ(σ) � λ(1) holds, we assume that the equality λ(σ) =

λ(1) holds, and we look for a contradiction. The equalities∑
j

pσi|jπ
(j)
σ = λ(σ)π(i)

σ , λ(1) = 1 =
∑
i

pi|j =
∑
j

π(j)
σ
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imply the other two equalities,

λ(σ) =
∑
i,j

pσi|jπ
(j)
σ =

∑
j

π(j)
σ

∑
i

pσi|j , 0 = λ(1) − λ(σ) =
∑
j

π(j)
σ

[∑
i

(pi|j − pσi|j)

]
.

This implies that for any i ∈ Σ there is a unique j = τ(i) ∈ Σ for which the probability

pi|j = 1. When the Markov chain is good, there does not exist such a map τ : Σ → Σ.

(b) In both cases, we first prove the equality h(S) = −λ′(1). This is obtained by taking the

derivative of the estimate given in (3.7) with respect to k, namely

1

k

d

ds
Λk(s) ∼k→∞ λ′(s)λk−1(s)ws and then

1

k

d

ds
Λk(s)|s=1 ∼k→∞ λ′(1).

We now obtain an alternative expression for the derivative λ′(1). This is clear in the

memoryless case, and, for a good Markov chain, taking the derivative (with respect to s)

of the equality Ps · Πs = λ(s) Πs leads at s = 1 to

t1 · P′
1 · Π1 + t1 · P1 · Π′

1 = λ′(1) t1 · Π1 + λ(1) t1 · Π′
1.

Moreover, since the matrix P is stochastic, the equality t1 · P1 = t1 holds. This implies the

expression for the entropy given in (3.5).

3.3. Properties of Λ(s) on the line �s = 1; periodicity of simple sources

The following result describes the position of the set Z of poles with respect to the

vertical line �s = 1 and relates it to the rationality of ratios α, which involve logarithms

of probabilities, and are defined below.

Definition 5 (ratios α). The ratios α are defined as follows.

(a) In the memoryless case, in terms of probabilities pi, the ratios are given by

α(i, j) :=
log pi
log pj

for any pair (i, j) ∈ Σ2. (3.8)

(b) In the case of a good Markov chain, they are given in terms of probabilities of cycles.

The probability of a cycle C := {i1, i2, . . . , ik), is p(C) := pi2|i1 · · · pik |ik−1
pi1|ik , and

α(C,K) :=
log p(C)

log p(K)
for each pair (C,K) of cycles of length at most r. (3.9)

Clearly the ratios of the Markov chain case extend the ratios of the memoryless case.

Lemma 3.3 (periodicity of simple sources). For a memoryless source of probabilities P,

the following conditions are equivalent.

(a) The intersection Z ∩ {�s = 1} contains a point s �= 1.

(b) All the ratios α(i, j) defined in (3.8) are rational numbers.

(c) There exists τ > 0 for which the equality Z ∩ {�s = 1} = 1 + 2iπτZ holds.

(d) The function λ(s) is periodic of period 2iπτ.
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A memoryless source which satisfies one of these conditions is said to be periodic. For a

Markov chain with transition matrix P, the following conditions are equivalent.

(a) The intersection Z ∩ {�s = 1} contains a point s �= 1.

(b) All the ratios α(C,K) defined in (3.9) are rational numbers.

(c) There exists τ > 0 for which the equality Z ∩ {�s = 1} = 1 + 2iπτZ holds.

(d) The matrix Ps is periodic of period 2iπτ.

A Markov chain which satisfies one of these conditions is said to be periodic.

This result is well known in the memoryless case, and less classical for Markov chains,

where Jacquet, Szpankowski and Tang [25] provide such a characterization.

3.4. General definitions for tameness

The two previous sections describe, for simple sources, the position of the set Z of poles of

Λ(s) in the half-plane {�s � 1}. We now focus on the left half-plane {�s < 1}, and isolate

a region R ⊃ {�s � 1} where the Λ function is analytic. In fact, we have to reinforce our

needs for the region R: to apply Rice’s methodology, it is also essential for Λ(s) to be of

polynomial growth when s ∈ R tends to ∞. Such a region will play a central role in the

subsequent analyses. We are then led to the following definition, which is proposed for

any source. We return to simple sources in the next section.

Definition 6 (tameness region). A tameness region for a general source S is a region

R ⊃ {�s � 1} where the Λ series is meromorphic, with a only pole (simple) located at

s = 1, and is of polynomial growth when |	s| → ∞.

We now introduce three shapes for tameness regions, that seem to be a priori plausible.

Definition 7 (shape of regions). A region R ⊃ {�s � 1} has:

(a) an S-shape (short for strip shape) if R is a vertical strip �(s) > 1 − γ for some γ > 0,

(b) an H-shape (hyperbolic shape) if R is a hyperbolic region R, defined by

R :=

{
s = σ + it; |t| � B, σ > 1 − A

|t|β

} ⋃{
s = σ + it; σ > 1 − A

Bβ
, |t| � B

}
,

for some A,B, β > 0,

(c) a P -shape (periodic shape) if R is a vertical strip ‘with holes’, namely

R := R0 \ R1, R0 := {�s > 1 − γ}, R1 := {s = 1 + it; t = 2πkτ, k ∈ Z \ {0}}

for some γ, τ > 0.

When they exist, γ is the width, β is the hyperbolic exponent, and τ is the period.

Definition 8 (shape of tameness). For X ∈ {P ,H, S}, a general source is X-tame if its

series Λ(s) satisfies the following.

(a) At s = 1 it admits a simple pole, with residue equal to 1/h(S) (where h(S) is the

entropy of the source).
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(b) It admits a tameness region with an X-shape as described in Definition 7.

A vertical strip can be viewed as a region with a zero hyperbolic exponent. We are

interested in tameness regions which are the largest possible. Then it is natural to define

the hyperbolic exponent of the source S as the infimum of all the hyperbolic exponents of

tameness regions of the source S . For instance, if the source admits a vertical strip as

tameness region, then the hyperbolic exponent of the source equals 0. There also exist

some sources for which the singularities of the Λ function come close to the vertical line

�s = 1 very rapidly, with exponential speed. Such sources have a hyperbolic exponent

equal to ∞, and they are not H-tame.

3.5. Tameness of simple sources

We now return to simple sources and examine the possible types of tameness. Even for

simple sources, the position of the set of poles Z with respect to the vertical lines has been

investigated only recently. The paper by Fayolle, Flajolet and Hofri [12] seems to have

been the first to conduct (in the memoryless case) a detailed discussion of the position of

poles. In the memoryless case, Schachinger provides a rigorous and thorough discussion

of this geometry of poles [36]. Finally, the paper [14] adapts deep results described in

the book by Lapidus and van Frankenhuijsen [28] and precisely relates the shape of the

pole-free region to arithmetic properties of probabilities. It proves that ‘most’ aperiodic

memoryless sources are H-tame,

The first result examines the possibilities for a P -shape or an S-shape.

Proposition 3.4.

(a) A simple source which is periodic is P -tame.

(b) A non-periodic simple source is never S-tame.

Proof. (a) In the case of a periodic simple source, the function s �→ λ(s) is periodic of

period iτ. Then there is a vertical strip on the left of the vertical line �s = 1 where the Λ

function is analytic and of polynomial growth. There exists in this case a tameness region

of the source which is a ‘vertical strip with holes’.

(b) (Sketch.) We now focus on non-periodic simple sources. In this case, the intersection

Z ∩ {s; �s = 1} only contains the point s = 1, and we now recall why there exist points

of Z which are arbitrarily close to the vertical line �s = 1. This will entail that an

aperiodic simple source is never S-tame. In the aperiodic case, there is, indeed, amongst

the coefficients of the matrix α, at least one coefficient α(i, j) which is irrational, and

it is then possible to define an approximation function f : R → R which describes the

approximability properties of the matrix α by rational numbers. There is a close relation

between the approximation function f and the shape of a region which contains no

element of Z . The distance between the frontier of this region and the vertical line �s = 1

can be described with the approximation function f, and it always tends to zero for

|	s| → ∞. Then the source cannot be S-tame.
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Informally speaking, the source may be H-tame if the poles of Z come close to the

vertical line �s = 1, but not too fast, namely at polynomial speed with respect to |	s|.
We now describe arithmetical conditions which are sufficient to imply H-tameness. They

deal with classical number-theoretic notions, which are now recalled.

Definition 9 (irrationality exponent and Diophantine number).

(a) For an irrational number x, the irrationality exponent is

μ(x) := sup

{
ν,

∣∣∣∣x − p

q

∣∣∣∣ � 1

q2+ν
for an infinite number of integer pairs (p, q)

}
.

(b) An irrational number x is Diophantine if its irrationality exponent is finite.

The irrationality exponent of the irrational x is then a measure of its approximability

by rational numbers. Then, a Diophantine irrational number is not too well approximable

by rational numbers: it can be viewed (informally) as an irrational number which strongly

differs from a rational number. The approximability of an irrational number x is closely

related to its continued fraction expansion, since truncations of this expansion give rise

to the rational numbers that provide the best rational approximations of the irrational x.

Instances of Diophantine numbers are irrational numbers whose quotients occurring in

the continued fraction expansion of x are bounded.

It is possible to define the irrationality exponent of a finite family of numbers, provided

that they are not all rational. The irrationality μ(S) of a non-periodic simple source S is

then defined as the irrationality exponent of the set {α(C,K); C,K cycles of length � r}.
The source is Diophantine if the irrationality exponent μ(S) is finite.

The following result, due to Roux and Vallée [34, 33] and based on the general

framework described in the book [28], relates the irrationality exponent μ(S) of the

source and its hyperbolic exponent β defined in Section 3.4.

Theorem 2 (Diophantine source and H-tameness). For a simple non-periodic source, the

two exponents – the irrationality exponent μ and the hyperbolic exponent β – are related by

the equality β = 2μ + 2. A Diophantine non-periodic source is H-tame.

For a memoryless source over an alphabet of size r, the irrationality exponent satisfies

almost everywhere the inequality μ(P) + 1 = 1/(r − 1). Here, ‘almost everywhere’ means

that the probability family P is randomly chosen in the subset

{(p1, p2, . . . , pr) : pj > 0, p1 + p2 + · · · + pr = 1}

with respect to the Lebesgue measure. With the previous theorem, this implies that the

hyperbolic exponent of a non-periodic memoryless source over an alphabet of size r is

‘almost everywhere’ equal to 2/(r − 1). The hyperbolic exponent of a binary source is

‘almost everywhere’ equal to 2.
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3.6. Analysis of trie depth for simple sources

We now make a ‘detour’ and provide estimates for the mean and the variance of the trie

depth for simple sources. We begin with the expression of the mean4 given in (2.4) and

use Rice’s method, namely Propositions 2.2 and 2.4 (notably assertion (iii)). We obtain

precise remainder terms that depend on the type of tameness of the source.

Theorem 3.5 (classical results revisited). Consider, for a simple source, λ(s) defined as in

(3.1) for a memoryless source, or defined (for real s) as the dominant eigenvalue of Ps for

a good Markov chain. For the depth of the trie built on a random sequence of n words

independently drawn from the source, the following holds.

(a) The mean and the variance satisfy

E[Dn] = − 1

λ′(1)
log n + c + R1(n),

V[Dn] =
λ′2(1) − λ′′(1)

λ′3(1)
log n + d + R2(n).

The constants c, d also depend on the source. The only case for which the dominant

constant of the variance is zero arises for an unbiased memoryless source.

(b) The type of function Ri(n) depends on the tameness of the source.

(b1) If the source is P -tame with width γ and period τ, then Ri(n) = Πi(n) + O(n−δ),

where δ satisfies δ < γ and Πi(n) is a periodic function of log n, with period 1/τ.

(b2) If the source is H-tame with hyperbolic exponent β0, then

Ri(n) = O
(
exp[−(log n)β]

)
, with β < 1/(1 + β0).

With Proposition 3.4 and Theorem B, the previous result applies to almost all simple

sources, namely all the periodic sources and all the Diophantine sources. However, it does

not apply to any simple source. Indeed, there exist simple sources which are not tame, as

their irrationality exponent is infinite. As explained in [14], the function f described in the

proof of Proposition 3.4 may not be of polynomial order, and it is possible to construct

simple sources for which the upper bound for remainder terms Ri(n) tends to 0 arbitrarily

slowly.

3.7. Towards strong tameness

We now return to the main purpose of the paper, which deals with distributional studies

where the bivariate generating function Λ(s, v) plays a central role, and we need tameness

properties for Λ(s, v). Informally, they may be obtained by perturbation5 of those of Λ(s),

provided there is ‘enough’ space to perturb. This is why S-tameness is certainly easier

to perturb than H-tameness, where the distance between the frontier of the hyperbolic

region and the vertical line tends to zero when |	s| becomes large.

4 There is a similar expression for the variance involving the function Λ̃(s) := (d/dv)Λ(s, v)|v=1 (see, e.g., [20, 19]).
5 In the sense of perturbation theory (see [26]).
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In Section 7 we shall return to possible perturbations of H-tameness, but in the present

paper we focus on a possible perturbation of S-tameness which naturally leads to strong

tameness, as defined in Definition 3. This involves a vertical strip which is obtained

as a perturbation of the vertical strip of Λ(s). Moreover, the unique pole of Λ(s, v) is

also obtained as a perturbation of the unique pole of Λ(s), and we postulate that the

series Λ(s, v) of any ‘nice’ source behaves like that of a simple source near the point

(s, v) = (1, 1). Indeed, for simple sources, and with the expression of Λ(s, v) described in

Lemma 3.1, together with the decomposition (3.6) for good Markov chains, the dominant

term of Λ(s, v) near (1, 1) is closely related to 1/(1 − vλ(s)), which defines entropic functions

(σ(v), r(v)) as in Definition 3.

All this explains why the notion of strong tameness is a natural perturbation of S-

tameness. The following section exhibits a class of sources which will be proved to be

strongly tame.

4. Dynamical sources

We first describe in Section 4.1 the general framework of dynamical sources, and then

focus on dynamical sources which are complete or Markovian. These sources form an

interesting subclass of the general sources and extend the simple sources in a natural way

(Section 4.2). In Section 4.3, we present our main tool, the secant transfer operator Hs,

which is an extension of the plain (usual) transfer operator of the underlying dynamical

system. The importance of this operator becomes clear in Proposition 4.1, which proves

that the function Λ(s, v) can be expressed as a function of the quasi-inverse (I − vHs)
−1.

Then we describe geometric conditions related to the Good Class (Section 4.4) or the

UNI Condition (Section 4.5). This defines the Good-UNI Class, which gathers sources

that will be proved to be strongly tame, in the following sections.

4.1. Dynamical sources

Definition 10 (dynamical system of the interval). A dynamical system of the interval

I := [0, 1] is defined by a mapping T : I → I (called the shift) for which the following

holds.

(a) There exists a (finite or denumerable) set Σ, whose elements are called symbols, and

a topological partition of I with disjoint open intervals (Im)m∈Σ, i.e.,

I =
⋃
m∈Σ

Im.

(b) The restriction of T to each Im is a C2 bijection from Im to T (Im).

The system is complete when each restriction is surjective, i.e., T (Im) = I .

The system is Markovian when each interval T (Im) is a union of intervals Ij .

A dynamical system, together with a distribution G on the unit interval I , defines a

probabilistic source, called a dynamical source, which is now described. The map T is

used as a shift mapping, and the mapping τ, whose restriction to each Im is equal to
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m, is used for coding. The words are emitted as follows. With each real x (except for a

denumerable set), we associate the word W (x) ∈ ΣN:

W (x) = (m1(x), m2(x), . . . , mn(x), . . .) with mj(x) = τ(Tj−1(x)).

Given a prefix w ∈ Σ�, the set Iw denotes the set of all reals x for which the word W (x)

begins with the prefix w. The set Iw turns out to be an interval,6 of the form ]aw, bw[, which

is called the fundamental interval associated with w, and the measure of this interval (with

respect to distribution G) equals (by definition) the fundamental probability pw:

pw = G(bw) − G(aw).

In the case of a complete system, we let h[m] denote the local inverse of T restricted

to Im, extended by continuity to the whole interval I , and we let H denote the set

H := {h[m], m ∈ Σ} of all the local inverses. Each local inverse of the kth iterate Tk is

associated with a prefix w of length k, of the form w = m1 · · ·mk ∈ Σk , and is written as

h[w] := h[m1] ◦ h[m2] · · · ◦ h[mk].

Then the set of all the inverse branches of Tk is

Hk = {h = h[m1] ◦ h[m2] · · · ◦ h[mk];mi ∈ Σ} = {h[w]; w ∈ Σk}.

Each fundamental interval Iw is then simply equal to Iw = h[w](
◦
I), and the fundamental

probability satisfies

pw = |G(h[w](1)) − G(h[w](0))|. (4.1)

For h ∈ Hk , the number k is called the depth of h, and is denoted by |h|. We let

H� :=
⋃

k�0 Hk denote the set of all the inverse branches of any depth.

4.2. Simple sources seen as dynamical sources

Simple sources are related to the case when the branches of the system are affine, and the

initial distributions are uniform. More precisely:

(a) a complete dynamical source, with affine branches and a uniform initial distribution,

defines a memoryless source,

(b) a Markovian dynamical source, with affine branches and a family of uniform initial

distributions on each Im, defines a Markov chain.

As soon as the derivatives h′ of the branches are not constant, there exist correlations

between successive symbols, and the dynamical source is no longer simple. A primary

example is the dynamical source relative to the Gauss map, which underlies Euclid’s

algorithm and is defined on the unit interval via the shift T :

T (0) = 0, T (x) =
1

x
−

⌊
1

x

⌋
(x �= 0). (4.2)

6 Up to a denumerable set.
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(a) (b) (c)

Figure 3. (Colour online) Three different dynamical sources: two with affine branches (one complete, and one

Markovian), and the third one related to Euclid’s algorithm.

4.3. Transfer operators

One of the main tools in dynamical systems theory is the transfer operator introduced

by Ruelle [35], denoted by Hs. It generalizes the density transformer H that describes the

evolution of the density. Here, as in [39], we describe a generalized version of the transfer

operator – the secant operator – which gives rise to an expression of the Dirichlet series

Λ(s) defined in (1.2) as a quasi-inverse (see Proposition 4.1), in a way that generalizes

expressions obtained in (3.1) or in (3.2). We now limit ourselves to a complete dynamical

system. There are easy extensions to a Markovian system, with heavier computations.

If f = f0 denotes the initial density on I , and f1 the density on I after one iteration

of T , then f1 can be written as f1 = H[f0], where the operator H (called the density

transformer) is defined by

H[f](x) :=
∑
h∈H

|h′(x)| f ◦ h(x).

The transfer operator Hs extends the density transformer; it depends on a complex

parameter s, coincides with H when s = 1, and is defined by

Hs[f](x) =
∑
h∈H

|h′(x)|s · f ◦ h(x). (4.3)

With multiplicative properties of derivatives, the kth iterate of the transfer operator

involves the set Hk in the form

Hk
s [f](x) =

∑
h∈Hk

|h′(x)|s · f ◦ h(x).

Here we are interested in the fundamental probabilities, whose expression is provided

in (4.1) in the case of a complete dynamical system. We now introduce the main tool for

generating these probabilities, namely the secant transfer operator. This operator involves

the secant function of inverse branches (instead of their derivatives), and acts on functions
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F of two variables; for s ∈ C, it is defined by

Hs[F](x, y) :=
∑
h∈H

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣s · F(h(x), h(y)). (4.4)

The secant operator is then an extension of the plain transfer operator. On the diagonal

x = y, the equality

Hs[F](x, x) = Hs[diagF](x) (4.5)

holds and involves the ‘diagonal’ function diagF defined by diag F(x) := F(x, x). As for

usual transfer operators, multiplicative properties of secants then give the relation

Hk
s [F](x, y) =

∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣sF(h(x), h(y)).

For w ∈ Σk , the probability psw is written as a function of the inverse branch h[w], in the

form

psw = |G(h[w](1)) − G(h[w](0))|s =

∣∣∣∣h[w](1) − h[w](0)

1 − 0

∣∣∣∣s ·
∣∣∣∣G(h[w](1)) − G(h[w](0))

h[w](1) − h[w](0)

∣∣∣∣s.
Then, if L is the secant of the distribution G, defined by

L(x, y) :=
G(x) − G(y)

x − y
, (4.6)

then the series Λk(s) and Λ(s, v) are expressed as follows:7

Λk(s) :=
∑
w∈Σk

psw = Hk
s [L

s](1, 0), Λ(s) = (1 − vHs)
−1[Ls](1, 0).

Finally, we have proved the following result, which provides an extension of formulae

already obtained in (3.1) and (3.2) for the case of simple sources.

Proposition 4.1. The Dirichlet series of a dynamical source, relative to a shift T and a

distribution G, admit alternative expressions which involve the quasi-inverse of the secant

operator, defined in (4.4), applied to the function Ls, where L is the secant of the distribution

G, described in (4.6). We have

Λk(s) = Hk
s [L

s](0, 1), Λ(s, v) = (I − vHs)
−1[Ls](0, 1).

4.4. The Good Class

We now consider particular complete dynamical systems belonging to the so-called Good

Class, for which the transfer operator has spectral properties that are similar to those

of a good Markov chain (see Proposition 5.1). This will entail, with Proposition 4.1, nice

properties for the function Λ(s, v).

7 The formula extends to the Markovian case, replacing the operators with a matrix of operators.
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Definition 11 (Good Class). A dynamical system of the interval (I , T ) belongs to the

Good Class if it is complete, with a set H of inverse branches which satisfies the following.

(G1) The set H is uniformly contracting, i.e., the constant ρ defined by

ρ = lim sup
n→∞

(
sup
h∈Hn

βh

)1/n

with βh := max
x∈I

|h′(x)| (4.7)

satisfies ρ < 1 and is called the contraction constant.

(G2) There is a constant A > 0 such that every inverse branch h ∈ H satisfies |h′′| � A|h′|.
(G3) There exists σ0 < 1 for which the series

∑
h∈H βs

h converges on �s > σ0.

There exists a stronger version (G1) of condition (G1), which also seems more natural:

∃ρ < 1, ∀h ∈ H, ∀x ∈ I , |h′(x)| � ρ.

However, condition (G1) is not satisfied for the Euclidean dynamical system, for instance,

since there exist x ∈ I and h ∈ H for which |h′(x)| = 1, while condition (G1) holds for this

system. Condition (G1) implies the following property: for any ρ̂ with ρ < ρ̂ < 1, there

exists an integer N � 1 for which

|h′(x)| � ρ̂n, for any n � N, h ∈ Hn, x ∈ I . (4.8)

The bounded distortion property (G2) and the property (G3) are always fulfilled for

a finite alphabet Σ. Properties (G1) and (G2) together imply the existence of a constant

K > 0, for which the following inequalities are true for all x, y ∈ I and all h ∈ H�:

|h′′(x)| � K|h′(x)|, |h′(x)| � K|h′(y)|,
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣ � K|h′(x)|. (4.9)

4.5. The UNI Condition

We now consider a subclass of the Good Class which gathers sources which strongly differ

from sources with affine branches.

We first define a probability Pn on each set Hn in a natural way. We let Pn{h} := |h(I)|,
where |J | denotes the length of the interval J . Furthermore, Δ(h, k) denotes the ‘distance’

between two inverse branches h and k of same depth, defined by

Δ(h, k) = inf
x∈I

|Ψ′
h,k(x)| with Ψh,k(x) = log

∣∣∣∣h′(x)

k′(x)

∣∣∣∣. (4.10)

The distance Δ(h, k) is a measure of the difference between the ‘form’ of the two branches

h, k. The UNI Condition, stated as follows, expresses that the probability of two inverse

branches having almost the same form is very small.

Property (UNI Condition). A dynamical system (I , T ) satisfies the UNI Condition if its

set H of inverse branches satisfies the following.

(U1) For any ρ̂ ∈]ρ, 1[, there exists C > 0, such that, for any integer n, and for any

h ∈ Hn, we have

Pn[k; Δ(h, k) � ρ̂n] � C ρ̂n.
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(U2) Each h ∈ H is of class C3 and for each integer n, there exists Bn for which |h′′′| � Bn|h′|
for any h ∈ Hn.

A source with affine branches never satisfies the UNI Condition: in this case, the

‘distance’ Δ is always zero, and the probabilities of assertion (U1) are all equal to 1.

More generally, a dynamical source of the Good Class which satisfies the UNI Condition

cannot be conjugate to a source with affine branches, as is (easily) proved in Proposition 1

of [2]. Then, the UNI Condition excludes all the simple sources which cannot be strongly

tame (see Proposition 3.4). The interest of the UNI Condition is due to the fact that it

is sufficient to imply strong tameness, as shown in the rest of the paper, in particular in

Theorem 6.2.

Moreover, there are natural instances of sources that belong to the Good-UNI Class,

for instance the Euclidean dynamical system defined in (4.2), together with two other

dynamical systems, of Euclidean type, described in [2].

4.6. Strong tameness of a dynamical source of the Good-UNI Class

We will see that, on convenient functional spaces, the two operators (the plain operator

Hs and the secant operator Hs) fulfil two kinds of properties which together imply that

the dynamical source is strongly tame.

(a) When the dynamical system belongs to the Good Class, these operators admit

dominant spectral properties for s near the real axis, together with a spectral gap.

This implies that, for v near 1, the function s �→ Λ(s, v) is meromorphic for s with

small imaginary part, and admits a simple pole at s = 1 + σ(v) (see Propositions 5.5

and 6.1).

(b) When the dynamical system satisfies the UNI Condition, the function (v, s) �→ Λ(s, v)

is analytic and of polynomial growth, for v near 1 and s with large imaginary part

(see Theorem 6.2).

The next theorem summarizes these main facts about dynamical sources of the Good-

UNI Class and precisely describes the distribution of the depth of a trie built on the

Good-UNI Class.

Theorem 4.2. Consider a dynamical source, defined by a dynamical system of the Good-UNI

Class and a distribution G of class C2 whose secant equals L. Then we have the following.

(i) This source is strongly tame. Moreover, the entropic functions σ(v), r(v) from Definition 3

are expressed with the dominant spectral objects8 of the secant operator Hs, defined in

(4.4). The function σ(v) is defined from the dominant eigenvalue λ(s) via the implicit

equation

vλ(1 + σ(v)) = 1 with σ(1) = 0. (4.11)

8 In the following section they are proved to exist in the functional space C1(I × I).

https://doi.org/10.1017/S0963548314000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000741


Gaussian Distribution of Trie Depth for Strongly Tame Sources 81

The residue r(v) of s �→ Λ(s, v) at s = 1 + σ(v) involves spectral objects of Hs at s =

1 + σ(v), namely, the dominant eigenvalue λ(s) and the dominant projector Qs:

r(v) := Res[s �→ Λ(s, v); 1 + σ(v)] =
−1

vλ′(1 + σ(v))
Q1+σ(v)[L

1+σ(v)](0, 1). (4.12)

(ii) The depth of a random trie built on this source asymptotically follows a Gaussian law

with speed of convergence O((log n)−1/2). Moreover, the mean and the variance satisfy

E[Dn] = − 1

λ′(1)
log n + c(S) + O(n−δ),

V[Dn] =
λ′2(1) − λ′′(1)

λ′3(1)
log n + d(S) + O(n−δ).

for any δ strictly less than the tameness width of the source.

Assertion (ii) provides asymptotic expansions for the mean and the variance of trie

depth for UNI sources, which can be compared with similar results obtained for simple

sources in Theorem 3.5. We note that the main terms are of the same type and only involve

the dominant eigenvalue λ(s). However, the remainder term is different and reflects the

strong tameness of a source of the Good-UNI Class.

The remainder of the paper is devoted to proving this theorem. Section 5 studies

the spectral properties of transfer operators for parameters s with small or moderate

imaginary part, whereas Section 6 deals with values of s with large imaginary part. This

study aims to compare the two transfer operators, the usual one, Hs, and the secant

one, Hs. There already exist studies of this type for secant operators acting on spaces of

analytic functions (see [39] or [38], for instance, with corrections in [6]). However, we

need to study secant operators when they act on spaces of functions of class C1, since we

wish to use and extend estimates à la Dolgopyat obtained on such functional spaces.

5. Spectral properties of transfer operators of the Good Class:

case of parameters s with small imaginary part

We first define the convenient functional spaces (Section 5.1), together with the notion of

quasi-compactness (Section 5.2). We then recall in Section 5.3 the main spectral properties

of the plain transfer operator Hs. Then Theorem 5.1, in Section 5.4, states the main spectral

properties of the secant transfer operator. The following four subsections are devoted to

the proof of this theorem. Finally, in Sections 5.9 and 6.1 we draw the conclusions of this

section, namely Propositions 5.5 and 6.1.

5.1. Functional spaces

We first define the functional spaces used for the plain transfer operator Hs and the secant

transfer operator Hs.

Consider the real σ0 defined in property (G3) of Definition 11 and the half-plane

Σ0 := {s, �s > σ0}. (5.1)
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For s ∈ Σ0, the operator Hs acts on the space C1(I) endowed with the norm

‖f‖1,1 = ‖f‖0 + ‖f‖1, with ‖f‖0 = sup
I

|f(x)|, ‖f‖1 = sup
I

|f′(x)|,

and Hs also acts on (C0(I), ‖.‖0). For s ∈ Σ0, the secant operator acts on the space

C1(I × I) endowed with the norm

‖F‖1,1 = ‖F‖0 + ‖F‖1,

with ‖F‖0 = sup
I×I

|F(x, y)|, ‖F‖1 = sup
I×I

[|Fx(x, y)| + |Fy(x, y)|].

We note the inequalities

‖ diag F‖0 � ‖F‖0, ‖ diag F‖1 � ‖F‖1 so that ‖ diag F‖1,1 � ‖F‖1,1.

5.2. Quasi-compact operators

Our operators of interest will be quasi-compact. We first recall this notion.

For an operator L which acts on a Banach space, we let Sp L denote the spectrum of L,

R(L) its spectral radius, and R(e)(L) its essential spectral radius, i.e., the smallest r � 0 such

that any λ ∈ Sp(L) with modulus |λ| > r is an isolated eigenvalue of finite multiplicity.

An operator L is quasi-compact if the equality Re(L) < R(L) holds.

The following theorem due to Hennion provides sufficient conditions under which an

operator is quasi-compact. These conditions generalize previous conditions due to Ionescu-

Tulcea and Marinescu, and Lasota and Yorke [18]. It deals with a space B endowed with

two norms.

Theorem 3. Let B be a space endowed with a strong norm ‖ · ‖ and a weak norm | · |.
Assume that the space (B, ‖ · ‖) is Banach and the unit ball of B is precompact in (B, | · |).
Consider a bounded operator L on (B, ‖ · ‖) and assume that there are two sequences rn and

tn of positive numbers such that, for all n � 1, the following bound, called the Lasota–Yorke

bound, holds:

‖Ln[f]‖ � rn‖f‖ + tn|f|.

Then the essential spectral radius of the operator L on (B, ‖ · ‖) satisfies

Re(L) � r := lim inf
n→∞

(rn)
1/n.

If, moreover, the spectral radius R(L) in (B, ‖ · ‖) satisfies R(L) > r, then the operator L is

quasi-compact on (B, ‖ · ‖).

5.3. Spectral properties for the plain transfer operator

The spectral properties of the plain transfer operator Hs, when the parameter s has small

imaginary part, are summarized below in Theorem D. Proofs of these results can be found

in [1, 4, 39].
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Theorem 4 (classical spectral properties of the plain transfer operator). Consider a dynam-

ical system (I , T ) of the Good Class with contraction constant ρ, and let Hs (for s ∈ Σ0)

denote its plain transfer operator.

(i) Quasi-compactness. If s ∈ Σ0 defined in (5.1), then Hs acts on C1(I). The spectral radius

of Hs and its essential spectral radius satisfy, with σ := �s,

R(Hs) � R(Hσ), Re(Hs) � ρ · R(Hσ).

In particular, Hs is quasi-compact for real s.

(ii) Unique dominant eigenvalue. For real σ ∈ Σ0, Hσ has a unique eigenvalue λ(σ) of

maximal modulus, which is simple and strictly positive, called the dominant eigenvalue.

There exists an associated eigenfunction fσ which is strictly positive, and the associated

eigenvector μσ of the adjoint operator H∗
σ is a Radon measure. With the normalization

conditions, μσ[1] = 1, μσ[fσ] = 1, the measure μσ and the dominant eigenfunction fσ are

defined in a unique way. In particular, μ1 is Lebesgue measure, with λ(1) = 1.

(iii) Spectral gap. For a real parameter σ ∈ Σ0, there is a spectral gap, i.e., the subdominant

spectral radius r(σ), defined by

r(σ) := sup{|λ|; λ ∈ Sp(Hσ), λ �= λ(σ)},

satisfies r(σ) < λ(σ).

(iv) Analyticity on compact sets. The operator Hs depends analytically on s for s ∈ Σ0.

Thus, λ(σ)±1, f±1
σ , f′

σ , depend analytically on σ ∈ Σ0.

(v) Decomposition of the quasi-inverse. For s close enough to the real axis and s ∈ Σ0, the

operator Hs has a dominant eigenvalue λ(s) which is simple and separated from the rest

of the spectrum by a spectral gap. The quasi-inverse of the operator Hs splits as

(I − vHs)
−1[f] =

vλ(s)

1 − vλ(s)
Qs[f] + (I − vNs)

−1[f],

where Qs is the projector onto the dominant eigensubspace and the spectral radius of Ns

is strictly smaller than |λ(s)|. The projector Qs satisfies Qs[f](x) := fs(x) · μs[f], where

fs is the dominant eigenvalue and μs is the corresponding eigenvector of the adjoint

operator. In particular, at s = 1, the equality μ1[f] =
∫
I f(x)dx holds.

(vi) Dominant eigenvalue as a function of σ. The map σ �→ λ(σ) is decreasing, its derivative

−λ′(1) equals the entropy h(S), and it is weakly log-convex, i.e., λ′′(1) − λ′(1)2 � 0.

5.4. Spectral properties for the secant transfer operator

The sets Σ1,Σ2 defined below will play a central role below.

Definition 12. Let ρ be the contraction constant. The sets Σ1 and Σ2 are defined by

Σ1 := Σ0 ∩ {s := σ + it : R(Hs) > ρ · R(Hσ)}, (5.2)

Σ2 := Σ1 ∩ {s; Hs has a unique simple dominant eigenvalue}. (5.3)

Our first main result extends the properties of the plain transfer operator stated in

Theorem D to the secant transfer operator.
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Theorem 5.1 (spectral properties for the secant transfer operator). Consider a dynamical

system (I , T ) of the Good Class with contraction constant ρ, and let Hs (for s ∈ Σ0) denote

the usual transfer operator and Hs the secant transfer operator. Let R(Hs) be its spectral

radius and Re(Hs) its essential spectral radius.

(ia) Quasi-compactness. If s ∈ Σ0, then Hs acts on C1(I × I). Its spectral radius and its

essential spectral radius satisfy

R(Hs) � R(Hs) � R(Hσ) = R(Hσ) and Re(Hs) � ρ · R(Hσ).

In particular, the line Σ0 ∩ R is included in Σ1, and Hs is quasi-compact for s ∈ Σ1.

(ib) Comparison of spectra. Any eigenvalue λ of Hs with |λ| > ρR(Hσ) is an eigenvalue of

Hs. The following inclusion holds:

SpHσ+it ∩ {z; |z| > ρR(Hσ)} ⊂ SpHσ+it ∩ {z; |z| > ρR(Hσ)}.

Moreover, for s ∈ Σ1, the two spectral radii coincide, i.e., R(Hs) = R(Hs).

(ii) Unique dominant eigenvalue. For s ∈ Σ2, the operator Hs has a unique dominant

eigenvalue, equal to the dominant eigenvalue λ(s) of the plain transfer operator Hs.

Moreover, the diagonal of a dominant eigenfunction Fs is a dominant eigenfunction fs
of Hs. For real σ ∈ Σ2, there exists a strictly positive dominant eigenfunction Fσ .

(iii) Spectral gap. For s ∈ Σ2, there is a spectral gap, i.e., the subdominant spectral radius

r(Hs), defined by

r(Hs) := sup{|λ|; λ ∈ Sp(Hs), λ �= λ(s)},

satisfies r(Hs) < R(Hs). Moreover, the inequality r(Hs) � max [r(Hs), ρ R(Hσ)] holds.

(iv) Analyticity in compact sets. The operator Hs depends analytically on s for s ∈ Σ0.

Thus, λ(s)±1, F±1
s , and DFs depend analytically on s, and are uniformly bounded when s

belongs to any compact subset of Σ2.

(v) Decomposition of the quasi-inverse. For s close enough to the real axis and s ∈ Σ2, the

operator Hs has a dominant eigenvalue λ(s) which is simple and separated from the rest

of the spectrum by a spectral gap. The quasi-inverse of the operator Hs splits as

(I − vHs)
−1[F] =

vλ(s)

1 − vλ(s)
Qs[F] + (I − vNs)

−1[F], (5.4)

where Qs is the projector onto the dominant eigensubspace, and the spectral radius

of Ns is strictly smaller than |λ(s)|. The projector Qs satisfies Qs[F](x, y) := Fs(x, y) ·
μs[diagF], where Fs is the dominant eigenvalue and μs is the corresponding eigenvector

of the adjoint of the plain operator Hs. In particular, for s = 1, we have

Q1[F](0, 1) =

∫
I
F(x, x)dx.

Analytic properties of the secant operator have already been studied in [39], but in other

functional spaces. The proofs of assertions (iv) and (v) follow the same lines as in [39].

The following four subsections are devoted to proving assertions (i)–(iii) of Theorem 5.1.
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5.5. Quasi-compactness and Lasota–Yorke bounds

Here, the sup-norm ‖ · ‖0 is the weak norm and the ‖ · ‖1,1-norm is the strong norm. The

following lemma proves that the secant operator satisfies a Lasota–Yorke bound, which

will be used to prove quasi-compactness via Hennion’s theorem.

Lemma 5.2 (Lasota–Yorke bounds). Let ρ be the contraction ratio defined in (4.7). There

exists C > 0 such that, for any ρ̂ with ρ < ρ̂ < 1, there exists an integer N such that, for

all n � N, for all s = σ + it ∈ Σ0, and all F ∈ C1(I × I), we have

‖Hn
s [F]‖1,1 � ‖Hn

σ‖0

(
C |s| ‖F‖0 + ρ̂n‖F‖1

)
. (5.5)

Proof. With the inequality

‖Hn
s [F]‖0 � ‖Hn

σ[1]‖0 · ‖F‖0 � ‖Hn
σ‖0 · ‖F‖0, (5.6)

it is sufficient to deal with ‖Hn
s [F]‖1. The function Hn

s [F] can be written as a sum over

h ∈ Hn of terms of the form ∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣sF(h(x), h(y)),

and we begin by considering the partial derivative of each term with respect to x, which

is written as ph + qh, with

|ph| � |s|
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ−1

·
∣∣∣∣h′(x)(x − y) − (h(x) − h(y))

(x − y)2

∣∣∣∣ · |F(h(x), h(y))|

and

|qh| �
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F ′
x(h(x), h(y))| · |h′(x)|.

The distortion assumption (4.9) is used to bound ph: the inequality∣∣∣∣ x − y

h(x) − h(y)

h′(x)(x − y) − (h(x) − h(y))

(x − y)2

∣∣∣∣ � sup
(x,y)∈I×I

|h′′(x)|
|h′(y)| � L

implies the bound

|ph| � L|s|
∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ|F(h(x), h(y))|.

Finally, property (4.8) provides an estimate for qh, via the inequality (valid for n � N)

|F ′
x(h(x), h(y))| · |h′| � ρ̂n · |F ′

x(h(x), h(y))|.

We then obtain

|Hn
s [F]′

x| � L |s| ‖Hn
σ‖0 ‖F‖0 + ρ̂n ‖Hn

σ‖0 ‖F ′
x‖0.

As the partial derivative with respect to y can be bounded in the same vein, one obtains

the bound

‖Hn
s [F]‖1 � 2L|s| ‖Hn

σ‖0 ‖F‖0 + ρ̂n ‖Hn
σ‖0 ‖F‖1,
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and, with (5.6), the final result.

Remarks. For an operator L which acts on a Banach space (B, ‖ · ‖), the Spectral Radius

Theorem R(L) asserts the equality R(L) = limn→∞ ‖Ln‖1/n. In particular, this implies

R(Hs) = lim
n→∞

‖Hn
s‖1/n

1,1 and R(Hs) = lim
n→∞

‖Hn
s ‖1/n

1,1 . (5.7)

For s := σ + it, the Lasota–Yorke bounds give the inequality

R(Hs) � lim
n→∞

‖Hn
σ‖1/n

0 . (5.8)

The inequality ‖F‖1,1 � ‖F‖0 implies that inequality (5.8) is an equality for real s.

5.6. Proof of assertion (ia) of Theorem 5.1

The following lemma compares the spectral radii of secant and plain operators.

Lemma 5.3. For s = σ + it ∈ Σ0, the following inequalities hold:

R(Hs) � R(Hs) � R(Hσ) = R(Hσ). (5.9)

Proof. The diagonal relation (4.5) and the inequality ‖F‖1,1 � ‖ diag F‖1,1 together give

‖Hn
s‖1,1 := sup

‖F‖1,1�1

‖Hn
s [F]‖1,1 � sup

‖F‖1,1�1

‖ diag Hn
s [F]‖1,1 = sup

‖F‖1,1�1

‖Hn
s [diagF]‖1,1. (5.10)

Now observe that the diagonal of any function F of C1(I × I) is also the diagonal of the

function F̂ of C1(I × I), defined by

F̂(x, y) = F(x, x) = diagF(x), for any (x, y) ∈ I × I , (5.11)

which furthermore satisfies the relation ‖F̂‖1,1 = ‖ diag F‖1,1. This implies the equalities

sup
‖F‖1,1�1

‖Hn
s [diagF]‖1,1 = sup

f∈C1(I), ‖f‖1,1�1

‖Hn
s [f]‖1,1 = ‖Hn

s ‖1,1,

and thus the inequality ‖Hn
s‖1,1 � ‖Hn

s ‖1,1. With (5.7), the first inequality is proved. The

second inequality follows easily from (5.8) and the inequality ‖F‖1,1 � ‖F‖0.

Now, for a real σ, the bounded distortion property (4.9) implies the inequalities∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ � L|h′(x)|σ for all (x, y) ∈ I × I and h ∈ H�,

which imply, for any F ∈ C1(I × I) and n � 1, that

‖Hn
σ[F]‖0 � L ‖Hn

σ[1]‖0 ‖F‖0 � L ‖Hn
σ[1]‖1,1 ‖F‖0.

With (5.7) and (5.8), it follows that

R(Hσ) � lim
n→∞

‖Hn
σ‖1/n

0 � lim
n→∞

‖Hn
σ‖1/n

1,1 � R(Hσ),

which completes the proof of Lemma 5.3.
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Now, Lemma 5.2, Hennion’s theorem and Lemma 5.3 entail the inequality

Re(Hs) � ρ̂ · R(Hσ) = ρ̂ · R(Hσ) for any ρ̂ > ρ, and thus

Re(Hs) � ρ · R(Hσ) = ρ · R(Hσ).

In particular, the operator Hs is quasicompact for real s. This completes the proof of

assertion (ia) of Theorem 5.1.

5.7. Proof of assertion (ib) of Theorem 5.1

Eigenvalues of the plain operator Hs and those of the secant operator are closely related.

Suppose that F is an eigenfunction of Hs relative to the eigenvalue λ. Then the diagonal

relation (4.5) proves the equalities

λ diagF = diag(λ F) = diag(Hs[F]) = Hs[diagF]. (5.12)

Then, the function diagF is an eigenfunction of Hs relative to λ provided that F is not

identically zero on the diagonal D := {(x, x), x ∈ I}. The next result shows that this is

not possible when the inequality |λ| > ρR(Hσ) holds.

Lemma 5.4. Let ρ < 1 be the contraction ratio, and consider any pair (s, α) where s := σ +

it belongs to Σ0, and α satisfies |α| > ρ · R(Hσ). Consider a function F for which Hs[F] = αF

and diagF ≡ 0. Then F ≡ 0 on I × I .

Proof. Consider ρ̂ with ρ < ρ̂ < 1. Then, the inequality which relates the function F to

the function F̂ defined in (5.11), together with property (4.8), gives the bound, for n � N,

h ∈ Hn, (x, y) ∈ I × I ,

|F(h(x), h(y)) − F̂(h(x), h(y))| � ‖DF‖0 ‖h′‖0 � ‖DF‖0 ρ̂
n, (5.13)

which implies, for n � N, that

|Hn
s [F](x, y) − Hn

s [F̂](x, y)| � ‖Hn
σ‖1,1 ‖DF‖0 ρ̂

n.

Now, consider an eigenfunction F relative to the eigenvalue α whose diagonal function is

zero. Then, the function F̂ is zero and, for any n � N,

|Hn
s [F](x, y)| � ‖Hn

σ‖1,1 ‖DF‖0 ρ̂
n.

Finally, for any n � N,

|αn|‖F‖0 = ‖αnF‖0 = ‖Hn
s [F]‖0 � ‖DF‖0 ρ̂

n‖Hn
σ‖1,1. (5.14)

Assume now that F is not zero. Then, ‖F‖0 is not zero, and, with (5.14), the same is true

for ‖DF‖0. Inequalities (5.14), with the Spectral Radius Theorem, imply the inequality

|α| � ρ̂ · R(Hσ) for any ρ̂ > ρ, and then |α| � ρ · R(Hσ). With the equality R(Hσ) = R(Hσ),

this provides a contradiction to the hypothesis. Then F is zero.

Completion of the proof of assertion (ib). Assume that λ is an eigenvalue of Hs with

|λ| > ρR(Hσ) and let F be an eigenfunction relative to Hs. Lemma 5.4 ensures that the
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diagonal function of F is non-zero. Now, (5.12) proves that diagF is an eigenfunction

relative to λ of Hs.

For s ∈ Σ1, the secant operator Hs is quasicompact, with assertion (ia). Hence, there

exists an eigenvalue of Hs whose modulus equals R(Hs). As this eigenvalue satisfies

the hypothesis of Lemma 5.4, this is also an eigenvalue for the plain operator Hs,

and the inequality R(Hs) � R(Hs) holds. Furthermore, with assertion (ia), the inequality

R(Hs) � R(Hs) holds. This finally proves the equality between the two spectral radii.

5.8. Proof of assertions (ii) and (iii) of Theorem 5.1

(ii) Let us begin with assertion (ii). For s ∈ Σ2, there exists an eigenvalue λ of Hs whose

modulus equals R(Hs). With assertion (ib), λ is an eigenvalue of Hs, and coincides with

the dominant eigenvalue λ(s) of Hs. Again, assertion (ib) entails that λ(s) is the unique

eigenvalue with maximal modulus. If not, the operator Hs would have an eigenvalue of

maximal modulus different from λ(s).

We now prove that λ(s) is simple. Suppose that F1 and F2 are two eigenfunctions of Hs

related to λ(s). By (5.12), the diagonal functions diagF1 and diagF2 are eigenfunctions of

Hs relative to λ(s). Since this eigenvalue is simple for Hs, the diagonal functions diagF1

and diag F2 are linearly dependent, i.e., there are non-zero numbers α1 and α2 such that

0 = α1 diagF1 + α2 diagF2 = diag(α1F1 + α2F2) for all x ∈ I .

The function F = α1F1 + α2F2 is an eigenfunction of Hs relative to λ(s), whose diagonal

diagF is identically zero. With Lemma 5.4, the function F is identically zero on I × I .

This proves that F1 and F2 are linearly dependent, and λ(s) is also simple for Hs.

With the diagonal relation (4.5), diagFs is an eigenfunction of Hs which coincides with

fs (with a convenient normalization).

We now prove that, for real σ, there exists a dominant eigenfunction which is strictly

positive on I × I . The operator Hσ has a dominant eigenfunction fσ which is strictly

positive on I , and we consider the eigenfunction Fσ of Hσ whose diagonal function

diagFσ coincides with fσ . As Fσ is continuous, there is a neighbourhood E of the diagonal

D where Fσ is positive. Consider an inverse branch h ∈ Hn and a point (x, y) ∈ I × I .

The distance of the point (h(x), h(y)) to the diagonal satisfies

d((h(x), h(y)),D) � |h(x) − h(y)| � ρ̂n, for n � N,

and then all the points (h(x), h(y)) belong to E as soon as the depth |h| is large enough.

Then, with the definitions of E and Fσ , the relation

Fσ(x, y) =
1

λ(σ)n
Hn

σ[Fσ](x, y) > 0

holds for any (x, y) ∈ I × I , and implies that Fσ is strictly positive on I × I .

(iii) The existence of a spectral gap is just a consequence of the definition of Σ2 and

assertion (ia). Now, suppose that the inequality r(Hs) > ρR(Hσ) holds. Then the inequality

r(Hs) > Re(Hs) holds, and there exists an eigenvalue of Hs whose modulus equals r(Hs). By

assertion (ib), this is an eigenvalue of Hs. Hence, in this case, the inequality r(Hs) � r(Hs)

between the subdominant spectral radii holds.
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The proof of Theorem 5.1 is now complete.

5.9. A first conclusion: properties of the quasi-inverse near the real axis

We now show how Theorem 5.1 entails the following two propositions, which are the first

two steps (the easiest ones) for proving Theorem 4.2.

Proposition 5.5. Consider a dynamical system of the Good Class and denote by Hs the

secant transfer operator. Then there exist a rectangle R1 := {s : |σ − 1| � γ1, |t| � t1}, with

t1, γ1 > 0, and a neighbourhood V of v = 1, for which the following holds.

(i) For any v ∈ V , the Dirichlet generating function Λ(s, v) has a unique pole in R1, located

at s := 1 + σ(v), with residue r(v). The function σ(v) is an analytic function defined by

the implicit equation described in (4.11) and the residue r(v) is described in (4.12). At

s = 1, we have σ′(1) = r(1) = −1/λ′(1).

(ii) The series Λ(s, v) is bounded on the vertical segment σ = 1 − γ1, |t| � t1, uniformly when

v ∈ V .

Proof. (i) Assertions (iv) and (v) of Theorem 5.1 together with analytic perturbation

theory [26] imply the existence of a neighbourhood of the line Σ0 ∩ R where the quasi-

inverse splits as in (5.4). As soon as the subdominant spectral radius r(Hs) is strictly

less than |1/v|, the second term in (5.4) is analytic, and the singularities come from the

first term in (5.4). Indeed, with the equality λ(1) = 1, Theorem 5.1 shows the existence

of complex neighbourhoods U of s = 1 and V of v = 1 where the subdominant spectral

radius r(Hs) is strictly less than |1/v| for s ∈ U . Now, choose γ1 > 0 and t1 > 0 such

that the rectangle R1 := [1 − γ1, 1 + γ1] × [−t1, t1] satisfies R1 ⊂ U . Finally, the spectral

decomposition (5.4) holds on this rectangle. Moreover, with the analyticity of s �→ λ(s),

together with the inequality λ′(1) �= 0, the Implicit Function Theorem applies.

(ii) Restricting V , if necessary, we can assume that �σ(v) > −γ1 + ε for a small ε > 0. In

this case, the map (v, s) �→ (I − vHs)
−1 is continuous and thus uniformly bounded when s

belongs to the segment σ = 1 − γ1, |t| � t1 and v belongs to V .

6. Spectral properties of transfer operators of the Good-UNI Class:

case of parameters s with large or moderate imaginary part

We now consider a dynamical system of the Good-UNI Class. We first prove that the

quasi-inverse is well-behaved in ‘intermediate’ regions. Then, the following of the section

is devoted to extending Dolgopyat-type estimates to the secant operator for parameters s

with large imaginary part.

6.1. Properties of the quasi-inverse in any intermediate region

We first deal with the intermediate region and establish the following result, which

constitutes the second step for Theorem 4.2.
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Proposition 6.1. Consider a dynamical system of the Good-UNI Class and let Hs denote

the secant transfer operator.

(i) For any t �= 0, the distance d(1, Sp H1+it) is strictly positive.

(ii) Consider two positive reals t1 and t2 with t1 � t2. Then, there exists a rectangle R2 :=

{s; |σ − 1| � γ2, t1 � |t| � t2} with γ2 > 0 for which

d(1, Sp Hs) � β > 0 for s ∈ R2.

(iii) There exists a neighbourhood V2 of v = 1 for which the quasi-inverse (v, s) �→ (I −
vHs)

−1 is well defined on V2 × R2 and uniformly bounded.

Proof. (i) There are two possibilities, according to whether s = 1 + it belongs to Σ1. For

s �∈ Σ1, the inequality R(Hs) � ρR(H1) = ρ holds, and implies the inequality

d(1, Sp H1+it) � 1 − ρ > 0.

Consider now s ∈ Σ1. With assertion (ia) of Theorem 5.1, the operator Hs is quasi-compact.

Then, if the distance d(1, Sp Hs) is zero, Hs has an eigenvalue equal to 1. The inequality

ρ < 1, together with assertion (ib) of Theorem 5.1, implies that 1 is also an eigenvalue

of the plain operator Hs. But Proposition 1 in [2] ensures that this is not possible for a

system of the Good-UNI Class. Finally, the secant operator Hs does not possess 1 as an

eigenvalue and thus d(1, SpH1+it) is strictly positive.

(ii) Continuity of the superior part of the spectrum implies the existence of γ2 > 0 and

β > 0, for which the inequality d(1, SpHs) � β1 > 0 holds if |σ − 1| < γ and t1 � |t| � t2.

(iii) Part (iii) is clear.

6.2. When s is far from the real axis

Results of Dolgopyat [10], generalized by Baladi and Vallée [2], provide estimates for

the quasi-inverse of the plain transfer operator when s is far from the real axis. This

section aims to prove that secant operators also satisfy Dolgopyat-type estimates. This

will constitute the third (and last) step for proving Theorem 4.2. In the statement, we use

the following family of equivalent norms on C1(I × I):

‖F‖1,t := ‖F‖0 +
1

|t| ‖F‖1 := sup |F | +
1

|t| sup||Fx| + |Fy|| t �= 0. (6.1)

Theorem 6.2 (Dolgopyat-type estimates for secant operators). Consider a dynamical sys-

tem of the Good-UNI Class and its secant transfer operator Hs acting on C1(I × I). Then,

there are δ < 1, a (complex ) neighbourhood V of v = 1, an unbounded rectangle of the form

R3 := {s; |σ − 1| � γ3, |t| � t2} with γ3 > 0, and a real D1 > 0 such that, for all v ∈ V , and

for all s = σ + it ∈ R3, we have

‖(I − vHs)
−1‖1,t � D1 · |t|δ . (6.2)
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On R3, the function s �→ Λ(s, v) satisfies, for some positive constant D,

|Λ(s, v)| � ‖(I − vHs)
−1[Ls]‖1,t � D1 · |t|δ · ‖Ls‖1,t � D|t|δ.

6.3. Return to the proof of Theorem 4.2

Before proving Theorem 6.2, we explain how Theorem 6.2, together with Propositions 5.5

and 6.1, entail Theorem 4.2.

Assertion (i). Here we describe the properties of the dynamical source.

Properties of functions r(v) and σ(v). The definition of σ(v) and the expression for the

residue r(v) given in Theorem 4.2 are provided in Proposition 5.5. Taking derivatives with

respect to v leads to the expressions

σ′(1) = − 1

λ′(1)
, σ′′(1) + σ′(1) =

λ′(1)2 − λ′′(1)

λ′(1)3
.

Properties of the derivatives of the dominant eigenvalue at s = 1 have been widely studied.

In particular, it is well known that −λ′(1) equals the entropy h(S) (see, e.g., [39]). A proof

of strict log-convexity (namely λ′′(1) − λ′(1)2 > 0) can be found in [4].

Analyticity on half-planes to the right of �s = 1. The following facts are well known. For

σ > σ0, the map σ �→ R(Hσ) is decreasing, and R(H1) = 1. For s with �s � 1 + γ (with

γ > 0), the previous facts together with assertion (ia) of Theorem 5.1 prove the inequality

R(Hs) � R(H1+γ) < 1.

Then, in a small neighbourhood V of v = 1, the map Λ(s, v) is analytic and uniformly

bounded on V × {s,�s � 1 + γ}.

Analytic properties and polynomial growth on a vertical strip to the left of �s = 1. We

first choose rectangles R1 from Proposition 5.5 and R3 from Theorem 6.2 defined by

the pairs (γ1, t1) and (γ3, t2), and consider the corresponding neighbourhoods V1 and V3

of v = 1. Then, Proposition 6.1, defines a real γ2 and a neighbourhood V2. Finally, the

vertical strip of Theorem 4.2 is given by |�s − 1| � γ with γ = min(γ1, γ2, γ3), whereas the

final convenient neighbourhood is V := V1 ∩ V2 ∩ V3.

Assertion (ii). This is a immediate consequence of assertion (i) and Theorem 2.5.

6.4. Description of the main steps of the proof of Theorem 6.2

It will be convenient to associate with the secant transfer operator Hs a normalized

operator Hs defined by

Hs[F] =
1

λ(σ)Fσ

Hs[Fσ · F], s = σ + it. (6.3)

By construction, for σ ∈ Σ0, the operator Hσ acting on C1(I × I) has a spectral radius

equal to 1, and fixes the constant function 1. Also, the spectrum Sp Hσ+it satisfies

Sp Hσ+it = λ(σ)Sp Hσ+it. Then, the inequality ‖Hs[F]‖0 � ‖F‖0 Hσ[1] = ‖F‖0 implies the
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useful bound

‖Hs‖0 � 1. (6.4)

The proof of Theorem 6.2 follows the same lines as in [2]. We deal with the (1, t)-norm

defined in (6.1). We begin in Section 5.4 (see Lemma 6.3) with estimates on the L2-norm of

the secant operator, directly obtained from estimates on the usual operator. We transfer

these estimates into bounds for the convenient norm (1, t) in Section 5.6, after stating

useful lemmas in Section 5.5: the first one (Lemma 6.4) compares the operators H
k
1 and

H
k
σ , while the second one (Lemma 6.5) provides Lasota–Yorke bounds for the operator

Hs, which explain the introduction of the (1, t)-norm.

In the following, the notation A(x) � B(x) means that A is less than B up to absolute

multiplicative constants, or there exists some absolute constant k such that, for any x of

interest, the inequality A(x) � k · B(x) holds. It is synonymous of A(x) = O(B(x)) with an

absolute O-term.

6.5. UNI Condition and L2-estimates

The next result summarizes Lemmas 4 and 5 of Baladi and Vallée’s paper, which provide

L2-estimates for plain transfer operators. Using the diagonal relation (4.5), we rewrite

this result and transfer to a result on L2- estimates for the (normalized) secant transfer

operator.

Lemma 6.3. Consider a dynamical system of the Good-UNI Class, with contraction ratio

ρ < 1. Letting �x� denote the smallest integer greater than x, let us associate with s = σ + it

the integer n0(t) defined by

n0 :=

⌈
1

| log ρ| log |t|
⌉
. (6.5)

Let Hs denote the normalized version of the secant transfer operator. Then, for any interval

[1 − γ, 1 + γ], for any s with σ = �s ∈ [1 − γ, 1 + γ], |t| � 1/ρ2 and a with (2/5) < a < 1/2,

we have, for any function F ∈ C1(I × I),∫
I

| diag H
n0
s [F](x)|2 dx � ρ(1−2a)n0 ‖ diag F‖2

1,t. (6.6)

We recall the main ideas of the proof. The expression of | diag H
n
s [F](x)|2 involves a

sum over all the pairs (h, k) ∈ Hn. There are two parts to this sum. The first part of the

sum is relative to pairs (h, k) which are sufficiently close with respect to the distance Δ

defined in (4.10), and the UNI Condition (U1) entails that this sum is small enough. The

second part is relative to pairs (h, k) for which the distance Δ admits a lower bound. Then

the Van Der Corput Lemma, together with condition (U2), provides an upper bound for

this second part.
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6.6. Useful lemmas

We state three lemmas which follow the same lines as in [2]. The first lemma relates the

behaviour of the iterate H
k
σ to the iterate H

k
1, for any σ ∈ Σ0, and any integer k.

Lemma 6.4. For real σ such that σ and 2σ − 1 belong to Σ0, define Aσ as

Aσ :=
λ(2σ − 1)1/2

λ(σ)
.

Then, for any compact subset L of Σ0, and for any σ ∈ L, for any F ∈ C1(I × I), for any

integer k � 1, the inequality

‖H
k
σ[F]‖2

0 � A2k
σ ‖H

k
1[|F |2]‖0 (6.7)

holds and involves absolute constants that only depend on L. The map σ �→ Aσ is continuous

and satisfies A1 = 1.

Proof. Now consider F ∈ C1(I × I). The relation

|Hk
σ[F](x, y)| � 1

λ(σ)k

∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F |(h(x), h(y))

is valid if σ belongs to L, and, by the Cauchy–Schwarz inequality, with∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ−1/2

and

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣1/2 · |F |(h(x), h(y)),

we obtain( ∑
h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣σ · |F |(h(x), h(y))

)2

�
( ∑

h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣2σ−1)
·
( ∑

h∈Hk

∣∣∣∣h(x) − h(y)

x − y

∣∣∣∣ · |F |2(h(x), h(y))

)
.

The second factor is exactly Hk
1[|F |2](x, y), which is less than H

k
1[|F |2](x, y) (up to absolute

multiplicative constants). Thanks to dominant spectral properties, the first factor is easily

related to λ(2σ − 1)k .

The normalized secant transfer operator admits Lasota–Yorke bounds, easily derived

from Lasota–Yorke bounds for the secant operator.

Lemma 6.5. For every compact subset L of Σ0, there exists C > 0 such that, for any ρ̂ with

ρ < ρ̂ < 1, there exists an integer N for which, for any n � N, for all s with �s ∈ L, and

all F ∈ C1(I × I),

‖H
n
sF‖1 � C

(
|s| ‖F‖0 + ρ̂n ‖F‖1

)
, for all n � N. (6.8)
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Proof. The two derivatives (normalized operator and non-normalized operator) are

related as follows:

D(Hn
s [F]) =

1

λ(σ)n

(
−1

F2
σ

Hn
s [F · Fσ]D[Fσ] +

1

Fσ

D[Hn
s [F · Fσ]]

)
.

Recall that Fσ and its derivatives are uniformly bounded from above and below when σ

belongs to a compact set L. Furthermore, the inequality R(Hs) � λ(σ) holds between the

spectral radius of Hs and the dominant eigenvalue λ(σ) for �s = σ. Hence, Lasota–Yorke

bounds for non-normalized operators entail, for ρ̂ > ρ and all n � N,

‖H
n
s [F]‖1 � λ(σ)−n

(
‖Hn

s‖0‖F‖0 + ‖Hn
s [F · Fσ]‖1

)
� C

(
|s|‖F‖0 + ρ̂n‖F‖1

)
,

where the constant C depends only on L.

First use of the (1, t)-norm

In the bound (6.8) of Lemma 6.5, there appear two terms: one contains a factor |s|, the

other a decreasing exponential in n. In order to suppress the effect of the factor |s|, in the

same spirit as in Dolgopyat’s works, we use the family of equivalent norms ‖.‖1,t already

defined in (6.1). With these norms and Lemma 6.5, together with (6.4), we obtain the first

(easy) result.

Lemma 6.6. For any t1 > 0, for every compact neighbourhood K of σ = 1, there exists

M0 > 0 such that, for all n � 1, and all s for which �s ∈ K, |	s| � t1, we have

‖H
n
s‖1,	s � M0.

6.7. Completion of the proof of Theorem 6.2

We now operate transfers between various norms.

From the L2-norm to the sup-norm. Since the normalized density transformer H1 is quasi-

compact with respect to the (1, 1)-norm, and fixes the constant function 1, the spectral

decomposition (5.4) gives

‖H
k
1[|G|2]‖0 =

(∫
I

| diagG(x)|2 dx
)

+ O(rk1)‖G2‖1,1, (6.9)

where r1 is the subdominant spectral radius of H1.

Consider an iterate H
n
s with n � n0 (n0 defined in Lemma 6.3). Then

‖H
n
s [F]‖2

0 � ‖H
n−n0
σ [G]‖2

0 with G = |Hn0
s [F]|.

Now, using (6.7) from Lemma 6.4 and (6.9) with k := n − n0, together with the bound

(6.6) for the L2-norm and finally Lemma 6.5 to evaluate ‖G2‖1,1, we obtain, for any t with

|t| � t1,

‖H
n
s [F]‖2

0 � A2(n−n0)
σ

[
ρ(1−2a)n0 + rn−n0

1 |t|
]
‖F‖2

1,t.
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We now choose n = n1 as a function of t so that the two terms ρ(1−2a)n0 and rn−n0

1 |t| are

almost equal:

n1 = (1 + η)n0 with η := 2(1 − a)
log ρ

log r1
> 0. (6.10)

Now choose d such that 0 < η(5a − 2) < d < 1 − 2a < 1/5 (which is possible if a is of

the form a = 2/5 + ε, with a small ε > 0). Recalling (6.6), where a first neighbourhood

was defined, and considering a (real) neighbourhood R of s = 1 for which

Aη
σ < ρ−η(5a/2−1) < ρ−d/2 and λ(σ)1+η < ρ− 1

4
(1−2a−d), (6.11)

we finally obtain, for n1(t) and η defined in (6.10),

‖H
n1
s [F]‖0 � ρn1b ‖F‖1,t, with b :=

1 − 2a − d

2(1 + η)
. (6.12)

From the sup-norm to the ‖.‖1,t-norm. Using (6.12), applying Lemma 6.5 twice with a

given ρ̂, and choosing t sufficiently large for the integer n1(t) of (6.10) to be larger than

the integer N of (4.8), we obtain the inequality

‖H
2n1
s [F]‖1 � |s| ‖H

n1
s [F]‖0 + ρ̂n1 ‖H

n1
s [F]‖1

� |s| ρn1b‖F‖1,t + ρ̂ n1 |t|
(

|s|
|t| ‖F‖0 + ρ̂ n1

‖F‖1

|t|

)
� |t|ρ̂ n1b‖F‖1,t, (6.13)

which finally entails for n2 = 2n1 (and n1(t) as above)

‖H
n2
s ‖1,t � C ρ̂n2b/2. (6.14)

Now choose t sufficiently large, namely |t| � t2 := C4/(1−2a−d), to ensure the inequality

C < ρ̂−n2b/4 for any n2(t) with |t| � t2. Finally we have

‖H
n2
s ‖1,t � ρ̂n2b/4 (�s ∈ R, |t| � t2). (6.15)

6.8. The last step in Theorem 6.2

For fixed t with |t| > t2, any integer n can be written n = kn2 + � with � < n2(t). Then

(6.14) and Lemma 6.6 imply

‖H
n
s‖1,t � M0 ‖H

n2
s ‖k1,t � M0 ρ̂

bkn2/4 � M0 ρ̂
bn/4 ρ̂−bn2/4.

Since bn2/4 = bn1/2 = (1 − 2a − d)n0/4, with n0 defined in (6.5), we finally obtain

‖H
n
s‖1,t � M0 |t|δ γn,

with δ :=
1 − 2a − d

4
, b :=

2δ

1 + η
, γ := ρ̂ b/4.

Therefore, returning to the operator Hs, we have shown that

‖Hn
s‖1,t � D3 · γn · |t|δ · λ(σ)n, ∀n, ∀t, with |t| � t2. (6.16)
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Finally, with

a ∈]2/5, 1/2[, η := 2(1 − a)
log ρ

log r1
, η(5a − 2) < d < 1 − 2a, δ :=

1 − 2a − d

4
,

we take a refinement of the R defined in (6.11) and K defined in Lemma 6.6, with a small

neighbourhood V of v = 1, we define the rectangle R3 as

R3 := {s = σ + it; |t| � t2, Aσ < ρ−(2−5a)/2, |v|λ(σ) < ρ−(1−2a−d)/16(1+η)}.

Then, for s ∈ R3 and v ∈ V , we have

γ|v|λ(σ) � ρ̂ (1−2a−d)/16(1+η) = γ̂ < 1.

This finally proves Theorem 6.2 with D1 := D3/(1 − γ̂).

We have shown in Section 6.3 how Theorem 6.2, together with Propositions 5.5 and

6.1, entails Theorem 4.2, which proves that tries built on dynamical sources of the Good-

UNI Class have a depth which follows an asymptotic Gaussian law, with a speed of

convergence of order (log n)−1/2.

7. Conclusion and extensions

Simple sources and Good-UNI sources. The probabilistic properties of a random trie,

built on n words independently drawn from a source, a priori depend on the probabilistic

properties of the underlying source. In the general context of dynamical sources, there is

a close relationship between the form of the branches and the analytic properties of the

Dirichlet generating functions of the source, in particular their tameness properties. From

this point of view, there are two extreme cases in the Good Class: the simple sources and

the sources which satisfy the UNI Condition. The simple sources are defined by dynamical

systems all of whose branches have the same form, as they are all affine. On the contrary,

for a Good-UNI source, the probability that different branches have ‘almost the same

form’ is exponentially small. The Good-UNI Class gathers sources which ‘strongly differ’

from the simple sources. This implies different tameness properties: the simple sources

are never strongly tame, whereas the sources of the Good-UNI Class are always strongly

tame. Then, the properties of random tries built on these two subclasses of sources may be

a priori different. The present paper shows that this is not actually the case: the dominant

terms in the asymptotic expansions of the expectation and the variance are the same, and

tameness only has an influence on remainder terms.

Good-DIOP sources. It is also interesting to study the probabilistic behaviour of tries

when they are built on other sources, for instance other dynamical sources of the Good

Class. Dolgopyat [11] introduced another class of dynamical systems, the Good-DIOP

Class. This class gathers dynamical sources which extend the Diophantine simple sources.

It is defined by arithmetical conditions on branches, of Diophantine type, and it contains

both simple sources and dynamical sources which are not conjugated to simple sources.

Dolgopyat showed in [11] that the quasi-inverse of the (plain) transfer operator of such a

dynamical system admits a pole-free region of hyperbolic shape, where it is of polynomial

growth. The works by Roux [33] and Roux and Vallée [34] use properties of the Good
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Class that are established here, extend Dolgopyat’s results to the secant operator, and

prove that such a source is hyperbolic tame: its Dirichlet generating function admits a

pole-free region, of hyperbolic shape, where it is of polynomial growth. It is then possible

to study the probabilistic behaviour of tries when they are built on Good-DIOP sources.

Using Rice’s method, it is proved that the trie depth for general sources of the Good-DIOP

Class behaves as for particular simple Diophantine sources.

Distributional results for the trie depth. We also prove here that the trie depth of a Good-

UNI source asymptotically follows a Gaussian law, with an optimal speed of convergence

of order (log n)−1/2. These results are based on tameness properties of the bivariate

generating function Λ(s, v), which are obtained via a perturbation of the series Λ(s) in a

complex neighbourhood of v = 1. In the case of H-tameness, as the distance between the

frontier of the hyperbolic region and the vertical line tends to zero (for |	s| → ∞), it is not

possible to use such a strong perturbation (in a whole complex neighbourhood of v = 1),

but there exist weakest notions of perturbation which are sufficient to obtain Gaussian

laws with an optimal speed of convergence. Instead of the Quasi-Powers Theorem, we use

the Goncharov theorem, followed by the Berry–Esseen inequality (see the recent paper

[20] and the thesis [19]).

Similar studies for the digital search tree. All the previous results about tries can be

extended to another type of digital trees, the digital search tree (DST for short). The DST

is more difficult to deal with, but the recent paper [20] and the thesis [19] show how

to conduct a similar study for typical depth, in a parallel way, for both tries and DSTs,

which leads to very similar results for the two types of digital tree.

Importance of source tameness. This paper is among the first9 to introduce this notion

and to show its importance, specifically in the analysis of trie depth. This notion appears

to be central to many other studies that deal with sources, either directly or indirectly, in

the analysis of data structures on words (for instance DST as in [20] or [19]) or algorithms

on words (for instance sorting algorithms as in [9] or searching algorithms as in [7]).
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Appendix

This Appendix is devoted to proving Proposition 2.4, which arises in the proofs of

Proposition 2.3 and Theorem 3.5. The main arguments10 are due to Flajolet and Sedgewick

and are summarized in [16].

Proposition A.1 (Proposition 2.4 restated).

(i) For any fixed s with s �∈ Z�0, we have

Ln(s) :=
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

[
1 + O

(
1

n

)]
.

The O-term is uniform for s in a bounded set.

(ii) Consider a vertical line �(s) = α with α �∈ Z�0 and assume that 	(s) is continuous

on �(s) = α and of at most polynomial growth there, i.e., ω(s) = O(sr) as |s| → ∞ on

�(s) = α. Then, the integral admits the following estimate, as n → ∞:∫
�s=α

	(s)
n!

s(s − 1) · · · (s − n)
ds = O(nα).

(iii) Consider a curve ρ of hyperbolic type, namely of the form

ρ :=

{
s = σ + it, |t| � B, σ = σ0 − A

|t|β0

}
∪

{
s = σ + it, σ = σ0 − A

Bβ0
, |t| � B}

}
,

for some strictly positive constants (A,B, β0) and some real σ0. Assume further, and

assume that 	(s) is continuous on ρ and of at most polynomial growth there, i.e., 	(s) =

O(|s|r) as |s| → ∞. Then the integral of 	(s)Ln(s) on the curve ρ admits the following

estimate, as n → ∞:∫
ρ

	(s)Ln(s)ds = nσ0 · O(exp[−(log n)β]), with β <
1

1 + β0
.

The proof is based on two main lemmas. The first lemma is useful for proving

assertion (i) and estimates the integrals of assertions (ii) and (iii) near the real axis,

whereas the second lemma is a main step for estimating the integrals of assertions (ii)

and (iii) near the imaginary infinity. Then, the proof has three main steps: the proofs of

the two lemmas, and then their use in the proof of Proposition A.1.

A.1. Estimates near the real axis

Lemma A.1. For s outside a fixed sector containing the negative real axis in its interior,

and under the condition |s| � √
n, we have, as n → ∞,

Ln(s) =
n!(−1)n

s(s − 1) · · · (s − n)
= −nsΓ(−s)

(
1 + O

(
1√
n

)
+ O

(
s2

n

))
. (A.1)

Also for any fixed s with s �∈ N, we have

Ln(s) = −nsΓ(−s)

(
1 + O

(
1

n

))
. (A.2)

10 Many thanks are due to Philippe Flajolet for discussions on this proof.
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Proof. We have

n!(−1)n

s(s − 1) · · · (s − n)
= − n!

−s(−s + 1) · · · (−s + n)
= −Γ(n + 1)Γ(−s)

Γ(n − s + 1)
.

Stirling’s formula holds in the complex plane, provided a sector around the negative real

axis is avoided. Under this condition, we have

Γ(w + 1) = wwe−w
√

2πw

(
1 + O

(
1

n

))
, |w| → +∞. (A.3)

With the Stirling formula,

Γ(n + 1)

Γ(n − s + 1)
=

nne−n
√

2πn

(n − s)s−nes−n
√

2π(n − s)

(
1 + O

(
1

n

))

= exp[n log n − (n − s) log(n − s) − s]

(
1 + O

(
1√
n

))

= exp[s log n − (n − s) log(1 − s/n) − s]

(
1 + O

(
1√
n

))
.

In the region under consideration, we have s/n = O(1/
√
n), which is a small quantity, so

that log(1 + s/n) = s/n + O(s2/n2). Consequently,

Γ(n + 1)

Γ(n − s + 1)
= ns exp

[
O

(
s2

n

)](
1 + O

(
1√
n

))

= ns
(

1 + O

(
1√
n

)
+ O

(
s2

n

))
,

and we obtain (A.1). The proof of (A.2) is similar, indeed simpler, via the relation

s/n = O(1/n).

A.2. Far from the real axis

Lemma A.2. Fix any number m > 0. Then, there exists a computable constant Km > 0 such

that, for n large enough, s = b + it, b fixed and t � √
n, we have

|Ln(s)| � Km

tm
e−B

√
n, with B = log(

√
2).

Proof. The proof is given for b = 0, but extends to any fixed value of b. Choose an

integer m > 0 and set A = �
√
n�. We write

|Ln(s)| =

∣∣∣∣ n!

s(s − 1)(s − 2) · · · (s − n)

∣∣∣∣ =
1

|s|

m∏
a=1

∣∣∣∣ a

a − s

∣∣∣∣
m+A∏

a=m+1

∣∣∣∣ a

a − s

∣∣∣∣
n∏

a=m+A+1

∣∣∣∣ a

a − s

∣∣∣∣
The first product has a trivial bound:

m∏
a=1

∣∣∣∣ a

a − s

∣∣∣∣ < m!

tm
. (A.4)

For the second product, the complex s is close to the imaginary axis when n → ∞. The

triangle (a, 0, s) is approximately a right-angled triangle. The angle β at a satisfies, for n
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large,

tan(β) ∼ |s|
|a| � 1, and thus

∣∣∣∣ a

a − s

∣∣∣∣ = cos(β) < cos

(
π

4

)
=

(
1√
2

)A

.

resulting in

m+A∏
a=m+1

∣∣∣∣ a

s − a

∣∣∣∣ <
(

1√
2

)A

. (A.5)

For the third product, we use the triangle inequality, which gives |a/(a − s)| < 1 and

n∏
a=m+A+1

∣∣∣∣ a

a − s

∣∣∣∣ < 1. (A.6)

Collecting (A.4), (A.5), (A.6), we have

|Ln(s)| <
m!

tm

(
1√
2

)A

=
m!

tm
e−B

√
n.

Then, Km = m! and B = log(
√

2).

A.3. Proof of Proposition A.1

It remains to prove assertions (ii) and (iii). We only need to consider the integrals in the

upper half-plane. We use T =
√
n as a cut-off point and decompose each positive part ρ̃

of the curve – the vertical line or the hyperbolic curve ρ – into two parts.

Case of a vertical line. We use the decomposition∫
ρ̃

	(s)Ln(s)ds =

∫ α+iT

s=α

	(s)Ln(s)ds +

∫ α+i∞

s=α+iT

	(s)Ln(s)ds.

Near the real axis, namely for s ∈ [α, α + iT ], we apply Lemma A.1:∫ α+iT

s=α

	(s)Ln(s)ds = −
∫ α+iT

s=α

nsΓ(−s)	(s)(1 + O(n−1))ds. (A.7)

As the fast decay of Γ(s) compensates more for the polynomial growth of 	(s) and

|ns| = nα, the integral is O(nα).

Far from the real axis, namely for s ∈ [α + iT , α + ∞t], we apply Lemma A.2,∫ α+i∞

s=α+iT

|Ln(s)|ds < Kme
−L

√
n

∫ ∞

t=T

tr

tm
dt = O(e−L

√
n), (A.8)

for n large enough, provided m has been chosen such that m > r + 2. The combination of

equations (A.7) and (A.8) yields the claimed estimate in the case of a vertical line.

Case of a hyperbolic curve. Now consider the case of a hyperbolic curve, and consider

the two parts of the curve ρ̃: the curve ρ− (near the real axis) and the curve ρ+ (near

imaginary infinity):∫
ρ̃

	(s)Ln(s)ds =

∫
ρ+

	(s)Ln(s)ds +

∫
ρ−

	(s)Ln(s)ds. (A.9)
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In the case of the curve ρ+, which resembles a vertical line, we apply Lemma A.1,∣∣∣∣
∫
ρ+

	(s)Ln(s)ds

∣∣∣∣ < Km

∫ ∞

T

O(tr) · O(t−m) · e−L
√
ndt = O(e−L

√
n), (A.10)

for n large enough, provided that m has been chosen such that m > r + 2.

Now, near the real axis, Lemma A.2 gives∫
ρ−

	(s)Ln(s)ds =

(∫
ρ−

nsΓ(−s)	(s)ds

)(
1 + O(n−1)

)
. (A.11)

Letting s := σ + it, and L := log n, we use the estimates

|ns| = nσ = nσ0 exp[−ALt−β0 ], |	(s)Γ(−s)| � exp[−Kt]

(for some K > 0). The first one is due to the definition of the curve whereas the second

one uses the fast decay of Γ(−s), which more than compensates for the polynomial growth

of 	(s). With L := log n, the modulus of the integrand is at most

|Ln(s)| � nσ0 exp[−Kt − ALt−β0 ].

When n (and then L) is fixed, the minimum of the function t �→ Kt + ALt−β0 is reached

for tβ0+1 = β0L/K . Then the maximum of |Ln(s)| is of order nσ0 exp[−(log n)β] with

β < 1/(1 + β0). Using the same principles as in the Laplace method, we obtain the

estimate ∫
ρ−

Ln(s)ds = nσ0O(exp[−(log n)β]) with β < 1/(1 + β0).

This yields the claimed estimate in the case of a hyperbolic curve. The proof of

Proposition A.1 is now complete.
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de Gauss et d’Euclide. Acta Arith. 81 101–144.

[39] Vallée, B. (2001) Dynamical sources in information theory: Fundamental intervals and word

prefixes. Algorithmica 29 262–306.

[40] Vallée, B., Clément, J., Fill, J. A. and Flajolet, P. (2009) The number of symbol comparisons

in QuickSort and QuickSelect. In Proc. ICALP 2009, part I , Vol. 5555 of Lecture Notes in

Computer Science, Springer, pp. 750–763.

https://doi.org/10.1017/S0963548314000741 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000741

